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Davydov and Kislukha! suggested in the 1970’s that nonlinear self-trapping could
serve as a method of energy transport along quasi-one-dimensional chains of
molecules. The problem was to explain how the energy released by hydrolysis of
adenosine tmphosphate and transferred to proteins in biological systems remains local-
ized ard moves along the protein chains at a reasonable rate to perform useful biologi-
cal functions. The a-helix protein structure was considered, which consists of three
chains of hydrogen-bonded peptide groups (HNCO) with associated side groups which
contribute to the molecular mass but are assumed dynamically inert. The coupled fields
which they suggested are relevant in this problem are a high frequency intramolecular
vibration of the peptide groups (the Amide-I or C=O stretch mode, at about 1665
cm~!), and the low frequency vibrations of the entire peptide groups (and associated
side groups). These fields are coupled through the dependence of the Amide-1 energy
on the length of the hydrogen bond coupling neighboring peptide groups.? The Hamil-
tonian Davydov used to describe this situation is the same as that used for the polaron
problem (the Frochlich Hamiltonian for electron-phonon interactions) with some
changes in the meaning of the symbols. Davydov’s method of analysis'? of this
Hami}:onian led to connections with ileas of soliton propagation in other physical sys-
tems.

Following Davydov’s original suggestion, the model has been claborated by Scott
and collaborators to describe more accurately the three-chain structure of a-helix, and
numerical celculations have been carried out which verify the existence of self-trupped
states in this model.®

Our purpose here is to present a derivation of the Davydev equations which
emnlovs only quantum-mechanical techniques. The derivation here is more general
than our previous treatment of this problem® because we use an Ansarz which has
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present several quanta of the high frequency oscillator system rather than just one
quantum.” Since some steps of the calculation that follows are the same as those in
our paper® which treats the single quantum case, reference will be made to that paper
for some of the those details.

Davydov’s Hamiltonian is 13
H=Y [EoBJBn = J BBy + BnTBnn)] )
n

2
+ Z [z:n + _;'W(unu - u, )2] + XE(um - un—l)B"rB"

=Hv +Hp +Hw.

Here, B,/ and B, ar: boson creation and annihilation operators for quanta of
intramolecular vibrations with energy Ey = 1665 cm ~! at site n (the C=O stretch
mode), u, and p, are the molecular displacement and momentum operators for the
molecule at site n, m and w are the molecular mass and intermolecular force constant,
and J is the intersite transfer energy produced by dipole-dipole interactions. The non-
linear coupling constant ¥ arises from modulation of the on-site energy by the molecu-
lar displacements. The vibrational part H,, the phonon part H,, and the interaction
part H;, arc defined to be the individual terms in (1).

The phonon part of the Hamiltonian can be cast into familiar form in termas of
phonon creation and annihilation operators by the use of the standard transformation

[ ¥
Uy = ¥ |m—
n p LZNmo)q

"]

n
] e @l +ap), (28)
172

mhw .
gt
ed t(a_q —aq). (2b)

Pn = ; L_ZN_L.
In these formulas / is the lattice spacing (thc distance between peptide groups), and
w, = 2(w/m)V2(sin(q!/2)! 3)
is the dispersion relation for H,, .

To understand the dynamics arising from the Hamiltonian (1), we make the
Ansatz for the stare vector

1 Q '
ly(r)> = ﬁ [?’n (f)Bnr] C"P{'#? [Bj(l)Pj — 1t (f)u; ]}'0>. 4)

where 10> is the ground state vector (i.e. it is annihilated both by B, and by the pho-
non operators a,). Davydov's original Ansatz 1.3 was the Q =1 cese of this formula.
Assuming that the time evolution of this state vector is approximat:ly the same as that
of the (unknown) exact state vector, one can then understand the system behavior by
finding the time evolution of the three sets of unknown functions a,(t), B, (t), and
n, (1)

First, we establish the necessary conditions for this state vector to be normalized.
The nomalization is
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<) y(t)> = Y ap Gpyd,, 0, <0IB,, B, Bl-Bl 10>  (5)

L :
Q™
n, " Rg
By using mathematical induction one can show that the ground state expectation value
appearing in (5) is equal to the O XQ permanent
<0|Bml".BMqBﬂr| ."Bﬂrg |0> = per(swnj); i'j = ll""Q' (6)

Here §; ; is the Kronecker delta. A permanent is evaluated similarly to a determinant
except that all of the terms are taken with positive signs. When we substitute this per-
manent (6) of Kronecker deltas into (5), we find that (5) reduces to Q! identical terms
each of which has Q identical factors, so that

1
VOIye2> =77 X |G, 12+ 10 120! = (T g, 192, Q)
m, Mn m
Therefore a necessary and sufficient condition for the state vector to be normalized,
<y(t)Iy(@)>=1, (8)
is that the amplitudes satisfy
Yla,12=1. 9)
m

In order to derive the Davydov equations implied by the above Ansarz, we need
to know the average number of quanta at any given site,
<N,> = <y(t)1B,IB, Iy(1)>. (10)
From this we can subsequently determine the average total number of quanta present.
We substitute (4) into (10) and then use the buson commutation relations to get
1 .
N> == p I ML Sy B (11)
m; ... Mg
A g

x{<ow,,,»-3,,93,3,,f, ~B,f B, 10> - <01B,, B, B} -~B} |0>}

The two ground state expectation values in (11) are a (@+1)x(Q +1) permanent and a
Q xQ permanent, respectively. The evaluation of this quantity is explained in the
appendix. The result is

<N,>=Qla, 12 (12)
which implies
<IN,>=0Q (13)
P

by (9).

The interpretations of B, (s) and x, (1) are obtained as follows. Davydov? points
out that the part of |y(r)> depending on the displacement and momentum operators is
a coherent state of the normal mode creation and annihilation operators. A coherent
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state for the mode with wavevector q is®
la,> = exp(at a) - aga,)10>. (14)
To sce that (4) is a coherent state of all the normal modes, we use (2) to show that

- %I’I.‘,(B..p,. - o) = E0qa] - 0jay). (15)

172
] T, (16)

where

ma 1”2
- 9 ;
a, = T ] Bq +1[

1
2mhiw,
[Here B, is the spatial Fourier transform of B,,

l ,
= —_— —ignl 17
By = G Ze B, ar

and similarly for ,.] We substitute (15) into (4) and get a factor of the form (14) for
every normal mode. With the property

<o, la, la,> = a,, (18)

and also using (2), (16), and (17), we straightforwardly obtain
<y(t)lu, ly()> =B, 1), (19a)
<y(t) 1p, | W(t)> = ®,(1). (19b)

The basic assumption in deriving the equations of motion is that |y(s)> is a solu-
tion of the time-dependent Schroedinger equation

iﬂ% Iy@)> = H ly@)>. (20)

Since (19) identifies P,(r) and &,(tr) as expectation values, standard quantum-
mechanical procedure gives

Bat) = W) 1 [y, H11W()>, @21a)
£, () = Tli-qt(r)llp,,, H1ly(t)>. (21b)
The commutators are
u,, H} = i%ip,/im, (22a)
Pus H] = iBw Uy g = 20, +y_)) + i BB, \Bres =B, 1Bn-1). (22b)
Using (10), (12) and (19), we get one of Davydov’s equations
mBy =W Bnst = 2By + Bpot) + QA1) 12 = 13, 1D, (23)

The presence of Q quanta for the vibron oscillators increases the driving force on the
phonon field by that factor, compared with the one-quantum case.

Next we derive the equation for a, (¢). First v.e introduce a notation for the two
parts of the state vector in (4):
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ly@)> = 1Q.,a>IB,x>; (24)

[for economy of notation the site and time-dependence of a,(t), B,(f) and =, (¢) are
left implicit]. The left-hand-side of the Schroedinger equation (20) is

- d . )
‘77'5;‘|\|’(‘)>— {tﬁat IQ,a)}IB,1|:>+ IQ,a>{l7iat IB.D} (25)

Since all the operators defining |Q ,a> commute, it is straightforward to show that

in-agt-lQ,a>=\fa[Zj7id,B,f]IQ—l,a> (26)

The other time derivative appearing in (25) is evaluated in Ref. 6 (the coherent state
lattice part of the wave function is the same in these two calculations).

mg; B> = X [Bap — Fonlhy + -;-«s,.f:. - B,m] B>, @n

Taking the inner product of (26) and (27) with <B,x| and using (19) gives the reduc-
tion to vibron operators of the left-hand-side of the Schroedinger equation.

iR<B,x| "”33{ Iy(e)> (28)

=10 [ﬂﬁa’,ﬂj] IQ-1la>+ 1Q.,a> %z [S,,u,, -, B, ]
n m
Similarly, for the right-hand-side of the Schroedinger squation

<B,xiH, +HP + Hily@)>=H,1Q.a>+ 1Q.,a>W () (29)
+ XX (Bns1 - Ba-1)BB, 1Q a>.

The quantity W (¢) is the phonon er ergy; the evaluation of this quantity given in Ref, 6
also applies here.

Wit)=<prlH, IBr>=3 [Eln—u} + -;—w(B,,H - B,,)z] + ziimoq (30)
n q

We combine (28) and (29) to get the reduction of the time-dependent Schroedinger
equation to vibron operators.

VQ [i8Y4,B,/11Q-1,a>=H,1Q ,a> @31)

+ XE(BM - Bn—l)Bann 'Qva) + {W(‘) - %Z(ﬁnnn - *n Bn)}'Qra>'

Using (4) to write the state 1Q-1,a> and renaming thc¢ summation variable n on the
left-hand-side of (31) as ng, we get

\fﬁ[m?i,s,,f]lg-lm = 7%’1,,, z nna,”---a,,w(md,.g)a,,ﬁ B, 10>, (32)
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The evaluation of the right-hand-side of (31) requires operating with H, and H ;,,, on
the vibron state |Q,a>. Both of these terms require application of two boson opera-
tors, for possibly differeat sites, to |Q,a>. This evaluation is effected by using the
following identity, which can be proved by mathematical induction.

(8,'B, )8, B, 10> (33)
= (8;,,,B//B., ---B,,’; +8,,,B.B,B, ---B,]; 4 4 5,,,03,,7‘ ---B;;_IB,() 10>.

There are Q terms here, each with Q factors. With this formula, the terms involved in
the application of H, can be shown to be

71_‘,84’8: 1Q.a>= ‘43—7, ): nga,,l---a,,aB,,’: B, 10>, (34)

2 [Berul + B},\B, ] 1Q .a> (35
!

r
= _\f% z a,,l"-a,,g_la,‘nﬂ + a,,l"-a,lg_la,,q_l ]Bnrl B"ﬂ 10>.
‘m o ng

The interaction term, clso obtained by using (33), is
2 [Bm - B ]BITBI 1Q.a> (36)
l

—‘Jg——!-n, Z ng [B"O"'1 - B"ﬂ'l]aﬂlmauanﬁ"'B,lL 10>,

We now insert (32), (34) and (36) into (31), equate coefficients of B, Bl 10> in
every term, cancel common factors of g, , and arrive at an equation for a,.

iR, = {Eo + ?12 [W(t) - %E [['5,,,1:,, - f:,,,ﬁ,,,]]}a,, 37)

~J(@py1 + Gny) + A(Ba+1 — Pa-1)ax.

By making use of the equations of motion (23) for x,, and B, and (30) for the pho-
non energy, we can rewrite the quantity in square brackets in (37) as

—é[wm——;)’; (B -ir,.B,.]] (38)

) | i
- A5ine, o 112 fowart- ]
q m

The factor of Q! multiplying the zero-point energy is the only place that the equation
for a, for the multi-quanta Davydov state differs from the corresponding equation for
the single quantum case. It has been pointed out previously®? that some physically
measurable quantities, e.g. optical spectra, are sensitive to this phase of a, (¢). There-
fore it is conceivable that such measurements might distinguish different values of Q.
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We now perform a phase change on the amplitute g,

a,(t) — a,()exp [—% fnr )dt’] . (39)
where (1) is the site-independent terms in (37),
l <1 1 a
Yt)=Ey+ E%;h‘mq + Ex%‘ﬁ,, [Ia_,Hl 12 - la,_, I*] (40)
The equation of motion for the redefined a’s is
iﬁdn = -J(an+l + an—l) + x(BnH - Bn-l)an ’ 41)

whick is the other Davydov equation.

To summarize, the Davydov equations for the multi-quantum state (4) are equa-
tions (24) and (42). The multi-quantum property of the state results in a stronger driv-
ing force on the phonon modes (24) but no modification of the equation for the proba-
bility amplitudes.
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APPENDIX

The evaluation of the permanents appearing in (11) is explained here. The
(Q+1)x(Q +1) permanent appearing first in that equation is

8"'1"1 T 8"‘1"9 ‘SMIP

per | . .. Al)
5"'9": e 8,,9,,0 8,,,9,,
[Bon, 0 Oy 1

The element 1 in the lower right comer is §,,, which appears because two of the

operators in (11) have the subscript p. The Q xQ permanent appearing second in (11)
is the first Q rows and columns of this one.

When (A1) is expanded by the mirors of the bottom row ‘with all positive signs
because it is a permanent), the QxQ minor of the element 1 is cancelled by the

second permanent in (11). Thus the difference of the two permanents in (11) is the
following sum of Q terms.



i\ O p S, Omyn,y Om p
8on, PET . . - + 8,,, per
Fwn Bmgp ﬁmm Bmgns Bmgp
8n, Smings Soup
O DR o
Omgn, * Omyng, Omgp

When we substitute this formula for the difference of the two permanents in (11) and
use the Kronecker delta prefactors to replace the p subscripts in each permanent, all of
these permanents become the same, and it is the same one as in (6), viz.

8’"1"1 T 8"‘1"9
per . : : = per (8,,,',,}) (A3)
Pwm Omgng

Thus

1 » »
N,>= _Q_!- 2 Om, " Gpg Gy ap, Opn, + Opn, + ' + BP"Q ]uer(s,,w). (Ad)
m; Mg
n g
The permanent expands into Q! terms in which every m; is set equal to a different one
of the n;'s. This generates Q factors of |a,, 12 in each of the Q! terms. Then the Q

Kronecker deltas in the square brackets give Q terms in each of which one of the n’s
is set equal to p, and the other Q@ -1 arc summed on, each giving the same result. The
result is

1 2 219!
<NP>=-éTlaP| QQ! ?Ia,l (A5)
We use the normalization condition in (9) and obtain the result (12).
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