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ABSTRACT

The distinct element method (DEM) has been used to
model wave propagation through a matrix material composed
of circular particles which are glued together with elastic
bonds. Wave propagstion through the sample is shown to
be governed by the properties and distribution of individual
bonds.

NOMENCLATURE

- separation parameter (1 + §)

- fracture length for growth criterion (mm)
- elastic modulus of bonding material (MPa)
- restoring force of bond on particle (N)

- particle radius (mm)

- surface energy (MPa-mm)

incremental stretching of bond (mm)

- dimensionless length of bond (see Fig. 1)
- dimensionless length of crack (see Fig. 1)
- dimensionless width of bond (see Fig. 1)
- Poisson’s ratio of bonding material
norma! stress in bond (MPa)

- shear stress in bond (MPa)
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INTRODUCTION

The distinct element code used is SKRUBAL. It was
modified from the TRUBAL program (Cundall, 1987) by
allowing pairs of particles to be bonded together by an elastic
material, as shown in Fig. 1. The details of the formulation
are presented elsewhere (Trent, 1987). Three modes of
relative motion were analyzed for the two-dimensional case
presented here: simple tension, where the particles move in
the direction of a line connecting their centers; rolling torsion,
where the particle rotate in opposite directions; and shearing
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torsion where the particles rotate in the same direction. Any
arbitrary motion of two particles may be decomposed into
these three components plus rigid body motion. The form of
the restoring forces in simple tension is:

F/Au _
T =
a acos(w) — 1\ | w = sin~?(a)
—v+ ‘—_m"m('a — cos(w) )|w =sin"}(g) (1)

Analytic expressions such as this are incorporated into
the calculational sequence of the distinct element code so thut
bonded particles have fcrces and moments applied to them in
addition to those imposed by particle- particle interactions.

The bond behaves elastically until the stresses in the
material exceed a critical value. Specifically, a generalized
Griffith criterion (Margolin, 1984) was modified so that
fracture occurs when:

a3 =TE
St o +s) 2 A1 - sh)e (2)

The calculations presented in this paper have two
important features. First, none of the particles were initially
touching, so that all particle interaction results only from
forces and moments generated in the bonding. This means
that all the mass of the sample is concentrated in the
particles while all the stiffness is in the bonding. Secondly,
although bonds are examined with different initial damage,
fracture growth is not allowed to further deteriorate any bond.
TLe scope of this particular research is to saow how the
macroscopic longitudinal wave velocity is influenced by the
elastic properties of the bonding material, the initial damage
of those bonds, and the topology of bonded parti~les.

NUMERICAL EXPERIMENTS

Figure 2 shows the initial particle assembly. Each
particle has a radius of 1 mm and no two particles are



touching. Bonds were then established for any pair of
particles ssparated by less than 0.25 mm. The shaded areas
identify six regions where particle velocities are averaged and
plotted as time histories. The sample is loaded by specifying
a 10 m/s tensile (downward) velocity for a short time on
the lowermost 20 particles. This motion is transferred to
the rest of the assemnbly through the bonding. Bonds are
represented in Fig. 2 by lines connecting particle centers.
Notice that there is an unattached particle near the center of
velocity region 6. Also, a cluster of three particles is detached
from the rest of the assembly. Each bond is assumed to be
95 percent intact (#/a = 0.05) throughout the calculation.
Notice from Eq. 1 that the force-displacement relation is
strongly dependent upon the initial separation, 26R, so that
although each bond has the same fracture length, thin bonds
are mnch stiffer than thicker ones.

A second sample is shown in Fig. 3. It is ideatical to
Fig. 2, except that all particles within one half particle radius
(0.5 mm) are bonded together. The vertical boundaries are
periodic so bonds exist there, connecting the two sides, but
they are not illustrated in Figs. 2 and 3.

Influence of Bond Stiffness on Dampad Response

The input boundary condition to the assembly in Fig. 2
is shown in Fig. 4 as a square wave. The other five curves
represent the average velocity of all particles within a given
region. Numerical damping was applied to the equations
of motion in order to study the behavior during relaxation.
The mass and stiffness proportional damping is discussed by
Strack and Cundall (1978). The highest velocities are in
region 6, adjacent to the free surface. The elastic modulus
of the bonds in this calculation was 55 MPa, typical of a stiff

limestone.

Snapshots of the vertical velocity of each particle at
various times are shown in Figs. 6a to 8f. The “at rest”
condition is shown in Fig. 5a. Midway through the applied
velocity condition, each particle is moving downward as
shown in Fig. 8b, except for those four particles near the
top of tt» assembly which are completely detached from the
other particles. The particle velocities at the final cycle of
the impoeed condition are given in Fig. 5c. Notice that most
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of the particles are now moving downward faster than the
boundary as a compressive wave has been formed due to the
free surface at the top of the sample. In Fig. 5d to 5f the
lower particles are at rest and the others slow down due to
the applied damping.

The family of velocity time histories in Fig. 6 show a
much softer response to the identical loading of the assembly
shown in Fig. 2. The bonds in this experiment had an elastic
modulus of 1 GPa. The snapshots in Fign. 7a to 7f are at
identical times as those in Fig. 5. Notice that at the end of
the impoeed velocity (Fig. 7¢) one half of the particles are not
yet moving. The particles come to rest much more slowly, as
shown in Fig. 7f, where most of the particles are still moving
downward.

Microscopic Influence on Wave Propagation

An clastic modulus of 20 GPa was assigned to the bonds
shown in Fig. 2. No damping was applied to the particles and
the resulting harmonic response is shown in Fig. 8. The total
length of the sample is 32 mm. The wave must then travel a
total of 64 mm for a complete tension/compression cycle. The
average time required for this transit is obtained by dividing
by three, the total time for three complete cycles (158 - 26)
psec. The resulting mean wuve speed through the sample is
thereby 1460 m/s, which is typical of alluvium, a cemented
granular material.

Figure 9 shows how the eaergy in the system changes
from translational kinetic epergy in the particles to strain
energy in each of the three modes of deformation in the
bonding. The lower curve is rotational kinetic energy in the
particles which rises to a low level and is thereafter insensitive
to the sample ringing. The total energy curve shows a small
but sharp drop as the lower boundary particles are stopped.
The slight oecillation in amplitude is due to forcing those
boundary particles to be fixed, i.e. the energy required to
hold those particles fixed is not accounted for in Fig. 9.

The elastic modulus of the bonding material was
reduced by a factor of two to a val'e of 10 GPa. The
corresponding longitudinal wave speed taken from Fig. 10 is
1050 m/s. The sound speed of a homogeneous elastic material
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The measured reduction of 1.39 is very nearly equal
to the square root of two, indicating the macroscopic sound
speed is governed by ibe elasticity of the bonding material
only. A material with a density of 2400 kg/m?, Poisson’s ratio
of 0.18, and elastic modulus of 20 GPa has a sound speed of
3008 m/s, or 2.06 times the value measured in Fig. 8. This
is not surprising, given the relatively small number of bonds
that are present.

If the extent of bonding is different prior to loading, the
response is significantly different. A much stiffer response was
observed due to the 83 additional bonds that were generated
by allowing those particles whose separation was between 0.25
and 0.50 mm to be connected. Fig. 11 shows ar increased
wave speed of 1440 m/s, even with the lower elastic modulus
of 10 GPa.

Equation 1 shows the dependence of the bond restoring
force on fracture length. All the bonds i the calculations
presented thus far has fractures that were only 5 percent of
the tctal bond length. This was increased to 20 percent and
the macroscopic sound speed once again drops. Figure 12
shows the response and the sound speed obtained from this
plot was 1150 m/s.

SUMMARY

Several calculations have been presented that wers per-
formed with the bhonded distinct element code, SKRUBAL.
The results show that macroscopic sound speed is greatly in-
fluenced by the microstructure. Specifically, the longitudinal
sound speed varies with the elastic modulus of the bonding
material, the number of particles thet are bonded together,
and the initial fracture lengths within the individual bonds.
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Fig. 1. Assumed shape of elastic bonding material, defined
by three dimensionless values.
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Fig. 2. Assembly of particles and bonds. Shaded areas are
regions where particle velocities are averaged for
time histories. All particles within 0.25 mm (R/4)
are bonded together, as represented by the straight
lines.
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Fig. 3. 83 additional bonds are generated as particles within
0.5 mm (R/2) are bonded together.



S=56000,DAMPED Velocity History
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Fig. 4. Damped wave propagation through the sample in
Fig. 2, assuming aun e'astic modulus of 56 GPa and
bonds that are 95% intact. The different curves
represent the average velocities for the six regions
shown in Figs. 2 and 3.
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Fig. Sa-f. Vertical velocities for all particles at various times
during the loading depicted in Fig. 4. Notice the
rapid response as the boundary particles are moved.



t= 13.3 usec, S=55000, DAMPED  Velocity Snapshot
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S=1000,DAMPED Veiocity History
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Fig. 6. Damped wave propagation through the sample in
Fig. 2, assuming a much softer elastic mndulus of 1
GPa. Bonds are 95% intact.
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Fig. Ta-f. Vertical velocities for all particles at various times
during the loading depicted in Fig. 4. Notice the
sluggish response.
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Fig. 8. Undamped wave propagstion through the sample

shown in Fig. 2. The elastic modulus is 20 GPa
and the bonds are 95% iatact. Sound speed is 1460

m/s.
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Fig. 9. Energy terms for the loading shown in Fig. 8.
The upper curve is total energy and the curve with
the greatest amplitude change is the translational
kinetic energy in the particles. The other harmonic
curves are the components of strain energy in the
bonds which are greatest when particle motion
is minimized. The energy stored during normal
tension and compression of the bonds is the greatest
while the strain energies in the rolling and shearing
torsion modes are nearly equal. The lowest curve is
the rotational kinetic energy of the particles.
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Fig. 10. Undamped response due to identical loading of the
sample in Fig. 2 as before, except that the elastic
modulus of the bonds has been decreased to 10 GPa.
Sound speed is 1050 m/s.



Fig. 11. Response of loading of the sample in Fig. 3. Elastic
modulus of the bonds is 10 GPa, but the additional

83 bonds make the macroscopic response stiffer.
Sound speed is 1440 m/s.
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Fig. 12. Velocity time Listories for the sample in Fig. 3. Here
the bonds are only assumed to be 80% intact. The
elastic modulus is 10 GPa and there are 480 bonds.
Sound speed is 1150 m/s.



