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HAMILTONIAN CHAOS IN A NONLINEAR

POLARIZED OPTICAL BEAM

D, David, D.D. Helm, and ?vf,V. Tratnik

C. X,L.S, and Theoretical Division, MS B258

Los Mamos ?Jational Laboratory

Los .41arnos, ?JM 87545

Abstract. This lecture concerns the applicatior~ of ideaa about temporsl com-
plexity in Hamiltonian systems to the dynamics of ●n optical Iaaer beam with ●rbitrary
polarization propagating u a traveling wave in ● medium with cubically nonlinear p-
Iarizability. We use methods from the theory of Hamiltonian systems with symmet

“1to study the geometry of phase ●prwe for this optical problem, tranaforrning from C

to S3 x S’, first, and then to S2 x (J, 6), where (J, I9) is ● symplectic action-angle pair.

The bifurcations of the phaee portraits of the Hamiltonian motion on S2 ●re cleui-
fied and displayed graphically These bifurcation take place when either J (the beam

intensity), or the optical parameter of the medium ●re varied. After this bifurcation
analysis haa shown th~’ existence of vanoue saddle cormectione on S2, the Melnikov
method is ueed to demonstrate analytically that the travelling-wave dynamics of a

polarized optical Iaeer pulse develop chaotic behavior in the form of Smale homeahoa

when propagating through epstially periodic perturbation in the optical parameter
of the medium. -

1. Int roductiom. Hamiltonism dynamics often produces temporal complexity when

regular, integrable motion undergoes small periodic perturbation. The presence of such

complexity in perturbed Hamiltonian systerna waa flint encountered by Poincare in his

study of the ?Jewtonian three-body problem, Hamiltonian complexity is also one of the

m{)st important implications of the celebrated Kolmogorov-Arnold-Moser ( K.4 hl ) t heo-

rrm.

Complexity arising from periodic perturbation of integrable Hamiltonian systems

lisu;dly nppeats u horseshoe chaos, and is characterized an the limit set of intersections of

~)tmsespnce regiom rcnulting from iterating the Smale her:’eehoe map, ln two (Iirnrnsi(ms,

t his mnp first stretches and folds a rectangular region in phase space into a horseshoe shnpe

of t.h~ same area; next the map overlays the homeshoe onto the original rectangle nlid

tIN*IItwkm the intersection, iterating the map repeats this stretching and folding procrw

rvclmivel y: t hr two rm+tangular regions comprising the intemection of the first horwvhor

w’it,li ttw originnl region it,erhte llndrw tli~ map to retie follr refii<ma of ititersm”tion$ itwnte

nKni[l tI) IIu&r eight, nn(i m forth. In the limit, thr homrnhoe map itrrrttm to ])u),I(l(*o
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an invariant Cantor-like set, i.e.. a fractal set in phase space, calied a Smale horseshoe.

The dynamics of the horseshoe map on its invariant set can be associated to symbolic

shifts. Such shifts produce sensitive dependence on initial conditions, which is a hallmark

of chaos. To see intuitively how this sensitive dependence on initial conditions arks from

the association of the dynamics of the horseshoe map to symbolic shifts, think of each

initial condition as the fractional part of a binary number. An iteration of the horseshoe

map corresponds to taking the fractional part of the binary number obtained from the

initizu one by shifting the “decimal point” one place to the right, Thus, after n iterations

the subsequent motion depends on details of the initial condition from beyond its n-th

significant figure!

For the periodically perturbed Hamiltonian system considered in this lecture, the

Smale horseshoe map is obtained from the Poincanf map, here the time T map of the

perturbed phase space orbit, where T is the period of the perturbation. A method due to

Melnikov [1963] and Arnold [1964], and developed further by Holmes and Mamden [1982]

and W’iggins [1988], is used to establish analytically that iterating the Poincad map for

the perturbed system produces transverse intersections of stable and unstable manifolds of

perturbed homoclin.ic points. Each transveme intersection is an unstable homoclinic point

of t lie pert urbeci Poincare map and is an unstable periodic orbit of the perturbed system.

The Poincar4–Birkhoff- Smale homocliric theorem is then invoked to assert the exist ~nce.

near any perturbed trm-isverse homoclinic point, of an inverumt Cantor-like set on which

some power of the Poincar4 map for the perturbed system corresponds to a shift on two

symbols, thereby implicating the Smale horseshoe map as the mechanism for chaos.

In using the Melnikov-Amold method, transverse intersections are shown to exist by

●stablishing for each homoclinic point of the unperturbed system that the (signed) distmce

in first order perturbation theory between its stable and unstable manifo!ds develops sim-

ple zero- under perturbation, ( Under small enough perturbations the original homoclinic

~millt. displaces sllghtly, but it continues to exist aa a hyperbolic critical poiut, ) 7’hII~,

cstmb]ishing the zeroes of this ~igned (iistancc (which is usually called the \frhlikov fllrlc-

t ion ) allows one to conclude that th~ Poincar4 map for the pert urhrd problem c(mtains t hr

st rrt rhing, f{dding, and intmwrt ing processes nawwwu-y to produce hmd.or rhws. Tllm

tarr M il~finitr n~lmlmr of three zrrfws of the kfrlnikov flmctifm for the ~mt~wlwd PI~inCnr(;

mip, und rach (me c(wresp(md~ to n trmosvmse itltersection of ttw stmhle nnd imstnt)b tI)ntI



ifolds of the perturbed homoclinic point. In turn, each of these intersections corresponds

to an unstable periodic orbit, around which further transverse intemect ions can develop

in principle, resulting in exquisitely complex dynamics even for perturbed Hamiltouian

systems in only two dimensions plus time (one and a half degrees of freedom).

For higher degrees of freedom, resonance overlaps and Arnold webs can develop, lead-

ing to even richer complexity iu higher dimensions. While horseshoes and their higner-

dimensional counterparts are not strange attractom (since we are dealing only with Harnil-

tonian systems here), they do have quantifiable mixing and transport properties, and they

oft en behave like strange at t ractom in numerical simulations (perhaps because of dissipa-

t ion and noise due to round-off). The investigation of these features (especially in higher

dimensions) is one of the great challenges of modem science. See Wiggins [1988] for fur-

t her explanations and examples of horseshoe chaos, as well aa references and discussions

concerning the original mathematical development of this field.

The complex dynamics we discuss in this lecture ~ppears in a physical application

concerning the Hamiltonian description of the travelling-wave dynamics of a polarized,

nearly monochromatic, optical laser pulse propagating in a lossless, cubically nonlinear,

parity-invariant, anisot ropic, homogeneous medium (for instance, a polarized beam in a

straight optical fiber). Our approach combines methods of reduction of phase space dimen-

sion for Harriltonian systems possessing continuous symmetry groups together with the

method of Arnold and Llelnikov for showing the existence of complex behavior under small

pert urbat ions of inte~ able dynamical systems, This approach provides a unified and geo-

met rical view of the qualitative properties of polarization dynamics (e. g., phase portraits,

bifurcations, and special solutions), while at the same time showing that this physical ap-

plication possesses complex dynamics under conservative spatially-periodic perturbations

of the optical parametem of the medium.

been studied for mbout

al, [1964] demmst rntrd

Xonlinear polarization dynamics of optical laser puhms haa

t,hree decades, almoot since the invention of the ltwer, klaker et

the precession of the polarization ellipse for a single beam propagating in a no[dinmr

I;d.ium, Stnhle solutions for the probkm of two counterpropngating bran-is were rxamimvl

it~ Knplnn [1983] ruul Lytel [1984]. St utiien of polariz~tion bistability in isotropic Il;r(lia

J.ntl c(m~~)utrr simulations suggesting rtm)tir l)ehavior (“ml I)e fouml in ot,wlka rt a14[19!37]

N1l(IC~mtn rt ai, 11!)871, Pr~violw work on special solutions of h)th tho (me IWWI) I~II(i t tlc
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t we-beam problems appear in Trat nik and Sipe [1987]. For additional references and more

detailed treatments of Hamiltonian chaos in nonlinear optical polarization dynamics, see

David, Helm, and Tratnik [1988a. 1988b, 1989] and David [1989].

The plan of the lecture is as follows. In Section 2 we cast polarization dynamics for

travelli~lg-wave optical pulses into Hamiltonian form in terms of two complex electric field

amplitudes, one amplitude for each polarization in the plane transverse to the direction of

propagation. In Section 3 we use the method of reduction for Hamiltonian systems with

symmetry to transform to the Stokes representation of polarization dynamics. Invariance

of the polarization dynamics Hamilconian under simult aneoua changes of phase of the two

complex electric field amplitude leach to conservation of an action variable, J, coqiugat e

to the phaae angle, ~. This action variable is the total light intensity (i.e., the sum of

the squares of the amplitudes of the two linear polarizations). We perform the reduction

process in two steps: from C2 to S3 x S 1, first, and then to S2 x (J, 8). The first reduc-

t ion gives a geometric picture of the dynamics au taking place along intersections of level

surfacea of constants of motion in S3, while the second reduction gives phase space por-

traits on the spherical surface, S2. In Section 4 we claasify the various fixed points of the

reduced dynamics and describe the bifurcations which take place aa the material param-

etem and intensity of the light are varied. On S2 we find saddle points connected among

them.selves by heteroclinic and homoclitic orbits. For the particular caae of an optically

act ive isot mpic medium. we present t ne complete bifurcation diagram depicting how the

hetmoclir)ic and homoclinic orbits reconnect among themselves M the beam ktensity is

varied i.n Section 5 we use the Meinikov method to demonstrate how these orbits tangle

and break up into stochastic layem characterized by Srnaie homeshoea under perturbations

of the t ravening-wave dynamics cawed by mntctid inhomogeneitiea, modelled aa spat irdly

p~riodic variation of the optical parametem of the medium. The conclusi(ma of this study

are ~ummarized in Section 6.

2. Physical formulation of the probiam. TraveUing-wave polarization dynamics

l%Pxprmswi in terrna of complex electric field arnplitudea e, ( r), appearing in the foll(~wi~lg

~~ikorlal :’x~)ressiofi for the rlrcttic fie!d,
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where r = z – ci is the travelling-wave variable and where i = 1,2 ;s the polarization

index. The third+rder nm.linear polarizability is written as

“) * El + y::~t* E,EkEtP,(:, t)=y*E, +y,, (79)

where * indicates convolution with respect io time and we sum over repeated indices,

using the rotating wave approximation in Maxwell’s equations and assuming we are far

from resonances leads to the

\a.rying amplitudes

following equations of travelling-wave motion for the slowly

de12 =
dr

t~i)ek+3~~&!fmekete;” (Q.3)

where the constant susceptibility

The= equations constitute a Hamiltonian system on C2 with Harniltonian function

H = I?;~~~)L?&+ ~e;ek,y~~~metez (2.5)

and Poisson bracket

{F, G} = i
dF W 8F dG——. ——
8e; 8e, ~e, ~e: ) (9Jj)

so ~hat any d ynarnical quantity Q evolves according to the prescription

(2,7)

3, Reduction to S2. In general, Hamiltonian systems endowed with continuous

symmetries are reducible in the sense that they may be written in terms of fewer variables

I)y making use of the conservation laws associated with these symmetries, For the system

( 2.3) under ronsiderat ion here, the Hamiltonian function H in (2,3) is invariant under an

S1 action, That is, H remains unchanged under the transformation e H cue; m it is

nntllral to transform LOinvariant c(xmiinatm, as follows:
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where 3 = (as, al, 02 ) are the usual Pauli matrices. In terms of these invariant w.riables,

also known as the Stokes parameters, the equationa of motion become

~=(b+W. u)xu,

where

H= b.u+Ju, W.u,

and Poisson bracket

in terms of which equations (3.2) can be reexpressed as

+={u, H}=gxu,

(3.9)

(3.3aj

(3.3b)

(3.3C)

(3.4)

(3s)

(3.6)

The quantities a 1, a3, c1, C3are birefringence terms, and a2, C2 are optical activity terms; a

and c refer to linear and induced effects, respectively. The components of W are interaction

terms oft he following typea: W] 1, IVls, W3S are linear-linear polarization interact ion t erms,

IV, ~, W23 are linear-circular polarization interaction terms, and WZZ is a circular-circular

polarization interaction term. A few comrnente are now in order. First, we observe that the

equntions of motion (3.2), or equivalently (3,6), are those for a rigid body with a flywheel

attachment. Similarities with rigid bodies will be clear in the next section when wc will

cxarriine the geometry of the phaee portrait for the system, Second, it is to be noted that

110, or r, is a constant function; it in fact is a Casimir function, i.e., it commutes with

any function for which the Poisson bracket (3.5) ie well defined. The quantity r being a

constant means that it is dynamically irrelevant, since it is fixed once initial conditions

t]nve been qpecified. When such symmetries occur due to invariance under a continuotls

grwlp, it proves natural to transfcxrn to more appropriate ccmrdinatc functions in oi”(h’r to

rrpnrnnwtt-ize the original system into a lower dimensional onr, Here, the transf(mnatitm

( 31 ) to invnriant coordinates is the natural choice and the jpnwtry of the rrduced mantfold

6



is that of the hypersphere S 3. In this connection, we mention that (3.1 ) is a well known

transformation. Indeed, let us express the complex components of the electtic field as

e=(el, e2)=(.r~+ iz2, z~+iz4). (3.8)

Then (3.1 ) can be rewritten as

The u part, i.e., (3.9 b-d), is the

U1 = ‘2(Z1Z4 -Z2Z3), (3.9C)

U2 = z: + z: — z; -z:. (3.9ci)

transformation S3 w S2 due to Hopf (see, e.g., Crampin

and Pirani [1987]). We must point out that the components u are not all independent;

indeed,

u~+u~+u~=r2. (3.10)

Thus, we really are dealing with a two-dimensional manifold, the sphere S2 in view of

(3. 10). We will reduce to S2 momentarily. The tw~dimensional sphere (3,10) is some-

times referred to as the Poincard sphere (se Figure 3.1). Points on this sphere represent

polarization states: the poles are circularly polarized states, equatorial points correspond

to linearly polarized states, and all other points describe elliptical states. We are choosing

the north and south poles to lie along the 2-axis to conform with optics notation.

Another point deserves attention here. We obeerve that the Poisson bracket (3,5) and

the dynamical equations (3.6) can also be written aa

(3.lla)

$={ U, H} +X%, (3.llb)

where

h“ = \[u12, (3.11(’)

Equati(m (3.1 lb ) in&rates that the motion in the Euclidean three-space takm ~Jlncr nlotlg

t !Ie illt vrwction of the level s~lrfaces of the functions h’, a sphrrr of radills r. n.11(1H,
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Figure 3.1. The Poincue sphere.

a quadric 9urface. Fixed points for the system occur when the level surfaces of H and

K are tangent. The Poisson bracket in (3.lla) satisfies the Jacobi identity for every

(differentiable) function A“. When restricted to a level surface of K the Poisson bracket

becomes symplect ic, Such a rest nction is always possible because K is a C~imir function

for the Peisson bracket (3.1 la), i.e., {K, H} = O for every choice of H. One also observes

that these spheres form a sympfectic foliation of S3; the symplectic leaves are the spheres

of radii r.

In the present case, w restrict to the sphere S2 by using the usual transformation to

.pherical coordinates:

(3.12)

In terms of t hcse coordinates, the Hamiltonian function, the Poisson bracket, and the

equations of motion take the following symplectic form:

8



.=- ,

H=~r 2 [(A1sin2d+~~cos’0) sin26 + ~, COS28]

+rsin8(b1sin d+63cos@)+b2rcos8,

( ){F, G}=; &-$~Z ,

de
— =6~cos@ –b~sin@ +( A~-A~)rsin6 cosdsind ,
dr

(3.13)

(3.14)

(3.15a)

dd
— =b2 –(blsin4+ bacos@)cot@–
dr

r (Al sin2@+ A3COS241 - A2) COS6 . (3.15b)

Before studying the qualitative aspects of equations (3.15), let us present some special

cases which reduce to the well known Dufing ouciilator. First, consider the case when W

is of the form W = uDiag (l,, 1, 2) with b = (bl, b2,0). Eliminating ul and U2 from the

equations of motion for U3 yields the following DufHng equation:

&’u3

~
= AU3 (B - u:) , \3.16a)

2H 2 (b; + 6;)
A=~w2, B= —–r2- ~2 . (3.16b)

w

lVhen B passes through zero, t be soluticma undergo a pitchfork bifurcation and develop

homoc{inic orbits,

u in the previous

k a second example, let W be as above and b = ( bl, O, b~). Eliminating

case again yields a Duffing equation:

(3.17a)

A = 63 (H - @r2) , C = –4w63, (3.17fl)

B=uH - fw2r2-b~–b~, D= –~QJ2, (3.17C)

Here. the polarization dynamics reduc~ to the motion of a particle in a one-dimensional

quartic poterltial well and has solutions expressible in terms of elliptic functions. Chaotic

response to perturbations of the Duf!ing oscillator are studied in Greenspan and H(dmcs

[1981] and in W’iggins [1988]
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4. Phase portrait analysis. In this section, we will investigate the nature of the

phase portrait for the reduced system (3. 15). Specifically, we wish to determine the f~xed

points and determine their type; since we are dealing with a Hamiltonian system, the fixed

points can only IV stable centers or unstable saddle POinti, ah bough some exotic points

may arise as pseudo critical points when degenerate bifurcations take place.

The generic form of (3.15) contains six parameters and prevents any easy analysis: we

will therefore proceed by examining a sequence of increasingly complex sub cases. It turns

out that the following list provides an exhaustive division into inequivalent s-~bcases (see

Tratnik and Sipe [1!387]):

case1. b=(O, O, O), W=diag(Al, A2, ~l) ;

Case 2. b=(O, O, O), W=diag(A1, A2, A3) ;

Case 3, b=(O, b2 ,0), W=diag(A~,A2.A~) ;

case4. b=(O, b2 ,0), W=diag(A~, A2, A3) ;
(4.1)

Ca9e 5. b=(hl,O, b3), W=diag(A1, .A2,A3) ;

Case 6. b = (bl, b2, bJ) , W =diag ,\~,A~,AJ) .

Parity -inwuirmt optical media are characterized by 62 = O. For more details concerning

the results presented here, see David, Helm, and Tratnik [1989]; Case 4, includlng small

dissipation and driving, is exhaustively analyzed in David [1989].

~ b = (O1~@), w = @J(~I, ~zt ~3) ~ Tne Ph- Portr~t iS function Of a

single parameter, .U = A~/A1. Case 1 is th~lq obtained as the limit .tf 4 1. Figure 4.1

shows the phase portraite for various values of .kl. This case is exactly that of t!ie rigid

body, as clearly indicated by the equations of motim. (3.2) when b = 0. In particular, note

that for case i the motion reduces to latitudinal circular orbits, wtich tells us that the

polarization ellipse just undergti precession about the circular state. In csse 2 the phase

port raits are characterized by four centers and 2 saddle points connecting four heterociin:c

orbits. Exceptions occur when .IJ = O, 1, +ca: the heteroclinic orbits then merge pa.imise

to form in~ariant great circles of fixed points.
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Figure 4.1. The phs portrut for cua 1 d 2 similsr to that of the rigid body,

~ b = (O, ba, O), W = Diag(Jl, J2, ~a) . These caaea are characterized by

Iwo independent parameters, which we write M

(4.2)

Case 3 is recovered in the limit A - m, ~ - m, In this case, we see that the right -hand

<i(!~ (If (3, 15a) identically vanishea; we then deduce that poles are stable points mnd that

ther~ exists a circle

points of ●quation,a

of !bced points detetined by coa8 = b2/r(A2 - Al) = J/A, The tied

(3. 15) are quite eaaily determined and classified by wing the mergy -
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Ctiirnir stability technique (s- HOIIXI et al. [1985]); we list the results in the following

table.

Fixeci Point Coordinate Constraint Saddle Center

F 0=0 cOs(?= J/(1-A)
32<(1-A)~ A>l A<l

B o = r coae=fi/(l -A)
——

L e = r/2 CoSe= -f3/A
I @ < A~ A<o A> (-)

R @s -r/2 c08e = -3/A

Y ccd($9A+D 8=0 O< A+D<l A+ Jg(o,l]

s CW2(9=A-B e-r ,—, O< A-3C1 A- L3@(o,l:

Table. Tha fixed points of oyatom (3, 12) and their typa.

Fi~ur@ 42 The parwrww plum for c- 4.
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Bifurcations take place when the inequalities in the above table become equalities;

thus, the pairs of fixed points (F, B) and (L, R) appear or vanish as the lines d = +(1 – ,4)

and J = +.+ are traversed in the pruuneter plane, respectively (see Figure 4.2). This plane

is divided into nine distinct regions separated by four critical lines that intersect at four

points. The phase portraits corresponding to points within the various regions are depicted

in Figure 4,3. The ~-mlg, i,e,, J = O, is a special line. Along this line, we recover the

equations of motion for the rigid body since ~ = O essentially yields cme 3 as a subcase,

For points on the A-axis, the corresponding phase portraits Me also special, For instance,

consider region 5. The phase portrait there consists of saddle points at the poles, each of

which being connected to a pair of homoclinic orbits. When 8 goeo to zero these two pairs

of 100pa merge to form fou hetarocliraic orbits, Vfimtions of bea.rn intensity correspond to

moving along vertical lines in the A-d plme. A Harniltonian pitchfork bifurcation takes

place whenever one of the four critical lines is crmd from one region of this plane to

another.

For the remtining two cases in (4.1), our analysis of the phaac portraits is still in-

colr]plete in view of the complexity of the stability conditions for the fixed points; the fd.1

resldts will be presented elsewhere upon completion. We will neverthclesa show typicrd

pictures exemplifying the phase space configuration for each of these cases,

- b -( bl!o!h), W = Diag(A1, A2, A$) , For this case, there are three independent

bifurcation pa.rametem. The ph~ portrait consists of at le~t two and up to six firri

])oints. Tl)c stability criteria for these fixed points are quite rwn,plicatml rxprrssions MICJ

will [lot be presented !lere. Thin cane haa a new feature, namely tmger)t b..’urcations, in

wl]ich a saddl~center pair combines into a cusp, which then smootheru into a regul~ orbit

M the bifurcation pnwneter pMM through a critical value, In Figure 4,4, wr ill~l~trntr n

typical set of phase portrtit~ for this case; we wt bl = b$ m –i, Al = 1, Al = (), nrl(] WP

lnry .\/ = Al. In particulu, obswwe the tangent bifurcation occt~ing in Figure +~~,

14
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the pictures therein, we have chosen the same parameter mluea M for the previous case

and, in addition, 33 = -2.

,-. ‘1

!MiY
,- .-:

,2@//‘6’’” ““I
‘.(; , ,,7’”5““:(2:;
/’

,.,., ,~ /’ .“ ““ +; ,
‘d(’/’ , /, :,{/ ,,/

.U. ;#

T\,l// \\’ :),,,, “+,/+’:, “ L

&
,1, , r--- .
!, .,, ‘\.: /-- ‘\

~’, t,,, ‘x. ~,’, I ,

/

DQ ‘jil)“1 \

J/ ‘i l.,,1

,t,f, ;, “
/,’,

I ‘“:,,,
J“~~i

Ir?.1,]

Figure 4.8, Bifumstions for CM 0,

5. Homoclhdc clma. In this section, we will u M the Melnikav technique (oee Melnikov

~1963. Guckenheimer md Holmes [1083], and Wiggins [19881) to demonatra! e rhe exio-

ttmce of chaoa for our opt icml system, when the birefringence propert ie. of the propagation

mdiurn tue ~urbed. The important ingredient in thh method io the Mclnikov ~unctsow

which is defined as Mows for a om+dqr~f-fkdom syatemi Let Ho be our previ”

(NIS Hmiltoniart function H for the unperturbed system, and let H‘ be the pmtlirbntion

Hamiltrmian.

I)rack?t of Ho

Then the Melnikov f~mction is the line ;nt~grd of the synlplcctic Pl)lwm

and H‘ mlong M unpmturhed homoclinic or h~teroclinic mbit rind, for (mr
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system, can be written M

.U(ro)= h Ho,Hl}[u(r +ro), d(r+ro)]dr, (5.1)

where u = r coa 0. .4s discussed in the Introduction, the Yfelnikov function is a signed

memmre Os the separation (at linear order in perturbation theory) between the stable and

unstable manifolds ~VS and W“, respectively, of the perturbed hyperbolic point; for the

unperturbed point these two manifo!ds coincide, but under various perturbations they

may intersect transversely and bred up into stochastic layers. llor~eshoe chaos is the

consequence when these manifol?s intersect. In particular, transverml intersect ion in the

Poincar6 map induces stretching and folding, M a rectangular region of the phase space is

mapped away from and then back into the Vicinity of the hyperbolic fixed point. These

effects are sticient to cauae horseshoe tanglea (see Figure 5.1 and Wiggins [1988]).

Figuro 51, Brd up of ● homoclinic orbit.

The tangles shown in Fig, 5,1 will develop, provided the Mclnikov function powwssm

sltnple zeroes, The application of the .Melnikov technique conaist~ of the following Imslr
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steps. First, one introduces a phase parameter TO which parametrizes the unperturbed

homoclinic orbit connected to the hyperbolic fixed point. Then, the bracket {If”, HI }

is constructed and the Melnikov integral is evaluated as a function of r.. Finally, one

analyzes this function and ascertains whether it has simple zeroes as rO varies, thereby

implying the existence of transverse intersections and, thus, horseshoe chaos.

W’e illustrate the \felnikov proced~we for Case 4, in the situation when the north pole

is a saddle point connected to a pair of homoclinic loops; we are thus considering regions

2. 5, or 8 in Figure 4 ,2, In terms of the symplectic variables u = r cos d and ~, we can

integrate the equations of mo~ion (3.15) along the homoclinic orbit (on the level surface

Ho = O) to get

tan 4 = tan@o/ tanh((~) , ( = *prsin(240) ,

(5.2)

262 [1 - COS2dosechy(r)
u = –r —

p{cod o. Wlhz((r) - A [1 - Cosx ~Osech2(~r)]} “

where p = A3 – Al. Let us then consider a periodic perturbation of 62 and A2 in the

following form:

A\ = AZ+ t] Cos(uz) , bj = bz + C2COS(UZ) , (5.3)

where e 1,2 w 1 and v is the spatial modulation frequency. The Hamii~,onian function

corresponding to these two periodic perturbative effect~ is

H’ = *u(e~u+2e2)cos(vz) , (5.4)

from which we calculate the Poisson bracket for the Melnikov integrand,

(5.5){H” HI} = -psin@coe@(rz -u2) uccm(vz) ,9

The Ylelnikov integral detlned iri Eq. (5.1) then becomee

.1/( r“) = p 1sin4(r)cos4(r)[r2 – Uz(r)] (flu(r) + fz)coe[v(r – ro)]dr, (5.6)
R

where r~ = –ct. In the particular case where AZ = Al, the Melnikov integral mny hi=

(Wdlmted M
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As a function of To, this expression IUMsimple zeroes, thereby implying horseshoe chaos. AS

we have been discussing earlier, this means that a region near the homoclinic point at the

north pole, under the iteration of the Po:ncanf map, is wretched and folded, and mapped

back into itself repeatedly to create a Smale horseshoe. As the horseshoe folds and refolds

under the Poincare map, the self-intersection of a rectangular region initially nearby the

homoclinic point develops into a Cantor set structure containing countabiy mmy periodic

mot ions, and uncountably many unstable nonperiodic motions. The physical significance

of this dynamics is a deterministic, but essentially unpredictable, wandering of t he polar-

ization vector to the left or to the right each time the polarization returnm to the vicinity

of the hyperbolic point at the north pole of the Poincar& sphere.

6. Conclusions. We have studied the dynamics of an optical laser pulse propagating

ao a traveling wave through a nonLnear polarizable medium. We have seen that ~hc system

is reducible to motion or, the sphere, in virtue of its invariance under simultaneous phase

changes of the two complex electric field arnplit udes. The reduced system turns out to be

equivalent to a rigid body with a flywheel attachment. We have discovered a rich set of

bifurcations in the phase portrait on Sx M intensity and material parameters are varied,

as shown in FigUrea 4.1 to 4.5. Chaotic behavior under certain claaeea of spatiady periodic

perturbations of the optical medium haa also been demonstrated by using the Melnikov

met hod. The horseshoe chaos which occurs corresponds to sensitive dynamics on the

Poincar4 sphere in the form of an intermittent switching from one elliptical polarization

state to another one whose semi-major tutis is approximatively orthogonal to t hat of the

first one; the transition between these two states is characterized by a passage nearby

the circular state of polarization, once during each switching, Under spatially periodic

perturbations of 62 or W, this switching iu very twnsitive to initial conditions; the orbits

seem to transit randomly from side to side on the Poincar& sphere.

From considerations of the special case in which the DufHng equations (3. 16) and

(3, 17) a~pear, one could have expected homoclinic chaos to develop for the one-hewn

travening- wave problem of nonlinear optical polarization dynamics. The Duffing mwillntor

is well known to behave chaotically under a large range of perturbat io.m (see, r ,g,, Wiggi! i

[1988], chnpter 4) A related special case of polarization dynamics was studied tltlmmicdly

in \Vabnitz [1987]. In roni,rast to such numerical investigations, our npproach is rumlyticd

nnd expl(mw t l~e bifurcations nvailable to the polarization (Iynarnics of the system tuldrr



the full range of values for the material parameters, demonstrates that the Smale horseshoe

map is the mechanism underlying the chaotic behavior, and characterizes the chaotic set,

or stochastic layer M a homoclinic tangle, The strong dependence of the trmwlling-wave

optical polarization dynamics upon the intensity of the beam indicates that control and

predictabdity of optical polarization in nonlinear media may become an important issue for

future research. For instance, the sensitivity on initial conditions discussed earlier may weil

have implicatkms for the control of optical switching in birefvingent media. Outlooks for

the work presented here include the addition of dissipation and dispersion; this would imply

that we could no longer restrict to the regime of traveling waves: we then would have to

deal with partial differential equations, i.e., inhite-dimensiond dynamical systems, with

their attendant new concerns - for example, wave eflects, modulational instabilities, and

the existence of inertial manifolds. For an introductory example of a pmial differential

equation system related to the present work for which dynamical system methods have

recent ly made some headway, see Doering et al. [1989].
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