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1. Introduction

Baryon and lepton number ( B and L) conservation is a striking general feature of nature.
Whatever the complications of the interaction, whether its rate is characteristic of a strong,
weak, or electromagnetic process, and whatever other quantities are not conserved (isospin,
parity, CP) all experiments to date are consistent with conservation of baryon and lepton
number.

Notwithstanding this complete lack of experimental evidence for nature violating B and
L, their absolute conservation has always been viewed suspiciously by theorists. Before the
advent of the Weinberg-Salam theory unifying the weak and electromagnetic interactions,
there were two basic reasons for this suspicion. First of all, unlike electric charge which we
believe is absolutely conserved, baryon and lepton number are not coupled to a local gauge
field. It is this gauge :nvariart coupling which guarantees electic charge conservation, and
gives rise to a long range interaction (Coulomb’s law), corresponding to a strictly massiess
photon in electromagn.tism. There is no evidence for such a long range interaction between
(electrically neutral) baryons or leptons. Hence, B and L conservation seem rather “acciden-
tal” and not protected by a deeper gauge principle, as electric charge conservation is.

The second reason for scepticism about exact conservation is an obvious observational
fact about the universe. Everywhere you look there are baryons and leptons, but scarcely any
antibaryons or antileptoris: the universe is completely asymmetric in preferring baryons nver
antibaryons and leptons over antileptons. If, as quantum theory tells us, there is complete
symmetry between particles and antiparticles in their fundamental interactions, and B and
L are exactly conserved, we have no way whatsoever of unaerstanding this extraordinary
asymmetry of the universe in the large. It would simply have to be postulated as an initial
condition of the big bang, precluding any dynamical explanation.

In the Weinberg-Salam electroweak theory these misgivings are subtantiated in that
baryon and lepton number are NOT exactly conserved. The nonconservation of B and L can
be traced to the existence of parity violation in the electroweak theory, together with the
chiral current anomaly, which is where we should begin.

For simplicity let us first consider & familiar Abelian gauge field theory. spinor electro-
dvnamics. In addition to the ordinary electromagnetic current y* one may also consider the
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chiral current,

s = vr* sy,
where -ys = +1, depending on whether the fermion spin is aligned parallel or antiparallel to
its momentum. Taking the divergence of j}', and using the Dirac equation, one finds that

Auit = 2mysy, (classically). (1.1)

The fact that the divergence is proportional to the mass of the fermion suggests that in
the limit of zero mass the chiral current would be conserved, and this is certainly the case
classically. However, in the full quantum theory the Dirac field becomes an operator, and
tiie product of two such operators at the same spacetime point is generally singular. Hence,
the right hand side of (1.1) must be examined carefully in the limit m — O to be certain that
there are no singular contributions in this limit. In fact there is a singular contribution to
the operator product {vs¥ coming precisely from one graph in one loop perturbation theory.
This is “he famous triangle graph of Fig. 1, and the contribution to the right side of (1.1)
is such that even in the limit m — 0, a well defined finite term remains. This is the ABJ
triangle, or chiral current anomaly(1}:

2
I __eroBF,, Fap, (1.2)

a8 = 2my
ulg = 2myysy + T

where the singular terms heve now been removed from the operator product ¥vsi.

By now this “anomaly” is well understood theoretically. It has even been verified exper-
imentally in the decay of the #° meson into two photons, in the sense that the large decay
rate observed experimentally requires the finite contrnibution of the triangle diagram of Fig. 1
(where the fermion lines represent the quarks in the piocn), in the chiral limit, m — 0. In the
non-Abelian case there is also a chiral anomaly so that the chiral currents of the Weinberg-
Salam theory have gauge invariant anomalous divergences analogous to (1.2). The reason
that this has anything at all to do with B and L nonconservation is that the gauge fields of
the electroweak theory couple asymmetrically to the fermions of the theory. In particular,
the SU(2) gauge field couples only to left-handed quark and lepton doublets. Writing the
B and L currents as sums of left and right handed components, ard taking accou.it of the
anomalies in the chiral currents leads to the following result for their divergence:

N
1672

bt = 9,08 = P - 931G, Gap + 91 Fuv Fap) (1.3)
where G§, and F,, are the field strength tenscrs for the SU(2) and U(1) hypercharge gauge
fields of the Weinberg-Salam theory, g; and g; are the corresponding gauge coupling constants,
and NV is the number of sequential generations of quarks and leptons.

Since the total baryon or lepton number is the three-aspace integral of the fourth com-
ponent of the respective local current, d* or ¢, we immediately conclude that B and L are
not conserved in the standard electroweak theory, although the quantity B - L. is conservad.
Since we started with the observation that there is no evidence for anv 13 or L violation in
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nature, we must ask how big the violation predicted by eq. (1.3) is, and is it in contradiction
to experiment? This requires a detailed understanding of the anomalous terms appearing on
the right side of eq. (1.3), particularly their relationship to the nontrivial topological vacuum
structure of non-Abelian gauge theories|2]. These lectures are intended to be pedagogical,
so we will consider the anologs of nontrivial vacuum structure in some simpler models, and
return to the actual Weinberg-Salam theory and the anomaly (1.3) only after understanding
these simpler models in some detail.

2. Periodic Vacua in Quantum Mechanics: The Simple Pendulum Model

By far the simplest model of a quantum mechanical system which exhibits a periodic
grourd state (“vacuum”) is the simple pendulum. The Lagrangian is:

L= %mtzé: — mgf(1 ~ cos¥). (2.1)
Defining
= a-
n= 2
ihw
= 27 (2.2
a= 2mg? << 1 )
19
YET
and .

leads to the Hamiltonian,

)
H= —p, + ~~ sin? n. (2.4)
Upon making the canonical replacement,

. d
Pn — —‘hﬂ

we obtain the Schrodinger equation for the simple pendulum:

hw

(~agz + Loin?n) valn) = Entnlr) (25)
2 p n n\" n¥nin). ‘

dn?

Since the potential is periodic in n the exact wave function solutions to (2.5) will be as
well. However, perturbation theory corresponds to expanding about a ssngle minimum of the

potential:
¢

sinn =193 - % + .. (2.6)



Keeping only the first term in this expansion yields an harmonic oscillator potential with
zeroth order Gaussian wavefunctions,

WO ~ Hy(n)e™" /2 (2.7)

praked around one minimum of the potential (at n = 0) and containing no information about
the periodic structure of the potential. This is contained in the higher orders of (2.6) which
have been neglected in this lowesi order result. The Gaussian approximation to the energy
eigenvalues,

E® = hu(n + %) (2.7)

is valid only in the limit that this energy is small compared to the height of the potential
barrier between neighboring minima, s. ¢. if and only if

an << 1. (2.8)

The quantity a has the dual role of controlling the validity of the perturbation expansion
of the potential (2.6) about the Gaussian wavefunctions (2.7), and of giving the ratio between
the quantum zero point energy to the height of the classica! barrier between neighboring
minima of the potential. Even for very small (but finite) a the perturbative expansion
eventually breaks down for harmonic oscillator occupation numbers n ~ -‘} The analog of
this statement will be very important in the non-Abelian gauge theory.

In order to recover information about the periodic structure of the pendulum potential,
we need either to consider very high orders of perturation theory (again of order é), or treat
the system in a different approximation scheme: the semiclassical limit. This corresponds to
the WKB approximation to the Schrodinger equation (2.5), so that tunnelling between the
minima of the potential can occur, and the periodic nature of the poteatial may be taken
into account. The first step in this approach is io look for nontrivial solutions of the classical
equations of mntion in fmaginary time,

t = —sr. (2.9)

The constant of the motion corresponding to the energy in imaginary time is:

A (dn\? Aw |, ,
= | == _— ) 2.10
‘ 2aw (dr) 2a snen ( )

This is equivalent to changing the sign of the potential term in the equatiois of motion.

At zero temperalure the pendulum is in its ground state, so we look for a solution with
¢ = 0 that interpolaies between neighboring minima of the periodic potential (maxima of the
inverted potential):

n -0 as 1 -+ —00;
' (2.11)
n—" as T -+ +00.



Such a solution (the “instanton”) is easily found by integrating (2.10) with € = 0:
3in 7(r) = sech(w(r — rq)]. (2.12)

The classical Euclidean action for this solution S is given by:

S 1 [t 2 g 2
2 2a) . o (——) + wsin n]dr— = (2.13)

The action for the excursion from n = 0 to n = 7 plus that of the return trip (the “bounce”)

is twice this or %

According to the usual semiclassical analysis of the Feynmnan path integral, the tunneiling
rate from one minimum to the neighboring one is proprortional to the fundamental frequency
of oscillation, w and the exponential of the negative of this bounce action,

T ~we ¥ =w ? << (2.14)

For a macroscopic pendulum, a ~ 10~34, this is an incredibly small tunnelling rate. Even
when a becomes of order 103, corresponding to the fine structure constant which enters
the Weinberg-Salam model, the rate is still negligioly small. We concluce that perturbation
theory, which neglects the periodic features of the potential is an excellent approximation
for a weakly coupled theory at zero temperature, when the system is in its ground staite.
Furthermcre as long as the thermal energy, kT is small compared to the excitation energy of
the quanta of the system, Aw, so that the higher excited states of the oscillator are hardly
excited it is clear that the above picture remains valid. However, it is equally clear that
when the temperature becomes large enough so that the pendulum has enough thermal
energy to completely surmount the potential barrier at n = I, it need not wait for the very
rare quantum tunnelling event with the rate we have just estimated. Instead, the purely
classscally allowed process of jumping over the barrier will have a vastly larger, unsuppressed
rate. This is what we wish to estimate next.



3. Tunnelling at Finite Temperature and Classical Thermal Activation

The finite temperature transition rate may be calclated by an extension of the semi-
classical method used to arrive at (2.14). We simply look for Euclidean solutions not with
¢ = 0 or the boundary conditions (2.11), but with finite Euclidean periodicity, 3 = Fh'T’

n(r) = n(r + B). (3.1)

For the simple pendulum problem, such solutions (“finite temperature instantons,” or
“calorons”) may be found explicitly in terms of elliptic functions. However, all the information
we shall need is contained in the Euclidean action, given by the same integrand as (2.13)
above, but taken over the fundamental period of the solution, 7 = 0 to r = 3. Substituting
the definition of ¢, eq. (2.10), and rewriting the integral over r as an integral over n gives:

fﬂ h NMmas
S N _-i- + Z(:; Nmin dn(

2aew

h

+ w? sin? n) d (3.2)
Differentiating this expression with respect to 3 yields:
—_— T ——— > 0’ (3.3)

since ¢ < 0. Thus, viewed as a function of temperature, S is a decreasing function as the
temnperature is raised. This means that the exponential, e~ % and the rate I are an increasing
functions of temperature: the thermal population of the higher excited modes of the oscillator
at 7 = O makes it easier and easier to get over the barrier to the vicinity of the neighboring
ground state (“vacuum”).

As the temperature is increased, (3 decreased) the turning points of the classical motion
in (3.2), Nmin 8nd Nmqr approach each other at the midpoint n = %. The turning points
coincide when G = "L—', the period of the harmonic oscillator motion in the inverted potential
at n = §. At this value of 3, the second term in (3.2) vanishes and —-3,‘5— becomes equal to

ef3 w ™
5= af=z (3.4)
Thus, the transition rate estimate of (2.14) becomes
[ ~ we—ai' = —k—T;c—% = ﬂc— mea/kT (35)

2nh 2rh

at this temperature.

Although the exponent in I has only changed from —% at zero temperature to — = at
T = ,5;“’;, the significance of the finite temperature instanton having collapsed to a single
point, i = 3 is that at this temperature (still much lower than the barrier height) the
pendulum does not need to quantum meclanically tunnel to the neighboring minimum of the
potential. Rather it may jump over the barrier by (classically) receiving a large enough kick
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from the bath of thermal fluctuations into which it is immersed. At ali higher temperatures
this classical activation transition dominates over quantum tunnelling. In the last form of
(3.5) it is easy to see what happens as the temperature is raised still further: the Boltzmann
suppression factor, e~Vmas/*¥T gimply grows larger and larger until it eventually becomes of
order unity, at kT ~ V... Then there iz no suppression whatsover, as the pendulum now
has so much thermal energy on average that it swings freely over the potential barrier. Thus
Vimaz 18 a critical energy scale which may be identified with the energy of the degenerate
static bounce solution of the classical equations, namely the trivial solution 7 = Z. This
unstable, finite energy static solution is called a “sphaleron” for the simple pendulum model.

Before leaving this instructional example of the simple pendulum for more realistic field
theories, consider the quantity

1 dn 1
= - —_— i = - i (
Q 2/dr (dr)smr/ 2/dnsmn, (3.6)

called the winding number. If the limits on the latter integral are 0 to v, @ = 1, corresponding
to the pendulum winding once about its pivot and returning to its ground state configuration.
By considering the manifestly non-negative Euclidean integrals,

8
/ dr[gl:twsinn]z?_o
0 df

it easy to prove that

25 _ 4]Q|
DR (8.7)
where the limits on the integral for Q are nm;n and Nma:. If we somehow blundered into
forgetting these limits, and continued to regard Q as an integer winding nurnber, we would
quickly conclude that the Euclidean action is bounded from below by the zero temperature
instanton action, and that the transition rate is always bounded from above by (2.14), even
at finite temperature. Of course, this conclusion would be completely incorrect, as physical
intuition and the finite temperature semiclassical methods sketched above make quite clear.
The point is that even though Q = 1 for a classical transition over the barrier to the
neighboring minimium, most or all of this transition may be accomplished in real time without
any quantum merchanical tunnelling. Thus, the bound on the imaginary time Euclidean
action, (3.7) plays no role whatsover in the correct estimate of the classical transition rate, or
equivalently, the Euclidean Q appearing in (3.7) may be arbitrarly small or zero, for a finite
temperature transition, and the bound loses its force.



4. Calculation of the Rate: General Theory

Having reviewed tunnelling at zero and finite temperature in a simple quantum mechan-
ical model with only one degree of freedom, we turn now to the general path integral method
of analyzing the decay rate of an unstable phase at finite temperature in field theory, once
the static sphaleron solution has been found[3]. The power of this method is that it does not
d=pend on the details of the potential, as we shall see shortly.

To illustrate the general method consider a single scalar field in d + 1 dimensions with

action
5[0 < /Oﬁdr/d"z[-;-(g—f-)z+ L(ve)* 4 u(e)] (4.1)

We set & = 1 for notational simplicity where it causes no confusion to do so. Let & = ¢(z)
be a static (sphaleron) solution of the equation,

ou
___V2 —_— =0 .
¢+a¢ (4.2)
and expand S to second order in & — ¢. The Gaussian fluctuation operator is
33 3%y
§=-2=-ViI+V(z), V()= = . (4.3)
3T2 aéz O=¢(z)

The eigenfunctions of this operator have the general form, e?***"/y, (z) and

Hip = [ = V2 + V(2)]4,(z) = 2y(z). (4.4)
The corresponding eigenvalues are:
2
(_;2)2 +é3. (4.5)

Now the path integral expression for the partition function is:
Z =TT = /[Dé]e‘s["] (4.6)

If #(z) is an isolated stationary point (except for zero modes which we discuss below) then
we may approximate Z by
Z =20+ 2, (4.7)

where Zj is the contribution to Z from the (perturbative) vacuum solution & = ¢¢. In the
Gaussian (semiclasasical) limit
2, = c"ﬁE["'det"*g

S (4.8)
where formally
1
Fy = E(¢| + ﬁ'l‘r(log §). (4.9)
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The trace in (4.9) is over all eigenvalues labelled in (4.5) by n and p. For fixed ¢, the
contribution of the mode ', to (4.9) is just that of a simple harmonic oscillator with frequency
€p (provided €2 > 0). This contribution to the second half of eq.(4.9) is:

—llog [Ze—(“‘l/z)ﬁcp] = %log [ZSinh(ﬂip)] - %

og (1 — e Per) (4.10)
'3 =0 2

Ql'-‘

The first term is the zero point energy ¢f the oscillator while the second is the finite temper-
ature contribution to the free energy coming from the mode p.

If d = 0, everything reduces to quantum mechanics and may be applied directly to
the pendulum example of the preceeding two sections. The static “sphaleron” is simply the
classical solution, n = 7. The operator in (4.4) collapses to simple multiplication by the
second derivative of the pendulum potential at this value of n, so that there is only one value
of the index p. The corresponding value of ¢? is negative, corresponding to the instability of
the sphaleron solution atop the potential barrier. Eq. (4.10) continues to hold via an analytic
continuation to imaginary ¢, as described below, and gives rise to an imaginary part to the
free energy which may be interpretec as the rate of classical activation over the potential
barrier.

Consider now the case d = 1. If the classical solution is well localized and approaches
the vacuum solution, ¢, fast enough as |z| — oo, H will have a continvous spectrum and the
corresponding scattering solutions ¢ will have the asymptotic forms (for d = 1)

Ve(p) (2) = A (p)e'?* + B (p)e~i¥= (4.11)

23 z — +oo. In fact we shall be interesied specifically in the case that the coefficients B(*)
vanish identically. In one dimension this occurs only for sorne very special potentials. Ifd > 1
and ¢(z) is spherically symmetric, we need to reforinulate the scattering problem in terms of
radially outgoing partial waves for unit flux incident from the left. For such scattering wave
solutions the coefficients analogous to B(¥) always vanish. For simplicity we concentrate on
the d = 1 case for details of the computation, though with the above remarks, everything in
the remainder of this section may be extended to any d.

All important information: about the scattering solutions resides in the phase shift 6(p),
defined by the transmission coefficient corresponding to unit flux incident from the left in the
Schrodinger eq. {4.4)

A(+)(p)
6(p) = arg [F:-)—(;-)-] (412)
By differentiating (4.4) with respect to ¢ it is not difficult to show that
rejH) = [ e [ 1O bunain(2)
(4.13)
_ [T dp 1 2 dVe(p) 0 oo
- [ R W v,



where W(u,v]% is the Wronskian of the functions u,v evaluated between @ and b. As c —
~00,b — +00, (4.4) and (4.11) - (4.13) with B() = 0 give:

resE) = 6-a) [ s+ [ 2 L (4.14)

—oo 2T —oo 2 dp

for any function f(e?). In deriving eq. (4.14) we have used the fact that de? = dp?, which
holds provided ¢(z) — ¢, fast enough as |z| — oo.
We now apply (4.14) to (4.10), i.e. we take

2y ¢, 1

and subtract the same quantity for the vacuum case, ® = ¢o . Then the linear volume
divergence in (4.14) cancels and we obtain

log(1 ~ e #) (4.15)

1

Telf(H) - f(H) = 1 [ dof(@e) T2

” (4.16)

This will give the contribution to (4.8) of the positive eigenvalues of H. It is clear that formula
(4.8) breaks down if § has zero or negative eigenvalues. This can only be the case if H does.
The zero eigenmodes of H are easy to treat, since they are just hariaonic oscillator modes
with zero oscillator frequency, i.e. free modes. The contribution to Z;, of each free mode is

thus just the factor
dep —p"/sz 1 kT/
—_— = —V — | d 4.17
T hY 27 7 ( )

where ¢ is the coordinate in this direction and p the corresponding canonical mcmentum (we
take the mass to be unity). That is, the projection of the general linear fluctuation 6% onto
its zero mode subspace is given by:

(62), = (¢ — ¢), = g¥o(2)q(t) (4.18)

and a factor of the coupling constant ¢ ~ A has been exhibited explicitly. If (6®)o can be
related to some symmetry of the action S, not shared by the solution ¢(z), then
a¢
(E®)o =: 5‘;&; (4.19)

where a is the parameter that breaks the symmetry (such as translational invariance). If
¥o(z) is normalized by

/d“zwo(z)i’ =1. (4.20)
we make use of eqs. (4.18) - (4.20) to secure:
. Aaf [ 40621/ \
/dq-Aq——g—[/d Ilé‘;l] (1.21)
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Hence, the zero mode factor (4.17) is

Aa kT a¢ *11/2
BarkT [ 4106 o)
gh [21r tl da (4:22)
If in addition H has a negative eigenvalue e.2 = —je_?| < O then G does as well. If
e~
k —_— :
T> = (4.23)

G has only one negative eigenvalue. Then we may interpret the negative mode as giving rise
to an imaginary part in Z, according to the prescription,

-

1 1 i

—-—— (4.24)

2 sinh (———Zf; ) 2 21sin (ﬂ;;‘-)

The additional factor of 1/2 in (4.24) arises from the distortion of the non-Gaussian contour

over half of its range[3]. This means the free energy 7 defined by (4.6) picks up an imaginary
part from the unstable stationary point ® = ¢(z):

1 11
I = - - 2 = .
m¥F ﬂIm log 37 ImZ, (4.25)

Reassembling the various contributions (4.16), (4.22) and (4.24), we find

ImF = $ e NV AR (4.26)

B sin (25)
where
F\ — Fo = E|¢| — E[¢o| + Tr|f(H) - f(Ho)] (4.27)

and NV is the product of the normalized volume factors (4.22) fur each zero mode.
According to Langer(3|. the imaginary part of the free energy function ¥ is to be inter-
preted as giving rise to a decay rate of the perturbative vacuum ¢ accoruing to

Im¥ (4.28)

whuere < is a damping constant, namely, the real time rate of decay of the configuration
® — #(z) in the heat bath. All the dynamics of the heat bath are buried in this one quantity.
For a weekly coupled theory the interaction with the heat bath does no' affect the decav of
the configuration ¢(z),which is determined purely by its negative eigenvalue, ¢2 . That is, if
¢? €« 1 we are always in the underdamped limit and

x| = e . (4.29)
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Hence,

1 e ] NV e—B(Fi=Fo) (4.30)

To= —
47r5in(£l£2:l)

In the high temperature limit, 3 — 0, this becomes

kT
iy ¢~ B(Fi=Fo) (4.31)

For the simple pendulum there are no factors NV since there are no zero modes as 3 — 0,
and we find that the previous estimate for the rate, (3.5) is in fact exact.

To recapitulate, the weak coupling limit ensures the validity of the Gaussian approxi-
mation used in deriving this formula and also leads to the weak darmnping limit (4.29). Other
than g2 < 1 the only additional assumption made in deriving (4.30) is that the stationary
point & = ¢(z) is isolated, except for zero rodes related to symmetries in the theory. If the
solution is not isolated in this sense, there wiil be additional “accidental” zero modes of §
which will cause (4.30) to break down. Thir is just what happens as kT — %‘;}-, for instance.
For temperatures not satisfying (4.23) the static sclution ® = ¢(z) does not contribute to
ImF or the decay rate 'y, which are dominated by non-static, instanton-like configurations.
[t is in this way that the high temperature analysis matches onto the low temperature in-
stanton analysis, just as in the simple pendulum model considered previously. A quaniitative
method of implementing this matching has been desribed by Affleck|4].

I elected to present this path integral derivation of the rate because of its compactness.
However, there is no need to resort to path integrals or the analytic continuation in the
nega‘ive mode direction implied in (4.24). Eq. (4.30) could have been derived, as in Langer's
original paper, by consideration of the probability flow in one direction over the saddle point
@ = ¢(z) . The main point is chat (4.30) is a formula based solely on classical statistical
mechanics and correcily accounta for entropy effects through the free energy function ¥, — F,.
[f there were something pathological about the sphaleron, such as a large entropy suppression
it would have to show up in the expression (4.27). I turn now to an explicit evaluation of
(4.26) and (4.27) for the sphaleron solution of an instructive field theoretic tnodel in 1 + 1
dimensions.
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5. An O(3) Non-Linear Sigma Model

In the pendulum example it is very clear that the instanton suppression does not persist
at sufficiently high temperatures, because thermal activation comes to dominate over quantum
tunnelling. However, the pendulum differs from the Weinberg-Saiam theory in at least one
important respect, namely it is a model with oniy one degree of freedom. In such a model
it is evident that heating the system must imply greater kinetic energy available to leap the
potential barrier: there is nowhere else for the energy to go. In a field theory there are
infinitely many degrees of freedom and the class of configurations that interpolate between
vacuum siates of different winding number may be very special and very few. Heating this
system also increases the available energy, but it is by no means clear that the incoherent
thermal energy can organize itself into the special configuration(s) necessary to leap the
barrier. In other words, a significant entropy suppression is possible. We need to consider
the free energy, not just the classical energy of the sphaleron. In addition, a one dimensional
model like the simple pendulum cannot couple to fermions, so there is no analog of the chiral
current anomaly which is central to the issue of B and L violation.

In the following, I shall present a field theoretic model of tunnelling at finite temperacure:
the O(3) nonlinear sigma model in 1+1 dimensions(5!. The completely symmetric model has
been studied before for its remarkable similarities to non-Abelian gauge theories. We shall
need to modify tu> symmetric model by introducing a term in the action that breaks the
O(3) symmetry down to O(2), in order that a sphaleron solution exist.

Although this is an explicitly broken global symmetry, unlike the spontaneously broken
local symmetry of the Weinberg-Salam theory, it shares many properti»s with the latter. Its
main virtue is the fact that we will be able to attain closed form results for fermion number
violating processes, and visualize what is going on in a geometrical fashic.. that builds upon
the intuitions garnered from the pendulum model.

In 1+1 dimensions, the action of the O(3) non-linear sigma model is:

)i Al(z) =1 (5.1)

- $]

1 .
So = Eg—,/d’z(a,,n-a,,

This model possesses some remarkable similarities with non-Abelian gauge theorir< in 341
dimensions, and for that reason has been much studied(6]. The most important features
which concern us here are the following:
(i) Scaie Invariance of the Classical Action:
(i) Renormalizability and Asymptotic Freedom in the ccupling constant g;
(iii) Existence uf a Toplogical Winding Number, Instantons and a Chiral Anomaly when
coupled to Fermions.

The first property is obvious and the second well known [7|. The winding number will
be evident if we identify the points at infinity of the Euclidean plane. Then the plane has
tonolog: S?. Since f is also constrained to lie on 53, the A field is a map from S? tc 52
This mapping can be characterized by an integer winding number, given explicitly by:

R )
ho
-—

1
Q= 8r /dzz'uuﬁ {Auft x Buh). (5.
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By forming the quantity,
/d’:: (0,7 £ €4 (R x 3u7)) >0 (5.3)

it is easy to see that the Euclidean action for any i obeying the boundary condstion at infinity
is bounded from below:

&z%%m. (5.4)

The bound is saturated by the instanton solutions which can be given explicitly in terms
of the complex function
_m+ iny

(5.5)
1-n;3 '

of the complex variable 2z = z; + 1z2. In terms of w, So and Q become proportional to

1 [fwd0, dwo
[ (=5 5 56

respectively. Thus the beund (5.4) is saturated when one of the terms in brackets vanishes
and {anti)instanton solutions are simply meromorphic functions of the complex variable z(2).
In particular,

has Q = n and Sp = 47n/g%.
Yet another formulation of the model is obtained by defining a two component field
X = (;;) such that

A= x'dx (5.8)

where G are the Pauli matrices. The condition A% = 1 now becomes
x'x =1 (5.9).
In terms of x,
2 .
S0 = 9-’/“’3[(3»X')(3ux) - (x'9ux) (Bux'x)] (5.10)

Fvidently there is now a U(1) gauge invariance in this formulation since S, is invariant under
x €2y, This may be made explicit by introducing a sutaidiary gauge field

Uy _
AM(I) - .I;-(X'dux ” duXtX) (h.11)
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and defining the covariant derivative,

D, =9, -1A, (5.12)
so that
So = %/d’:;p,.xv (5.13)
In this language,
@=L [@xevr = & [ @, 0ea) (5.14)
4r 2r

Massiess fermions may now be added to the system and coupled in the usual way to the U(1)
gauge field:

Sferrm‘on = f/d’x'fm“Dp#" (5-15)

Such fermions are well known [8] to possess an anomaly in the chiral current

i*% = 4%y, (5.16)
namely
. 1
A% = =€ Fuv (5.17)

The Feynman graph contributing to the anomaly is illustrated in Fig. 2. By integrating this
equation over two dimensional space, we obtain the index theorem,

AJ/ dz;%% = ANy = 2Q = 2A.cs (5.18)

where
1
Ncs = a/dIAl (5.19)

is the Chern-Simons number corresponding to the Q of eq. (5.14). Thus, (5.15) relates the
change of chi-al fermion number to the topological charge, or change of winding number,
Ny in going from one vacuum conflguration to another. Because of the bound (5.4) on the
classical action, and the interpretation of the Euclidean instanton as a tunnelling event (by
continuation to imaginary ime), such topology changing events and concommitant fermion
number violation are strongly suppressed at zero temperature: the rate is proportional to
exp( Qﬁ—“) « 1. In order to understand what happens in the model at high temperature,
we should look for the anolog of the static solution with finite energy analogous ton 7 of
the pendulum model. However, one can easily see that a scale invariant action such as (5.1)
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cannot have finite energy solutions. Hence we shall consider a modified action by adding to
(5.1) the simple symmetry breaking term, inspired by the pendulum model:
2
S, = ) dz (1 + f3) (5.20)

The classical energy functional of the model now reads:

1 1 /da)’ )
E = b—z—/d.‘t [-2- kz;l) +w2(1 +n3)] . (5.21)

Now, we shall argue that an unstable static solution to the equations of motion must exist
with finite energy (5.21). First let us parameterize the sphere in the following way:

n = (sinnsin €, sinn cosn(cos & — 1), —sin*ncos & — cos? n). (5.22)

This parametrization has the following properties:
(i) it satisfies the constraint i? = 1 and is continuous in its arguments;
(ii) for fixed n , £ is the azimuthal angle of a circle, S'!;
(iii) for all n, A(£=0) = A(£=27) = (0,0, —-1);
(iv) for all £, A(n=0) = A(n=n) = (0,0, -1);
(v) each point on S? occurs ior at least one (7, &) and if # is not the point (0,0, - 1) tken
n(#) is unique;
(vi) as n ranges from O to 7 ard £ from O to 27 the map (5.3) has Q = 1.

The angles n and £ are easily visualized geometrically by the diagram in Figure 3: for
given n between 0 and 7, 7 lies on the circle S! which is the intersection of the unit two
sphere with the plane,

I28innN + I3C081N = — CO8N

We are intcrested in noncontractible loops in configuration space which begin and end
at the vacuum. Because of the symmetry breaking term S, this is the point iy = (0,0, -1).
We may now consider static configurations, A(z) at fixed n, with £(z) ranging from 0 to 2r
as r ranges from —oo to +0o. Because of (iii) this satisfies the boundary condition for finite
energy. Because of (iv) this set of configurations reduces identically to the vacuum at n = 0
and n = 7. Because of (vi) this one parameter (i.e. n) family of locps which hegins and
ends at the vacuum is noacontractible: that is, the whole sequence cannot be simultaneously
continuously deformed tv the vacuum. The energy functional (5.21) for fixed n and £ — &(r)

182
i 2" 1 d 2

Consider now the extremizing of this functional. As a function of the parameter n, F
clearly rttains its maximum at n - 7/2. This is physically obvious [rom the fact that the
energy may be viewed as that of a physical pendulum in a uniformm gravitational field: for
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given £(z) the maximal energy is achieved by the furthest excursion from the pendulum's
point of rest at iy = (0,0, —1). With n fixed at this maximal value of 7/2, now consider
minimizing the positive definite energy functional with respect to £(z). The resulting Euler-
Lagrange equation for ¢ is precisely that of a simple pendulum in Euclidean “time” z. Since
€ varies from O to 27 as z varies from —oo to oo, the solution of this equation is none other
than the instanton solution of the pendulum problem:

sin(i‘—p-h—(i)) = sech|w(z — zo)]. (5.24)

The energy of the sphaleron solution for the sigina model is

E,pn = 8uw/g’. (5.25)

6. The Transition Rate in the O(3) Model

Having found the sphaleron solution of the model lets proceed now with the calculation of the
one loop corrections to it by an analysis of the small fluctuations about the classical solution.
If there is a suppression due to phase space or entropy effects, it should show up in the free
energy function given by the finite temperature loop expansion. We begin by parameterizing
the fluctuaticns in a convenient way. Let

s 1 .
il wrrn (sin(Eapn + v),u, — co8(€spn + v)) . (6.1)

Substituting this form for A into the action functional and expanding to quadratic order
in {u,v) gives the desired small fluctuation operntors. The eigenvalues are determined by
solving:

2
Hyu = [—%; +wi(l - Gsechzwz)] u=eu
- 2 2 — .3
Hyv = [—d—;; + w*(1 - 2sech wz)] v=cv,

It is a special feature of the present model that these equations are just Schrodinger's
equations in the Rosen-Morse potentials, Uosech’wz, whose eigenfunctions are known explic-
itly. Each of the two scattering potentials in (6.2) satisfies all the conditions postulated in
the general discussion of section 4. It is amusing to note as well that the two potentials are
supersymmetric partners so that their spectra are closely related.

The first operator, H, describes fluctuations in A, perpendicular to the sphaleron. This
operator has exactly one negative eigenvalue, namely ¢ = —3w?, associated with the fact
that sliding the sphaleron loop on the sphere in the n or u direction must decrease the energy,.
This we knew already. There is one zero eigenvalue associated with the ability to rotate the
sphaleron solution about the Ry axis without changing its energy. The angl: that fi,, s makes
with the z, axis is the corresponding parameter a in (4.19) for this zero mode. All the

remaining eigenvalues are in the continuum above w?.
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The second operator, H; describes fluctuations in n along the direction of the sphaleron
(i.e. n remains fixed at x/2). Its lowest eigenvalue is zero with the corresponding mode
associated with translation of the sphaleron position. All other eigenvalues are positive. The
one negative mode and two zerc mode eigenfunctions are easy to find explicity:

u_ = sech?(wz),
uo = sin £,pn = 2sech(wz) tanh(wz), (6.3)
v = dCaph = 2wsech(wz).

dr

For the positive spectral continuum of each operator above w?, we evaluate the finite tem-

perature determinants by relations (4.12) and (4.16). For the potentials in H, and H, the
transmission coefficients are known and they lead to the following formulae:

1_151 (p) - 2w
dp p? + w?

and dé 2 4
1(p) == d (6.4)
dp pP+w?  p?+4u?

where p? + w? = ¢?(p). We may now apply (4.16) and sum over the two orthogonal sets
of modes for H, and H; respectively. The zero point energy contributions from the two
operator: yield the logarithmically divergent integral,

2w [ 1 1
= dpV p? + w3 (p +

r Jo 3+ Wl p2+4w2)'

Introducing an ultraviolet cut-off, A and defining the renormalized coupling constant by

1 _ 1 _ _1_ ,
@) R I log (A/w), (6.5)
we observe that this zero point contribution may be absorbed into the classical sphaleron
energy (5.25), provided that we replace the bare 1/g? appearing there by the renormalized
running coupling evaluated at w: 1/g?(w). Then we are left with only the second term
of (4.15)-(4.16), which gives the finite temperature corrections to the sphaleron’s statistical
weight. This is summarized succintly by the following function:

_ o]
h(a) = “4a dz ( ! + ! ) log (l —eV "“’) >0 (6.9)
0

r z2 + a2 1?4+ 4a?

where a = Aw/kT. The limiting forms of this function for a — oo and a — 0 are respectively

h(a) ,_s_c“"‘,
vara
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and
1
h(a) — —2loge + -;-(tan"la + -2-tan"120 — 3a)loga — C + Ofa),

where

C—2/wdz( . )lo(z’+1)—62515852 (6.7)
ol 2+1 z¥+4 g ' '

Turning to the evaluation of the zero mode factors NV required, we find that the mode

ug contributes the factor,
4 k
2/ kT (6.8)
gy 3w

since the range in the parameter corresponding to a in the general formula (6.22) is 27 for
rotations about the iz axis. The translational zero moude contributes the factor,

2_L_ wkT

V> (6.9)

We are now in a position to give a closed form answer for the rate per unit volume,
L of thermal activation over the energy barrier between two topologically distinct vacuum
configurations, the height of which is the classical sphaleron energy, E,pn = 8w/g?. The
result of substituting (6.4) through (6.8) into the general formula (4.30), derived previously
is:

8w (v
—_— - h(:= 6.10
() (6.10)

where we set h = k = 1,

This transition rate does not lead to any violation of chiral fermion number unless there
is an initial asymmetry in fermion number. We may introduce such an asyninetry by adding
a chemical potential to the Hamiltonian|9):

H— H-uNcs (6.11)

where Ncog is the Chern-Simons number introduced in eq. (6.19). The vacuum state which
i3 unique in the gauge invariant description, Ay = (0,0, —1) corresponds to an infinitely
degenerate set of states labelled by the topological winding number Nos. This quantity is
not gauge invariant but changes in it are..

We take & << 1 so that we may expand in this small quantity in all that follows. First
order perturbation theory then gives — &'y for the transition rate from a state with No-g - 1
to one with Neg =0, i.e.

d(l\/cs> _ 1) .
& - T (6.12)
The chemical potential induces the asymmetry in Ny given by
4L
(Ng) = —u (6 13)



to first order in u. Substituting this relation for 4 into eq. (6.12) and using (6.10) and (6.18)
gives finally

d(N
<dt5) = —Ts(Ns) (6.14)
with r \ 8
oy w w W
= = —— — —— — R =) 6.16
Is 2T I 92 Sln(%“i) exp( gz(w)T (T}) ( )

In the temperature range where T >> w so that the sphaleron induced transitions are
dominant compared to those caused by instantons, but T << w/g" so tuat the semiclassical
expansion around a single sphaleron solution is justified, we may employ relations (6.22) and
(6.7) to obtain

= N2, aeT 7
K —\/_C 717 ( 1 )

and ¢?(T) the temperature dependent running coupling constant evaluated at the tempera-
ture T. Thus, the initial asymmetry (6.13) decays exporentially with a rate that is consider-
ably greater than the instanton inferred rate, at temperatures large compared to w.

7. The Sphaleron Solution of the Weinberg-Salam Theory

Having discussed a series of simpler pedagogic models of tunnelling, and concomitant
fermion number violation, we are ready finally to turn to the actual ‘our dimensional gauge
theory. In the case of the group SU(2) the topolngical charge or winding number is given by

1

in Euclidean space. Geometrically, the fact that such a winding number should exist is clear
from the following considerations. We are interested in finite action Euclidean configurations.
'This means that as Euclidean |z| — oo, the field strength G,., — 0 and A, must approach
a pure gauge, Ud,U~!. Therefore, the gauge field at Euclidean infinity may be regarded as
a mapping from the spatial sphere at infinity, S® to the gauge group SU(2), which is also
isomorphic to §3. This is just one dimension higher than the mapping considered in the
sigma model case, and falls into topological integer nuinber classes for the same reason as
before. Upon writing the integrand of (7.1) as a total divergence, and using Stoke's theorem
to convert the volume integral to a surface integral, (7.1) will be recognized as precisely this
integer winding number of the map from S3 to S3.
By forminyg the non-negative quantities,

-3
tw
—

1
/d‘I(G:V - E(“u"BG:"ﬂ) E 0, ( .'
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we arrive at bound on the Euclidean action analogous to (3.7) and (5.4) for the pure gauge

action: s g2
0 us
—_— > — 7.3
22— (73)
The bound is saturated for @ = 1 by the finite action instanton solution[10|. Accordingly, nne
expects that the rate for tunnelling from one vacuum to another topologically inequivalent

vacuum is suppressed by a factor of

25 16732 47 sin’ O .
eXP(——hO-) = exp(- pe ) = exp(- ———) <<< 1. (7.4)

Since integration of the anomalous divergence eq. (1.3) tells us that there can be no violation
of baryon or lepton number unless the gauge theory winds from one vacuum to the naxt
lrecall eq. (5.18) for the O(3) model], we conclude that the rate of B and L violation ir. the
Weinberg-Salam theory is utterly negligible at zero temperature, and this is the conclusica
first reached by 't Hooft{10].

Actually this conclusion is not so trivial as there are many complications with the anal-
ysis. For one example, strictly speaking, there are no finite action instanton solutions in
the electroweak theory because of the existence of the scalar Higgs field, which we have so
far ignored. Instanton solutions at zero temperature (infinite periodicity in imaginary time)
and finite temperature (periodicity 8) do exist in pure non-Abelian gauge theory (without
Higgs fields), but there another difficulty arises in that the scale invariant classical theory
has instantons of all scale sizes. This instanton scale size must be finally integrated over,
but the integration diverges in tne infrared. Hence there is no complete, satisfactory instan-
ton aralysis in either QCD (where there are additional problems with strong coupling) or
Weinberg-Salam theory. This is why simpler field theoretic models are valuable, and why I
have concentrated so heavily on the details of the O(3) model to guide our intuition about
four dimensional gauge theories such as the Weinberg-Salam model. In the O(3) model also
there are no instanton solutions after the symmetry breaking term (5.20) has been added to
the action. If one does not add this term, then one also faces an infrared divergence in the
integration over the instanton scale size [depending on the parameters a; and b; of (5.7)].

Despite the technical difficulties with the instanton analysis, all experience with simpler
models leads one to believe that these problems are indeed technical rather than fundamental,
and that the estimate (7.4) is basically correct, at :ero temperature. Since finite temperature
instanton solutions to the pure gauge theory with action, So = 87%/¢? and Q = 1 exist
also, it was natural to believe chat this highly suppressed rate should persist even at finite
temperature. However, this depends critically on the reliability of perturbation theory at
higher temperatures. We have seen explicitly how perturbation theory breaks down for both
the simple pendulum model and the ()(3) model at high temperatures, namely when the
number of quanta n ~ a~!. This is clear becaure at temperatures of order a ! times the
fundamental mass or frequency, (w in these models), tiere is enough energy in the system to
surmount the classical energy barrier between adjacent minima. What this energy barrier is
for the Weinberg-Salam theory was something of a mystery at first, and was answered only
later by the work of Manton(11].
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Several years after the instanton based estimate of 't Hooft, Manton[11] constructed
the parameterization of the noncontractible loop in field configuration space with Q = 1,
analogous to (5.22) for the broken O(3) sigma model discussed above. Consider the spa-
tia! components of the SU(2) gauge potential, A; = —i(5)A%(%) and the two-component
complex Higgs field ®(Z) (r%,a = 1,2,3 are the Pauli mairices). The first step in Manton’s
construction is to fix the local gauge freedom. This is done by introducing spherical polar co-
ordinates in the three dimensionai space, (r,8,¢) and demanding that the radial component
of A, vanish:
A.(r,6,p) =0. (7.2

There still remains a global gauge freedom, which we may fix as follows. The Higgs field
must approach its vacuum expectation value as r — oo. Rescaling ® so that this value is
unity, we use the global gauge freedora unfixed by (7.5) to choose:

¢I>°°(0=0)Etb(r=oo,0=0,go)=((1)). (7.6)

Let us also think of the complex two-component ¢ as equivalent to a real four-component
® .. Since the magnitude of this four-component real column vector must be unity at r = oo,
we may regard these components as defining a unit three-sphere. Then, the Higgs field at oo
may be regarded as a mapping from the spatial two-sphere parameterized by § and p to this
unit three-sphere.

Since we are interested in noncontractible loops in the gauge-Higgs configuration space,
we now introduce the parameter n which varies from 0 to 7, just as in the penduium example
or the 0(3) nonlinear sigma model. This is the parameter along the loop, at each value of
which we have the Higgs field at r = oo described above, and depending on n as well in such
a way so as to satisfy the analogs of properties (i) through (vi) following (5.22). Explicitly
this parameterization is:

o0 _ sin ) sin §e'® — 00/ 0
&% (n.0,) = (e"‘"(coen -H'sinncow)) =u \1) ' (7.7)

The gauge field at infinity may then be written in the form:
AP = -9 U= (u*>)! (7.8)

for1=8,p

As expected these parameterizations are quite a bit more difficult to visualize than
the analogous one for the sigma model, but the basic idea is the same: to construct a
noncontractible loop (@ = 1) of field configurations beginning and ending at the vacuum,
each with finite energy. We then look for solutions of the field equaticns at n = I with the
given asymptotic conditions at oco. Writing

®(n =

I

1 8,0) = h(r)®®(n = .’25,0,90) (7.9)
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and

Asoln = 3.m.0.0) = S(N) AR, (n = 2.0,0), (7.10
together with the gauge condition (7.5) gives a finite energy ansatz for the sphaleron solution
in the Weinberg-Salam theory. By snbstituting this ansatz into the field equations, Manton
and Klinkhamer then showed that in the limit ©w — 0 a solution exists with an energy
between 8 TeV and 14 TeV (depending on the unknown value of the Higgs mass), and
that this solution persists in the full theory with finite ©w (although the ansatz must then
be significantly more complicated, since spherical symmetry is no longer preserved). The
sphaleron configuration, although not a simple analytic function as in our previous examples
is eagy to describe qualitatively in the limit of zero Weinberg angle. It is a spherically symetric
configuration of non-Abelian magnetic field density concentrated in a region with a radius of
order Mw ~!. Within this radius the magnetic field strength is of order M};L:— Qutside the
field strength falls exponetially to zero. The Higgs field, in turn, has a zero at the origin,
rises linearly at first, and then approaches its vacuum expectaticn value exponentially rapidly
outside the central core region.

The importance of this work is that it established the existence and energy scale of
the _phaleron solution in the electroweak theory, 2nd made quite explicit the pendvium-like
nature of the potential, separating the inequivalent degenerate vacuua of non-Abelian gauge
theories. After Manton’s work one now knows explicitly what the energy barrier between
inequivalent vacua in the Weinberg-Salam theory is.

The suggestion that this sphaleron solution was crucial to estimating the rate for baryon
and lepton number violation was subsequently emphasized by Kuzmin, Rubakov and Sha-
poshnikov(12]. The semiclassical calculation of the rate at finite temperature was carried out
by Arnold and McLerran a few years later(13]. At temperatures of a few hundred GeV the
sphaleron rate of B and L violating transitions far exceeds the instanton estimate cf 't Hooft.

L.acking up to this point is a clear connection to the instanton analy=is first carried
out by 't Hooft, and in particular, precisely how perturbation theory breaks down at high
temperatures and energies. Just recertly a paper has appeared which addresses this issue and
points the direction to its eventual c. rification[14]. Most interesting is the suggestion that
proton-proton coilisions at center of mass energies in the 50-70 TeV range might be capable
of producing observable baryon and lepton number violation in the laboratory. This energy
scale corresponds to the that at which perturbation theory breaks down in the Weinberg-
Salam theory, much as was suggested by the pendulum model when the excitation number
n ~ a~!. If such an energy scale is ever achieved in the laboratory, it could provide dramatic
and direct confirmation of the ideas reviewed in these lectures.

Perhaps more probable is the prospect of indirect verification. This could come if an
extension of the standard model is found which makes use of the mechanism of baryon
number violation described here to generate the observed oaryon number asymmetry of the
universe. One might then be able to explain the remarkable asymmetry between baryons and
anti-baryons alluded to ia the introduction, without recourse to grand unified speculations,
but at far lower energy scales and within the framework of electroweak physics. The main
obstacle in constucting such a model is the necessary introduction of a significant amount of
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CP vinlation at the sphaleron scale, without disgreeing with the known very small amount of
CP violation observed in the K° — K© system. The predictions of such a model presumably
could be tested in laboratory experiments at energies accessible to the SSC. It remains to
be seen if any model satisfying the necessary conditions can be constructed, and the goal of
explaining the baryon asymmetry of the universe by electroweak physics realized. This is one
very interestiug topic in an area in which there are still many possitilities for future research.

FIGURE CAPTIONSE

Figure 1 : The triangle graph that gives rise to a singular contribution to the operator
product Yvs¢ in the presence of a background Abelian gauge field.
In the non-Abelian case this graph must be supplemented by graphs with three and four
external gauge field lines in order to arrive at the gauge invariant divergence (1.3).

Figure 2 : The diangle graph which gives rise to the axial anomaly in the O(3) model.
Fermion propagators are denoted by solid lines and scalar x propagators by dashed lines.
It is the same graph as that in 1 + 1 dimensional QED with the role of the U(1) gauge
field played by the A, defined by eq. (5.11).

Figure 3 : Geometrical representation of the parameterization of the sphere S? with center C
at the origin, as defined by eq. (5.22). The circle S! is the intersection of the sphere
with the plane, z3sinn + z3cosn = ~cosn, labeled by L, and making dihedral
angle, n with the plane, za = —1, £¢. £ is the azitauthai angle along this circle
measured from V = (0, 0, -1) to the generic point, P.
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