LEGIBILITY NOTICE_

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained In
DOE’'s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.
Although a small portion of this
report is not reproducible, it Is
being made available to expedite
the availability of information on the
research discussed herein.

1

LA-UR 89-861 ST '
heseived by (i3]

AF'R Q 9 1989

CoN AT Nt L dabordls S OperEIeY Ty e Griie@r g Ty o Cdeh g L Pt the e ted SEdles cepdrtmer bt by e 1

LA-UR--89-861

DE8Y 009390

TmeE HOW TO WRITE APPLICATION CODE EVEN A SECURITY
AUDITOR CoULD LOVE

AUTHORIS) (iail E Barllch

SUBMITTED T 0t Computer Seenrity Group Conterence,
H

Amarillo. Texas, Mav -4, [UHY

DISCLAIMER

I onitedd Statey

o worh ponsarol by g gpemey o the
oGl haen

Cononment e any spriey ereal e o
RIS o

Thin et was prepared o e scooge
] |

Cpnerment SNeother the Topted S,
Poar vt an My

I R R L LT U LI N IR LY T ETRRTTN (T11]
Malit, Yo e gt v, sepbtenc ey o aabaine oy anboration oo Lot e
pree e b doned s epoamt the b c0 Al et Ty e ae a4 et
eee fwrean U ane ot v gl eabeo b A [T (T SRS DRTERY s
aoan gt e lgre L TR Y L 1 O T TR TR N T et . I FLE R FYPIT LY BRI H 1]
bl w0 Py by the Do e e e e e The s MAgTFR
il apumen.s of yuthea vpee ad heeae e e e w1 a0 3 .-
ot Siate s tanermmpenl o e g L th
1 b 1 PR AR | " [} o 1 1 LA IR [}
", VA y T
A] [1 ' t ot [LA 1 [N] ' LN}

I NG //\\”l) (« 2 LosAlamos National Laboratory
l 1((-- _))\‘ DN/ ’ l[W((D\‘) Los Alamos New Mexico 87545

PR U ATTY YR 'n“’ N'II ' il [

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

HOW TO WRITE APPLICATION CODE EVEN A SECURITY
AUDITOR COULD LOVE

Gail Barlich
Sateguard Systems
Box 1663, Mail Stop ES541
Los Alamos Nationai Laboratory
Los Alamos, NM 87545
505) 667-77177

In the past the application programmer was
frequently isolated from the computer security
professional. The target machine might have
various access controls and security plans, but
when the programmer delivered a new application,
it was rarely scrutinized from a security stand-
point. Security reviews of application code
are now being used to overcome this apparent
oversight, but these reviews are often hampered
by a lack of knowledge among programmers of
techniques that make code secure and facilitate
security analysis of the code. This paper in-
tormally describes fifteen general principles
for producing good code that is easily reviewed.
This paper is not a tormal guideline, but is
intended as an inside view of how one reviewer
looks at code trom a security standpoint.

l. 1 distrust any code that uses obscure fea-
tures in the language and/or avoids etfi-
cient teatures coansistently. The obscure
features tend to be the ones hackers use,
the efticient ones are usually well-debugged

and sate. 1 wonder if the programmer is
sloppy, trying to be flashy, or hiding prob-
lems .

rs

Any code with incomplete or incorrect inter
nal documentatiov {s suspect., When [sce
such Incongistency, I have to question
whether the programmer understood whar the
code does or it the code was rushed into
incorrectness. <ountless necurity implica
tions are possible i1 the progranmer really
hasn't thought things out, I personally us
a standard header with the name ot the rou-
tine, what it doexg, how it is called, what
it calls, foputs, outputs, and a short modi
tication history,

10.

When it appears that security features were
implemented without orderly planning, I have
to believe that the code cannot be trusted.
[f five similar but different routines are
used for password collection, | doubt that
all five accomplish the task with the same
level of skill. Probably at least cne of
them will be untrustworthy. Yeft it I see
just one password routine called in every
place where a password is required, [can
study the routine and know that every call
behaves the same.

Large systems i{in secure environments must
have some kind of logging built into them.
The log not only catches abuse of the system
atter delivery, but it can be used to con-
firm corrcctness also. [question whether
the programmer really checked the step-by-
step behavior of the systemn if no log was
built in. There is also a1 delicate balance
between keeping too much information and
keeping too little.

I always ask about account management and
where the code will go in the machine. There
are countless concerns about account priv-
ileges and protection of files. ldeally,
the executable code should go into a limited
vaptive account. Data tiles and source code
should be in accounts that canunot be reached
it the captive a“count is compromised. [
realize that not every system can he con-
tigured in this way, but the goeal of pro-
tecting code and data ftiles from casual
moditication or study murt be considered,

Plan tor security even if the customer seoems
bored. If they retuse to accept securily
features now, leave room (0o them anyway.
More security requirements ftor application
todes are inevitable. Adding security tea

tures to exieting code ig ditticult and may
torce undesirable compromises it poor plan-
ning was done when the code was designed.

Plan tor expausion ot the code. During de
sign, it pays to list possible chanpes that
could occur and consider how to plan tor

them. A design with such foresight will
survive a major uapgrade and still be casy
to study and cervtity. | shudder when T omust

12.

13.

14,

h

examine a code with messy additions that
could have been toreseen; trequently the
addition breeds undesired side-etfects on
the origiral code.

I firmly believe that team projects must
have constant peer review of the design and
code for a viable system to emerge. Running
peer reviews (known as 'walkthroughs') is
difficult, but publications are available
with procedures and torms that minimize per-
sonnel problems. The walkthrough ensures
consistency and ccrrectness throughout the
project. Such r~necking must be done during
a security rev.ew, so it makes sense to do
it during dev:lopment when problems can be
easily corrected. The programmers have the
responeibility to produce good code: the
security reviewer should merely check that
the programmer did his or her job.

Where a usernamc/password protection scheme
is used [always examine the choices made
for such protection with a very critical
eye. Why have passwords at all if the pass-
word file is easily examined or if passwords
appear on the screen as they are typed? A
password system must be very robust or it
provides no security at all.

[distrust large systems with a4 variety ot
coding styles represented. buring review |
must shift gears cach time a new style ap-
pears and remember each programmer's weak-
nesses. Using a style guide makes tor clear
code that is easy to examine a8 a whole.
Most langunges have a veriety ot style
guides avallable, or there may be in-house
vergiond available trom ther organiza-
tions. Using a style guide with peer review
can produce code that is unitied and easy
to read.

Security reviewersn groan when most ol the
routines in a system are over S0 lines.
Algorithme are easiecr to aaderstand it they
are coded into small, coneptually anitied
picces, Good plamning and design hetore
coding should make such partitioning pos
sible.

In swmmary, writing code to facilitate secu-
rity analysis is really a matter ot producing
professional, quality code. C(lear, well-docu-
mented code is usually secure. A thorough read-
ing will ccnfirm that it does its job well and
probably won't admit sutprises. Analysis of
poorly written code with little documenta“ion

is tedious and unsure. Hidden surprises are
more likely and the reviewer is forced to guess
at the thouughts of the programmer. It is my

opinion maverick programmers who refuse to crart
neat, well-documented systems should not be
allowed to work on code for secure applications.
The maintenance and analysis of such systems is
just too tenuous tor all professionals involved.

