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RADIATIVB COLLAPSE OF A BBNNE’IT-RELAXEDZ-PINCEI

Leaf Turner
Los AlaBos National Laboratory

University of California, Lou Alamoa, New HQxico 07545

ABSTRACT

Tit. global wolutlon of ● s-pinch ham hen ●tudiod vith th~
●ammption of ● rola.xed stata consisting of ions and ●loctrona, ●ach
in ● rigidly drifting iaothormal Haxwllian distribution. This
speculatiw ●pproach has tho pragmatic foatura of Poasossing
phammenologically umful global parameters such ●a drift velocity
md tMp9raturr that vary in ●ccordance vith global physical
quantltios ●uch ●s ●norgy and ●ntropy. The plasma gains ●nergy from
● time-dependent ●lactric field by mea.na of Poynting’s vactor.
Coulomb collisions ktvecn ●lectrons ●nd ions 1s calculated vith ●

?okkor-Plmck trcatmnt analogeus to that used by Dmicar to
calculata runavayso For ● variety of initial conditions ●nd
tim-indepandant ●pplied ●lectric fields, the pinch ●volution ●lvaya
culminates in ● time-indopmdent (attractor) stat. vhose current is
the Pe*sc-Br@nskii current ●nd vhoae final radius is proportional
Ca (lina danaity)S/~/(electric fiold)lz~. Before the final state is
attained, the pinch my bounce tovard and ●vay from ● highly
collapsod mtato. For tho case of ● Bennett pinch, the classical
limit of tha r~sistivity is ●ttained vhen the line dansity is much
greater than 4nm@/e~pol i.e., 3.55 x IW4 ❑-l.

INTRODUCTION

We have ●odeled the radiati”te collapae of ● z-pinch by ●dapting
Dreicer’s traatmont of runavayai to the cam of inhomoganeous
gaomotry~ MBaly, tha cylindrically symmetric geometxy of ● straight
s-pinch”. We thus commence
of ●leetrons and ions vith
form

our ntudy by representing the distribution
separately drifting Haxvelliano of the

fa,i(r,y) = ●xp -
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in which ●@ ~ ●rq tho ●lectron ●nd ion masses, qe = - ●! qi - .! ~(r)
IS the quas!noutral ●lectrostatic potential, Te ~ ●re the ●lectron
●nd iwt temperatures (assumed to be ●patially cbnttant), Ue ~ ●re tho
●lectron and ion ●xial drift velocities (also spatially ~onstant),
and p- ●e tha ●lectron and ion canonical nommta~

●ci

‘%,i - ■e,ivn + qe,iAz(r)r

with Ax(r) being th~ magnetic vector potential. This distribution is



mmsociatd vith ● scalar pressure for each species.z Integrating over
th~ velocity coordinates, ve obtain the ●lectron ●nd ion number
danaitiea:

(

-e[ueAz(r) - ~(r)]

1 {●[uiAz(r) - +(r)]
ne(r) - ●xp

kTe * ni(r) = ●xp
kTi 1

?

vkre
fluid

where

k la Boltmmnn’s constant and which satisfy the ●quations of
●quilibrium:

qe,~ne,i(r)~~(r)+ ge,~x g(r)] D kTe,~vr.e,i(r)

~(r) .- *

We obtain the

; ●nd ~(r) = V x [Az(r);] .

quasineutral patential t(r) in terms of A.(r) by
setting n=(r) = ni(r)~ If ve stutiy the pinch in the center-6f-mass
frmmc invhichui << u , we find that t(r) =u=Az(r)/(l + Te/Ti)* W

fshall simplify our ●na ysis by letting the ions be cold, i.e., by
setting Ti = O so that

[1

eueAz(r)
ne(r) = ni(r) = no ●xp -

~’

In vhich no is the on-axis number density of ●ach species [because ve
●re free to set AZ(0) ●qual to zero]. The self-consistency condition
on the vector potential is therefore

[1
●tJeAz(r)

V2Az(r) - - PO j~(r) a~oenoue ‘Xp - ~T )

e

vhose solution yields the Bennett number density distributions,

(1)n(r) =
no

[1

#2’
l+=

‘o

vhare r. is defined by roan 8kT /uoe2ue2no ●nd vhich chsraeteriz~s
the plasma radius, and vhere PO ?s the magnetic permeability of
vacuum.

We can define ● line density N(r) by aotting
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which prescribes the current vithin ● surface of radius r by means of
tha relationship I(r) - - ●u@N(r) arid in tuzn tho magn~tic field by
means of Ampere’s MI:

Moeue
Be(r) -

~o%no [1r
-= N(r) --——— .

2 +r 2
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‘o

(2)

V@ shall chooso th~ vail bounding tho plasma to be locat.d ●t r . s
mnd defin, tha pmamet~r S by

8~okTe 2
6=—. ‘o

l+—
VO102 *2 ‘

(3)

in vhich No ● N(s) ●nd 10 ■ I(a) specify the total line density ●nd
total current respectively. This clearly yields the usual Bennett
relationship betvem total current ●nd total line density in the
limit of infinito vail radius.

THE BENNETT-RBLAXEDZ-PINCH MODEL

UC shall sssumo that various high-frequency relaxation processes
occur that, on the time scale of profile ●volition, maintain the
pinch in the Bennett profile. Instead of using the variables, no(t),
u (t), ●nd Te(t), to ap~cify the ●ean plaama state, v. shall we the
g!obal variables, No(t), p(t), ●nd T (t), te specify the state ●ore
conveniently. ?To dotermino the wolut on of these three variablas,
ve shall utilise three equations that in tha absence of collisions
betveen tha alectron ●nd ions ●nd in the ●bsence of bremsstrahlung
●re ●xprosaible in conservation form. These ●quations, vhich cm be
darived by taking the ●ppropriate ■oments of the Fokker-Planck
●quation ●nd vhoae integrals ●xpress the ●volution of the total line
dawity, the total magnetohydrodynamic ●nergy, ●nd the total ●lectron
●ntropy, respectively, ●re

ana(~,t)
— + V s [ye(~,t)ne(g,t)] = dongity sourcoisink t~rms, (4)
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r•ne(stt)ue2(Ett)~e(~*t)
+ :Pe(we(w)2

~(~,t) xp(g,t) 1-●nergy source/sink terms, (5)
V. -

In vhich g represents the ●lectron kinetic ●ner~j flux density,
which we aha!l ●smme to be negligible (since we ●re assuming no
thermal gradients), p= represents the ●lectron pressure,
~ (z*t)kTg(t)~ -d se r*pre-nts the ●ntropy density of the •l~ctrons

1!v ich is equal to n (g,t)Qn[peJ/~(g,t)/ne5/~(g, t)], or ●quivalently
to ne(g,t)Qn[(kTe(t)f~/~/ne(g, t)j. The ●quatlon for the wsrgy
●volution in ●ccurate to leading order in ~etmi ●nd is describing the
situation with cold ions in the center-of-mass frame of the plasma,
vhich is ●ssentlally the rest frame of the ions.

We shall ●ssume that f ● y vanishes ●t the cylindrical surface,
!r = a. Beceuse the zeroth ve ocity moment of the Fokker-Planck

collision term vanishes, ve find from Eq. (4) that the line dmslty
is consorved~

dNo

=-0”
(7)

Because the left-most bracket of Mq. (5) represents the ●nergy
of the total systems ●ccurate to the order of interest, it varies
only because of energy flov across the boundary at r - a. This flov
conxists of bremsstrahlung and a generally nonvanishin~ Poynting
vector. From the Bennett profiles of Eqs. (1) ●nd (2), ve obtain?
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Thus ●n integration of Bq. (S) within the boundary, r = ●, yields

w.+‘4+)‘i ‘Q”,}
[18@$kTe 1/2 Bbr(k’e)

Ez -
[-

1’2N02 ~3 - (~ - 1)31
9—

P013 6(6-1) j’
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In which Ez is the tine-dependent axial electric field ● t r = a. We
have used the fact that the bremsstrahlung radiation rste is given by
~br(kT=)l/~n=a Watts/ms in which Bbr = 3.79 x 10-~9 in S1 units.

Ve next integrate the ●volution equation for the ●lectron
entropy, Bq. (6), observing that the divergence term vanjshes by
virtue of the boundary condition on ye, to obtain:

● {a[&12’n(A)[&k~J’’2y[[a11’21-“’JkTJ-”21“(’)
The bremsstrahlung term on the right-hand side Is an electron ●ntropy
sink tern obtained from the volume integral of thr. breausstrahlung
radiation rate divided by kTe. The first term, on the right-hand
side im ●n electron ●ntropy source terin, stemming from the
Fokker-Planck collisions of the electrons with the cold ions,
calculated to leading order in m /mi. It is ■er~ly the scalar
product of - ye vith the colliaional !oree density divided by kTe ●nd
integrated over the volume. The ~n(A) term is the Coulomb logarithm
and has been set ●qual to 10 in the numerical calculations discusmed
balov; tho function Yvas dsfined in Ref. 1. One can verify that the
abov~ ar$umont of Y is ●qual to (ae/2kT )~l~u . Thin Pokker-Planck
treatment vas shown to yield resul!s tha? ●re in ●ccord vith the
results of classical calculations of resistivity to vithin a few
percent vhen the ●rgument of T is much less than onel, which is
sortainly ●atisfied vhsnever No >> Nc = 3.53 x 1014 c-~ .



If Nc << No, we observe from Eq. (9) that vhen 1310= 8.35 x 1(P
A, the rate of collisional generation of ●lectron entropy is ●xactly
cancelled by the loss rate thxough bremsstrahlung. For the case of
high compression, r. << ● , $ = 1 and ve obtain

I =8.35 X105A, (10)

tho Pease-Braginskii current~ for the cold ion case, or equivalently,
we obtain

kT . 3*48 x 104e No ‘
(11)

using the Bennett relation, Eq. (3)* Similarly, we observe from
Bq. (8) that the total ●nergy of the plasma will be constant vhen the
rate of ●lectrical generation of ●nergy is precisely dissipated by
the rate of breasstrahlung, vhich occurs vhen:

~ 3/4

‘o - 3.00X 10-1’ #2 “
(12)

Equations (10) - (12) are expressed entirely in S1 units and are the
conditions for steady-state operation at high compression,

Using the constancy of N , Eq. (7), ve can numerically integrate
!Eqs. (8) ●nd (9) to determ ne the time evolution of @ ●nd T=, from

vhich ve ●lso can ●xtract the time ●volution of the plasma radius,
ro, and the plasma current, l.. In code comparison runs, ve found
good ●greement betveen our code predictions and those of ●

one-dimensional transport code developed by Nebel using a tvo-fluid,
quasistatic model.~ Avlrtue of our Bennett-relaxed z-pinch ●odel im
ita ●fficiency in tracking rapid radiative collapses, such ●s that
shovn in Fig. (1). We nov vish to demonstrate some of our results.

Figure 1 demonstrates that for conditions of steady ●pplied
●lectric field strmgth, B , the pinch radiatively collapses dovn to
● small but finite radius, !n the neighborhood of vhich point the
●lectron temperature is decreasing, ●nd then rebounds, suffers some
oscillations, ●nd settles into a steady-state governed by
Bqs. (10) - (12). No aatter hov strong tbe steady ●pplied voltago,
Bqs. (10) - (12) govern the final state. The @ffects of relativity,
opacity, fusion, ●ndless, ●nd inertisl terms in tho radial
●ccolor~tion ●re, of coursa, ●bsent in Eqs. (7) - (9) describing this
collapse and must be ●ccounted for in ● more thorough treatment.

In Fig. (2), ve compare the ●ffect of tvo steady ●pplied
●lectric field strmg!hs on the initial radial ●volution of the
pinch. Again, l!qs. (10) - (12) are observed to govern the final
steady-states ●chievad ●t high compression. Indeed, ve have found



Fig. l(a). The ●volution of the radius, current, and alectron
temperature of ● radiative collapse with s steady ●pplied
electric field of 1.19309 HV/m ehotin on a 10 MS time
scale. The initial parameters are r. = 2.5 x 10-4 m~
● _ 1.0 x 10-~ ■, No = 4.24 x lW; m-l, ●nd T= = 15 keV.

Fig. l(b).
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The ●volution of the radius, current, ●nd ●lectron
temperature of the collapse shown in Fig. l(a) exhibited
hem during ● period of only 10-lZ s ●pproximately
cantered on the instant of collapse.



Fig. 2(a). The radius, current, and electron temperature of an
●volving pinch with a steady applied electric field of
1.19309 x I@ #lV/m. The initial parameters are

‘o w l.ovm, a - 0.01 m, No = 5.6 x 1018 m-it and
T= = 38.9 keV.

$ 1 I I

o 1.00 2.00 3.00 4.00

nME (s)
xlo~

Fig. 2(b). The radius, current, and ●lectron temperature of an
evolving pinch with a steady applied electric field of
1.19309 Hv/m* The initial parameters are r. - 1.0 ~m,
u = 0.01 m, No - 5.6 x 101~ m-l, and Te M 38.9 keV.



coaputatlonally that ●t high compression for s variety of initial
conditions and time-ind,~r~dent ●pplied ●lectric fielde, the pinch
●vollltioti ●lways culnlnates in a time-independent (attractor) state
dcscrikd by Bqs. (10) - (12).

Althcmugh ●bsent in the ●bwe discussion, va have ●lso included
tha ●ffccts of axt~rnal Inductance and resistance in our code. @n
the -lyticsl side, ve can explain certain features of the collapse
to utr-ly ●U1l radius, such ●s the declining temperature ● t
-imm collspse, as vail as the final danped oscillatory spproach to
the staady-state configuration.

Finally, ve viah to ramark that isothermal wdols vith ● uniform
currwtt donsit~, implying a parabolic number dansity, ●re
pathological. As ● result of u - jz/ne, one observes that
Jmen=u ardr - J[l - rJ/a~]-lrdr vhich !mplies ● fluid kinetic ●nergy
that d~vorges logarithmically naar the boundary.
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