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COMPETING INTERACTIONS AND COMPLEXITY IN CONDENSED
MATTER

A. R. BISHOP

Theoretical Division and Center for Nonlinear Studies
Los Alamos National Laboratory
Los Alamos, NN 87545, USA

ABSTRACT. Some major themes of space-time couplexity in condensed matter
contexts are reviewed. They are illustrated throush model and physical systems.
analysed by both analytical and munerical techniques.

1. Introduction

Two of the main directions that can be clearly discerned in current dynamical
syvstems research are: (1) A return to the reality of spatially eztended dynamical
systems stadied by a variety of novel techniques, including neural networks, cellular
automata and coupled map lattices, as well as direct numerical integration of partial
differential equations (pde’s) and coupled ordinary differential equations (ode's);
and (2) Recognition of the central role played by competling interactions (both of
length and time scales) in pattern formation and complex dynamics.

Here we will iniroduce examples of, and approaches to, these issues in con-
densed matter contexts. Complexity in both time and space are important in
condensed matter for device performance, response and transport properties, etc.
However, condensed matter also provides excellent vehicles to probe general issues
in dynamical systems. This is because of the availablity of controlled materials.
~mall scule experinents, aud sophisticated probes of both time and space [1,2].

Broadly three classes of problems might be distinguished —— these are sepa-
rated mostly by hustorical developments and happily they are growing together as
we focus icreasingly on the real materials provided by nature. Nevertheless, it is
casier to appreciate previous literature by separating:

viv Structural Complezity in classicel equilibrium Hamiltonian systems with
cotupeting {incomiuensurate) internctions or periods —— the analog of temporal
problems with two or more incommensurate frequencies. The competing length
seales lead to o variety of nontrivial, spatially inhomogencous ground states and
rransitions, and there are by now many physical observations in widely varying ex
peritments '3 The inhomogeneous grouud states often have the form of superlatrice
structures ceg, of soliton arrays) similar to texturing in some metallurgical contexrs
1. Perhiaps the biggest open question here is to understand dynamics, particularly
large scale How i such problems - this is usually “glassy™ and “hysteretic.” In
deed much of materinds seience coneerns the voles of “defeets™ in controlling both
strength and How,

(hy Nonlinear pde s and coupled ode’s apain mostly classical, including etfects
of erternal foreing which naturally introduees competitioas for length and thne
seales  [ssues here include (1] the coexistence of coherepee and chaos, the nse of
nonlinear spectral methods (5] to adentify collective exeitations, the importanee
of weneralized homoclinie orhivs 6l and the quahitanively pew effeers that can he
meheed by norse aond dborder - Neaens there are now tany natural as well asons



contrived experimental studies which are closely mimicked by such pde’s and their
equivalents (celiular automata, ete.) (11

{¢) Quanturm Humiltonians can also arise naturally in solid state and statis-
tical physics. ThLese offer some new approaches to probing the poorly understood
area of "quanrun chaos,” i.e.. quantum behavior of integrable and nonintegrable
models with interesting (e.g. chaotic) classical limits. Recent examples here in-
clude quantum spins [i] and exciton-phonon coupled systems [8]. The focus is on
gaining control of nonintegrability and h as “tuning” parameters, and studying
wave-function structure and evolution as well as energy level distributions.

Ve should also emphasize the probable interconnectedness of the classes above.
Indeed in a uumber of cases formal mappings cen be identified between time-
dependent and equivalent Hamiltonian systems (in a higher spatial dimension) or
quantum models. In this way the central role played by competing interactions is
revealed. Thus, for example, the inhomogeneous “ground states” referred to in (a)
contain the character of “intermittency” observed in approprate regimes of 'h).
The reader is referred to [9] for more details.

By way of illustrating some of the above phenomena, techniques and outstand-
ing issues, we mainly focus here on the sine-Gordon (SG) and closely related cubic
nonlinear Schrodinger (NLS) equations in the presence of various kinds of pertur-
bations. SG has been a template of nonlinear pde's for many years because: (1)
In its pristine (1 -+ 1)-dimensional form it is strictly integrable. This means that
elegant analytic techniques (e.g. nonlinear spectral analysis [5]) for isolating true
“solitions™ are available. which has given insight into ideas of “collective coordi-
nates” and “particle-like™ solutions of wider applicability. Further, we are able to
identify the deviation from integrability as a controlled parameter; and, equally
importantly, (2) SG represents a class of nonlinear Klein-Gordon equations which
anse naturally in many branches of physics [10]. Nature is often quite closely
modeled (on many spatial scales) by coupled nonlinear oscillators, and solitons or
solitary waves can control transport. statistical mechanics, localization, radiation
absorption frequencies, ete,

As a simple example consider the problem of “current oscil'ations™ in the dy-
namics of near-commensurate systems [11). The 1 + 1 dimensiopal driven, dampled
SG equation,

n,.:(.r.f) + l..'(.l'.P) - '.‘:( )y +smoa(r,t)y="T, (L

has been used as a model for, e.g. charge-density-waves or a vortex lattice in a
dperconduetivity filim whose thickness is periodically modulated in one-direction.
[neq. (1) the overdor is @/t the prime is J/dx, a is a damping paruneter, and T is
a DC-driving tield. The boundary conditions may be, e.g., periodic or periodic moid
(27) to allow for a fixed average density of kinks (dicommensurations), ug. If ny
= 0 the problem is said to be conmensurate while ng £ 0 measures the deviation
from commensurability,  The observable “enprent™ < o > = L0 [ dx oexa,
Physically, the commensurability is hetween twe chaeacteristie length sceales, Thos
i the charge dnesity wave case 0 corresponds to the phase field of vhe order
parimneter o pertodie Tattice and clivge density distortion induced by eleetron
Letice conpling) and the charge densaty wive with v commensueability wavelength
Ma/N owith MLN redueed integers atd o the Lirtice constants) has the form -~ cos
(27Nx/Ma e oo This charge densary can couple to the component of *he lattee
porential with periodicity a/ N and produce anomteraction energy ~ cos (Moo tha
v Mo eqo oDy In the ineomenionate case the charge density wanve has e
form = von 29NN dqox el he et tion energy - eos o N Mo



x): thus v'(x) = \[ 0 + M ¢q x and ¢q determines the boundary condition in eq. (1).
In the case of the vortex lattice ¢*(x,t) is a center of mass field. the pinning force
~ sin ¢ is due ro rhe thickness modulation, and eq. (1) corresponds to deviation
of the vorte: average spacing (determined by an applied magnetic field) from the
periad of the thickness modulation. Further details and references concerning both
of the above problems can be found in [11].

There are now numerous numerical and analytical studies of the SG equation
in different dimensions and under a variety of physically relevant perturbations.
We record here only a few representative source references [1.5.12].

The remainder of this report describes a selected sequence of problems in more
detall. Section 21is devoted to the (1+1)-dimensional SG with spatially uniform AC-
driving and damping. Section 3 counsiders the same problem but with DC-driving
instead. Section 4 introduces a discrete SG system but with nonconvex interparticle
interactions, admitting an internal competition of length scales. Section 5 returns
to a single particle problem but, by including quantum effects, raises questions
of whether the scaling and statistical approaches to “chaos” developed for classical
problems can be useful in the quantum domain. Section 6 contains a brief summary
and some concluding remarks.

Although, we are concerned here with problems motivated by condensed mat-
ter. the dynamical systems issues are of course much more general. This report
should be read in conjunction with those ot e.g., Coullet, Ghidhalgia, Newell, Ri-
botta and Pomeau.

2. Sine-Gordon Equation with Damping and ac-Driving: A Quasi-Periodic
Route to» Chaos in a Near-Integrable PDE

Solntions of nonlinear evolution equations often exhibit rich patterns in space and
time which may have both coherent and chaotic components. In both dissipation-
dominated ¢n.l near-conservative cases, the solutions reside in an infinite dimen-
sinnal phase space but may approach attractors which are low-dimensional. Hence,
the mathematical techniqaes developed in recent dynamical systems theo'y are
hopetully relevant, In particular, these techniques explain how motion near a low
dimensional attractor of a deterministic system can act cheotically, and rhey of.
fer means to characterize the nature of the attractor quantitatively. On the other
hand, techniques from modern nonlinear partial differential equations provide co-
ordinates for the attractors. These coordinates capture coherent spatial patterns
of the solutions, Tt is certainly natural to try to combine insight from these two
appronches.

We focus in this section on near integrable nonlinear wave equations. The un-
derlving itegrability provides a wide selection of solutioas for potential noulinear
tesonances, wd it Offers suthicient stracture for the possibility of analytical coordi
nates for the attractors. Thus, near integrability provides the analytical tools for
i precise deseription of near conservative phienotmena, some of which appear more
generie i near conservative cases than the integeable methods might suggest.

For near integrable problemis a strategy is to find a nonlinear resonancee, aned
then to study the svstem ina neighborhiood of this resonnnee. Here we stady, o
an exaple, the damped, ae dreiven sie Gordon equation under periodie honndany
conditions '5):

T g 0 I . ENTIC l-‘lrll...fll_ ' .



olr+ L.t)=opr.n, (2.1h)
olr.t =0)= 9, r), 2.1c)

or(r.t =0) = ty,(1). (2.1d)

Here 0 < : <« 1. and the control parameters, are a (the strength of the dissipation).
[ {the amplitude of the ac driver), « (the frequency of the ac driver). L (the spatial
period), and the initial data (0;,.Un)-

For the purposes of illustrations we further specialize here to the case where
the frequency « is near, but less than, unity,

O<we 1 (2.2)

This choice places us in a "nonlinear (cubic) Schrodinger (NLS) regime™; that is,
when . $ 1, one can use singular perturbation methods to approximate a class of
equations, which includes the sine-Gordon equation (1.1), by a NLS equation. Else-
where [13], we have studied lower driving frequencies (e.g. w =~ 0.6) for which the
N\LS approximation is not valid; in these regions of parameter space, tl.e c. aotic at-
tractors are dominated by “breather” to “kink-antikink” transitions (see 2B below).
Here, in the NLS regime, we will see that the attractors are dominated by similar,
but distinct, collective-mode transitions, namely breather-radiation interactions.

Classical dynamical systems diagnostics applied to the results of careful nu-
merical experiments have identified (in a particular parameter range) intermittency
between quasi-periodic and chaotic states. We have used soliton modes to begin an
effective coordinatization of the attractors, capturing both their temporal and spa-
tial structures. This is done through a nonlinear spectral transform which permits
several new conclusions. It: (1) confirms that even the chaotic attractors can he
well deseribed by a few soliton modes; (2) establishes the existence of homoclinic
orbits in the underlying integrable problem: (3) measures the presence of homo-
clinie crossings in tae perturbed system: and (4) shows the importance of soliton
interactions in the transitions hetween metastable parts of the attractor. Thus, far
more precise information is now available about the nature of the onset of chaos for
this near integrable example than can ever be expected for pde’s with less structure.

First we summarize the results of extensive numerical experiments (5. The
global picture of transitions in the NLS regime is depicted in the schematic ' agram
of He. 1. Before deseribing the space-time structures in each region of this diagram,
we Hrst ser the stage for these experiments. The parameters in tae system (2.1) were
choseiras: - = 0.1.a = 0.4, and L = 24, The remaining paraneters are then varied:
~ sovaried below, but near, unity, and [ is varied near 0. The initial conditions
Gl vyt are taken to be a whole-dine sine-Gordon breather locadized inside
the period Loaud extended periodically to the whole line.

lu the “quasi-periodie™ regime I of fg. 1 there are also windows of subliar
monte locking rather than true quasi-periodicity — - a fuiliar situation in 1wo
frequeney dyviamical systems (e, civele maps). I fact around w ~ 0.9 the quasi
periodicity is suppressed completely (see g, 1) and an unusual teansition from
regitne [ ro IV oecurs divedly,

Pertinent questions abour the hifircation sequencies in e 1oinelude: whine
iy the opn of the second frequeney i the guasi-periodie region”: how does this
seeotud tedependent frequeney cortelite wirle the nereased spatial stenetaee”, de



Figure 1. Semi-schematic bifurcation dia-
gram for the ac-driven damped SG equa-
tion ‘n the NLS regime. Other parameter
vali. - are za = 0.04 and L = 24. The
fliel attractors are shown as functions of
driving frequency () and strength (:I)
and labeled as: I. period, locked to the
driver (x-independent): II. period. locked
to the driver (one localized breather): 111.
quasiperiodic (weak period L/2 state su-
perimposed on II); and IV, chaotic. vith
intermittent iaminar regions (competition
between two breathers and anharmonic
L/2 radiation).

these spatial structures have a meaningful, quantitative interpretation in terms of
the exact sine-Gordon theory?: does the dynamics in these regions (including region
IV ) admit to a perturbation analysis of the integrable sine-Gordon equation?

To be specific we focus on parameter values L = 24, : = 0.1, c¢a = 0.04 and
= 0.87. with initial data a SG breather with frequency parameter «p, = 0.77. The
~ontrol parameter for the experiment is I'. the amplitude of the ac driver —— (:I')
ranges over (0.0, 0.116). For purposes of orientation, this experiment is represented
by a line in fig. 1.

The attractor in this bifurcation experiment may be represented as I' increases
by the symbolic sequence

FLAT. PERIOD 1,
(PERI()D[C') PERIODIC

( ~ PERIODICY ) ~PERIODIC‘.‘_,)
QUASI-PERIODIC (cmortc

which we abbreviate by

\F.P) = (P1.P) ~ (~ P5.QP) — (~ P%.C).

For small driving amplitudes (0 < :[ < 0.0585) th: periodic spatial structure
of rhe initial breather decays as a transient, and the attractor is an r-independent
Hat state with no spatial structure. which is periodic in time. This state is locked
to the AC driver with its temporal period. The existence and stability of this
woekedd srare - an he established with classical mathematical analysis, both with and
withont thee NLS approximation. For example 1 the NLT approximation. Le Held
Ss represetited as

oLty = vﬁ:"_.'\! A IRVEN o )f'“ + r.r.:, 120
where the complex amplitude 40T X warnisties the doven, damped NLS equation

P P T NI L AR S o EEY

where I = T,26:. A Hat locked <10 < tepresented by acsolunon of this equation
i the form



AN T)=Ce—1=T/2 (2.5)

where the complex constant C satisfies

(—(1=-2)+3CC*\C =iaC+TI*. (2.6)

A rypical hysteresis diagram depicting the solutions of this algebraic equation.
together with the stability of the locked state (2.5) to arbitrary perturbations with
spatial period L. is shown in ref. [3]. Note in particular that the flat state on the
lower branch is stable to all perturbations, while the state on the upper branch can
become unstable, at large enough I' values. to spatially dependent perturbations.
These instabilities are long wavelength modes: the short wavelength modes are
always stable. As the amplitude of the flat locked state increases. the most unstable
mode changes from a flat (x = 0) state, to a x; = 1(2x/L) state, on to a xy =
2(2r /L) state. etc.

As we increase [, the amplitude of the flat attractor rises along the lower
branch. until it reaches a "knee” in the hysteresis curve at ¢’ >~ 0.1013. For large
values of [, the attractor must change. In fact, for :I' €(0.0585, 0.1015). one
stable attractor is a single excitation within each period, superimposed on a flat
hackground. The existence and stability of this (P1,P) state can be established
by mathematical analysis. T is further increased, all of the attractors develop
instabilities at shorter wzvelength. The first such instability is a x = 2 mode. with
spatial wavenumber x9 = 2(2x/L). Thus, we anticipate that the locked breather
state will become unstable, as T is increased, to Pl states.

As T is further increased beyond :I' = 0.1015 the attractor becomes quasi-
periodic in time and appears to be characterized spatially by the same single
breather. but now accompanied by a x = 2 radiation-like excitation. As :[" ap-
proaches 0.1033 from below, the upper threshold of the (~ Pé. QP) attractor, the
amplitude in the » = 2 radiation visibly increases and initial transient times in-
crease. The long transients, because of their large & = 2 componeunt. often appear
as approximate P% spatial structures in the sense that two coherent excitations are
present in the spatial period. Indeed. at large dissipation, a locked two-breather
state, periodic in time, is achieved. instead of a quasi-periodic state —— energy is
permaticutly transferred from £ = 1 tox = 2

For :T > 0.1053. the P} tendency in the above transient persists for all time
and is visibly enhanced: at times the attractor appears as two localized breathers
per spatial period. and and at other times as extended & = 2 anharmonic radia-
tion. The overall temporal hehavior is now chaotie, with intermittent visitation of
a ~tall muaeher of distinet metastable parts of the attrictor. Broadly speaking rhe
atrractors constst of at least two metastable parts: (1) striking “laminar” regines,
which are essentially the same as the quasi-periodic attractors (~ Py, QP) of the
prechaotic regitne, which oceur at smadler 2T values: and (2) intermittent chaorice
bursts. However, upon closer inspection, these chaotic bursts reveal substructuee
charneterized by a dynamical energy exchange between (a) predominantly = 2
richaiion. and (h) two-breather states per period. In addition some of the dynam
tes and transitions between metastable parts of the attractor are accompanied hy
relatiee motion of the colierent components of the ~ P.!J structure. As the threshold
I = 0.1053 is approached from above, the fraction of time spent in laninar region

Horeases,



These features of the bifurcation sequence are substantiated by the use of

many standard diagnostics from dy namiull systems theory. Namely: (1) time series

of spatially averaged quantities (H = r; of + % o2 + 1 - cos . and displacement

0): (i1) phase planes for P(t) = (o(x1.t). o(x2.t)), with x] and xy arbitrarily chosen
points on the chain: (iii) Poincaré sections (using variables as in (ii) to define a
plane in a three-dimensional phase space); (iv) temporal power spectra, (- ..'), at
Xy = 0 (the center of the chain): (v) leading Lyapunov exponent (computud from
two initially neighboring trajectories with a distance norm n = f&(of + 03 )dr):
(vi) the correlation dimension ccmputed according to the algorithm of Grassberger
and Procaccia. Complete details may be found in [5]. As an example we show
simple time series in fig. 2. Note in partlcular (1) in the quasi-periodic cases. the
modulation of the time signal by the second (lower) frequency and the growth of
the amplitude of this modulation with increasing I'; (2) in the chaotic case (fig. 2a).
temporz! intermittency characterized by the presence of laminar regions separated
by (chaotic) bursts: (3) the quasi-periodic nature of these laminar regions (cf. figs.
2b) and the linear growth with time of the modulational amplitude; (4) the very
similar <H> values (or modulational amplitudes) at which all laminar rcgions are
exited,

These and other [5] conventional dynamical systems diagnostics yield temporal
information. For a partial differential equation such temporal data should be corre-
lated with spatial information. One possibility is a linear spectral analysis in x-, as
well as w-. space. For near integrable nonlinear pde’s such as that discussed here,
morel insight is gained from a nonlinear spectral analysis, correlated with space-time
profiles.

First, we briefly describe the nonlinear transform. For more complete detail.
see refs. [14]. The method may be summarized as follows: at time t; we take
the (numerically) generated spatial profile {o(.r.t)|Vz € [0, L]} and numericallly

perform a spectral transform to obtain {o( A.t)|VA}. This transform maps the field
from its spatial representation onto @ rrpre.sentatwn on a basts of solitons, in terms
of which the unperturbed sine-Gordon equation is ~<actly separable. Thus the
spectral representation oA, t) measures precisely the number, types and physical
characteristics of the solitons (the localized coherent states) which are present in the
wave at time ¢. If the temporal dynamics were the perfect sine-Gordon equation.
these spectral properties would be invariant in time. However, because of the
perturbations, they change with ¢ and must be measured successively at ¢ increases,

This transformation from the “spatial representation™ { @(x)} to the spectral

representation {o(A)} is defined through a linear. non-self-adjoint eigenvalue prob-
lem, with spectral parameter A lying in the complex plane. For periodic o. the
speetniun of this eigenvalue problem is entirely continuous spectrum residing on
cnrves i the complex A-plane.  The real axis is always spectrum, and complex
spines of ~pectrum attached to the real axis are associated with excited “radiation-
like” modes in o(x). In particular a spine near \?2 = TlH indicates the presence
of a long waveleugth mode: while spines near A2 ~ 0 and A\ ~ x correspond to
rwodes with high spatial wave number & Curves of spectrum in the complex \
plane which are not tied to the real axis are associated with soliton wavetrains in
. These coherent excitations come in two types, namely kink (and/or antikink
rrains andd breather trains, Kink trains are associated with bands of spectrum on
the tnaginary \ axis: breather trains are associated with a pair of bands in the
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first and second yuadrants, and their complex conjugates. In the NLS regime,
where displacements of ¢ are small (compared with 2i). only breather trains are
accessible.

Given » xi. the spectrum of the linear eigenvalue problem is actually deter-
mined through rae “Floguet discriminant™ A{\.¢). an analytic function of both o
and the spectral parameter A\. The spectrum comprises those curves in the complex
A plane for which A(A) is real and -2 < A(\) € 2. It is these curves of spectrum
which are depicted in the figures shown below. Several additional remarks a.c
necessary in order to interpret these figures:

i) Typically. bands of spectrum off the real axis are very short. If one band
were to degenerate to a point in the upper half A plane (which cannot happen
for periodic potentials). a soliton would be present in 0. An isolated point on the
imaginary axis A = iv would indicate a kink (or antikink) which would evolve under
sine-Gordon dynamics with velocity (1 - 16u2)/(1 + 1612). Anisolated point in the
first quadrant would indicate a breather with sine-Gordon velocity (1 - 16{A|?)/(1
+ 16/A%) and an internal breather frequency v = cos[tan~!(A;/AR)]. Because the
bands of spectrum are so short, these facts about solitions are useful qualitative
approximations even in the periodic case.

ii) Excitations with spectrum inside the circle of radius ;} travel to the right,
while those with spectrum outside this circle travel to the left.

i1i) Symmetries of ¢ imply symimnetries in its spectrum. Since o is real, its
spectrum comes in quartets: if A belongs to the spectrum, so do —A and £A*.
Thus. it is safficient to examine the closed first quadrant in the complex A plane.
In addition, if @ and oy are chosen to be even functions of z (here about r = 0) this
additional symmetry induces another symmetry in the spectrum about the circle
of radius ;‘[: namely, if A belongs to the spectrum so does 1/(16A).

iv) In these figures, "" denotes a band of spectrum where -2 < A(A) < 2.
Points A\p. where A(\p) = +2, are denoted "EB": points Ag, where A(XAg) = 0.
are denoted "0": points Aq. where \(\q) = =2, are denoted ~o". Note also that
the associated spatial profiles o(.r) and o¢(r) are induced as inserts in the spectral
plots. with the solid lines representing ¢ and the dotted lines ;.

We now return to the bifurcation sequence at o = .87. First consider [' =
0.101 which is in the (P1.P) regime of one excitation in each spatial period, locked
remporally to the AT driver. Fig. 3 shows the nonlinear spectrum of the locked
state at three instants in time. [t detects one breather at rest in the laboratory
frae. riding over a flat (k= 0) background. The curve of spectrumn associated to
tuis breather is located on the circle of radius -{‘ at an angle of -- 30° with the real
axis. No radiation modes, other than ~ = 0. are visible, although numerical dara
~hows thar low ~x modes are very weakly excited, inereasingly so as ¢ approaches
the quast periodie threshold (T~ 0.1015). This spectrum is not t-independent, as
it I~ for complerely integrable SG dynamics. but it executes O(:) Huctuations. For
instance the breather spectrum oscillates periodically with the driving frequency
hetween ~ 29° and ~ 32°. This small periodic ﬂmtuutmn m the spectrutn is
consistent with the small temporal oscillation of <H>, fig. 2

As [0 s inereased into the guasi-periodie regime to a vnlm.- of 0.104. the P-{;
character accompanying the single breather is elearly visible in the spatial protiles
t~ce He. da). In the nonlinear transform of these profiles, the & = 2 mode is now
visibly excited. as well as weaker modes of shorter wavelength, In addition, a par-
Henlarly tnreresting new feature is present in the nonlinear speetra for this case
Nitnely, ar rimes the spine of spectimn a--octated to the breather merges with rhin
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spine attached ro rhe real axis at A\ = -{- (and associated with the background) and
at later times (He. 1ib) becomes a “eross™ of spectrum. This eross corresponds
to the preseues of “perindic”™ extended & = 1 anharmonic radiation mode in the
profile. O-cillarion in the spectrum between the “cross” and “breather” curves
oceurs regularly i f, with the period of the slow underlying modulation. Thus. these
spectral measurements show that the state oscillates (on a slow scale) between that
of n predominautly coherent breather (fig. 4a) and that of a predominantly extended
x = 1 anharmonic radiation (fig. 4b). each accompanied by & = 2 radiation.
The transitions between these coherent breather and extended radiation st:ies are
correlated with the oscillatioas in <H>. which are now of larger amplitude (see
fig. 2): the maxima of <H> correspond to the breather configurations. while the
minima of <H> correspond to extended states.

The breather contiguration and the extended configuration are sepnrme\d by a
state which is a homoclinic orbit under pure sine-Gordon dynamics. It is analogous
to the separatrix in the single pendulum’s phase space in that it has infinite tem-
poral period. As discussed in refs. [6,15.21] homoclinic crossings play a central role
in the chotic regime just as for the single pendulum. Here the homoclini- states
separate in phase space states with distinct spatial structures ——~ in tl.  esent
case breather from radiation, aud in other cases (see below) kink-antikinx from
breather.

Detailed nonlinear  wectral analysis of the chaotic regime in fig. 1 can be found
in Ref. [5]. A mnjor .. uclusion is that, just as for the quasi-periodic precursor
regime nbove, even the chaotic attractor (at least near the chaotic th »shold) can
also be described by a few (~ 3-4) noulinear modes. The basic scenano quantified
by nonlinear spectral analysis is captured in the space-time profiles shown in fig.
5. In the chaotic (iutermittency) regime, energy is nonl:.arly transferred from
the k=1 breather to the nonlinear #=2 mode which grows into two independent
and oppositely moving breathers. These breathers bounce and interact irregnlarly
(through the periodic boundary conditions) and eventually aunihilate each othier.
This results in A=1 nonlinear radintion which resynchronizes into a breather plas
k=2 radintion and (ieregularly) repeats the eyele. This collective nonlinear mode
formation and dynamies is isolated very clearly by the nonlinear specteal analys<is
applied at varions stages of the intermitteney.

[t is importanr to note that the nonlinear transform demonstreates that ot
colierent and extended (eadiation) modes nre necessary to coordinatize the gnisi
periodiec and chaotie atteactors, Farther, in the chinotie regimes, the motion and
interaction of coherent structures, necompanied by self-consistent radintion modes,
deseribe hoth the metastable states and tensitions hetween them.

An nltimate test of the approach ontlined above will of conrse be the v of
“soliton coileetive coordinntes™ i analytie deserip tions of teansitions to and quali
ties of “elinos ™ This progranuis now makg, substantinl progress in severn! respeet
imehading o oxtension of proofs of Hte ditnensioun! inertinl mnnifolds (previon.dy
developed for dinear mode bases 1G] to soliton bases [17] and (10 nse of oliton
cootditites to deseeihe howoelinie othits. connections in the presence of perong
bations, and e g Melmkov tests for homoelinie tangles in some extended syvstemn
AN 1Y s generahizing tesales walable for single pactieles (20]0 These work
e not ver ature enough to review hiete However, some of the wdeas ean e
frdly: be iatroduced thirongh twe moded problems: ) A liienr mode tianeanon o
!l-‘ll!l[ll"l 5(: wnh ’th flc'qnu'nl K ||.,‘. [REEN .'|I|l| l“l \ |'nlll'|'|l\'l' 1‘|u||'¢||ll:|h' |'|-|||||‘||--!|
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2(A). Correlations Between Chaos in a Perturbed SG Equation and a
Truncated Model System

Here we sunuiiarize arecent study {21] of the some high frequency driving. damped
SG svstem as avove bur with a shorter line (L = 12). This length is found ro
support only one hreather excitation and thus tinds an even simpler route to rhaos.
specifically, with symunetric initinl data and periodic boundary conditions, a dis-
crete (bimodel) symmetry has been imposed — — a breather may synchronize equally
well at its seed cosition or a distance L/2 away. Chaotic Adynamics appears as a
Huttering betwecn these locations via a “flat” state. The same nonlinear spectral
analysis as above supports this picture and again identifies intermecdliate states that
ave (1) unstable and correspond to homoclinic states in the integrable (i.e. un-
perturbed) limit. I is then natural ro surmise that the chaotic dynamics on these
attractors is due to the perturbation of these homoclinic configurations. The pur-
pose of this section is to introduce a model dynamical system that mimics such
behavior and which hnas proven analytically tractable. The model is derived by
a low-order linear mode truncation of the nonlinear Schrédinger equation. Such
a truncation is generally very dangerous. However its regimes of validity can be
monitored here by the parallel use of the nonlinear spectral transform on the full
pee.

Considering eqs.(2.1) again we use za = 0.04 and « = 0.87 but, as mentioned
nbove, L = 12, As expected the system resonates with a low amplitude breather-like
spatial mode accompanying a k = 0 Hat motion. In this low nmp‘l,itude regime we can
ensily derive a perturbed nonlinear Schrodinger envelope as a good approximation:
e =1 — 22). Writing

o = 22 )MHBX. T " o] + 0(2) (

1o
-1

AT ERILANEES SRS
the slowly varying envelope BUXCT) satisties

1By + By v B? - )B=1aB+T. (2N

Note that this amplitde equation hae preserved an integrable unperturbed Lt
cthe enbie NLS) and has fuctored out one frequeney (that of the driver, &), Thus
steady solutions of (2.3) correspond to frequeney locked solutions of (2.1), while
peviodic Hows of (2.8) which are incomimensurate with &, correspond to quisi
periodie pertirbed 3G osolutions,

Basedl on the mmerienl observation of a low amplitude breather onoa
baehetontot e exanune a further severe mode traneation of (2.8

mxN.r o heosb Ny, i an

ko 2x Ly L\ Lidant/*

liserning 2 9anto 2 S and teraane, cabae terms in the complex Foncer aupls
”llll'\ "y r|.|ll rl _\Il'lll\

* l ) ‘

Ill T R Y by : p e .‘Il". ) |'hlh lipe' ll‘ 1 ',”



—thp + (] c|." + %I b|2 - (1+K'.',))h + (h® + bet)e = 1ab .

This 4-dinwe:.aonal dynamical system is of course not vxpected to be in quantitative
agreement with rhe full podee. and the effect of including an additionsal mode is
discussed in Rot. 21]. However: (i) it has guided intuition on the nonlinear soliton
mode basis in rhe presence of the same perturbations, both in terms of geometric
phase space structnre and connections, including implementation of Melnikov tests
i18.22]; and (ii) the ansatz (2.9) has proven capable of modeling several of the
feutures observed in the full p.d.e.. inciuding the chaotic fluttering of a weakly
unstable breather, via an intermediate Hat (O(1) unstable state, mentioned above.
Specifically, the 2-mode ansatz admits the symmetry (¢,b) — (c.-b), corresponding
to a translation of o by L/2, and b = 0 is an invariant subspace which corresponds
to the flat intermediate structure. In the noulinear spectral lang' ge, the ansatz is
robust enough to capture all three key spectral configurations of t...- “gap” state, th
“cross” state. and the intermediate state with complex double points and associated
liomonclinic character.

Very importantly. the unperturbed limit of the truncated system is an integrable
Hamiltonian system, with two real independent integraus:

I ElcF-féMF (2.11)
Low . 3,4 1 9
H o= glel® + bl + Ib = 514426

- |('|2 + i(b"’r.'"z + b2ty .

Complete nnalyticad .nalysis of fixed point structure and stability are possible as
well as explicit solntion by quadrature [21]. Furthermote, a direct correspondence
can be established between the ol lixed points and SG solutions. For insitanee,
the ving of tixed points (e.b) = (¢! 1) (0 € [0,27]) in the b = o invariant subspaee

cortesponds 0 o ~ 250 )W e o+ 4 ¢ * o7, deseribing the flat (pendulu
solution frequency -locked to the driver. The fixed points are veadily found to he
Oy unstable, reHeeting the sume O 1) instability of the Hat SG solution. Moreover.,
the orbits homoclinie to the ring retleet the SG solutions which are homoclinie ro
the peudulum solution with frequeney < = 0.87. In fact identifying the integral

1 —

h=H -(=-I° - I (21

we o easns ined an effeetive oseillator equation fon 2 = B h - B .

%z}- gng SNEGTZ N2 Ry s h e REK

witlowtiate period solution: 0« 72,2 k"’n}l"" « ()

Other tixed poars of the oo aste can sitilarly be assignesd i the full
pode e plete Tifurearion and stabnlity: puetare for the perturbed oadae 3 e
hiae been detenmined numerically and many of the ey elements can he denaod
analy teadly o by stnghtforwaed pernbanion theory 21
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following rhe exact nonlirear SG spectrum of o at each time step aud identifying
transitions from “gap” to “rross” states (¢.f. fig. 4). In the o.d.e. system we have
followed h = H rlyr')— I) and checked for zero crossings. As a final check we have
combined tiiese rwo diagnostics. We rtake ¢(T). b(T) during the flow gencrating
h. reconstrner the perturbed SG solutien according o the approximarion (2.7),
and then compnte the SG spectral components of o. The question is whether h
passing through zero corresponds to the SG Held ¢ passing through a homoclinic
spectral configuration? As shown in [21] the agreement is indeed rather good except
very near to the homoclinic structure (h > 0). as might be expected due to the
approximation by linear Fourier modes.

Recent analysis of the truncated model suggests [22] that a homoclinie loop
(rather than a tangle) is responsible for chaos in this system. Interestingly it appears
that the geometric structure of the model problem ~an indeed by lifted to soiiton
variables and apglied to the full perturbed SG and NLS p.d.e.’s

Firally, we note that the model problem introduced here is in fact a particular
case (with somewhat different perturbations) of a general class of problem: intro-
duced by Holm et al. [23]. motivated by polarization dynamics in nonlinear optical
beams. Detailed discussions of reductions to finite-dimensional inertial manifolds,
homoclinic crossings, chaos and Arnol'd diffusion have also been given by these
anthors.

2(B). A Mode Reduction for the Breather —— Kink-Antikink Transition
and Associated Chaotic Dynamics

We now turn to an equally drastic approximation for chaos via a second honio-
clinic crossing in the SG equation, namely the breakvp of a breather into a conn-
terpropagating kink-antikink pair. This scenario has also been explored in great
detail numerically [12.13] although usually not associated with an underlying ho-
moclinie structure, It is especially relevant with lower frequency AC-driving sinee
this induces resonant breathers with large amplitude £ 27, Although the collee
ive coordinate scheme we introdnee (241 is wuch oversimplifie 1, it cures out to be
surprisingly successful, Iv will also serve to introduce the basie ideas of homoclinie
orbits and Melnikov's eriterion for rthe cuset of complexity. Iu general pode’s pose
problems of coexisting homoclinie struerures and connections, and far more general
phase space geomerry than in an o.d . However the basic ia seedients in chaos really
are one-dimensioual i the present problem and captured by breather /kink-antikink
colleetive coordinates.

Specitically, we consider here none-dimensional SG system in which o inele
hreather excitation is present. When this system is pecturbed by spatially wiiorm
DC and AC driving, and space-independent dissipation, the breather can brenk
o o kink ceeikik (KK pade, which can then recotbine iuto o breather soliton,
[us proces vy ocear repeatedly, with o fregueney that is not necessacily related
‘o that ot the dover. To understand this competition, consider the breather and
NI solntions to the neperturbed SGoequation:

Brearher.

T § tan

l[_,i'_“,H ~1 I'"(”! :!!'l
1::»-/: M l'u'E



vity =gy rt cos# .

k=

~iné

ol —

Ep =106 sind |
KK:

oty =4 -1 sinhut = ty)vV1 - 12
O elr .ty =4 tan - —_— ),
KA w o Shi(e —wp)/V1- u!]
16
Exg = 77—
V1 = u2
Here, 1. xp and 0 > 8 < 27 are constants, u is the t — 20 velocity of the kink and
-u is the t — ¢ velocity of the antikink. From Eqs. (2.14) and (2.15), we see that
the breather’s internal frequency. ' g, is cosf. The breather soliton can be viewed as
the bound state of a kink-antikink pair. with thresho:d binding energy AE = 16(1 -
sind), and where u — 1/(. tan#) and ty — -1g9/cosfl. Now, if the system supports a
breather excitation, an is externally driven by 4 sinwt, and damped by adog/0t.
then the rate of change of the system’s energy is H = 5 sinwt [ dx(deg/0t) - o [
dx(dog/0t)*. so that H can be either positive or negative. When H is positive,
cnough energy can be fed into the system that the breather attains E = 16. and
breaks into a KK pair. Likewise. if H is negative, the KX pair may lose enough
energy to recombine into a breather.
The specific equation under consideration is eq. (2.1) which we write as

>16, u>0.

ol i) —opel sy + s ol i) =cF(tor) . (2.10)

where sFor.op) is the perturbation,

FUt o = ek = aop(a. b f) e (215
mry =0 sammw

= mu.l'{ﬂ. r.- } '

Here, the sanabies x and t denotes space and time, respectively, while subseripts x
and tdeqors partial derivatives wort, these variables, Also, 7 is the overall strenet
of the pernachation, T orepresents the DC doving, » sinaet denote e AC driving
and oo oS the damping,

[ order to iuvestignte this pattern comwpetition m Eq. (2,16, we make o severe
tmode tenneation to the hreather colleetive coordinates, which leads to o thiee
ditnensional et of oadels which may then be analyzed by Melnikov's method 200
Salerno has shown 250 thar thes procedure vields a0 systems whose scparates dy
naties s cquuavadent to the separatiun dy tinnies of the fall pales Several inrere
Hie |)l|'(|il'liu||.~ hiave heen obtaed 21 ton spranee tine instabilivies i this sVetetn
fn parnealar, the pertarbation canc e anr e tinesverse erossitgs of the seable i
tctahle orbat s ro the hotochinae e sbaclo co s ponds to mrenmattenr b



and unbinding of the KIS pair. This is indeed the basic nature of low-dimensional
chaos, and l:n- heen observed numerically {13] for the AC-driven. wnderdamped
sine-Gordon 1 i when rhe frequencey of the driver is low.

Compler 7 ma0ils of this analysis can be found in ref. [24]. Here we only sketeh
the basie s 1=

First we st derermine equations of motion for the collective coordinares. This
can be acliieved within several perturbarive approaches. One such approach is to
take the ansarz that the solution to the perturbed ZG equarion has the same form
as the nnperturbed breather, Eq. (2.14), except that now we allow 8 and 14y ro he
functions of time, so that

t
14 = 1 t) + / df'('o.th( . (2.1%

By making this approximation, we are assuming that the perturbation is sufficiently
weak that its main effect on the system is to continuously alter the phase and the
frequency of the breather. Since the breather energy is intinuately related to its

frequency (Eg = 16 /1 - -‘}'TH- we see that this is valid when wy € 1. Next, we

introduce the breather colleetive coordinates, (n(t:z). v(t:2)), where

uiti 2y = opgtr =ag.45)
= dan"VA(t) (2.19)
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with

. 0
N = (I}(H!h.'(:. w) = l\‘ln(:-"") .

where
o) — 1
gl s.w) = (14 s + 201+ V1 ¢ 2
X [(u'2 + :"'):2 - -u { A [:2 + (1 - w2) (.1 + :"’)]
+ 2?2 (1 + :2)1 + H.'.',.\"(l - 2:2) (1 + :"")2]
and

w
(14 sw1w? + 22)(1 + %)

(205) ()
oo )= (1) (10 )

’

SR (1 + '2:"') (1 + :"’)]I .

Jals w) =

x

In order to study rhe onser of irregular behavior in this system, we consider the

. ’ ! 4 . : . M IRy
Poincare map. P where t, € (02775 g. 6. The distance, d(t,). between the
perturbed stable and nnstable ocbits ro the homoe! nie point is given by Eq. - 4.3.11.
in Ref. 20;:

o
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In the detinirion of dite). 2 is the unperturbed separatrix orbit. F A zfis the
exterior produer of fand sfif A sd =N 5 fizgp =, - g, with 55 the Levi-
Civita teu= . .l Tr{Dfi g% t’ 1)} is the trace of the Jacobian marrix of f evaluated
on the EIN CHIERE AR

2uz
14 2~

The separatrix orbit is easily determined from Eq. (2.22). From the second
cotloponent,

Tr{Dfiv)} =0+

1l =ae=)
=== =73
we see that z changes sign when w = 2 = £1. so that, on the separatrix.,

and
w==x1. 12.24)

The upper (resp. lower) sign corresponds to the upper (lower) orbit in tig. 6.
When Eqs. (2.22) and (2.21) are substituted into Egs. (2.23). we get

x ot a\—7/2
It) = (144
it /\ (1+..«-’)(1+ )

{'ilf + f..)[(l + )(1 + r")r'-’+

W1+ )t (L= ,'-’)"’(1 — 2#t).d]

-u% {r'-'('_' H'-')(l +r'-')

(1) 3 (e ) (1 +2r'-')}} . (25

where ot ot = 3T 4+ ysinfwrt 00} Expanding sinicet < to; and nsine
the faer L o evenin t Eqo 02225 haa the form

S = Mty = .l.[' TITE R ey .uu._-f,,: -atlly 1.0

where o ared i, are mmerieal constants, and pois o mnetion of @ ouly 200 The
Cetos of the Nelikov funetion then vield the parameter vadues for whieh the il
ated nnsrable wanifolds to the homochnse point interseet, <o that “complicared”
Scarher kink anntkink beliovion tiay ocer whenever
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Since onr primitive soliton mode rruncation has excluded the possibility of
exciting radiarion modes, the breather in the full pud.e. may destabilize at a lower
driving strei:zrii. In fact, the competition between a single breather state and a
rwo-breather i mmediated by a radiarive state has been observed for periodic SG.
Notice that ;o - Lreshold for breather breakup is a monotonic increasing function of
the driving frequency. This can be seen by realizing that we are looking at motion
near the separatrix, so that w = 0 is close to rhe frequency of the breather. and
cnergy is efficiently fed inro the ~vsrem. When rhe driving frequency is nearly one,
we are far off resonance, and the anplitude of rhe driving must be large.

From Eq. (2.27) we sec that rhe effeet of adding DC driving ro the system
is always to decrease the threshold for bre -her breakup (nmip is positive). This
is readily understood: The addition of spaually homogeneous, time-independent
driving to the SG equation may be viewed as the addition of a term of the form
-T'o to the potential, 1 - coso. When V(o) = 1-cose-T o is plotted versus o, we see
that small amplitude motions correspond to breather states, while large o solutions
correspond to kink solitons. Siuce the DC contribution decreases the potential,
thereby making large-amplitude solutions possible at lower «nergies. addition of
DC driving will enhance the soliton conversion.

Surprisingly the numerical values of (1/a), calculated by this method agree
with previous numerical work quite well. For example, with a = 0.2, &« = 0.6 the
threshold for intermitrent chaos is ¢ >~ 0.9 [13]. i.e. 4/a ~ 4.5. The Melnikov
criterion developed here predicts (+/a ). = 4.4,

3. Sine-Gordon Equation with Damping and dc-Driving: A Model Trans-
verse Instabilities on Propagating Interfaces

We now rurn to spatially mniform DC driving instead of the AC-driving of the
previous section. This may appear muceh less interesting. However. especially with
weak damping the parzern formarion, hysreresis and complex dynamics is in fact
extremely rich.

The phenomena basically deseribed by this equation include zero-tield steps
i Josephson junctions. si- ataneons uneleation of kink-antikink pairs in stressed
waterials, and rransverse structures on propagating domain-wall interfaces. The
st example ineludes such systems as charge-density-wave materials, magner- r-
roe] erries, and many other phenomena appearing in the presence of a nonlinear.
periodie porenrial. While we stress the wide applicability of our results, we shall
present this seerion in the language of Josephson junctions for conereteness,

The stenernre of zero-feld steps (ZFS'5) in overlap-geometry Josephson june
"1ons hias heen the subject of many theoretieal and experimental studies, With e
cent advine materials technology., it has hecome possible to mannfactre these
mnetions s e configurations - - notably, inan annndar geomertey, From o the
otetivis e ot ew, this geometey has important advanrtages, sitee an analy<is of
petiodic SGoeas, make nse of vigorons aualyvtical resales, sneh s inverse seatrering
theory, [las siration gives us the opportunity to study issnes that are uteal to
dynatieal systems theary for spatiaily exteonded systens csnel as space tane com
piexity. pattern fottuation, pittern eompetition, and mode conversion from borly
acwell esrabiiJdied thicaretical frameworin, aned ina conrrolled prliy steal <y arern,

[l reeondes rhier wo poesent Lute 26 ane for the one dimensional, DO deien
SGoopation with dhapation, v



= o t) =Ty . (3.1

with periodic .0y conditions.

ot ty=o(r = L.t
aud

og(.r.t) = og(.r + L.hH.

Here. 0og=00/d€. and £=rort. InEqs. (3.1). r is the spatial variable. normalized to
the Josephson penetration depth. Ay [\; = fi/2uge Jd. where h is Planck's constant,
sty is the magnetic permeability of the vacuum, € is the electron charge. J is the
maximum pair-current density and d is the magnetic thickness of the insulating
layer]. Also. t is the time variable, in units of the inverse plasma frequency. 1/.;
/=y = (hC/QJe)l/'z. where C is the capacitance per unit area of the junction).
On the right-hand side of Eq. (3.1). Iy is the DC-driving, and :¢; revresents the
dissipation (this is the only form of damping considered here). In Eq. (3.1). L is
the length of the system. For our numerical studies, we take :=0.1, 0 < [y < 1.0,
L = 24, and consider a fairly discrete system, with 76 lattice sites.

As we shall see below. this systenn possesses a rich variety of multisoliton wave-
trains and transitions between them. including the same breather-KKIX breakup dis-
cussed in section (2B). First we summarize *he results of a numerical study [26].
Fig. 7 presents data in the form of current (=) versus voltage (=< ¢¢ ». in our
normalized units, where the double angular brackets denote averages over space and
time). This picture was generated by starting with a stationary. large-amplitude,
spatially-randem profile. with 'y = 1.0. We then permitted the system to evolve in
tine according to Eqs. (3.1) until ir reached a t — >c attractor; the homogeneous-
spatial profile. The driving, Ty. was rthen “icdiabatically™ reduced to zero. to gen-
erate the backbone of the curve. Each of the steps was then developed by starting
with rthe state ar which an abrupt drop in voltage occurred. and then increasing
the driving “adiabatically”™ until the voltage abrptly jumped to the power-balance
regime -- = in this portion of rhe I-17 curve, the energy input by the de driving
marches rhe time-averaged dissipation.  ( The arrows on the curves in this Henre
indicare the direetion in which Ty was changed to trace out the stens,)

From Fig. 7. we sce that the system displays a number of inte: -ting fearuves,
The most prominent of these is the existence of two different transport mecha-
ni~ms, In the high-voltage steps inunediately below the power balance, or MceChme
ber eurve, the reanspe. occurs through cavity modes (which are standing waves of
phiase-locked, multibreather wave trains ). where current Hows beeause a standing
witve is snperiiposed ona running average cwee Fig, ). In the linguage of soliton -,

thils ransine cocvage 15odue to the faer that during its oseillotion, o(.r, #1 erosses
porentind T ow v at each instant thiar irs sparial protile is Hat, On these steps, e
amplitaed G wanelength inerease is the step munber deereases, In the reaion of

low volraee, rhe standing waves Lave developed o full 27 amplitade, and have in
creised rLe munber of active modes by deloeking, the phases of the brearhers, They
n=tained K paies are nueleated, cheteby giving transport by the franseerae o
Honw of kinks. Notiee char the fmposition of periodie bonndary condirions i+
3L necessirares the ereation of peers ot kinks aned anrikinks.” On these steps, e
mtaber of KK collisions cannort L avaained as the earrent is lowered farelier

[he Hoad NI s srable above Ty iros ) wbile Dhelow this errieal doving, soesee
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exist one additional phase-locke. -are wirh spatial period Pqna‘ to two. This il
i~ niso nonsual in that rhe orher -rares appearing in Fig. 7 may be accessw-t fo
cvor g A rdoal-spariai profile according ro Eqs. 3.1 “lth an apprepriare r
it L periodewo ware cunnor. These observations lead us ro br‘hew rhat rie
Denetioof onr sysrem s onearly consistenr wirh an exact period-rwo solution ro the
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driving is redueed ro pear, but before, the onset of the step (see Fig. 7. where the
L5 represent anproximately where the symmerry breaks wirh inereasing [y, and
the o's repre<-o0 where the symmetry is regained with decreasing [y). We believe
thar this bre v o of the spatial partern is caused by the multibrearher-wave-train
nature of the < - aoiry-mode staces. which results in n competition of " agth sealos,
Since the aplitiiie and wideh of a breather are related to s interi.a frequeney,
atd the applied current drives this frequeney, the =+ cem eventually reaches a point
where it is energerically favorable for it to creare a ond type of breather to relieve
the internal stress,

It is helpful to contrast these ZFS struetures with those that oceur in overlap-
gromerry Josephson junctions. As we mentioned earlier, the imposition of periodie
houndary conditions guarantees thar ouly K-K pairs will be excited, so thar only
even steps are generated from the uniform spatial state. The patterns thar we
observe, cavity modes and Huxou-antifluxon pairs, are <impler than rhe symmerrie
and asvinmerrie modes that are obtained with Neumann boundary conditions.

Analytic rrearments of this system are possible in principle both in terms of
linear stability analysis and in a soliton basis —— indeed the system is sufficiently
simple that it should be a valuable resting gronnd for nonlinear colleetive mode
reductions in the presence of perturbations,

Linear stability of the spatially homogencous rotating state to a period-N| cavity
mode state is furthest developed ro date —— at least for onset conditions; the non-
linear saturation of period-N linear modes requires fully a nonlinear mode basis,
Lincar stability analysis srarts with rhe spatially uniform solution to the unper-
rurbed SG equation and adds n perturbation of the form y(#)f(.r), where fiar) is
periodie, When this solution is substituted into Eq. (3.1) and the result is lin-
viarized, we get

Floruty - fomiioty - fur ’-'/””rl - 2an? [-":”H

-t
= frepty & Loget) - Ty 13,2

wihere stonc oo is a Jacobi elliptie funcetion, a s the modulus of this funetion, andd
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the transition poiurs herween uniform aud period-N or period-N and period N =1
Ntates.

Attempr- oc-e ol soliton mode basis are in progress (271, These exploir the
integrability ¢ - Lo nuperturbed SG o equation, as diseussed in seetion 2. The non-
linear speertal »sirusform ean be wsed ro characrerize the various branches in rerms
of their KK. brearhier and radiation components.  Various analytic perturbation
schemes can then be used to deseribe the time evolution of, e.g.. O-function rep-
resentations [27] under our perturt tions. Correspondingly. we have also nsed the
nonlinear spectral schewe deseriben, i section 2 to nmumerically follow the variou,
suliton components —— rhis involves some subtlety of interpretacion ro separnte a
rotating background from additional dyuamie spatinl structure.

Finally. we mention that this  1+1)-dimeasional SG system can be used to ap-
proxitiately model wall dynnmics in (2+1)-dimensional. diserete SG problems. This
is accomplished by describing the Huctuntions relative to the wall center of mass, as
deseribed in ref. [28]. Corwespondinly wall morion in (N+1)-dimensional SG ean be
reduced approximately toa (N 1)+ 1)-dimensional system. In this way the phenom-
ena described in this section model the propagation of walls by transeerse patrern
formation —— e.g. transverse KX nucleation. as observed in dislocation morion in
ervsealy, Analysis of transverse patterns on propagating interfoces is important in
many fields (e cellular texrures on Hnne fronts) and is likely to receive further
atrention experimentally in condensed matter settings —— for instance domain wall
motion in hard magnetic materials.

4. The (1+1)-Dimensional SG Model with Nonconvex Interparticle In-
teractions

As we mentioned iu rhe Iutroduction, solid state physies in the last 15 years has re
discovered the SG equation in the context of commensurare-incommensurate phise
ttansitions now observed experimentally in very many kinds of materials 3], I
these sitnations, several length seales are in competition aad lead to intrinsieally in
Lhomogeneons groud states (frequently, ordered or irregnlar arrays of kink solitons .

Most of the theoretical stwdies 1o dare Lave concentrated on eases where the
interparticle interactions ave conpeer, as in the diserete version of the SGoeguarion
P L N orvpiecal case is where there are feo competing lengths: the lattice consrant
between an array of pacticles (e, atoms o ad a0 periodie poteutinl in which they
-1t with a periodicity which is inecommen-urate with the lnttice const: e,

Recentle, moativated by physieal concerns, the elass of sroblems has heen e
rerpdedd tonelude nonconper interactions hetween particl: adding ro additional,
aind qusiivier el ditferent, competing leneth seales 22900 aeonvex interpin el
mitetaction, e arise etfeerively oo Ginsbnrg, Lagedin freee energy funetional to
the i, ciferenees i displiveetent s hetween neighboring partielesy i o
et vitee oanes elastie phase timetons Fhe model deseribed Dhelow mas, fo
caatnples Ve el in deseriptions of v bonndary dynammies e martensitgs o
settals M0 Hepe rhe abstrate porennal el e e the parent ||h.‘|.~l' el b
vertis e b anespanaon of the st free enetey asa inetion of the e
atel e eraehe e
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1]
TS HHUnel T Dup + -1 )" - cosuy . (41
Heve, there - caaperition between the subsrrare periodicity 27 aud the natural
. i) . . . . . 1
lattice con: = L 27 =iy, 15 = 9720, Further generalizations are given in (205
Ir is easy v - char for 5« 1 the sy<tem will behave as for = = 0 with 1 -
3—2~. The zround state is then dimerized (ie. a periodie line of “short™ and

"lung" larrice consrants) for J-2+ > % On the other hand, for large values of

3.5 ties when the substrate is weak), it can be shown (20] that a long-period
~||pullurrn e vir “kink-antikick™ or “twinning”™ [30] pattern) lh formed and stabilized
byl hstrate sompetition. Roughly these patterns are a periodic array of N shorr
Lt tic, vlhrﬂnt-; followed by M long ones. with the (N+M) anit cell periodically
repeated. N and M are integers and may be equal.

The detailed ground ~tare phase dingram has been obtained [29] by a com:
bination of ansatz. numerically exact transfer integrenl techniques. and uum(-m al
relaxation of the equations of morion fnlluwmq from (4.1) The results (for (, € 2=,
so that the dominant noulinearity is in the interaction potential and SG “solitons™
are not important) are sununarized in fig. 10. The notation in this figure is given in
the igure caption. We draw attention to two interesting features: (1) The transition
from the uniform to long-period ground states contains at worst a rriple point (three
coexisting phase) and possibly a Lifshitz point character; (2) Transitions berween
long-period ground states ave typically first-order, not continuonus. These results
disringuish model (4.1) from, e.g.. the Freukel-Kootorova model and are o direer
couscquence of the interparticic ronconeezity. In particular the internctions be-
tween defeers soliton=") wirthin eacit long-period patrern (see g, 100 is ateractive
leading to the nueleative tiest order character, This 18 in contrast wirth the convex
inrernetion case, w'-re the internction is repulsive, giving rise to a soliton lartice
rinconunensurate s neture) with o continwons transition in the soliton spacine,
The soliton melearion reansition mechanism pre-empts nn alternative “soft mode”
vor “phonon-mediated™) seenario in which the period of the parterns could change
hotogeneonsly and continuonsly: this enn happen in prineiple beeanse of the com
peting Hest. and secopd-neighbor gradient revins. The exeeptions to this rale aree
teannsitions from that wngform gronnd stare, Linearizing we ind that @) ~ o -
ql when o is ot stabilized by b s orransition enn oeenr, Speeifically (200, linean
cabiiity Daews two regiies: i) - - LG whiere the homogeneon - tate heco
llla-l:||-:-' and hifureates into n dizseniced one nlong the line 4 .22+« 5 niel tho -

; | v

Ioroowhere the otogeneons state becomes unstable along the eneve 4 2 al = ol

I'Ihlll'nh anto modnlated stares with wavenmnber = (27) Veos 1 .1, I
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importance of piuning effecrs which lock defeets randomly in the roue ground stare;
and (3) effeers of o DC-field and damping. Point (3) is extremely interesting and
appears to eovrain the ingredients of =1 /f7 noise and a relationship berween time
and space elinessrizations of this phenowenon. Indeed this “noise™ ocenrs through
the motion f el defeets, a notion which is now rising even in theories of fully
developed turbuicnee {31). Comparison with the DC-driven SG system of section 3
is instructive. There, linvar stability analysis of the cniform rotating state identified
periodic wave-train unstable modes, which saturated into breather nnud KK wave-
trains,  Here, the rorating state is itself inhomogencous because of the internal
ground state complexity {29]. Linear stability analysis rhen shows that rhis stare
destabilizes rhrough local modes being excited and saturnting in the noulinearity as
the rotation rate decrenses and allows the complex landseape of metastable pinned
configurations to be felt. These modes contain explicit frequencey- and spicial-seale
relationships. In this sense the rigidly rotating state is “eritically unsrable™ [32)
as the rotation rate is decreased to a eritical value and is destabilized by a low
density of defects (with respect to the rotaiing pattern) being excited and moving
slowly relative to the average rotation rate —— they then control long-wavelength
and long-time charneter in a connected way, giving rise to 1/f behavior. We enn
expect that the “eritical™ properties will be verv interesting, a3 discussed in other
compering interaction systemes with eritical trad port in the presence of DC-driving
“11].

5. Quantuimm Dynamics of a Pulsed Spin System

[u this seetion we introduce some vecent appronches to quantum wechanics of sy«
rems with interesting (., chaotie) elassieal limits. This field (often ¢ 7 uially
referredd te as quantum chaos™ ) s associnted with its own considerni . nistory
atd literiente, Our intention in the mode! problem introduced below is quite lim
ited. We wish to etuphaosize in the conrext of this Instivate that: (a0 Competing
interactions nre equally important i quantum problems as in cassieal ones: Jn
It s very amportant to have control of models which contain anintegeable i
il where dediations from iteerability enn be “tuned”™ as for elnssieal model
aed e [0S nataral to ey to charaeterize suel quantum problems by sealing and
“trietal” wensures, analigous to the sueeessful appronches developed for elassieal
liit=. Farthermore, this ineluges stadying wave funetion aad dynnmies as well o,
thote traditional investigntions of enerey level distibimtions,

Consideting quantum dynemies, we can expeet that the colierent stenetnge of
winvefihenions s greatly affeeted by quantum intederence, leading to the sappne
daon of anomalons ditfusion fentures charaeteristie of chinos nud eventually vo rhee
vanihitne ofF Iosopgorov Sinad enttopy atd of other chacaereristie evoonents 15 we
cratiate o s eseal regime, however, news plenomenn enn appeat, not present
crther the peal or et lior - T pactiendag, -ectnielassical wavetneton poe
et tear - et several distimetive oot cinea reencrent tne tegnme hevopnd
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spin resonanee, tfor instance, an assembly of spin 1/2 systems behaves colierently
and effectively constitutes asingle large @uentum-spin.

Heve, we sonors 77 on the long-rime belicor of wavefunetions in o periodieally-
pulsed Tarer o ran-spin systennr whose elassical limit exhibits a rransition from
predominan iy reaular orbits to global chaos as the pulse strengrh s inereased.
The effecr of dissipation is omitted in rhe present treatment. We shall attempr o
characterize wavetunction patterns in terms of t'e singularity speetra fio), which
has 1even very useful recently in qaantifying me Cacrnl aspeers of chaotie systems
M.

The quantum dynamies for one spin system with § = (S7.5%.5%) is deseribed

AN
by ikl = HW where H=Ho + D Vet - 27n) with Hy = AS5 )2 aud V =
n=-=-Xx

pBSr. A (>0) and 4B (>0) represent a planar anisotropy and pulse strengeh,
respectively.  (Here we have chosen a couvenient model Hamiltonian,  One may
mnke other choices, e.g.. Hy = AS® and V' = -yBSTcos (wt), without changing the
qualitative fentures of the results below,) We solve the above Sehurddinger equation
by rewriting it immediately in o maerix form: a ot of eigenstates of S° is chosen as
basis kets. Then, the wavefunction W just after tie u-th pulse is given by ¥ (271

<
- = Z Cop 27 = 0) | m > with C(2xn + 0) = ; exp (-2minE, /by - (N,
m=-Ny

F o Cot+0LX,. Here {E, ). {Xo] are asi-energies and quasi-eignefunctions for
the one period propagitor represented by the unitary matnx:
U o= exp (- by Voexp ¢ /b 25Hy). Voand Hy are matrices for 7 oand H,.
respectively,  The probability density funetion is given in terms of SU2S « 1
colierent state representations as Pyi# o = 028 ¢ L/da] | < 00 220 + 0 - 5,
where the tivst facror on the right-hand side is due to the normalization over 1the

surfiee of aounit radius sphere. In o the following, A = 1.0 sets the energy unir.
Farther, we employ S = 2% and choose b2 TS0« 1) so that the observable

~pite wagnitnde waintains the sealed value for the elassieal spin veetor, je. S -
A BN UL §

Iu e, TLovery early stages on 1230 of the remporal evolution of initianlly
c O doealiged wavepnekets are shown, Fora weak pulse op B 2 pl3/A - 001,
PPt shows s simple unidives ional ditfusion csoe s T cen correspotding
to tewilin Yelaviors in elassical dyminies, Note that investigation of elisaead
e obivares the presence of two charaetenistie tields By = 000 aed 3,

0o whone e fraenion of chinotie renjecrones meteases strongly and the Lo
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reflects the coexistence of classicai KA M orbits and localized chaos in a transitional
region leading to global chaos. This large fluctuation is reminiscent of the critical
fluctuations ar an equilibrium phase transition. The relatively small Huctuation for
uB = 1.0 siguitics the uniform distribution of measures in Figs. 12(b").

Using our dara for fla) with ¢ 20, we now estimate the effective range of
fluctuations o® ,,in € a < a® uar : @ mar and a* i, denote the value at
which f{a) takes the maximum (i.e., fractal dimension) and the value at which
fla) takes 2/3 times its maximum (an arbitrary choice). For uB = 0.2 at n =
90. for example, a* jper = 1.98 £ 0.01. a* ;pin = 1.35 £ 0.01. The features
in fig. 13, which have now been quantified. are found to persist throughout the
temporal evolution. Careful examinations indicate: (1) the effective range of «
shows distinctive temporal variations for 4B = 0.2; (2) on the other hand, it remains
almost unchanged for uB = 1.0 (despite the absence of dissipation in the present
system), which reflects a well-organized ergodicity in this case.

The mixing and ergodic features of classical chaos have helped to establish re-
lationships with the formalism of equilibrium statistical mechanics. In the feld of
quantum chaos, most of :he literal definitions of classical chaos lose their signifi-
cance. Nonetheless, we have still found here complicated behaviors in the quantum
mechanical treatment of chaotic systems. We believe that the characterization given
here will be a vehicle for more profound understanding of these complexities. Sum-
marizing. despite the complete absence of classical and quantuin correspondence,
the long-time behavior of semiclassical wavefunctions maintains the ergodic and
nonergodic features possessed hy the underlying classical dynamics. The enhanced
fluctuation of their local dimensions in a transitional region leading to global chaos
persists throughout the time evolution. This is reminiscent of critical fluctuations
at an equilibrium |-hase transition.

6. Summary

[u summary, studies of complexity in models motivated by condensed matter and
waterials science have focused attention on a number of issues of wide importance
in dynamical systems: (1) The importance of understanding complexity in extended
(spice-time) systems, so that interrelations of pattern formation and complicated
dynamics can be included; (1) The fundamenral role played by competing imterae.
hons, including hoth length scales and frequencies; (iii) Mappings between time-
dependent, nonequilibrium systems (pde’s, neural networks, coupled map lattice,
cellular automita), and to effective, equilibrinm Hamiltonian systems in higher spa-
tial dimensions and with competing length scales. ( Excellent examples are found in
the liguid crvsral ronvection cell experiments of Ribotta (see these procecdings
rivi The valne of nonlinear colleetive te.g. soliton-like) mode reduction as o basis
for desenbing low dimensional atreactors in many degree-of-freedom systems: v
Che role of generalized (space-time) homoelinie orbits for describing the geometry
of both remporal sensitivities and spatial instabilities: and (vi) The important role
played by “defeets™ in controlling the lvge seale How (transport) of compering
iteraction systetns,

From a theotertical perapective, o nimoer of technigues have heens developed
atel tested on speeitie models wirth whieh ro deseribe aspects seenin teal or o
merteal expetiments: eop pettichation theory atonnd Tinear and nonlinear state.
37 perturbioon theory in o colleetive caordinate or soliton basis 38)0 enerey
Dalanee eriterta for uonlivear wode~ 397 aleonithins for compating, gronned tate



in the presence of competing interactions [29]. etc. Much development remains
necessary, however. in terms of, e.g.. incorporating collective coordinates in Renor-
malization Group or Fokker-Planck descriptions, controlling estimates of center
manifold dinicusionality, describing energy transfer between nonlinear modes. ana-
l¥zing frequency and phase “pulling” of coupled nonlinear oscillator. understanding
coexisting homoclinic orbits and their connections, including effects of noise and
lisorder in nonlinear systems [40], describing dynamics in competing interaction
sy'stems, etc.

Finally, while the precision, elegance and variety of condensed matter exper-
iments which probe “complexity™ in time and space have increased dramatically.
it should be remembered that a plethora of phenomena in mainstream metallurgy
share similar features [2]. We expect that a great deal of attention will soon focus on
microscopic modeling of texturing and of nontrivial dynamics in material science.
and on the bridge to condensed matter, where we have gained some understanding
via simpler, controlled systems.

We gratefully acknowledge close collaborations over the last several years with
many colleagues, including S. Aubry. J. Ariyasu, G. Forest, P. Lomdahl, S. Mari-
aner, A. Mazor, D. McLaughlin, K. Nakamura and E. Overman, II.
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