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Abstract

Defect formation and transport in a hydrogen-bonded system is studied via a
two-sublattice soliton-bearing one-dimensional model. lonic and orientational defects
are associated with distinct nonlhincar topological excitations in the present model.
The dynamics of these excitations is studicd both analytically and with the use of
numerical sitnulations. It is shown that the two types of cefects ars soliton solutions
of a double Sine-Gordon equation which describes the motion of the protons in the
long-wavelength limit. With each defect there is an associated deformation in the
ionic lattice that, for small speeds, follows the defect dynamically albeit resisting its
motion. Free propagation as well as collision properties of the proton solitons are

presented.



1. Introduction

Electrical conductivity in hydrogen-bonded crystals is an old problem that
recently has been revived with the introduction of new techniques and ideas from
nonlinear physics. As with several other problems in biology, such as (for
instance) the dynamics of biopolymers, it provides a new and exciting arena
where nonlinear, soliton-type modes might be responsible for energy and charge
transfer. 173 Hydrogen bonding is not only ubiquitous in the living matter but it
also provides the dominant mechanism for crystallization 1n a variety of chemical
substances, such as hydrogen halides. * An understanding of the electrical proper-
ties of systems with hydrogen bonds will provide information for a wealth of phy-
sical and biological systems and processes ranging from "simple" systems such as
ice to the more complicated processes of proton transport across the cellular
membranes, the proton pump, or the dymamics of protons in the visicn related

molecule rhodopsin. 3

A great deal of activity has been devoted to the understanding of the physi-
cal and electrochemical processes that are responsible for the anomalously high
proton mobility ir: the most common .ydrogen-bonded crystal, i.e. that of ice.
Onsager associated the conductivity in ice, whick is not electronic but protonic in
nature, to a hopping mechanism that allows the prowons of the hydrogen bonds to
move along hydrogen-bonded atomic channels. 8 Experimental evidence strongly
indicates that charge transport proceeds via the motion of two types of defects
that can be present in the network, viz. the ionic defects and wne rotational (or
Bjerrum) defects. ~'! The former involve an intrzbond motion of the (unique)
binding proton, whereas the latter result from interbond or interatomic motion of
the protons that are due to rotations of ihe water molecules. Weiner and
Askar '? introduced the idea of a collective transition of the interacting proton

system that could explain qualitatively the ionic defect creation and motion and



-3

suggested that an analogy holds with the creation and movement of dislocations

in crystals.

More recently, Antonchenko, Davydov and Zolotariuk '3 focussed their
attention on explaining quantitatively the creation and transfer of ionic defects in
hydrogen-bonded systems. They introduded a two-sublattice model (ADZ
model) in which proton transport in an infinite one dimensional chain (realised
physically in ice through a Bernal-Fowler filament ') can proceed collectively via
the propagation of two-component ¢* solitons at a given characteristic velocity
v,. Lyapunov stability !> and stability of solitons during collisions !¢ have been
studied and a variety of interesting dynamical properties have been detezted !’
for the ADZ model. Some extensions to other hydrogen-bonded configurations

18.19

were introduced , including a thermal activation mechanism for the ionic

20

defects Finally, the interesting case of a quadratic phonon coupling was shown

to lead to exact soliton solutions with rich dynamical properties. 2!

With regard to the orientational defects, there have been recent attempts
aiming at the understanding of their formation and dynamics. The original Bjer-
rum picture ' has been replaced by a collective mechanism representation either
by a direct incorporation of the dipole-dipole interaction in the Hamiltonian 23:23,

or via other effective approaches 24,

Athough the aforementioned models provide quantitative information
regarding the collective proton dynamics that stems from the nonlinear stucture
of the hydrogen bond, they all sufter from the same defect, viz. they take into
account only one or the other of the possible two types of defects in the
hydrogen-bonded networks. This is very restrictive, especially since there exists

R

an abundance of cxperimental evidence that cleariy suggest that hoth types of

defects participate in the transfer of charge across the hyvdrogen-bonden network.
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The incorporation of both ionic and Bjerrum defects into a single classical
model has been introduced recently *>. In this model the esseatial physical
requirements nf the hydrogen-bonded networks were introduced and the resulting
solvable collective dynamics was shown to lead to defect creation and propagation
in the form of two-component solitons. In the present paper we extend the
model introduced in ref. 25 and begin a thorough analytical as well as numerical
study of its static and dynamical properties. We emphasize that our present study
adresses for the first time quantitatively, both analytically and by the use of
numerical experiments, the simultaneous collective dynamics of both types of

defects present in ice and other hydrogen-bcnded materials.

In the present paper we will restrict ourselves to the exposition and analytical
study of the two-defect model and emphasize its physical consequences. We will
present numerical simulations for the model that support and extend the analyti-
cally derived results. In particular we will present numerical experiments that
determine the free propagation and collision properties of the defects. Some
aspects of detect dynamics in the presence of an externally applied electric field

have been presented elsewhere. 26

The structure of the present paper is the following: In section 2 we describe
the two-defect model in detail. We give the classical Hamiltonian for the system
(2.1) and discuss the physics of the assumed substrate potential as well as the
interaction potential. In (2.2) we discuss the degeneracy of the ground states, in
(2.3) derive the dispersion relations in the harmonic approximation and in (2.4)
we write the equations of motion in the continuum limit and give their solutions.
In section 3 we describe the numerical simulations performed and analyze the
iree propagation of the solitons and in particular study their collision propertices.
Finally in section 4 we conclude by discussing the physics of the collisions as well

as other prop rties of the discrete svstem.
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2. Description of the Model and Analytical Resalts

A typical one-dimensional hydrogen bonded network consists of two coupled
sublattices: one is that of the negative ions (or a group of atoms), and the other
is that of protons. In a one-dimensional geometry, this configuration would be

represented by:
.X-H.X-H.X-H.X-H..

where X denotes an ion (usually O, F or N) or an aggregate. and H is a hydro-
gen that 1s bonded covalently (or through an ionic bond) with an adjacent ion
(full link) and forms a hydrogen bond with another ion (dotted link). The
covalent and hydrogen bonds in a X - H...X configuration ars interchangable, viz.
the proron in the bond that links the two X -ions together can tunnel between two
equilibrium positions that are energetically equivalent. Thus the nature of the
cffective potential for the proton is that with two stable equilibrium positions
separated by an unstable one. A typical example of such a potential for the pro-
ton in the hvdrogen bond, % is the well-knowr double-well potential, viz.

Vi(x) = ~Y%ax? + 1/4bx*, where a. b depend on the specific system under study.

Because of the double-well structure of the inter-ion bond, there are two
equilibriuin configurations for the extended system; one with all the protons in
one minimum (say left) and the other when all protons are in the other
minimum (say right). Excitation from cither of these equilibrium configurations,
1.e. displacement of a particular proton from a left to a right well, in a all-left
ground state, results in a defecr in the lattice. This defect carries effective charge
(positive or negative) and is an ionic defect. In the case of ice, i.e. when the X -
ions are oxygens, there are two types of ionic defects, viz. hydrexyl ion (OH ™)
with negative effective charge and hvdronium ion (440 *%) with positive ef™ctive
charge. The spontaneous creation and propagation of these defects has been stu-

dicd exteasively and their dynamics have been used to explain some ol the
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electrical properties of the ice crystals. 8!

In the past models with double-well potentials for the inter-ion linkage have
been studied systematically in the context of the dynamics of protons in hydrogen
bonded systems. Such models have been shown to lead to kink solitons that

represent the ionic defects in the crystal. 12,13.15-21.27

The main disadvantage of
such potentials, however, is that they cannot take into account the orientational
defects that are known to be present in a hydrogen-bonded system. The latter
defects are due to rotations of entire water molecules (in ice) with a net result
the appearance of a second proton in a given hydrogen bond (D-Bjerrum defect)
or the disappearance of a proton from a bond resulting in an empty bond (L-
Bjerrum defect). Since macroscopic charge transfer in hydrogen-bonded systems,
involves both kinds of defects, all models that are based on such a type of poten-
tial, can provide only partial information on the dynamics of protons. In particu-

lar, conduction properties of the protons cannot be addressed with such poten-

tials.

To circumvent these difficulties, it is necessary to adopt model substrate
potentiais for the protons that, on one hand retain the topology of the double
well potential which is essential for the proper description of the hydrogen bond,
and, on the other hand, allow for an effective charge transfer between adjacent
hydrogen bonds that comes as a result of the Bjerrum rotations. This can be
accomplished with the introduction of a doubly periodic substrate, that can
accomcdate both types of defect formation that are known experimentally to play
imporatant role in the electrical properties. We proceed by describing the

double-defect model.
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2.1 The Hamiltonian

The total Hamiltonian H of a quasi-one dimensional system described

through the precent model, cosists of three parts, i.e.
H=H,+H, + H; |, (2.2)

where H, is the Hamiltonian for the proton sublattice, H, for the jon sublattice,

and H; is the interaction term between the two. We have:

dy,
Hy = ):[‘/m(-—-d, )2+ VK 1(Vns1=ya)? + S,,vl(i,’i-y,n] (2.22)
n o
[ dY" 2 2 Yn ]
H, = Z YaM ( 4 Yo+ YK (Y =Y,a)+ S,V ] ) (2.2b)
H; = XZ[(Yn_Yn—l)d)(ﬁllt_)‘n)J (2.2¢)

In eqs. (2.2), m, M denote the mass of the protons and ions respectively, K |, K,
the corresponding spring constants and x is the positive couplin; parameter
between the two interacting sublattices. The dispalacement y, or the n-th proton
is measured from the central unstable equilibrium posi*.on in the hydrogen bond,
i.e. from the middle of the bond that inks th. 1ons, whereas Y,, the displace-
ment of the n-th ion, is measured from us equilibrium position. The equilibrium
distance between two heavy ions 1s wakcn to be [,. We assume that in both
chains, only the nearest neighbors interact among themselves. The combined
effects of Coulomb repulsion and screcning are included in the on-site potentials,
for both sublattices. 28 It is apropriate to introduce the following dimensionlcss

quantities:

4
u, = —l—n—yn . w, = . (2.0
o
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With these definitions, the substrate potentials in eqs. (2.2) are written:

u 2
Vi) = = 2 =[cos(=-)-a]’, 0< a< 1 (2.4a)
_a 4
1.2
Vawa) = 2w, (2.4b)

while for the interaction term of eq. (2.2c), the function ®(u,) ;5 defined:

D(u,) = cos(uT") - cos(-u?o-), u, = 2arccos(a) (2.4¢)

The potential V (u, ) is the on-site potential for the proton sublattice (Fig. 1) and
it is chosen to satisfy the physical requirements posed by a hydrogen-bonded net-
work. If we assume that the rest ion position is where that larger maximum
occurs, then the two local minima separated by the smaller maximum represent
the two proton equilibrium positions within the hydrogen bond and the larger
barrier represents the energy necessary for a Bjerrum rotation to take place. If a
proton has enough energy, such rotation is possible, and the proton can move to
the other side of the large barrier. The activation energy for such a rotation in
ice is larger than the one for the creation of an ionic defect. This is so because
the former results only after two covalent and two hydrogen bonds are broken.
In systems where this might not be true 4, a different value in the parameter a is

necessary.

One disadvantage of the potential of eq. (2.4c). is that it depends only on
one parameter, viz. a. Consequently, one cannot assign independent values to
the relative maxima of the potential. With the proper choice of the parameter a
however, we can simulate the respective values of the hydrogen bond barrier and
the Bjerrum rotation energy to reasonable accuracy for several hydrogen-bonded

systems.
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V,(w,) is an dn-site harmornic potential that acts on the heavy ions. This
potential is created from the interaction of the quasi-one dimensional chain under
study with the rest of the crystal and guarantees the rigidity of the lattice. The
parameter S, in eq. (2.2b) measures the strength of this effective interchain
interaction. Finally, the potential function ®(u.) determines the interaction
between the two sublattices. The functional form of this term is restricted by the
requirement that when either sublattice is at an equilibrium position, the interac-
tion term of the Hamiltonian in eq. (2.2¢) must be zero. The particular form
chosen in eq. (2.4c), clearly has these properties and its choice has been dictated
by the specific form of the substrate potential V;(u,). As we will show shortly,

for this coupling, analytical solutions to the equations of motion can be found.

In Figure 2a, we compare the potential ®(z) with the on-site potential
Vi(u). We observe that ®(u) has its maximum value at the top of the
hydrogen-bond barrier and its minimum in the location of the ions. This depen-
dence leads to the following behavior in the interaction term of eq. (2.2c): Let us
assume that the difference in the displacements of the ions, Y,-Y,_, is positive
leading to a local rarefaction in the ion sublattice and that the coupling parameter
X is positive as well. In this case then, the form of the interaction potential ®(u)
favors a tendency of the protons to move away from the ionic barrier and closer
to the ions, in cither side of the hydrogen bond, due to the even svmmetry of the
potential. As a result we have an effective reduction of the rotational barrier
(large barrier). On the other hand, when there is a compression in the ionic sub-
lattice, then Y,-Y,_,< 0, and we now have a reduction in the ionic barrier. This
situation is depicted in Figure 2b where there is a comparisson of the substrate
potential with —®(u). We conclude, that when x is positive, a compression wave
in the ions will help in the creation and the motion of the ionic defects whereas a

rarefaction wave will tend to help the motion of the Bjerrum defects. Clearly. the
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opposite holds, for negative . The sign of the nonlinearity parameter plays an
important role in the physics of the problem and it will have to be deterinined

according to the specific system under study.

. he equations of motion for the Hamiltonian of eq. (2.2) can be written, in

dimensionless form, as follows:

du, . L dV(u,) dd(u,)
drl = w{(un+l—2un+un-—l) - Qf_—dun - XI(wn—wn—l)——dr (2.5a)
d*w, R 5, dVa(w,)
5y = w’f(wn+l_2wn+Wn-l)-Q2-_—+x2[¢(un+])—¢(l‘n)] (2.5b)
dat* dw,

In egs. (2.5) as well as in what follows, we use the following units:
Energy : €, = 1.986x10"%/
Time : t,= w;'= (M/Ky"

length : |,

With these choices, energy is measured in ¢m~ ! and for mass and force we have

the following derived units:

mass :m, = €512/ 1*

force :f, =¢g,/l,

Potenrial Constant : K, = €,/12
This system of units is introduced in order to facilitate the numerical computa-
tions and to enable the comparison of the results with experiments. Using the
above defined fundamental and derived units, we determine the values of the

constants and parameters that are present in the equations of motion in egs.
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~ K2mo % 2
Y AR
xm, (4m) 22y
X1 = (41)2 =
: fom ml,
Am, 17X

Q= (=)
o

1 S

Q,= IO(M)

With these definiticns, all coefficients are dimensionless.

For the specific case of the ice crystal that we are considering in the simula-
tions (in section 3), we have chosen values for the parameters that are consistent
with the recent literature on the subject. We take 1, = 2.0x10713 / = 2.7x107'9,
m = 1.67x10"27 and M = 2.84x10"2°. The actual value for the coupling
coefficient  is not known with accuracy sincr there are several uncertainties
regarding even the exact form of the inceractior term. For a coupling coefficient
x = 1.0x10710 y, and %, become 1.4x10? and 0.52 respectively. In the simula-
tions we are reporting in the present paper we chose a substantially smaller value
for x 2% larger values in the coupling enh. ~~ *ie stability of the non-topological

excitation in the ionic sublattice.

2.2 Ground States

In its ground state, the system can be found in two (modulo 4n) enevgeti-
cally equivalent but topologically distinct configurations. Both of these state

occur when the heavy ions are in equilibrium, i.e. when w, =0 and all protons
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occupy equivalent minima of the periodic substrate potential, ..

u,=t u,, mod(4n).

The period of the on-site potential for the protons is 4n. Within one period,
the potential V(u) has a local maximum for u=0, and a global maximum at

u=2n. The corresponding heights of the barriers are

nd and VQ2n)=2—=~

V) =2
I+a l-a

times the coefficient SP. We note, that once a is chosen, the relative strengths of
the potential barriers are fixed. The parameter a determines the relative distance
between the maxima and minima in the potential as well, sinice the first minimum

occurs at the value u ,;,=u,=2arccos(a).

2.3 Harmonic Limit

When the amplitude of the motion of the particles in the system is small we
can approximate eqs. (2.5) with a new set of coupled equations. For this lineari-
zation procedure to take place, we assume that the displacement y, of the n-th
proton from its equilibrium position + u, is small and the corresponding small

displacement of the n-th ion is w,. We now have the tollowing equations of

motion:
d::: = “’12()’“1‘2)',.'*')',,_1) - Qb F X (Wy—Wo_ 1) (2.62)
a‘w, o, X ) ’ .
To2 - OXWneim 2wt )= 8w E Xy (e 1) (2.6b)
where

X, = —X—L\/ 7]7~(,'2 X2 = VX‘Z\/]-U;

By ]

.
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and the upper (lower) sign refers to equilibrium position +u, (-u,), with
U,=% u,+y,.

The equations of motion (2.6) represent two coupled linear chains of vibrat-
ing masses. Each mass in either chain vibrates around an equilibrium position
under the influence of a harmonic potential and is coupled to the nearest neigbor-
ing masses with linear springs. The two chains couple through the last terms (on

the r.h.s.) in egs. (2.6a) and the interaction energy between the two is bilinear in

the displacements.

In order to calculate the low-amplitude vibration dispersion relations, we

assume solutions of the form

y, =y e 'Ot gikn w, = we ' eikn (2.7)

Upon substitution of eqs. (2.7) in egs. (2.6), we obtain

-0+ pllyt x| (1-eF)w = 0 (2.8a)
+xih(l-e"Fyy+[-w+pilw = 0 (2.8b)
pf=Ql+ 4mfsin:i,:‘ . pi=QF+ dwzzsinz—;- . (2.8¢)

When the coupling between the two chains is zero, the dispersion relation
consists of two branches given by p; and p,. This is depicted in Fig. 3a, where
the upper branch is the proton dispersion curve and the lower one is the ion
dispersion curve. These dispersion curves are modified when we turn the cou-
pling on. The new dispersion relation can be easily evaluated from the diagonah-
ration of the coefficient ma*-ix in 2¢s. (2.8) leading to:

A

i 2 k ,
)24 X1 X2 sm‘—q—] (2.9

Wi k) =

2, in?
qup + [(Pl‘f"

¥

a P

As x increases, the lower branch becomes flatter at £ -0 whercase the upper

branch becomes steeper in the same point. This has the effect of increasing the
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sound velocity in the proton sublattice and cecreasing the sound velocity in the
ionic sublattice. Therefore, as x increases, large wavelength ion waves are slowed
down bu: the can move with larger speeds via the protons. This situation is dep-

icted in Fig. 3b,c, for some larger y-values.

2.4 Continuum Limit

Although the phyrcical hydrogen-bonded network is a system with discrete
symmetry, analytical results can only obtained in the continuum limit, where the
excitations are assumed to extend over distances large compared to the lattice

spacing. In this limit, equations (Z.6) become:

5 dv do®
un—c;uu+Qf—J‘-‘-l—+x,wx—E;- =0 (2.10a)
5 ’)dv?.
Wor= VU W, + 825 ™ .-x2_d£l = 0 (2.10b)

where x, t are the dimensionless space and time variables, ¢,=w,, v, =1
represent the speed of sound in the protonic and icnic sublattice respectively,
S, respectively.

. : . . : 4
X1, X7 are proportional to x and €2 |, £, are proportional to § 7,

In the special case when €, = (), eqs. (2.10) lead to a double-sine Gordon

cquation for the protonic sublattice:

(1)2--(",2)u£5‘+ tl—sinu+ Zusin(—f:—)l:: () (2.11a)

’~

while for the heavy sublattice we have:

B u :
W e leos{ ) a (2.1
“ \ )
v -

o
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with

Qf e

1-a?  4(vi-v7)

where E=x1-vt and v is the travelling wave velocity. The parameter € defines a
new effective barrier height for the double-sine Gordon equation; when y=0 the
known results are recovered % 32 For X1» X2o<x#* 0 this coefficient contains the
influence of the heavy sublattice on the ionic one. We observe chat for travelling
velocities smaller than v, the effective barrier decreases, whereas . = oposite
effect occurs for v> v,; this holds independently of the sign of the coupling
coefficient x. On the other hand the sign of we (=w,) in Eq. (2.11b) depends on
the velocity v. When the travelling velocity v is equal to the value of the sound
waves in the lonic sublarttice, viz. v,, equations (2.11) seem to have a singularity
and for larger velocity values we changes sign. In this latter case an initially rare-
facting tendency in the ionic lattice becowmes compressive and vice-versa. The
apparent singularity, the physics of which is discussed below, dissapears when

Q= (.

As is well known, the double-sine Gordon equation (2.11a) results in twe
types of kink solutions that in the precent model represent ionic and Bjerrum
defects respectively. Equation (2.11b), on the other hand, defines an excitation in
the heavy-ion sublattice that is formed because of the topological excitiations of

eq. (2.11a). The non-travelling wave solutions of equations (2.11) can be

obtained easily Y2, they are given by:
iy, c) =~ dnn t darctan [R tanh[K (x-x,) - !.l,rl] (2.120)
Hpp (0, T) o (2n+ D)2+ darctan [ R Mtanh(K (v-1v,) €, 1] I (2.12h)

where
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R =[(1-a)/(1+a))* |, K,=yA2d , Q, = K,v
= (1= ? , d =,/ . o= cos(u,/2) (2.12¢)

A= [1+

b b

4Q ¢ vi-v}

for the protonic part. The solution for the heavy ion motion can be easily
obtained from inserting eqgs. (2.12) into eq. (2.11b). After integration, two kink-
type solutions are obtained for w(x,t), the displacement from the equilibrium

positions of the heavy masses in the ionic sublattice.

The static solutions of the the egs. (2.12) above provide two types of kinks
for the protonic sublattice (small and large kink, and the corrzsponding antikinks)
and for each of those a nonlinear kink-type excitation in the ionic sublattice,
When a kink is present in the protonic sublattice then a deformation is created in
the ionic sublattice that can travel with it, as long as the velocity of the kinks do
not exceed the speed of sound in the ionic chain. When the velocity of the
former is larger than that, the ionic deformation lags behind and thus the
¢ffeciive resistance exerted on the kinks reduces. In Fig. 4,5 we present the dou-

ble kink-solutions for rhe two sublattices.

When Q2,2 0, the shape of the deformation 1a the ionic lattice changes and
analviical solutions of the form given by eqs. (2.12) are no longer available. It
1s however possible to obtain an approximate solution for the composite norn-
lincar exitations for one particular + alae of the velocity of the moving excitation,

t.c when the latter moves with velocity v=uv,, which is the velocity of sound in

[

the ronic lattice. For this velocity, eg. 12.10b) becomes inertialess and we obtain:

X o u
Wt e gy SIN— (2.1
S )

240 2

The substtunion of eq. (213 a0 eqo (2100 results inan equatien which s



- 17 -

more complicated that eq. (2.11a), in that it contains a term proportional to ug as
well as u-dependent coefficients. These additional terms, however, are propor-
tional to - which is in the present case much less than 1 and therefore can be
neglected to the lowest order. Consequently, ¢gs. (2.12) are good approximate
solutions for the presen. case of Q,# 0 and v=v, for the protonic sublattice (this
is readily justified in the numerical simulations as well). Combining eqgs. (2.12)
with (2.13) and after some straightforward algebra we obtain the following forms

for the nonlinear excitations in the tonic sublattice:

22 RK sech?[K (x=x,)-Q,1]  w(x.1)

w(x,T) = —=-— - sin (2.14a)
: Q2 1+R 1ann?(K, (x-x,)-Q, 1] 2
) 2%, R7IK sacn *(K (x=x,)~Q 1] . up (x,T) (2.14b)
Wi X, = - S Py S1 -
: Q% 14R “tanh (K, (x-x,)- Q1] 2

where u;(x,1) and u; (x,1) are given 1n eqgs. (2.12). In Figure 6 we present the
approximate solutions for the ionic sublattice with Q2=0.1. The proton soliton
solutions correspond to those plotted in Figs. 4a and Sa. It is evident that the
shape of the ionic deformation caused by the protonic kink has changed dramati-
cally from a kink-type to a gradient or shock-like wave. It is worth pointing out
that the ionic defermation is asymmetric in terras of compression and rarefaction
and it iy quite different for the small and large kinks respectively (this asymmetry
was present in the ionic kinks as well as can be verified from Figs. 4¢ and S0).
This is due to the different topological properties of the proton-kinks and has
interesting ramifications in the mobility of the large kinks. It has been observed
in the computer simulations of the system under study, that the 1onic deforma
tion depicted in Fig. ¢ for the specific velocity v, survives approximately
almost 11 velocity regimes although it does not revain the above gaven exact sy

metric shape,
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3. Simulations

In this section we present the results of the actual numerical experiments
perfcrmed on the system. We have chosen a one dimensicnal crystal with 400
ions and equal number of protons placed periodically with a lattice spaciug /,.
The equations of motion for the discrete system were those given in eq. (2.5).
They were integrated numenically, using a fourth-order Runge-Kutta scheme with
double precision arithmetics. The integration time-step was kept the same for all
simulations and equal to Ar=0.01. With a typical time (in narural units) of
t,, =100, this amounts to Ar:x.,=10000 iterations, for a typical run. W= chose
tixed boundaries for the protonic chain and semi-free for the ionic chain, viz. the
first ion was kept fix>d and the last ion was free to move. The initzal conditions
for the proton lattice were chesen according to the solutions of the double sine-
Gordon equauon. The ionic lattice was taken to be initia. y at rest. As noted
before, these are true solutions of the continuum equatiors of motion unly when
$2,=0. In the simulations, we imposed a weak substrate potential (2 ,=0.1) and
thus these are ro longer exact solutions of the system. Since the actual value of
the substrote is very small, this discrepancy does not affect appreciably the evolu-

tion of the proten solitons.

In the study of the dynamical properties of the nonlinear excitations of the
system two velocity values seem to be of particular importance;, these are the
velocity of sound in the two sublattices, denoted with v, for the 1onic and ¢, for
the protonic one. For the present choice of parameter values and in dimension-
less units these have the value 1.0 and 1.0 respectivelv. While va< v, e tor
small kink velocities, both small and large excitations propagate freely carrving
along the 1onice lattice deformation. Upon ancrease of thewr veloaity, however, and

as at approaches the Jower cnitical velocaity v, the effective resistance that the

o



ionic substrate exerts on them increases substantially. This effect is accompanied
by a dramatic increase in the amplitude of the oscillations of the heavy ions, con-
sistent with Eqs (2.13), where K —e< when v-v,. For initial kink velocities
larger than v, the effective mobility of the kinks is much smaller than that for
V< U,. In fact, for relative small velocities compared tc ¢,, viz. V< 5. the propa-
gation of the iree solitons is quickly inhibited by the interaction with the ions.
The sharp reduction of the mobility of the proton solitons at velocities compar-

able to v, is seen in the numerical simulations where mobilities are determined.

Having discussed briefly the properties of the free propagation of the proton
kinks, we now come to their collision properties. We ncte here that our experi-
mental cenclusions regarding these properties se=m to agree with the results of
Campbell, Peyrard and Sodano, who performed a thorough analysis of the pro-
perties of {one component) kinks in the double Sine-Gordon equation. 2 That
is, the presence of the innic substrate, although profoundly altering the free kink

dynamics, does not affect substantially their basic collision properties.

There are various pairs of solitons that can undergo a collision. Let us first
consider a small kink-antikink pair; physically this corresponds to two different
tonic defects with equal and opposite charge. In the niumerical experiment, we
place the kink-antikink pair in two distant positions in the one dimensional sys-
tem with several values of initial (oposite) velocities. We typically observe two
cffects in such a collision: (a) For relatively small initial velocities the solitons
penctrate each other, annihilate, and in their place leave a spatially localized oscil-
latios. This behavior corresponds to the trapping of the small kink-antikink dou-
ble Sine-Gordon pair reported by Campbell et al. which 1s accompanicd by a
“decaving breather” type of final state. This decay is caused here by the coupling
of the proton chain with the ionic one. The ‘onie chain acts effectively as a dissi

pative reservarr tor the protons. (b)) For larger velocties (typically for v- 5.0 an
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inelastic collision occurs and the two kinks do not pass through each other but
reflect. This behavior persists till the upper critical velocity ¢, is reached. This
nroperty 's consistent with th: findings of Campbell et al. as well; however, a
conversion of two small kinks into two large ones as reported in ref. 31. for the
double Sine-Gordon equation has not been cbserved in the system under study.
Representative plots for the evolution of small sinks (ionic defects) are given in
rigs. 7, 8.

The evolution of the kink-antikink pair presented in Fig. 8 should be con-
trasted with the one in Fig. 7. In Fig 7 the solitons are moving siower whereas in
Fig. 8 they move faster than the characteristic velociy v,, the velocity of sound
in the ionic lattice. Because of this, in rig. i.b the second soliton component is
not rormed and only a small wave-like distur>znce follows the kinks. As a result
of the collision, large amplitude ionic oscilla-ions are formed that cannot follow

the speedy kinks.

Both anwihilation and reflection of the simall kink-antikink pair can be under-
stood physically in terms of the actual protonic motion .n the effective double-
wells of the hydrogen bonds. Let us assume for simplicity that a kink (antikink)
is fairly localized and involves only three udjacent protons. Then, the transition
region in a left-right-left state (small kink-antikink pair) involves basically two
adjacent hydrogen bonds, both of which have the corresponding protons in the
right well of the hydrogen bond. Since the k.'ks are counterpropagating, the
spring connecting these two protons will be compressed. If the velociiies betore
the collision are small, then the collision will affect only these two adjacent pro-
tons leading to a decaying oscillation during which the encergy released durmg the
colliston will move periodically for some time the protons mvolved in the two
wells of the hydrogen bond. However, when the mitial velocities are much

larger. the mtial momentum of the adjpcent and colliding protons will be



transfered to the next neighbors and as a result the latter will move from left to

right conSgurations. This is equivalent to the reflection of the two kinks.

When a pair of large kinks are counterpropagating in the crystal, the collision
properties observed are different. Indeed, for all velncities tested we observed a
conversion of the large pair into a pair of small kink-antikinks. This is in agree-
ment with reference 32 as well. The conversion of the large pair into a small one
occurs because it is energetically more favorable for the protons to move across a
small barrier (the hydrogen-bond), rather than accross the large barrier (Bjerrum
rotations). This behavior is depicted in Fig. 9. We note that the excess of the
large kink potential energy is distributed into (a) kinetic energy for the resulting
and faster moving small kinks and (b) potential energy in the heavy ion sublattice
that causes large amplitude oscillations. As a result of the inability of heavy ions

to follow the speady kinks, a local oscillatory mode is created.

When 3 small kink moves against a large kink, we have a collision situation
similar to that of a small mass colliding with a large mass. Here, the large kink
passes its momentum to the small one, which subsequently reverses its direction

of motion.

Finally, when all four kinds of kinks are present in the syst~m, the properties
of the system can be understood from the analysis of the individual “elementary"
collision. An exmple of a situation where all four types of defects are present is

depicted in Fig. 10.
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4. Conclusions

We have presented a study of a nonlinear model for the motion of defects in
quasi-one dimensional hydrogen-bonded materials. Although several models
have appeared recently addressing the collective dynamics of protons in
hydrogen-bonded systems, none of these models can accomodate fully all types of
defects that are known experimentally to play an important role in the electrical
properties of these systems. The present model introduces in a natural way both
types of defects associated with hydrogen-bonded systems. This ‘s accomplished
:hrough the introduction of a substrate potential which is doubly periodic. A jud-
icious choice of interaction between the two sublattices constituting the system,
leads to an exact solution of the model in the continuum limit, i.e. in the limit
when only long-wavelength excitations are present. It was shown that in this
limit, two kinds of kink solitons emerge, as a result of the double Sine-Gordon
stucture of the equation of motion for the protonic sublattice. The smaller kinks
of the double sine-Gordon solution have been associated with a transition
(through the small barrier) from one ground-state of the system at T= 0O to the
next one, and correspond to the ionic defects that are present in the hydrogen-
bonded materials. The other kind of kink, was shown to lead to rotational or

Bjerrum defects in the one dimensional material.

In the ¢ontext of the present model, ionic defects of the hydrogen-bonded
systems have been associated naturally with the small Sine-Gordon-like kinks
(type I), and the rotational or Bjerrum defects have been associated with the
corresponding large kinks (type II). The following association holds between soli-

tons in the model and defects in the hvdrogen-bonded network:
kink I — I~ jonic defect kink 1l — L Bjerrum defect

antikink I — [ jonic defect  antikink 11— D Bjerrum defect
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In the case of ice the ions /™, [*, are OH ™ and H ;0™ respectively.

When an external electric field is applied in the system, the various defects
respond differently, according to their respective charges and effective masses. In
particular the mobilities of small and large solitons are quite different as has been
observed in mobility measurements derived through numerical simulations. 2°
When an ensemble of defects 1s present in the system the individual mobilities as

well as the collision properties of the defects will determine the macroscopic con-

duction properties of the system.

In the present paper we have made a detailed presentation of some of the
basic properties of a new physical model pertaining to hydrogen-bonded networks.
In particular, in the context of the model we presented, the collective dynamics
of protons in such a system can be assessed bLoth qualitatively and quantitatively.
The double-defect model can be solved analytically (in the continuum limit) in
two particular cases, viz. for 2 ,=0 and for Q ,# 0 provided that v=v,. Following
these analytical results we explored numerically the relevant dynamics for mean-
ingful parameter values. Free propagation as well as collision properties of both
types of defrcts have been studied. Analysis of the response of the defects wnen
external electric field is applied in the system as well as dynamics at finite tem-

peratures will be published elsewhcre.

The parameter values used in the present paper were chosen as to
correspond to the hexagonal crystalline ice form (ice Th). The coupling constant
x was taken to be quite small 2 in order to avoid dramatic effects in the proton
dynamics. Although the exact value of x for ice is not known with certainty, it is
possible that one has to consider substantially larger values, perhaps an order of
magnitude larger, than the one chosen for the present study. In this case, an

amplification of the role of the ionic substrate is expected.
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A serious shortcoming for the present one-dimensional model is the true
three dimensional nawure of real solids such as crystailine ice Ih. Although
Bernal-Fowler filaments in ice provide quasi-one dimensional chains, the interac-
tion among these chains must be taken into account in a complete physical model
for this system. Nevertheless, the zig-zag, quasi-one dimensional structure that =
exemplified by such fi'laments in ice, can be found in abundance in nature, espe-
cially in biological systems. The electrical properties of such proton dominated

networks are similar to those of ice .

A particularly good candidate for our
present mode!l is provided by crystalline hydrogen fluoride 4. we will report on

that system elsewhere.
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Figure Captions

Figure 1: The substrate potential V' (x) is plotted as a function of the dis-
tance along a hvdrogen-bonded network. The heavy ions (large solid circles) and
the protons (small solid circles) are shown in the zig-zag geometry of a
hydrogen-bonded network. The periodicity of the on-site potential V (x) is 4w
and g is equal to 0.6486.

Figure 2: The substrate potential V (curve a) is compared with (a) the

interaction function @(x) (curve b) as a function of distance, and (b) with
—®(x) (curve b). The former case favors Bjerrum defect motion whereas the

latter reduces the hydrogen-bond barrier and thus favors ionic defect motion.

Figure 3. The dispersion curve w(k) versus & 1s plotted for (a) both sublat-
tices and for the valne of rthe nonlinearity parameter that has been used in the
simulations.  In (b) the dispersion curve for the harmonic proton motion s
presented (curve a) and compared with the one obtained for a large x (curve b:
the value of the nonlinearity parameter 18 100 times larger than the one used in
the simulations). In (¢) the dispersion curve for jons is shown (curve a ) and

compared with one for which x is 10 times larger (curve b).

Figure 4: Two-component solitons for £ ,-0. We plot: (a) the small kink
(onice defect), (b) the slope dw/dy of the ionic deformation and (¢) the 1wonic

Jdeformanon iself,

Figure S: Same as in Fig. 4, but for large kinks (Bjerrum defects). We
show: 'n (a) a large kink, in (b) the slope of the induced wonic deformanion and

I (¢ ity spatial dependence.

Fuymire 60 In (1) we plot the 1omie detormation induced by a small protome
Kink on the wome sublattice at the lower ennical velocity v, We note the diastie
ctumpe an the shape of the detormanon as compared wath that depcted i by

In (b we show the corresponding ronmic detormation of o large hink
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Figure 7: Collision ot two small Kinks with small initial velocities. Initially
we create a small kink with velocity v=0.5 1n position 150 and a small antikink
with velocity v=-0.6 in position 250. The two solitons move against each other,
«ollide and they wvirtually annthilate themselves leaving in place a decaving
breather (a). In (b) we show the dynamic evolution as seen in the 1onic sublat-
tice. Since the ionic sublattice has not been initially excited, several oscillatory
modes are observed in addition to the travelling ionic deformation.

Figure 8: A small kink-antikink pair with initally large velocities (here both
taken equal to 10.0 and in opposite directions) are seen to undergo a collision fol-
lowed by a reflection (a). In (b) the evolution in the ionic lattice 1s shown,

Figure 9 A pair of large kinks (Bjerrum defects) are placed initially in posi-
tions 100 and 300 respectively, with opposite velocities and equal to 10.0 in our
dimensionless units. In (a) we observe that as a result of this collision a small
pair of kinks-antikinks is created. In (b) we show the corresponding dynamics in
the 1onic sublattice.

Figure 100 Representative behavior where all four types of defects are

present. Foramital velocities we cnose the values 0.1,5.5,-3.5 and -0.1 for small,
large kinky, large and small antikinks respectively. Since the larger pair was given
a relatively large mitial velocnty, s coastituent parts collide fast with cach other,
snnihilate, subsequently create a smali soliton pair that moves i the opposiie
direction,  After a few tune steps clapse this small pair mects the woaally created
small pair of solitons and they undergo a eolliston. In (b} we show the aviamaes

m the wnie lathce,
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