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HAMIULTONIAN CHAOS IN A NONLINEAR
POLARIZED OPTICAL BEAM

D. David, D.D. Holm, and M.V. Tratnik
C.N.L.S. and Theoretical Division, MS B258
Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract. This lecture concerns the applications of ideas about temporal com-
plexity in Hamiltonian systems to the dynamics of an optical laser beam with arbitrary
polarization propagating as s traveiling wave in a medium with cubically nonlinear po-
larizability. We use methods from the theory of Hamiltonian systems with aymmetri
to study the geometry of phase space for this optical problem, transforming from C
to S3 x S!, firmt, and then to §? x (J, #), where (J,8) is & symplectic action-angle pair.
The bifurcations of the phase portraits of the Hamiltonian motion on §? are classi-
fied and displayed graphically. These bifurcations take place when either J (the beam
intensity), or the optical parameters of the medium are varied. After this bifurcation
analysis has shown the existence of various saddle connections on S?, the Melnikov
method is used to demonstrate analytically that the travelling-wave dynamics of a
polarized optical laser pulse develops chaotic behavior in the form of Smale horseshoes

when propsgating through spatially periodic perturbations in the optical parameters
of the medium.

1. Introduciion. Hamiltonian dynamics often produces temporal complexity when
regular, integrable motion undergoer small periodic perturbations. The presence of such
complexity in perturbed Ha.niltonian systems was first encountered by Poincaré in his
study of the Newtonian three-body problem. Hamiltonian complexity is also one of the
most important implications of the celebrated Kolmogorov-Arnold-Moser (KAM) theo-
rem.

Complexity arising from periodic perturbations of integrable Hamiltonian systems
usually appeats as horseshoe chaos, and is characterized as the limit set of intersections of
phase space regions resulting from iterating the Smale hor:eshoe map. In two dimensions,
this map first stretches and folds a rectangular region in phase space into a horseshoe shape
of the same area; next the map overlays the horseshoe onto the original rectangle and
then takes the intersection. [terating the map repeats this stretching and folding process
recursively: the two rectangular regions comprising the intersection of the first horseshoe
with the original region iterate under the map to make four regions of intersection, iterate

again to maxe eight, and so forth, In the limit, the horseshoe map iterates to produce



an invariant Cantor-like set, i.e.. a fractal set in phase space, called a Smale horseshoe.
The dynamics of the horseshoe map on its invariant set can be associated to symbolic
shifts. Such shifts produce sensitive dependence on initial conditions, which is a hallmark
of chaos. To see intuitively how this sensitive dependence on initial conditions arises from
the association of the dynamics of the horseshoe map to symbolic shifts, think of each
initial condition as the fractional part of a binary number. An iteration of the horseshoe
map corresponds to taking the fractional part of the binary number obtained from the
initiai one by shifting the "decimal point” one place to the right. Thus, after n iterations
the subsequent motion depends on details of the initial condition from beyond its n-th

significant figure!

For the periodically perturbed Hamiltonian system considered in this lecture, the
Smale horseshoe map is obtained from the Poincaré map, here the time T map of the
perturbed phase space orbit, where T is the period of the perturbation. A method due to
Melnikov {1963] and Arnold [1964], and developed further by Holmes and Marsden [1982]
and Wiggins [1988], is used to establish analytically that iterating the Poincaré map for
the perturbed system produces transverse intersections of stable and unstable manifolds of
perturbed homoclinic points. Each transverse intersection is an unstable homoclinic point
of the perturbed Poincaré map and is an unstable periodic orbit of the perturbed system.
The Poincaré-Birkhoff-Smale homocliric theorem is then invoked to assert the existznce.
near any perturbed transverse homoclinic point, of an inveriant Cantor-like set on which
some power of the Poincaré map for the perturbed system corresponds to a shift on two

symbols, thereby implicating the Smale horseshoe map as the mechanism for chaos.

In using the Melnikov-Arnold method, transverse intersections are shown to exist by
establishing for each homoclinic point of the unperturbed system that the (signed) distance
in first order perturbation theory between its stable and unstable manifo!ds develops sim-
ple zeroes under perturbation. (Under small enough perturbations the original homoclinic
point displaces sl.ghtly, but it continues to exist as a hyperbolic critical point.) Thus,
establishing the zeroes of this signed distance (which is usually called the Melnikov func-
tion) allows one to conclude that the Poincaré map for the perturbed problem contains the
stretching, folding, and intersecting processes necessary to produce horses).or chaos. There
are an infinite number of these zeroes of the Melnikov function for the perturbed Poinearé

map, and each one corresponds to n transverse intersection of the stable and unstable man
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ifolds of the perturbed homoclinic point. In turn, each of these intersections corresponds
to an unstable periodic orbit, around which further transverse intersections can develop
in principle, resulting in exquisitely complex dynamics even for perturbed Hamiltonian

systems in only two dimensions plus time (one and a half degrees of freedom).

For higher degrees of freedom, resonance overlaps and Arncld webs can develop, lead-
ing to even richer complexity in higher dimensions. While horseshoes and their higher-
dimensional counterparts are not strange attractors (since we are dealing only with Hamil-
tonian systems here), they do have quantifiable mixing and transport properties, and they
often behave like strange attractors in numerical simulations (perhaps because of dissipa-
tion and noise due to round-off). The investigation of these features (especially in higher
dimensions) is one of the great challenges of modern science. See Wiggins [1988] for fur-
ther explanations and examples of horseshoe chaos, as well as references and discussions

concerning the original mathematical development of this field.

The complex dynamics we discuss in this lecture uppears in a physical application
concerning the Hamiltonian description of the travelling-wave dynamics of a polarized,
nearly monochromatic, optical laser pulse propagating in a lossless, cubically nonlinear,
parity-invariant, anisotropic, homogeneous medium (for instance, a polarized beam in a
straight optical fiber). Our approach combines methods of reduction of phase space dimen-
sion for Hamiltonian systems possessing continuous symmetry groups together with the
method of Arnold and Melnikov for showing the existence of complex behavior under sinall
perturbations of integrable dynamical systems. This approach provides a unified and geo-
metrical view of the qualitative properties of polarization dynamics (e.g., phase portraits,
bifurcations, and special solutions), while at the same time showing that this physical ap-
plicotion possesses complex dynamics under conservative spatially-periodic perturbations

of the optical parameters of the medium.

Nonlinear polarization dynamics of optical laser pulses has been studied for about
three decades, almost since the invention of the laser. Maker et al.[1064] demonstrated
the precession of the polarization ellipse for a single beam propagating in a nonlinear
medium. Stable solutions for the problem of two counterpropagating beams were examined
in Kaplan [1983] and Lytel [1984]. Studies of polarization bistability in isotropoic media
and computer simulations suggesting chaotic behavior can be found in Otsuka et al [1085]

and Gaeta et al. [1987]. Previous work on special solutions of both the one beam and the
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two—beam problems appear in Tratnik and Sipe [1987]. For additional references and more
detailed treatments of Hamiltonian chaos in nonlinear optical polarization dynamics, see
David, Holm, and Tratnik [1988a, 1988b, 1989] and David [1989).

The plan of the lecture is as follows. In Section 2 we cast polarization dynamics for
travelli.ig-wave optical pulses into Hamiltonian form in terms of two complex electric field
amplitudes, one amplitude for each polarization in the plane transverse to the direction of
propagation. In Section 3 we use the method of reduction for Hamiltonian systems with
symmetry to transform to the Stokes representation of polarization dynamics. Invariance
of the polarization dynamics Hamilionian under simultaneous changes of phase of the two
complex electric field amplitudes leads to conservation of an action variable, J, conjugate
to the phase angle, 8. This action variable is the total light intensity (i.e., the sum of
the squares of the amplitudes of the two linear polarizations). We perform the reduction
process in two steps: from C? to §% x S, first, and then to S? x (J,8). The first reduc-
tion gives a geometric picture of the dynamics as taking place along intersections of level
surfaces of constants of motion in S, while the second reduction gives phase space por-
traits on the spherical surface, S2. In Section 4 we classify the various fixed points of the
reduced dynamics and describe the bifurcations which take place as the material param-
eters and intensity of the light are varied. On $? we find saddle points connected among
themselves by heteroclinic and homoclinic orbits. For the particular case of an optically
active isotropic medium, we present tne complete bifurcation diagram depicting how the
heteroclinic and homoclinic orbits reconnact among themselves 8s the beam iutensity is
varied In Section 5 we use the Melnikov method to demonstrate how these orbits tangle
and break up into stochastic layers characterized by Smale horseshoes under perturbations
of the travelling-wave dynamics caused by matecial inhomogeneities, modelled as spatially
periodic variations of the optical parameters of the medium. The conclusions of this study

are summarized in Section 6.

2. Physical formulation of the problem. Travelling-wave polarization dynamics
i3 expressed in terms of complex electric fleld amplitudes e, (7), appearing in the following

ertkonal expression for the electric field,

E(7)=e,(r)e' 317w 4 o2(yp)etthe-wy) (21)
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where 7 = 2z — ct is the travelling-wave variable and where : = 1,2 s the polarization

index. The third-order nonlinear polarizability is written as

Pz, t) = X*E.""\i;)‘Ej'{"XSzl*EJEkEl (

o
o

where » indicates convolution with respect io time and we sum over repeated indices.
Using the rotating wave approximation in Maxwell's equations and assuming we are far
from resonances leads to the following equations of travelling-wave motion for the slowly

varying amplitudes

.de, .
z# = Yﬁ)eg +3x§i)lmckc¢em. (2.3)

where the constant susceptibility tensors x(}) and x(® satisfy the following involutions:

(1 _ (e (3) _ _(3)e 3 _ @ _
4y = X oo Xkt = Xjtnr Xkt = Xtyhi = Xckje (2.4)

These equations constitute a Hamiltonian system on C? with Hamiltonian function
1) e 3)
H = C;th ex + Qc)c,,xj“megc:,, (2.5)

and Poisson bracket

OF 6G OF G
= — = . == 2.
(F.G} =i (ac; Oe;  Oe, Be;) (2.6)
so thet any dynamical quantity Q evolves according to the prescription
dQ 0=
—&-;—{Q,H}. (2.7)

3. Reduction to S?. In general, Hamiltonian systems endowed with con.inuous
syminetries are reducible in the sense that they may be written in terins of fewer variables
by making use of the conservation laws associated with these symmetries. For the system
(2.3) under consideration here, the Hamiltonian function H in (2.5) is invariant under an
S! action. That is, H remains unchanged under the transformation e — e'’e; so it is

natural to transform vo invariant coordinates, as follows:

u = e'de, upz=r=el e, (3.1



where & = (03,0,,032) are the usual Pauli matrices. In terms of these invariant variables,

also known as the Stokes parameters, the equations of motion become

Z—E:(b+w-u)xu, (3.2)
where
b=a+rc, (3.3a)
a=a;\\,  c=135x (3.3)
W = &,; i heFre = Diag (A1, Az, A3), (3.3¢)

with Hamiltonian function in the new variables

H=b-u+iju W.u, (3.4)
and Poisson bracket OF oC
{F,G} = u--a-‘-; X 5‘; (3.5)

in terms of which equations (3.2) can be reexpressed as

du OH .
4~ (wH) =50 xu 59

The quantities a,, ay, ¢;, c3 are birefringence terms, and a3, c; are optical activity terms; a
and c refer to linear and induced effects, respectively. The components of W are interaction
terms of the following types: W;,, W,3, W3, are linear-linear polarization interaction terms,
W2, W33 are linear—circular polarization interacticn terms, and W3, is 8 circular-circular
polarization interaction term. A few comments are now ip order. First, we observe that the
equations of motion (3.2), or equivalently (3.6), are those for a rigid body with a flywheel
attachment. Similarities with rigid bodies will be clear in the next section when we will
examine the geometry of the phase portrait for the system. Second, it is to be noted that
g, or r, is a constant function; it in fact is & Cassmir function, i.e., it cornmutes with
any function for which the Poisson bracket (3.5) is well defined. The quantity r being a
constant means that it is dynamically irrelevant, since it is fixed once initial conditions
have been specified. When such symmetries occur due to invariance under a continuous
group, it proves natural to transfcrm to more appropriate coordinate functions in ocder to
reparametrize the original system into a lower dimensional one. Here, the transformation

(3.1) to invariant coordinates is the natural choice and the geometry of the reduced mansfold
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is that of the hypersphere S?. In this connection, we mention that (3.1) is a well known

transformation. Indeed, let us express the complex components of the electric field as

e=(e),e2) =(ry +1rp, I3 +1zy). (3.8)

Then (3.1) can be rewritten as

ug =z + 22 + 23 + 1, (3.9a)
uy =2(r,x3 + r22,), (3.9h)
uy = 2(r,24 — 1223), (3.9¢)
ug =z} +23 -z -7l (3.9d)

The u part, i.e., (3.9b-d), is the transformation $* — S? due to Hopf (see, e.g., Crampin
and Pirani [1987]). We must point out that the components u are not all independent;

indeed,

ul +ud +ul=r2 (3.10)

Thus, we really are dealing with a two-dimensional manifold, the sphere $? in view of
(3.10). We will reduce to S? momentarily. The two-dimensional sphere (3.10) is some-
times referred to as the Poincaré sphere (see Figure 3.1). Points on this sphere represent
polarization states: the poles are circularly polarized states, equatorial points correspond
to linearly polarized states, and all other points describe elliptical states. We are choosing

the north and south poles to lie along the 2-axis to conform with optics notation.

Another point deserves attention here. We observe that the Poisson bracket (3.5) and
the dynamical equations (3.6) can also be written as

0K OF 0G
{F'G}=5:'5-JX5-J. (3.11a)
d O0H OK
d_‘:z{u‘up.a.‘.‘.xg‘r, (3.11b)
where
K = jjul’. (3.11¢)

Equation (3.11b) indicates that the motion in the Euclidean three-space takes place along

the intersection of the level surfaces of the functions K, a sphere of radius r. and H.
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Figure 3.1. The Poincaré sphere.

a quadric surface. Fixed points for the system occur when the level surfaces of H and
K are tangent. The Poisson bracket in (3.11a) satisfies the Jacobi identity for every
(differentiable) function K. When restricted to a level surface of K the Poisson bracket
becomes symplectic. Such a restriction is always possible because K is a Casimir function
for the Pcisson bracket (3.11a), i.e., {K, H} = 0 for every choice of H. One also observes
that these spheres form a symplectic foliation of S3; the symplectic leaves are the spheres

of radii r.

In the present case, we restrict to the sphere S? by using the usual transformation to

spherical coordinates:

u=(uy,uz,uy) (rsindsind,rcosd,rsinbcose) (3.12)

In terms of these coordinates, the Hamiltonian function, the Poisson bracket, and the

equations of motion take the following symplectic form:
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H =13r?{(A\;sin® ¢ + Ajcos? ¢) sin? 6 + X, cos? 6] (3.13)

+ rsind (b sin @ + by cos ) + byrcos 8

1 [OF 06G 0G OF
{F.G} = - (8—¢8c059 - 3_d>—5c030) (3.14)
d
Zi—f- =bycosd —bysing + (A; — A3)rsinfcos¢sing , (3.13a)
do

- = by — (b;sind + by cos @) cotd — r (A;sin? ¢ + A3 cos? ¢ — A 2)cosf . (3.15b)

Before studying the qualitative aspects of equations (3.15), let us present some special
cases which reduce to the well known Duffing oscillator. First, consider the case when W
is of the form W = wDiag(1,1,2) with b = (4,,b,,0). Eliminating u, and u; from the

equations of motion for u; yields the following Duffing equation:

d’u;
dr?

= Auy (B - u3) {3.16a)

2 (b3 + b3
A=qor, p=2E_ 20+H) (3.16b)
w W
When B passes through zero, the solutions undergo a pitchfork bifurcation and develop
homoclinic orbits. As a second example, let W be as above and b = (b,,0, b3). Eliminating

as in the previous case again yields a Duffing equation:

ﬁ:a A+BUJ+CU3 f'Du:,, (3170)
A=by(H - twr?), C=-ijwb, (3.178)
B = wH - 4% - b} — b3, D = -t (3.17¢)

Here. the poiarization dynamics reduces to the motion of a particle in a one-dimensional
quartic potential well and has solutions expressible in terms of elliptic functions. Chaotic
response to perturbations of the Duffing oscillator are studied in Greenspan and Holines
[1981] and in Wiggins [1988|



4. Phase portrait analysis. In this section, we will investigate the nature of the
phase portrait for the reduced system (3.15). Specifically, we wish to determine the fixed
points and determine their type; since we are dealing with a Hamiltonian system. the fixed
points can only b- stable centers or unstable saddle points, although some exotic points

may arise as pseudo critical points when degenerate bifurcations take place.

The generic form of (3.15) contains six parameters and prevents any easy analysis; we
will therefore proceed by examining a sequence of increasingly complex subcases. It turns
out that the following list provides an exhaustive division into inequivalent subcases (see
Tratnik and Sipe [1987]):

Case 1. b=(0,0,0), W = diag (A1, A2, Ay)
Case 2. b=(0,0,0), W = diag (A;, Az, A3) ;
Case 3. b=(0,5,,0), W = diag (A, A2. \y) @1
Case 4. b=(0,5,,0), W = diag (A1, A2, A3) ;
Case 5. b =(5,,0,b3), W =diag(A;. A2, A3) ;
Case 6. b = (b1,b2,b3) , W =diag A\, A2,A3) .

Parity-invariant optical media are characterized by b, = 0. For more details concerning
the results presented here, see David, Holm, and Tratnik [1989]; Case 4, including small
dissipation and driving, is exhaustively analyzed in David {1989].

Casesland 2 b = (00,0, W = Diag(A1,Az,A3) . The phase portrait is function of a
single parameter, M = A3/A,. Case 1 is thns obtained as the limit M — 1. Figure 4.1
shows the phase portraits for various values of M. This case is exactly that of the rigid
body, as clearly indicated by the equations of motiown (3.2) when b = 0. In particular, note
that for case i the motion reduces to latitudinal circular orbits, which teils us that the
polarization ellipse just undergoes precession about the circular state. In case 2 the phase
portraits are characterized by four centers and 2 saddle points connecting four heteroclinic
orbits. Exceptions occur when M = 0,1, :00: the heteroclinic orbits then merge pairwise

to form invariant great circles of fixed points.
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rMet1s gM=2 nMe10
Figure 4.1. The phase portrait for cases 1 and 2 similar to that of the rigid body.

CasesJapd4 b =(0,55,0), W= Diag(A\), A2, A3) . These cases are characterized by
two independent parameters, which we write as

(A2 = A\y) - b,
s WA s W w (4.2)

Case 3 is recovered in the limit A — 0o, 3 — 00. In this case, we see that the right -hand
side of (3.138) identically vanishes; we then deduce that poles are stable points and that
there exists a circle of fixed points determined by cos 8 = b,/r(A; — \,) = J/ . The fixed

points of equations (3.15) are quite easily determined and classified by using the energy-
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Casimir stability technique (see Holm et al. [1988]); we list the results in the following

table.

Fixea Point Coordinates Constraint Saddle Center
F o=0 cosf=3/(1-])
/ ) F < (1-2)? A>1 A<l
B o=r cosf=3/(1-2])
L o=mn/2 cosf=-3/A
/ / 3% < A? A<0 A>0
R ¢=-m/2 cosd=-3/A
N coslomir+3 6=0 —— 0<A+0<1]|A+3¢(0.1)
Table. The fixed points of system (3.12) and their types.
A
E—— >

Figure 4.2 The parameter plane for case 4.
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Figure 4.3. Phase portraits for case 4.
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Bifurcations take place when the inequalities in the above table become equalities;
thus, the pairs of fixea points (F,B) and (L,R) appear or vanish as the lines 3 = £ (1 - )
and 3 = £\ are traversed in the parameter plane, respectively (see Figure 4.2). This plane
is divided into nine distinct regions separated by four cntical lines that intersect at four
points. The phase portraits corresponding to points within the various regions are depicted
in Figure 4.3. The A-axis, i.e., 3 = 0, is a special line. Along this line, we recover the
equations of motion for the rigid body since J = 0 essentially yields case 3 as a subcase.
For points on the A-axis, the corresponding phase portraits are also special. For instance,
consider region 5. The phase portrait there consists of saddle points at the poles, each of
which being connected to a pair of homoclinic orbits. When 3 goes to zero these two pairs
of loops merge to form fous heteroclinic orbits. Variations of beam intensity correspond to
moving along vertical lines in the A-J plane. A Hamiltonian pitchfork bifurcation takes
place whenever one of the four critical lines is crossed from one regicn of this plane to

another.

For the remaining two cases in (4.1), our analysis of the phase portraits is still in-
complete in view of the complexity of the stability conditions for the fixed points; the ful
results will be presented elsewhere upon completion. We will nevertheless show typical

pictures exemplifying the phase space configuration for each of these cases.

Caged b = (b,,0,b;), W m Diag(A,A3,A3) . For this caze, there are three independent
bifurcation parameters. The phase portrait consists of at least two and up to six fized
points. The stability criteria for these fixed points are quite complicated expressions and
will not be presented here. This case has a new feature, namely tangent b..urcations, in
which a saddle-center pair combines into a cusp, which then smoothens into a regular orbit
as the bifurcation parameter passes through a critical value, In Figure 4.4, we illustrate a
typical set of phase portraits for this case; we set b, m by ma —i, A} = 1, A3 = (. and we

vary M m Ay, In particular, observe the tangen: bifurcation occuring in Figure 4.4%.

Cose§ b = (b,,b5,by), W = Diag(A;,A;,A3) . Thia is the general case for which there
are four independent bifurcation parameters; the structure of the phase space for the full
system can therefore he quite complex. Here again, there may be up to six fixed points for
the system and the stability conditions are very complicated. Not unexpectedly, thiy ense

Also features inngent bifurcations. Figure 4.5 illustrates phase portraits for thin cane: for
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the pictures therein, we have chosen the same parameter values as for the previous case
and. in addition, J; = -2.

Figure 4.8. Bifurcations for case 6.

s. Homoclinic chaoe. In this section, we will vie the Melnikov technique (see Melnikov
'1963. Guckenheimer and Holmes (1983, and 'Wiggins (1988]) to demonstrate the exis-
tence of chaos for our optical system, when the birefringence properties of the propagation
:nedium are perturbed. The important ingredien! in this method is the Melnskov function,
which is defined as follows for a one-degree—of-freedom system. Let H° be our previ-
ous Hamiltonian function H for the unperturbed system, and let H' be the perturbation
Hamiltonian. Then the Melnikov function is the line integral of the syniplectic Poisson

bracket of H° and H! along an unperturbed homoclinic or heteroclinic orbit and, for our
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system, can be written as

.\/l(ro)=L{HO.H'}[u(r+To),¢(7'+ro)]dr, (5.1)

where u = rcos#. As discussed in the Introduction, the Melnikov function is a signed
measure o° the separation (at linear crder in perturbation theory) between the stable and
unstable manifolds 'V* and W*, respectively, of the perturbed hyperbolic point; for the
unperturbed point these two manifolds coincide, but under various perturbations they
may intersect transversely and break up into stochastic layers. Horseshoe chaos is the
consequence when these manifolc's intersect. In particular, transversal intersection in the
Poincaré map induces stret-hing and folding, as a rectangular region of the phase space is
mapped away from and then back into the vicinity of the hyperbolic fixed point. These
effects are sufficient to cause horseshoe tangles (see Figure 5.1 and Wiggins [1988)).

Figure 5 1. Break up of a homoclinic orbit.

The tangles shown in Fig. 5.1 will develop, provided the Melnikov function possesses

simple zeroes. The application of the Melnikov technique consists of the following basic
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steps. First, one introduces a phase parameter 7o which parametrizes the unperturbed
homoclinic orbit connected to the hyperbolic fixed point. Then, the bracket {H° H!}
is constructed and the Melnikov integral is evaluated as a function of ry. Finally, one
analyzes this function and ascertains whether it has simple zeroes as 7y varies, thereby

implying the existence of transverse intersections and, thus, horseshoe chaos.

We illustrate the Melnikov procedure for Case 4, in the situation when the north pole
is a saddle point connected to a pair of homoclinic loops; we are thus considering regions
2, 5, or 8 in Figure 4.2. In terms of the symplectic variables u = rcosf and ¢, we can

integrate the equations of motion (3.15) along the homoclinic orbit (on the level surface
H® =0) to get

ta.n¢ = tan ¢o/ tmh(CT) ’ C = *“rSin(2¢°) ’

(5.2)
2b, [1 - cos? d)osechz(CT)l
p{cos? ¢, tanh’((r) = A[1 — cos? g,sech?((r)]} -

u=-r —

whers 4 = A3 — A;. Let us then consider a periodic perturbation of b; and A; in the

following form:

Ay = Ay + ¢ cos(vz) by = b2 + ez co8(vz) (5.3)

where ¢, 3 € 1 and v is the spatial modulation frequency. The Hamiitonian function

corresponding to these two periodic perturbative effects is
H' = tu(e u + 2¢3) cos(vz) , (5.4)
from which we calculate the Poisson bracket for the Melnikov integrand,
{H°, H'} = —usin¢cos ¢ (r? — u?) ucos(vz) . (5.5)

The Melnikov integral defined ir. Eq. (3.1) then becomes
M(rg) = p/ sind(r)cos o(7)[r? — u(r)] (e u(r) + €3) cos[v(r — 7g)dr, (5.6)
R

where ry = —ct. In the particular case where A3 = A3, the Melnikov integral may he

evaluated as

Yoy 8 , .
Mir,) = :%-:-/— {r(e,r +ep) + dert fcon? B, + (l//2b'))2] } ssch [vm/ursin(2¢,)]sin(vr,) .
2

(3.7)
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As a function of 7g, this expression has simple zeroes, thereby implying horseshoe chaos. As
we have been discussing earlier, this means that a region near the homoclinic point &t the
north pole, under the iteration of the Poincaré map, is siretched and folded, and mapped
back into itself repeatedly to create a Smale horseshoe. As the horseshoe folds and refolds
under the Poincaré map, the self-intersection of a rectangular region initially nearby the
homoclinic point develops into a Cantor set structure containing countably many periodic
motions, and uncountably many unstable nonperiodic motions. The physical significance
of this dynamics is a deterministic, but essentially unpredictable, wandering of the polar-
ization vector to the left or to the right each time the polarization returns to the vicinity

of the hyperbolic point at the north pole of the Poincaré sphere.

6. Conclusions. We have studied the dynamics of an optical laser pulse propagating
as a travelling wave through a nonlinear polarizable medium. We have seen that che system
is reducible to motion or. the sphere, in virtue of its invariance under simuitaneous phase
changes of the two complex electric field amplitudes. The reduced system turns out to be
equivalent to a rigid body with a flywheel attachment. We have discovered a rich set of
bifurcations in the phase portrait on S* as intensity and material parameters are varied,
as shown in Figures 4.1 to 4.5. Chaotic behavior under certain classes of spatiaily periodic
perturbations of the optical medium has also been demonstrated by using the Melnikov
method. The horseshoe chaos which cccurs corresponds to sensitive dynamics on the
Poincaré sphere in the form of an intermittent switching from one elliptical polarization
state to another one whose semi-major axis is approximatively orthogonal to that of the
first one; the transition between these two states is characterized by a passage nearby
the circular state of polarization, once during each switching. Under spatially periodic
perturbations of b; or W, this switching is very sensitive to initial conditions; the orbits

seem to transit randomly from side to side on the Poincaré sphere.

From considerations of the special case in which the Duffing equations (3.16) and
(3.17) appear, one could have expected homoclinic chaos to develop for the one-bheam
travelling- wave problem of nonlinear optical polarization dynamics. The Duffing oscillator
is well known to behave chaotically under a large range of perturbatioas (see e.g., Wiggir
(1088], chapter 4). A related special case of polarization dynamics was studied numerieally
in Wabnitz [1987]. In conirast to such numerical investigations, our approach is analytical

and explores the bifurcations available to the polarization dynamics of the system under
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the full range of values for the material parameters, demonstrates that the Smale horseshoe
map is the mechanism underlying the chaotic behavior, and characterizes the chaotic set,
or stochastic layer as a homoclinic tangle. The strong dependence of the travelling-wave
optical polarization dynamics upon the intensity of the beam indicates that control and
predictability of optical polarization in nonlinear media may become an important issue for
future research. For instance, the sensitivity on initial conditions discussed earlier may weil
have implications for the control of optical switching in birefringent media. Outlooks for
the work presented here include the addition of dissipation and dispersion; this would imply
that we could no longer restrict to the regime of travelling waves: we then wnuld have to
deal with partial differential equations, i.e., infinite-dimensionil dynamical systems, with
their attendant new concerns - for example, wave effects, modulational instabilities, and
the existence of inertial manifolds. For an introductory example of a partial differential
equation system related to the present work for which dynamical system methods have

recently inade some headway, see Doering et al. [1988)].

References.

V.I. Amold [1964], Instability of dynamical systems with several degrees of freedom, Sov.
Math. Dokl. 156, 9-12.

M. Crampin and F.A.E. Pirani [198/], Applicable Differential Geometiry, London Mathe-
matical Society Lecture Notes Series 59, Cambridge University Press, Cambridge (U.K.).

D. David [1989], Horseshoe chaotic dynamics in a polarized opiical beam subject to periodic
snd dissipative perturbations, Preprint, Los Alamos National Laboratory.

D. David, D.D. Holm, and M.V. Tratnik [1988a], Integrable and chaotic polarization dy-
namics in nonlinear optical beams, Phys. Lett. 137A, 355-364.

D. David, D.D. Holm, and M.V. Tratnik [1988b), Horseshoe chnos in a periodically per-
turbed polarized optical beam, Phys. Lett. 138A, 29-36.

D. David, D.D. Holm, and M.V. Tratnik [1989], Hamiltonian chaos in nonlinear optical

polarization dynamics, Physics Reports (in press).

C.R. Doering, J.D. Gibbon, D.D. Holm, and B. Nicoiaenkn (1988|, Low dimensional be-

haviour in the complex Ginzburg Landau equation, Nonlinearity 1, 279 309.

20



A L. Gaeta, R.W. Boyd, J.R. Ackerhalt, and P.W. Milonni {1987), Instabilities and chaos
in the polarizations of counterpropagating light fields, Phys. Rev. Lett. 38, 2432-2435;
Instabilities in the propagation of arbitrarily polarized counterpropagating waves in a non-
linear Kerr medium, in Optical Bistabslity III, HM. Gibbs, P. Mandell, N. Peyghambarian,
S.D. Smith (eds.), Springer-Verlag, Berlin.

B. Greenspan and P.J. Holmes [1981], Homoclinic orbits, subharmonics, and global bifu:-
cations in forced oscillations, in: Nonlinear Dynamics and Turbulence, G. Baranblatt, G.

lIooss, D.D. Joseph (eds.), Pitman.

J. Guckenheimer and P.J. Holmes [1983], Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Applied Mathematical Sciences, Vol. 43, Springer~Verlag,
New-York.

D.D. Holm, J.E. Marsden, T. Ratiu, and A. Weinstein [1983], Nonlinear stability of fluid
and plasma equilibria, Physics Reports 123, 1-1186.

P.J. Holmes and J.E. Marsden [1982], Horseshoes in perturbations of Hamiltonian systems
with two degrees of freedom, Comm. Math. Phys. 82, 523-544.

A.E. Kaplan [1983], Light-induced nonreprocity, ficld invariants, and nonlinear eigenpo-
larizations, Opt. Lett. 8, 560-562.

R. Lytel [1984], Optical multistability in collinear degenerate four-wave mixing, J. Opt.
Soc. Am. B1, 91-94.

P.D. Maker, R.W. Terhune, and C.M. Savage [1964], Intensity-dependent changes in the
refractive index of liquids, Phys. Rev. Lett. 12, 507-509.

V.K. Melnikov (1963], On the stability of the center for time periodic perturbations, Trans.
Moscow Math. Soc. 12, 1-57.

K. Otsuka, J. Yumoto, and J.J. Song [1985], Optical bistability based on self-induced
polarization -state change in anisotropic Kerr-like media. Opt. Lett. 10, 508-510.

M.V. Tratnik and J.E. Sipe [1987], Nonlinear polarization dynamics. I. The single-pulse
equations, Phys. Rev. A38, 2965-2975; II. Counterpropagating beam equations: new
simple solutions and the possiblity for chaos, Phys. Rev. A38, 2976-2988; IIl. Spatial
polarization chaos in counterpropagating beams, Phys. Rev. A38, 4817 4822.

21



S. Wabnitz [1987], Spatial chaos in the polarization for a birefringent optical fiber with
petiodic coupling, Phys. Rev. Lett. 58, 1415-1418.

S Wiggins [1988], Global Bifurcations and Chaos - Analytical Methods, Applied Mathe-
natical Sciences 73, Springer-Verlag, New York.



