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1. Introduction

Study Institute (TASI),

Baryon and lepton number ( B and L) conservatism is a striking general feature of nature.
Whatever the complications of the interaction, whether its rate is characteristic of a strong,
weak, or electromagnetic process, and whatever other quantities are not conserved (isospin,
parity, CP) all experiments to date are consistent with conservation of baryon and Iepton
number.

Notwithstanding this complete lack of experimental evidence for nature violating B and
L, their absolute conservation has always been viewed suspiciously by theorists, Before the
advent of the Weinberg43alam theory unifying the weak and electromagnetic interactions,
there were two basic reasons for this suspicion. Fimt of all, unlike electric charge which we
believe is absolutely conserved, baryon and Iepton number are not coupled to a local gauge
field. It is this gauge invariant coupling which guarantees electic charge conservation, and
gives rise to a long range interaction (Coulomb’s law), corresponding to a strictly massless
photon in electromagn.’tiom. There is no evidence for such a long range interaction between
(electrically neutral) barycms or leptona, Hence, B and L conservation seem rather “acciden-
tal” and not protected by a deeper gauge principle, aa electric charge conservation is,

The second reason for skepticism about exact conservation is an obvious obsemational
fact about the universe. Everywhere you look there are baryons and Ieptons, but scarcely any
anti baryons or antileptoria” the univerue is completely ~ymmetric in preferring baryons over
anti baryons ~d Ieptom over antileptons. If, aa quantum theory tells ‘us, there is complete
symmetry between particles and antiparticle in their fundamental interactions, and B and
L are exactly conserved, we have no way whatsoever of IlnGerstanding this extraordinary
agymmetry of the universe in the large. It would simply have to be postulated as an initial
conditiofi of the big bang, precluding any dynamical explanation.

In the Weinberg-Salam e]actroweak theory these misgivings are substantiated in that
haryon and lepton number are NOT exactly conserved. The nonconscrvation of B and L can
be traced to the existence of parity violation in the electroweak theory, together with the
chiral current anomaly, which is where we should begin,

Fur simplicity let us first consider a familiar Abelian gauge field theory, spinor cloctro-
d~”namics. In addition to the ordinary electromagnetic current j’~’one may also corlsider the
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chiral current,

N’ = W%ti,
where -y5 = +1, depending on whethe~ the fermion spin is aligned parallel or antiparallel to
its momentum. Taking the divergence of jr, and using the Dirac equation, one finds

f3pj[ = 2m&yg@, (classicall~).

The fact that the divergence is proportional to the mass of the fermion suggests

that

(1.1)

that in
the limit of zero mass the chiral current would be conserved, and this is certainly the case
classically. However, in the full quantum theory the Dirac field becomes an operator, and
the product of two such operators at the same spacetime point is generally singular. Hence,
the right hand side of (1.1) must be examined carefully in the limit m -+ O to be certain that
there are no singular contributions in this limit. In fact there is a singular contribution to
the operator product ~~5# coming precisely from one graph in one loop perturbation theory.
This is ‘he famous triangle graph of Fig. 1, and the contribution to the right side of (1,1)
is such that even in the limit m + O, a well defined finite term remains. This is the ABJ
triangle, or chiral current anomaly[l]:

(1.2)

where the singular terms have now been removed from the oper~tor product 775@,
By now this ‘anomaly” is well understood theoretically. It has even been verified exper-

imentally in the decay of the no meson into two photons, in the sense that the large decay
rate observed experimentally requirea the finite contribution of the triangle diag[~rn of Fig, 1
(where the fermion lines represent the quarks in the pion), in the chiral limit, m + O. In the
non-A belian case there is also a chiral anomaly so that the chiml currents of the Weinberg-
Salam theory have gauge invariant anomalous divergences analogous to ( i ,2). The reason
that this h= anything at All to do with B and L nonconservation is that the gauge fields of
the electroweak theory couple asymmetrically to the fmniona of the theory, In partiru]ar,
the SU(2) gauge field couples only to left-handed quark and Iepton doublets. Writing the
B and L currents as sums of left and right handed components, a~.d taking acco~, It of the
anomalice in the chiral currents leads to the following result for their divergence:

(1.3)

where C& and F@v are the field strength tenmm for the SU(2) and U(l) hypercharge gauge
fields of the Weinberg-SaIam theory, ga and gl are the corresponding gauge coupling constant~,
and N is the number of sequential generation of quarks and leptons.

Since the total baryon or Iepton number is the three-space integral of the fourth com-
ponent of the respective local current, & or P’, we immediately concllldc that B and L are

not conserved in the standard electroweak theory, although the quanf if \ II - 1, is conserv.vl.
Since we started with the observation that there is no evidence for allv 1] or L violation in
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nature, we must ask how big the violation pledicted by eq. (1.3) is, and is it in contradiction
to experiment? This requirea a detailed understanding of the anomalous terms appearing on
the right side of eq. (1.3),particularly their relationship to the nontrivial topological vacuum

structure of non-A belian gauge theories[2]. These lectures are intended to bc pedagogical,
so we will consider the anologs of nontrivial vacuum structure in some simpler models, and
return to the actual Weinberg-Salam theory and the anomaly (1.3) only after understanding
these simpler models in some detail.

2. Periodic Vacua in Quantum Mechanics: The Simple Pendulum Model

By far the simplest model of a quantum mechanical system which exhibits a periodic
ground state (“vacuum” ) is the simple pendulum, The Lagrangian is:

and

Defining

leads to the Hamiltonian,

H=
au z ?iw
~pv + ~ sins q,

Upon making the canonical replacement,

d
Pq + -i~— dq

we obtain the Schr5dinger equation for the simple pendulum:

(2.1)

(2.2)

(2,3)

(2.4)

(2.5)

Since the potential is periodic in q the exact wave function solutions to (2,5) will be M
well. However, perturbation theory correapondn to expanding about a single minimum of the

potential:

V4
sin2q=q2– —+ a.. (2.6)

3
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Keeping only the first term in this expansion yields an harmonic oscillator potential with
zeroth order Gau,ssian wavefunctions,

(2.7)

praked around one minimum of the potential (at q = O) and containing no information about
the periodic structure of the potential This is contained in the higher orders of (2.6) which
have been neglected in this lowest order result. The Gaussian approximation to the energy
eigenvalues,

is valid only in
barrier between

(2,7)

the limit that this energy is small compared to the height of the potential
neighboring minima, a. C. if and only if

tm <<l. (2,8)

The quantity u has the dual role of controlling the validity of the perturbation expansion
of the potential (2,6) about the Gaussian wavefunctiona (2.7), and of giving the ratio between
the quantum zero point energy to the height of the classical barrier between neighboring
minima of the potential. Even for very small (but finite) a the perturbative expansion
eventually breaks down for harmonic oscillator occupation numbers n z ~. The analog of
this statement will be very important in the non-Abelian gauge theory.

In order to recover information about the periodic structure of the pendulum potential,
we need either to consider very high orders of perturbation theory (again of order *), or treat
the system in a different approximation scheme: the semiclassical limit, This corresponds to
the WKB approximation to the Schr5dixlger equation (2.5), so that tunneling between the
minima of the potential can occur, and the periodic nature of the pote:~tial may be taken
into account. The first step in this approach is to look for nontrivial solutions of the classical
equations of motion in imaginary time,

t = -ir. (2.9)

The constant of the motion corresponding to the energy in imaginary time is:

h

()

dq2hw,2
‘f=——

2aw dr – Z7”n ‘“
(2!10)

This is equivalent to changing the sign of the potential term in the equatio~* of motion,
At zero tempera~ure the pendulum is in its ground state, so we look for a solution with

t = O that interpolate between neighboring minima of the periodic potential (maxima of the
inverted potential):

fl--+o m T-+-oo; (2.11)
q-+na5 T -+ +00,
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Such asolution (the ‘instanton”) iseasily found by

3in ?j(r) = sech[w(r

integrating (2,10) with f = O:

—ro)].

Theclasaical Euclidean action for this solutions is given by:

~= ~~~~~($)2+wsin2~]dr= ~.

(2.12)

(2.13)

The action for the excursion from q = O to q ==n plus that of the return trip (the “bo’mce” )
is twice this or $.

According to the usual semiclassical analysis of the Feynman path int~gral, the tunneilirlg
rate from one minimum to the neighboring one is proportional to the fundamental frequency
of oscillation, w and the exponential of the negative of this bounce action,

rwUe-%=wt-~<<<W. (214)

’34 this is an incredibly small tunneling rate, EvenFor a macroscopic pendulum, a - 10 ,
when a becomes of order 10-2 , corresponding to the fine Ytructure constant which enters
the Weinberg-Salam model, the rate is still negligibly small. We conclude that perturbation
theory, which neglects the periodic features of the potential is an excellent approximation
for a weakly coupled theory at zero temperature, when the system is in its ground st ~te.
Furthermore as long as the thermal energy, kT is small compared to the excitation energy of
the quanta of the system, hw, so that the higher excited states of the oscillator are hard 1y
excited it is clear that the above picture remains valid. However, it is equally clear that
when the temperature becomes large enough so that the per~dulum has enough thermal
energy to completely surmount the potential barrier at q = ~~, it need not wait for the very
rare quantum tunneling event with the rate we have just estimated. Instead, the p~.lrely
clauuicafly allowed process of jumping over the barrier will have a vastly larger, unsuppressed
rate. This id what we wish to estimate next.
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3. Tunneling at Finite Temperature and Classical Thermal Activation

The finite temperature transition rate may be calcdated by an extension of the semi-
classical method used to arrive at (2.14). We simply look for Euclidean solutions not with
f = O or the boundary conditions (2.11), but with finite Euclidean periodicity, /3 s ~,

For the simple pendulum problem, such solutions (“finite temperature instantons,” or
“calorons” ) may be found explicitly in terms of elliptic functions. However, all the information
we shall need is contained in the Euclidean action, given by the same integrand as (2.13)
above, but taken over the fundamental period of the solution, r = O to T s 0. Substituting
the definition of c, eq. (2,10), and rewriting the integral over r as an integral over n gives:

Differentiating this expression with respect to @ yields:

as t(p) > ~——
q= 2 ‘

(3.2)

(3.3)

since c < 0. Thus, viewed aa a function of temperature, S is a decrem?:ng function as the
temperature is raised. This means that the exponential, e-W and the rate f’ are an increasing
functions of temperature: the thermal population of the higher excited modes of the oscillator
atq= O makes it esaier and easier to get over the barrier to the vicinity of the neighboring
ground state (“vacuum” ).

As the temperature is increand, (~ decreased) the turning points of the classical motion

in (3.2), ~rni~ and q~~s approach each other at the midpoint q = *O The turning paints
2* the period of the harmonic oscillator motion in the inverted potentialcoincide when ~ -= ~,

atq= ~. At this value of /3, the second term in (3.2) vanishea and – ~ becomes equal to

Thus, the transition rate eutimate of (2,14) becomes

(3.4)

(3.5)

at this temperature.
Although the exponent in I’ ha only changed from – ~ at zero temperature to – ~ at

T -= ~, the significance of the finite temperature instanton having collapsed to a single
point, ~ = ~ is that at this temperature (still much lower than the barrier height) the
pendulum does not need to quantum mechanically tunnel to the neighboring minimum of thv
potential. Rather it may jump over the barrier by (classically) receiving a large enough kick
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from the bath of thermal fluctuations into which it is immersed. At al: higher temperatures
this classical activation transition dominates over quantum tunneling. In the last form of
(3.5) it is easy to see what happens as the temperature is raised still further: the Boltzmaxm
suppression factor, e–v~”” /kT simply grows larger and larger until it eventually becomes of
order unity, at kT - Vmaz. Then there is no suppression whatsover, as the pendulum now
has so much thermal energy on average that it swings freely over tke potential barrier. Thus

Vmaz is a critical energy S=le Wtich rnaY be identified with the energy of the degenerate
static bounce solution of the classical equations, namely the trivial solution T = ~. This
unstable, finite energy static solution is called a %phaleron” for the simple pendulum model.

Before leaving this instructional example of the simple pendulum for more realistic field
theories, consider the quantity

‘= Ww9sin’=win”)
called the winding number, If the limits on the latter integral are O to n, Q = 1, corresponding
to the pendulum winding once about its pivot and returning to its ground state configuration.
By considering the manifestly non-negative Euclidean integrals,

it easy to prove that

(3.7)

where the limits on the integral for Q are q~in and q~~=, If we somehow blundered into
forgetting these limits, and continued to regard Q aa an integer winding number, we would
quickly conclude that the Euclidean action is bounded from below by the zero temperature
instanton action, and that the transition rate is alwaya bounded from above by (2.14), even
at finite temperature, of course, this conclusion would be completely incorrect, as physicai
intuition and the finite temperature semiclassical methods sketched above make quite clear.

The point is that even though Q = 1 for a chasical transition over the barrier to the
neighboring minimum, most or all of this transition may bc accomplished in reaf time without
any quantum mechanical tunneling. Thus, the bound on the imaginary time Euclidean
action, (3,7) plays no role whatsover in the correct estimate of the classical transition rate, or
equivalently, the Euclidean Q appearing in (3,7) may be arbitrarily small or zero, for a finite
temperature transition, and the bound loses its force.



4. Calculation of the Rate: General Theory
,

Having reviewed tunneling at zero and finite temperature in a simple quantum mechan-
ical model with only one degree of freedom, we turn now to the general path integral method
of analyzing the decay rate of an unstable phase at finite temperature in field theory, once
the static sphaleron solution has been found[3]. The power of this method is that it does not
depend on the details of the potential, as we shall see shortly.

To illustrate the general method consider a single scalar field in d + 1 dimensions with
action

S[*]= (drpz[;(+)’+ ;(w)’ +/f(@)].
Weseth=l for notational simplicity where it causes
be a static (sphaleron) solution of the equation,

au ~..fvqj + — =
ap

and expanti S to second order in @ – #. The Gaussian

(4.1)

no confusion to do so. Let @ = +(z)

(4.2)

fluctuation operator is

5=--g- a’uv’ +v(z), v(x) = * .
*=+(Z)

(4.3)

The eigcnfunct ions of this operator have the general form, e2=in” ‘fl@P(z) and

H@P = [ - V2 + V(z)] tj,(z) = C;+,(Z). (4.4)

The corresponding eigenvaluea are:

(y) ’+ f;. (4.5)

Naw the path integral expression for the partition function is:

2 = ~-F/kT =
/[ 1DO e-s[ol (4.6)

If 4(z) is an isolated stationary
we may approximate Z by

where 20 is the contribution to
Gaussian (semiclassical) limit

where formally

J

point (except for zero modes which we discuss below) then

z?sz~+zl (4.7)

Z from the (pertuI $ative) vacuum solution @ = #o. In the

(4.9)

FI = E[qt]+ &l’r(log $), (4.9)
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The trace in (4,9) is overall eigenvalues labelled in (4.5) byn and p. For fixed fP the
contribution of the mode VP to (4.9) is just that of a simple harmonic oscillator with frequency
6P (provided c; > O). ‘This contribution to the second half of eq. (4.9) is:

The first term is the zero point energy cf the oscillator while the second is the finite temper-
ature contribution to the free energy coming from the mode p.

Ifd= O, everything reduces to quantum mechanics and may be applied directly to
the pendulum example of the preceding two sections. The static %phaleron” is simply the
classical solution, q = ~. The operator in (4.4) collapses to simple multiplication by the
second derivative of the pendulum potential at this value of q, so that there is only one value
of the index p. The corresponding value of C2 is negative, corresponding to the instability of
the sphaleron solution atop the potential barrier. Eq. (4.10) continues to hold via an analytic
continuation to imaginary c, as described below, and gives rise to an imaginary part to the
free energy which may be interpreted as the rate of classical activation over the potential
barrier.

Consider now the case d = 1. If the classical solution is well localized and approaches
the vacuum solution, do fast enough as /z\ ~ 00, H will have a continuous spectrum and the
corresponding scattering solutions ~ will have the asymptotic forma (for d = 1)

~e(P)(z) -+ Acid’ + ~(+)(p)e-itiz (4.11)

.?~ z + km. In fact we shall be interested specifically in the cane that the coefficients B( *J
vanish identically. In one dimension this occum only for some very special potentials, If d > 1

al.d t$(z) is spherically symmetric, we need to reformulate the scattering problem in terms of
radially outgoing partial waves for unit flux incident from the left. k’or such scattering wave
solutions the coefficients analogoua to B(*J always vanish. For simplicity we concentrate on
the d = 1 case for details of the computation, though with the above remarks, everything in
the remainder of this section may be extended to any d.

All important information about the scattering solutions resides in the phase shift J(p),
defined by the transmission coefficient corresponding to unit flux incident from the left in the
Schrikiinger eq. (4.4). .

A(+)(p)
J(p) = arg [~1

E3y differentiating (4.4) with respect to c it is not difficult to show that

(4,12)

(4.13)

9



,

where W[u, U]~ is the W::onskian of the functions u, v evaluated between a and b. As a ~

-oo, b ~ +co, (4.4) and (4.11) - (4.13) with 13i*j = O give:

(4.14)

for any function ~(c2). In deriving eq. (4.14) we have used the fact that dc’ = dp2, which
holds provided ~(z) ~ do fast enough as IzI ~ 00.

We now apply (4.14) to (4,10), i.e. we take

f(tz) = ~ + ~log(l – e-p’) (4.15)

and subtract the same quantity for the vacuum case, @ = do . Then the linear volume
divergence in (4.14) cancels and we ob~ain

(4.16)

This will give the contribution to (4.8) of the positive eigenvalues of H. It is clear that formula
(4.8) breaks down if ~ has zero or negative eigenvdues. This can only be the case if H does.
The” zero eigenmodes- of H are wy to treat, since they are just harmonic oscillator modes
with zero oscillator frequency, i.e. free modes. The contribution to 21, of each free mode is
thus just the factor

/

dqdPe-P~/’kT = _
[1

1 kT
dq

x ?&G
(4.17)

where q is the coordinate in this direction and p the corresponding canonical mcmentum (we
take the mass to be unity). That is, the projection of the general linear fluctuation 60 onto
its zero mode subspace is given by:

(M)O= (*-#).= 9ik)(z)d~)

and a factor of the coupling constant g - h haa been exhibited

(4.18)

explicitly, If (60)0 can be
related to some symmetry of the action S, not shared

where u is the parameter that breaks the symmetry

tio (z) is normalized by .

by the solution 4(z), then

(4.19)

(such as translational invariance). If

/
d~zlWO(z)i2 = 1. (420)

we make use of eqs. (4.18) - (4.20) to secure:

/

Aa

[/
#= ~~ 2 112

dq=Aq=—
9 ‘z 1]

10
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Hence, thezero mode factor (4,17) is

Aa kT

[/
ddzl~

2 1/2
— . .
gh 27r II (4.22).

If in addition H has a negative eigenvalue C-.2 = –/c-2[ <0 then $ does as well. If

kT > ~~
27r

(4.23)

$ has only one negative eigenvalue. Then we may interpret. the negative mode as giving rise
to an imaginary part in Z, according to the prescription,

(4.24)

The additional factor of 1/2 in (4.24) arises from the distortion of the non-Gaussian contour

over half of its range[3]. This means the free energy J defined by (4.6) picks up an imaginary
part from the unstable stationary point @ = q$(z):

(4.25)

Reassembling the various contributions (4.16), (4.22) and (4,24), we find

where
F, - F. = E[#] - E[f$o] + T~[f(~) - f(Ho)] (4.27)

an(i MU is the product of the normalized volume factors (4.22) for each zero mode.
According to Langer[3]. the imaginary part of the free energy function T

preted as giving rise to a decay rate of the perturbative vacuum &, acccw.irig

1~1
so = —--Im3

nkT

is to be ;nter-
to

(4.28)

wht’re K is a damping constant, namely, the real time rate of decay of the configuration
@ = O(Z) in the heat bath. All the dynamics of the heat bath are buried in this one quantity.
For a weakly coupled theory the interaction with the heat bath doeo no’ affect the dccav of
the configuration d(z), which ia determined purely by its negative eigenvalue, ~z.. ‘rhat i~t if
g2 < I we are always in the underdamped limit and

11



Hence,

In the high temperature limit, ~ ~

For the simple pendulum there are

~–fqrl -Fe)

O, this becomes

(4.30)

(4.31)

no factors N V since there are no zero modes as 3 ~ O,
and we find that the previous estimate for the rate, (3.5) is in fact exact.

To recapitulate, the weak coupling limit ensures the validity of the Gaussian approxi-
mation used in deriving this forrn”ula and also leads to the weak damping limit (4.29). Other
than g2 a 1 the only additional assumption made in deriving (4.30) is that the stationary
point 0 = #(z) is isolated, except for zero modes related to symmetries in the theory. If the
solution is not isolated in this sense, there will be additional ‘accidental” zero modes of $

which will cause (4.3o) to break down, ThiP is just what happens as kT ~ ~, for instance,
For temperatures not satisfying (4.23) the static solution @ = 4(z) does not contribute to
Im3 or the decay rate I’o, which are dominated by rwmstatic, instanton-like configurations.
It is in this way that the high temperature analysis matches onto the low temperature in-
stanton analysis, just as in the simple pendulum model considered previously. A quantitative
method of implementing this matching has been desribed by Affleck[4].

I elected to present this path integral deriv&tion of the rate because of its compactness.
However, there is no need to resort to path integrals or the analytic continuation in the
nega+,ive mode direction implied in (4.24). Eq. (4.30) could have been derived, as in Langer’s
original paper, by consideration of the probability flow in one direction over the saddle point
@ = @(z) . The main point is that (4.30) is a formula based solely on chwical statisticof
mcchanic~ and correctly account~ for entropy effects through the free energy funct]on F1 – F,).
[f there were something pathological about the sphaleron, such w a large entropy suppression
it would have to show up in the expression (4.27), I turn now to an explicit evaluation of
(4,26) and (4.27) for the sphaleron solution of an instructive field theoretic model in 1 ~- 1
dimensions,

12



5. An O(3) Non-Linear Sigma Model

In the pendu]~ example it is very clear that the instanton suppression does not persist

at sufficiently high temperatures, because thermal activation comes to dominate over quantum.
tunneling. However, the pendulum differs from the Weinberg-Saiam theory in at least one
important respect, namely it is a model with oniv one degree of freedom. In such a model
it is evident that heating the system must imply greater kinetic energy available to leap the
potential barrier: there is nowhere elm for the energy to go. In a field theory there ar~

infinitely many degreea of freedom and the class of configurations that interpolate between
vacuum states of different winding number may be very special and very few, Heating this
system also increases the available energy, but it is by no means clear that the incoherent
thermal energy can organize itself into the special configuration(s) necessary to leap the
barrier, In other words, a significant entropy suppression is possible. We need to consider
the free energy, not just the classical energy of the sphaleron. In addition, a one dimensional
model like the simple pendulum cannot couple to fermionn, so there is no analog of the chiral
current anomaly which is central to the issue of B and L violation.

In the following, I shall present a field theoretic model of tunneling at finite temperature:
the O(3) nonlinear sigma model in 1+1 dimemiom[51. The completely symmetric model has
been studied before for its remarkable similarities to non-Abelian gauge theories. We shall
need to modify t,,.? symmetric model by introducing a term in the action that breaks the
O(3) symmetry down to O(2), in order that a sphaleron solution exist.

Although this is an explicitly broken global symmetry, unlike the spontaneously broken
local symmetry of the Weinberg-Salam theory, it shares many properti~ with the latter. Its
main virtue is the fact that we will be able to attain closed form results for ferrnion number
violating processes, and visualize what is going on in a geometrical fashio.. that builds upon
the intuitions garnered from the pendulum model.

In 1+1 dimensions, the action of the O(3) non-linear sigma model is:

1so=—
/

ff2z(a@fi.ap?l);2g2 ({5.1)

This model posamsea some remarkable similarities with non-Abelian gauge theori~~ in 3+1
dimensions, and for that reason has been much studied[6]. The most important features
which concern us here are the following:

(i) Scaie Invariance of the Classical Action
(ii) Renorrnalizability and Asymptotic Freedom in the c~upling constant g;

( iii) Existence uf a Top!ogical Winding Number, [nstantcms and a Chiral Anomaly when
coupled to P’errnions.
The first property is obvious and the second well known [7], The winding number will

be evident if we identify the points at infinity of the Euclidean plane, Then the plane has
S2, Since h is also constrained to lie on dtopolog;” . ‘2, the h field is a map from S2 tc .$2,

This mapping can b? characterized by an integer winding number, given explicitly by:

(-),2)
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By forming the quantity,

(5.3)

it is easy to see that the Euclidean action for any ii obeying the boundary condition at injinily

is bounded from below:

(5.4)

The bound is saturated by the instanton solutions which can be given explicitly in terms
of the complex function

(5.5)

of the complex variable z = Z1 + iz2. In terms of w, So and Q become proportional to

respectively. Thus the bound (5.4) is saturated when one of the terms in brackets vanishes
and [ant i) imtanton solutions are simply mesomorphic functions of the complex variable z (z),
In particular,

n

II
z– a{

Wn=C —

1=1 z–bl
(5,7)

has Q = n and So = 4mtlg2.
Yet another formulation of the model is obtained by defining a two component field

y = (~~ ) such that

h= Xtc?x (5.8)

where d are the Pauli matricea, The condition fi” = 1 now becomes

x+x = 1 (5,!))+

In terrnn of x,

‘so = ;p[(w)h%x) - (X’%x)(%x’d]

Evidently there is now a U(1) gauge invariance in this formulation since

Y + e“’(’) y. This may be m’ade explicit by introducing a subsidiary gauge field

A~(x) ‘- ;;(x+dpx - t?ux+,x) (:).11)

14



and defining the covariant derivative,

DP = C3M– iAP

so that

so=;
I

d%ppx12

In this language,

(5.12)

(5.13)

(5.14)

N4assiess fermions may now be added to the system and coupled in the usual way to the U(1)
gauge field:

Sfermion =; [
d2z$+’Dp$ (5.15)

J

Such ferrnions are well known [8] to possess an anomaly in the chiral current

(5,16)

(s.17)

The Feynman graph contributing to the anomaly is illustrated in Fig. 2. By integrating this
equation over two dimensional space, we obtain the index theorem,

where

(5.18)

(5.19)

is the Chern-Simons number corresponding to the Q of eq, (5,14). Thus, (5.15) relates the
change of chi-al ferrnion number to the topological charge, or change of winding nurnhcr,
,V,,.$ in going from one vacuum configuration to another, Because of the bound (5.4) on the

rl~ssical action, and the interpretation of the Euclidean instanton as a tunneling event (hy
continuation to imaginary ime), such topology changing events and concomitant fcrrnion
number violation are strongly suppressed at zero temperature: the rate is proportional to
Pxp( 1$) .<1, In order to understand what happens in the model at high temperature,
wo Rhould look for the anolog of the static solution with finite energy analogous to q ; of

thr pcIIdu Iurn rTIodci, I1owever, one can easily see that a scale invariant .~rtion such ns (5. I)
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cannot have finite energy solutions.
(5.1) the simple symmetry breaking

Hence we shall consider a modified action by adding to
term, inspire! by the pendulum model:

The classical energy functional of the model now reads:

(5.20)

(5,21)

Sow, we shall argue that an unstable static solution to the equations of motion must exist
with finite energy (5.21). First let us parametrize the sphere in the following way:

fi = (sin qsin~, sinqcosq(cos~ – 1), –sinzqcos~ – cos2q) . (5.22)

This parametrization has the following properties:
(i) it satisfies the constraint h2 = 1 and is continuous in its arguments;

(ii) for fixed q ,< is the azimuthal angle of a circle, S 1;
(iii) for all q, fi(~=O) = h(f=27r) = (0,0,–1);
(iv) for all f, h(q=()) = ii(q=7r) = (0,0, -l);
(v) each point on S2 occurs for at leant one (q, ~) and if h is not the point (O, O, - 1) then

q(h) is unique;
(vi) M q ranges from O to m ar,d ~ from O to 27r the map (5,3) has Q = 1.

The angles q and ( are easily visualized geometrically by the diagram in Figure 3: for
given q between O and x, a lies on the circle S1 which is the intersection of the unit two
sphere with the plane,

xlsinrl +z~cosq=-co8Q

We are interested in noncontractible loops in configuration space which begin and end
at the vacuum, Because of the symmetry breaking term Si, this is the point fiv = (O,0, 1).
We may now consider static configurations, h(z) at fixed q, with ((z) ranging from O to 2m
as z ranges from –oo to +oo. Because of (iii) this satisfba the boundary condition for finite
energy, Because of (iv) this set of configurations reduces identically to the vacuum at r~ = ()
and Q = T, Because oi (vi) this one parameter (i.e. q) family of Ioope which begins and
ends at the vacuum is nmlcontractible: that is, the whole sequence cannot be simultaneously
continuously deformed to the vacuum. The energy functional [5,21) for fixed q and f – ((z

is:

E=s+/’’(w2+wacOs’)}s’)}
(~onsider now the extrernlzing of this functional. As a function

clearly rttains it8 maximum at q : m/2, This is physically obvious
oncrgy may bc viewed as that of a ptlysical pendulum in a uniform
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given ~(z) the maximal energy is achieved by the furthest excursion from the pendulum’s
point of rest at fiv = (0,0, -l). With q fied at this maximal value of T/2, now consider
minimizing the positive definite energy functional with respect to ~(z), The resulting Euler-
Lagrange equation for ~ is precisely that of a simple pendulum in Euclidean “time” z. Since
c varies from O to 27r as z varies from –cm to 00, the solution of this equation is none other
~han the instanton solution of the pendulum problem:

sin( w) = sech[u(z - ZO)]. (~.~q)
A

The energy of the sphaleron solution for the sigma model

E,PA = 8u/g2.

6. The Transition Rate in the O(3) Modei

is

(5.25)

Having found the sphaleron solution of the model lets proceed now with the calculation of the
one loop corrections to it by an analysis of the small fluctuations about the classical solution,
If there is a suppression due to phase space or entropy effects, it should show up in the free
energy function given by the finite temperature loop expansion. We begin by parameterizing
the fluctuations in a convenient way, Let

(6,1)

Substituting this form for A into the action functional and expanding to quadratic order

in (u, v) gives the desired small fluctuation opemtors. The eigenvalues are determined by
solving:

HIU G
[

da
-m+u~(l- 16sech%z) U = C2U

[

da 1
(6,2)

H2V E -~ +W2(1 - 2sechawz) V = C2V,

It is a special feature of the present model that these equations are just Schr6dinger’s
equations in the Rosen-Mome potential, Llomchzwz, whose eigenfunctions are known explic-
itly, Each of the two scattering potentials in (6,2) satiafles all the conditions postulated in
the general discussion of section 4, It is amusing to note as well that the two potentials ar~
supcrsymrnetric partners so that their spectra are closely related.

The first operator, HI describes fluctuations in 6, perpendicular to the sphaleron, “rhis
operator has exactly one negative eigenvalue, namely c1 ~= —3u2, associated wit} the fnct
that sliding the sphaleron loop on the sphere in the q or u direction must decrease tho ~n~rgy,,
‘rhis we knew already, There is one zero eigenvalue associated with the ability to rotate the

sphalemn solution about the h3 axiu without changing its energy, The angl: that ii fi),h rnakm
with the xl axis is the corresponding parameter a in (4. 19) for this zero mode, /111 tht!
rrnmining aigcnvalues are in the continuum above W2,
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The second operator, H2 describes fluctuations in h along the direction of the sphaleron
(i.e. q remairuq fixed at 7r/2). Its lowest eigenvalue is zero with the corresponding mode
associated with translation of the sphaleron position. All other eigenvalues are positive. The
one negative m~e and two zero mode eigenfunctions are easy to find explicity:

u_ = sech2(ux),

uo = sin ~.ph = 2sech(wz) tanh(wz), (6.3)

For the positive spectral continuum or each operator above W2, we evaluate the finite tem-
perature determinants by relations (4.12j and (4.16). For the potentials in JYl and Hz, the
transmission coefficients are known and they lead to the following formulae:

dtil (p) = 2W
-— —

dp pz + U2

and
d62 (p) = 2W 4W.—— -

dp pz + W2 pz + 4U2
(6.4)

where p2 + W2 = Cz(p). We may now apply (4.16) and sum over the two orthogonal sets
of modes for H1 and H2 respectively. The zero point energy contributions from the two
operator- yield the logarithmically divergent integral,

–/

–2W w
dp~~

(

1 l)
+

TQ pz + W2 )pz + 4W2 “

Introducing an ultraviolet cut-off, A and defining the renormalized coupling constant by

1
- ~ log (A/w) ,

g;,n(w) = i 21r

we observe that this zero point contribution may be absorbed into the claasical sphalerol.
energy (5,25), provided that we replace the bare l/g2 appearing there by the renormalized
running coupling evaluated at w: l/g2(w). Then we are left wit$ only the second term
of (4,15)-(4.16), which given the finite temperature corrections to the sphalercm’s statistical
weight, This is 3ummarized succintly by the following function:

r (h(a)== dz ++ 1
)(

log l–e -m >0
)

(6,(5)
TO Z2 + 4a2

—

where a = hw/kT, The limiting forrnn of this function for a ~ m and a + O are respectively

5 ..~
h(a) --+ ~

~2rae ‘
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and

h(a) - -310gc + ~(tan-la + ~~-tan–* 2a–3a)loga– C+ O(a),

where
m

/( 1
C=: dz &+—

)
log(z2 + 1) = 6.2515852

7ro 22+4
(6.7)

Turning to the evaluation of the zero mode factors NV required, we find that the mode
U. contributes the factor,

r

4 xkT
(6.8)

i=

since the range in the parameter corresponding to a in the general formula (6.2?) is 27r for
rotations about the fi3 axis. The translational zero mode contributes the factor,

(6.9)

We are now in a position to give a closed form an:lwer for the rate per unit volume,

L of thermal activation over the energy barrier between two topologically distinct vacuum
configurations, the height of which is the dsdsical sphaleron energy, E~ph = 8u/g2, The
result of substituting (6.4) through (6.8) into the general formula (4.30), derived previously
is:

WT
exp ( ++)

~= $*in(##) g T
(6.10)

where we set h = k = 1,

This transition rate cioes not lead to any violation of chiral fermion number unless there
is an initial asymmetry in fermion number. We may introduce such an asymmetry by adding
a chemical potential to the Hamiltonian[9]:

where Ncs is the Chern-Simons number introduced in q, (6,19). The vacuum state which
is unique in the gauge invariant description, hv = (O, 0,- 1) corresponds to an infinitely
de~enerate set of rotates Iabelled by the topological winding number Ncs, This quantity is
not gauge invariant but changea in it are. ~

We take $<< 1 so that we may expand in this small quantity in all that follows, First
order perturbation theory then gives – $1’o for the transition rate from a state with N,,. $ - 1
to one with Ncs = O, i.e.

(f(lv~s)=
dt

-$0. (6.12)

The chemical potential induces the aaymmetry in N6 given by

(N,) = 4+ ((j 13)
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to first order in ~. Substituting this relation for p into W. (6.12) and using (6.10) and (6, 18)
gives finally

d(N5)
— = -r5(.N5)
(it

(6.14)

with

(6.16)

In the temperature range where T >> w so that the sphaleron induced transitions are
dominant. compared to theme caused by instantons, but T << w/g- so tliat the semiclassical
expansion around a single sphaleron solution is justified, we may employ re{atiom (6.22) and
(6,7) to obtain.,

r5=K *(;)’e-*

with
2 #

K=— = 10,971I’66
\fi

(6.17)

(6.18)

and g2 (T) the temperature dependent running couplinq constant evaluated at the tempera-
ture T. Thus, the initial asymmetry (6.13) decays exponentially with a rate that is consider-
abley greater than the instanton inferred rate, at temperatures large compared to u.

7. The Sphaleron Solution of the Weinberg-SaJ.am Theory

Having discussed a series of simpler pedagogic models of tunneling, and concomitant
termion number violation, we are ready finally to turn to the actuai ‘our dimensional gauge
theory, In the case of the group SCl(2) the topological charge or winding number is given by

(7.1)

number should exist is clearin Euclidean space. Geometrically, the fact that such a winding
from the following comiderations. We are interested in finite action Euclidean configurations,
‘~his means that as Euclidean IzI ~ oo, the field strength GA,, ~ O and AP must approach
a pure gauge, UBPU-1, Therefore, the gauge field at Euc!idean infinity may be regarded as
a mapping from the spatial sphere at infinity, S3 to the gauge group SL~(2), which is also
isomorphic to S3. This is just one dimension higher than the mapping considered in the
sigma model case, and falls into topological integer numb~r classes for the same reason as
before, Upon writing the integrand of (7,1) as a total divergence, and using Stoke’s theorem
to convert the volume integral to a surface integral, (7,1) will be recognized as precisely this
integer winding number of the map from S3 to S3.

By forming the non-negative quantities,
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we arrive at bound on the Euclidean action analogous to (3.7) and (5.4) for the pure gauge

action:
~ > 87r2

h-~”
(7.3)

The bound is saturated for Q = 1 by the finite action instanton solution[lO]. Accordingly, ~~.e
expects that the rate for tunneling from one vacuum to another topologically inequivalent
vacuum is suppressed by a factor of

16m2
exp(– ~) = exp(-~) = exp(- ~4msin2ew) <<<1. (7,4)

Since integration of the anomalous divergence eq. (1.3) tells us that there ~an be no violation
of baryon or Iepton number unless the gauge theory winds from one vacuum to the next
~reca~] eq, (5.18) for the 0(3) model], we conclude that the rate of B and L violation ir. the

Weinberg-Salam theory is utterly negligible at zero temperature, and this is the conclusion
first reached by ‘t Hooft[lO].

Actually this conclusion is not so trivial as there are many complications with the anal-
ysis. For one example, strictly speaking, there are no finite action instariton solutions in
the electroweak theory because of the existence of the scalar Higgs field, which we have so
far ignored. Instanton solutions at zero temperature (in6nite periodicity in imaginary time)
and finite temperature (periodicity /3) do exist in pure non-Abelian gauge theory (without
Higgs fields), but there another difficulty arises in that the scale invariant classical theory
has instantons of all scale sizes. This instanton scale size must be finally integrated over,
but the integration diverges in the infrared. Hence there is no complete, satisfactory instan-
ton analysis in either QCD (where there are additional problem with strong coupling) or
\Veinberg-Salam theory. This is why simpier field theoretic models are valuable, and why I
have concentrated so heavily on the details of the O(3) model to guide our intuition about
four dimensional gauge theories such as the Weinberg-Salam model. In the O(3) model also
there are no instanton solutions after the symmetry breaking term (5.20) has been added to
the action. If one does not add this term, then one also faces an infrared divergence in the
integration over the instanton scale size [depending on the parameters al and bl of (5.7)].

Despite the technical diillculties with the instanton analysis, all experience with simpler
models leads one to believe that these problems are indeed technical rather than fundamental,
and that the estimate (?,4) is basically correct, at :ero temperature. Since finite temperature
instanton solutions to the pure gauge thaory with action, So = 8%2/g2 and Q = I exist
also, it was natural to believe chat this highly suppressed rate should persist even at finite
temperature. However, this depends critically on the reliability of perturbation theory a~
higher temperatures, We have seen explicitly how perturbation theory breaks down for both
the simple pendulum model and the (J(3) model at high temperatures, namely when the
number of quanta n z a-’. Thin is clear becauee at temperatures of order a 1 times the
fundamental mass or frequency, (w in these models), tiiere is enough energy in the system to

surmount the classical energy barrier between adjacent minima, What this energy barrier is
for the Weinberg-Salam theory was something of a mystery at first, and was answt?rcd only

later by the work of Manton[l l].
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Several years after the instanton based estimate of ‘t Hooft, Manton[ll] constructed
the pa~meterization of the noncontractible loop in field configuration space with Q = 1,
analogous to (5.22) for the broken 0(3) sigma model discussed above. Consider the spa-
tial components of the SU(2) gauge potential, Ai = —i( $)A~(z~ and the two-component
complex Higgs field O(Z7 (r~, a = 1, 2, 3 are the Pauli matrices). The first step in LManton’s
construction is to 6X the local gauge freedom. This is done by introducing spherical polar cm
ordinates in the three dimensional space, (r, 4, p) and demanding that the radial component
of Ai vanish:

A.(r, t,p) = O. (7.:

There still remains a global gauge freedom, which we may fix as follows. The Higgs field
must approach its vacuum expectation value as r ~ m. Resealing @ so that this value is
unity, we use the global gauge freedom unfixed by (7.5) to choose:

f.vqe ()=O)a@(r=oo,6=0, p)= ~ , (7.6)

Let us also think of the complex two-component @ as equivalent to a real four-component
@R.. Since the magnitude of this four-co,mponent red column vector must be unity at r = m,
we may regard these components as defining a unit thr~sphere. Then, the Higgs field at w
may be regarded as a mapping from the spatial two-sphere parameterized by t? and P to this
unit three-sphere.

Since we are interested in noncontractible loops in the gaugeHiggs configuration space,
we now introduce the parameter q which varies from O to r, just as in tbe penduium example
or the o(3) nonlinear sigma model. This is the parameter along the loop, at each value of
which we have the Hiqgs field at r = m described above, and depending on q as well in such
a way so as to satisfy the analogs of properties (i) through (vi) following (5.22). Explicit 1y
this parameterization is:

(7.7)

The gauge field at infinity may then be written in the form:

fori=O, p
As expected, these parameterizations are quite a bit more difficult to visualize than

the analogous one for the sigma model, but the basic idea is the same: to construct a
noncontractible loop (Q = 1) of field configurations beginning and ending at the vacuum,
each with finite energy. We then look for solutions of the field equati6ns at q = ~ with the
given asymptotic conditions at 00, Writing

@(q = ;, r,t9, @) = h(r)@m(q = ;,@,@) (749)
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and

(7.10)

together with the gauge condition (7.5) gives a finite energy ansatz for the sphaleron solution
in the Weinberg-Salam theory. By s~bstituting this ansatz into the field equations, Manton
and Klinkhamer then showed that in the limit 9W ~ O a solution exists with an energy
between 8 TeV and 14 TeV (depending on the unknown value of the Higgs mass), and
that this solution persists in the full theory with tinite ew (although the ansatz must then
be significantly more complicated, since spherical symmetry is no longer preserved). The
sphaleron configuration, although not a simple analytic function as in our previo~w examples
is easy to describe qualitatively in the limit of zero Weinberg angle. It is a spherically symetric
configuration of non-A belian magnetic field density concentrated in a region with a radius of

order .Ww -1. Within this radius the magnetic field strength is of order ~. Outside the
field strength falls exponentially to zero, The Higgs field, in turn, has a zero at the origin,
rises linearly at first, and then approaches its vacuum expectation value exponentially rapidly
outside the central core region.

The importance of this work is that it established the existence and energy scale of
the ;phaleron solution in the electroweak theory, and made quite explicit the pendulum-like
nature of the potential, separating the inequivalent degenerate vacuua of non-A belian gauge
theories. After Manton’s work one now knows explicitly what the energy barrier between
inequivalent vacua in the Weinberg-Salam theory is.

The suggestion that this sphaleion solution was crucial to estimating the rate for baryon
and lepton number violation was subsequently emphasized by Kuzrnin, Rubakov and Sha-
poshnikov[ 12], The semiclassical calculation of the rate at finite temperature was carried out
by Arnold and McLerran a few years later[ 13]. At temperatures of a few hundred GeV the
sphaleron rate of B and L violating transitions far exceeds the instanton estimate Gf ‘t Hooft.

Lacking up to this point is a clear connection to the instanton analysis first carried
out by ‘t Hooft, and in particular, precisely how perturbation theory breaks down at high
temperatures acd energies. Just recertly a paper has appeared which addresses this issue and
points the direction to its eventual c, rification[14]. Moat interesting is the suggestion that
proton-proton collisions at center of mass energies in the 50-70 TeV range might be capable
of producing observable baryon and Iepton number violation in the laboratory. This energy
scale corresponds to the that at which perturbation theory breaks down in the Weinberg-
Salam theory, much as was suggested by the pendulum model when the excitation number
~ * ~“- 1. If such an energy scale is ever achieved in the laboratory, it could provide dramatic
and direct confirmation of the ideas reviewed in these lectures.

Perhaps more probable is the prospect of indirect verification. This could come if an
extension of the standard model in found which makes use of the mechanism of baryon
number violation described here to generate the obeerved baryon number asymmetry of the
universe, one might then be able to explain the remarkable asymmetry between baryons and

anti-baryons alluded to in the
but at far lower energy scales

obstacle in constructing such a

introduction, without. recourse to grand unified speculations,
and within the framework of eiectroweak physics. 1 he main
model is the necessa~ introduction of a significant amount of
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CP violation at the sphaleron scale, without disagreeing with the known very small amount of
CP violation observed in the KO -~o system. ?hepredictions ofsuch a model presumably
could be tested in laboratory experiments at energies accessible to the SSC. It remains to
be seen if any model satisfying the necessary conditions can be constructed, and the goal of
explaining the Laryon asymmetry of the universe by electroweak physics realized. This is one
very interesting topic in an area in which there are still many possibilities for future research.

F’lGURJ? CAPTIONS

Figure 1:

Figure 2:

Figure 3:

The trhmgle graph that gives rise to a singular contribution to the operator
product $q5@ in the presence of a background Abelian gauge field.
In the non-Abelian case this graph must be supplemented by graphs with three and follr
external gauge field lines in order to arrive at the gaug~ invariant divergence (1.3).

The diangle graph which gives rise to the axial anomaly ill the O(3) model.
Fennion propagators are denoted by solid Iinea and scalar x propagators by dashed lines.
It is the same graph aa that in 1 + 1 dimensional QED with the role of the U(1) gauge
field played by the AM de6ned by eq. (5.11).

Geometrical repreaentation of the parameterization of the sphere S 2 with center C
at the origin, as de6nd by eq. (5.22). The circle S 1 is the intersection of the sphere
with the plane, Za sin q + Z3 coa q = - coo q, Iabekd by Zq and making dihedral
angle, q with the plane, Z3 = –1, ~0. ~ is the azimuthal angle along this circle
mezmmed from V = (O, O, -1) to the generic point, P.
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