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Abstract

Methods for investigating temporal complexity in Hamiltonian systems are applied to the dynamics
of a nolarized optical laser beam propagating as a travelling wave in a medium with cubically
nonlinear polarizability (i.e., a Kerr medium). The theory of Hamiltonian systems with symmetry
is used to study the geometry of phase space for the optical problem, transforming from C” to
S2x(J,0), where (J,9) is a symplectic action-angle pair. The bifurcations of the phase portraits of
the Hamiltonian motion on S2 are classified and shown graphically. These bifurcations create
various saddle connections on S2 as either J (the beam intensity), or the optical parameters of the
medium are varied. After this bifurcation analysis, the Melnikov method is used to demonstrate
analytically that the saddle connections break and intersect transversely in a Poincaré map under
spatially periodic perturbations of the optical parameters of the medium. These transverse
interections in the Poincaré map imply intermittent polarization switching with extreme sensitivity
to initial conditions characterized by a Smale horseshoe construction for the travelling waves of a
polarized optical laser pulse. The resulting chaotic behavior in the form of sensitive dependence on
initiai conditions may have implications for the control and predictability of nonlinear optical
polar:zation twitching in birefringent mecia.



§1 Introduction

Complexity arising from peniodic perturbaticns of integrable Hamiltonian systems often
appeais as horseshoe chaos, and is characterized as the limit set of intersections of phase space
regions resulting from iterating the Smale horseshoe map. In two-dimensions, the Smale
horseshoe map first stretches and folds a rectangular region in phase space into a horseshoe shape
of the same area; next the map overlays the horseshoe onto the original rectangle and then takes the
intersection. Iterating the horseshoe map repeats this stretching, folding, and intersection process:
the two rectangular regions comprising the intersection of the first horseshoe with the original
region iterate under the map to make four regions of intersection, iterate again to make eight, and
s¢ forth. In the limit, the horseshoe map iterates to produce an invariant Cantor-like set, i.e., a
fractal set in phase space called a Smale horseshoe. The dynamics of the horseshoe map on its
invaniant set can be associated to symbolic shifts. Such shifts produce sensitive dependence on
inital conditior:s, which is the hallmark of chaos. To see intuitively how this sensitive dependence
arises, think of each initial condition as the fractional part of a binary number. An iteration of the
horseshoe map produces the fractional part of the binary number obtained from the initial one by
shifting the "decimal point” one place to the right. Thus, after n iterations the subsequent motion
depends on details of the inital condition from beyond its n-th significant figure!

For the periodically perturbed Hamiltonian system considered in this lecture, the Smale
horseshoe map is obtained via a Poincaré map, here the time T map of the perturbed phase space
orbit, where T is the period of the perturbation. A method due to Melnikov {1963] and Amold
[1964], and developed further by Holmes and Marsden [1982] and Wiggins [1988), is used to
establish analytically that iterating the Poincaré map for the perturbed system produces trancverse
intersections of the stab'e and unstable manifolds of the perturbed homoclinic points. Each
transverse intersection is an unstable homoclinic point of the perturbed Poincaré map anu 1s an
unstable periodic orbit of the perturbed system. The Pcincaré-Birkhoff-Smale homoclinic theorem
is then invoked to assert the existence, near any perturbed transverse homoclinic point, of an
invariant Cantor-like se. on which some power of the Poincaré map for the perturbed system
corresponds to a shift on two symbols, thereby implicating the Smale horseshoe map as the
mechanism for chaos. See Wiggins [1988] for explanations and examples of horseshoe chaos, as
well as references and discussions conceming the original mathematical development of this field.

In the Melnikov-Arnold method, transverse intersections are shown to exist by establishing
for each homoclinic point of the unperturbed system that the (signed) distance in first order
perturbation theory between its stable and unstable manifolds develops simple zeroes under



perturbation. (Under small enough perturbations the original homoclinic point displaces slightly,
but it continues to exist as a hyperbolic critical point.) Thus, establishing the zeroes of this signed
distance (which is usually called the Melnikov function) allows one to conclude that the Poincaré
map for the perturbed problem contains the processes of stretching, folding and intersecting
necessary to produce an invariant Cantor set under iterations of the map. There are an infinite
number of these zeroes of the Melnikov function for the perturbed Poincaré map, and each one
corresponds to a transverse intersection of the stable and unstable manifolds of the perturbed
~omoclinic point. In turn, each of these intersections corresponds to an unstable periodic orbit,
around which further transverse intersections can develop in principle, resulting in exquisitely
compiex dynamics, even for the perturbed Hamiltonian systems in only two dimensions plus time
(one and a half degrees of freedom).

For higher degrees of freedom (i.e., in higher dimensions), resonance overlaps and Arnold
webs can develop, leadinyg to even richer complexity. While horseshoes and their higher-
dimensionai counterparts are not strange attractors (since we are dealing only with Hamiltonian
systems here), they do have quantifiable mixing and transport properties, and they often behave
like strange attractors in numerical simulations (perhaps because of dissipation and noise due to
round-off).

The complex dynamics we discuss in this lecture appears in a physical application: the
Hamiltonian description of the travelling wave dynamics of a polarized, nearly monochromatic,
optical laser pulse propagating in a lossless, cubically nonlinear, parity-invariant, anisotropic,
homogeneous medium (for instance, a polarized beam in a straight optical fiber). Our apgroach
combines methods of reduction of phase space dimension for Hamiltonian systems possessing
continuous symmetry groups together with the method of Amold and Melnikov for showing the
existence of complex behavior under small perturbations of integrable dynamical systems. This
approach provides a unified and gcometrical view of the qualitative properties of polarization
dynamics (e.g., phase portraits, bifurcations, and special solutions) while at the same time
showing “hat this physical application possesses complex dynamics under conservative spatially-
periadic perturbations of the material parameters of the medium,

The plan of the lecture is as follows. In Section 2 we begin by casting the dynamics (Bom
and Wolf [1986]) of polarized travelling-wave optical pulses into Hamiltonian form, in terms ot
two complex electric field amplitudes (one amplitude for each linear polarization in the plane
transverse to the direction of propagation). Next we use the method of reduction for Hamiltonian
systems with symmetry to transform to the Stokes representation of polarization dynamics.



Invariance of the polarization dynamics Hamiltonian under simuitaneous changes of phase of the
two complex electric field amplitudes leads to conservation of an action variable, J, conjugate to the
phase angle, 6. This ‘action variable is the total beam intensity (i.e., the sum of squares of the
ampltudes of the two linear polarizations). We perform the reduction process it two steps: from
T2 to £3xS81, first, and then to $2x(J,0). The first reduction gives a geometric picture of the
dynamics as taking place along intersections of level surfaces of constants of motion in S3, while
the second reduction gives phase portraits on the Poincaré sphere, S2, a level surface of the
conserved beam intensity, J. In Section 3 we classify the various fixed points of the reduced
dynamics on the Poincaré sphere and describe the bifurcations which take place there as the
material parameters and intensity of the light are varied. On this sphere, we find hyperbolic fixed
points connected among themselves by homoclinic and heteroclinic orbits. These homoclinic and
heteroclinic orbits are separatrices (i.e., stavle and unstabie manifolds of hyperbolic fixed poinis)
which separate regions on $2 having different types of pcriodic behavior in the travelling-wave
frame. For the particular case of a medium whose birefringence is isotropic, we present the
complete bifurcation diaftam of how these separatrices reconnect among themselves as the beam
intensity is varied. In Section 4 we use the Melnikov method to determine that the separatrices
tangle and break up into stochastic layers whose Poincaré map is characterized by a Smale
horseshoe, under spatially periodic perturbations of the material parameters of the medium. The
conclusions of this study are summarized in Section 5.

§2 Hamiiionian Formulation of the Problem

Nonlinear polarization dynamics of optical laser pulses has been studied for about three
dccades, basicaily since the invention of the laser. Maker et «/. [1964] demonstrated the precession
of the polarization ellipse for a single beam propagating in a nonlinear medium. Studies of
polarization bistability in isotropic media and computer simulations suggesting chaotic behavior can
be found in Otsuka et al. [1985) and Gaeta er al. [1987]. For additional references and more
detailea treatrnents of Hamiltonian chaos in nonlinear optical polarization dynamics see David,
Holm and Tratnik {1989a,b,1990).

Propagation of an optical travelling wave pulse in a cubically nonlinear medium is
described by the fol.owing system of equations (Bloembergen [1965], Shen [1984])
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where t is the independent variable for travelling waves, j.k,I,m = 1,2, and the complex two-
vector e = (e;, e,)T € CZ represents the electric field amplitude. The complex susceptibility tensors

X1} and X3\ parametrize the linear and nonlinear polarizability, respectively. Far from

resonance and in a lossless medium, the susceptibility tensors are constant and Hermitian in each
e-e* pair and y(3) possesses a permutation symmetry:

m_ m* ©)] €)) & _. A3 _. 0

Kk "X 0 Xam = Xgme Xjiam = Xmij = Xjikm' (2.2)

Hence, we may write the system (2.1) in Hamiltonian form as

ae./at = {C H}) ) = .iawacij

) fsc, ® (2.3)
- xJk k j kxjklm ]

In addition, the intensity, r = lel2 = le,I12 + le,i2, is conserved. We introduce the three-component
Stokes vecter, u, given by (see David, Holm, and Trataik [1990]) u = ¢*(0);ey, with ¢ = (0,
Oy, G3), the standar:! Pauli matrices. The travelling wave equation (2.1) then becomes

— = (b+Wwu)xu, b=a+lulc=a+rc, (2.4)
dt

where the constant vectors a and ¢, and the constant symmetric tensor W, are given by

= =3 € 3 o
a ={0) x)k‘ ¢=3 (o)ijjk". (cs)ijlklm(cs)lm = dxag(ll, )»2. k3). (2.5)

The material parameters a, ¢, and W are all real. According to equation (2.5), the parameters a and
¢ represent the effects of linear and nonlinear anisotropy, respectively. They lead to precession of
the Stokes vector u with (vector) frequency b. The tensor W is symmetric, so a polarization basis
may always be assumed in which W is diagonal, W = (A, &,, A4), in analogy tc the principal
moments of inertia of a rigid body.



Ir. terms of the Stokes parameters, u, the Hamiltonian function H in equation (2.5) may
be rewritten as

H=b-u+;~u~w-u (2.6)

and the equations of motion (2.9) may be expressed in Hamiltonian form as du/dt = {u, H}, by
using the Lie-Poisson bracket (F, G} := u - VF(u) x VG(u) written in triple scalar product form,
just as in the case of the rigid body. The intensity r = lul is the Casimir function for this Lie-
Poisson bracket. That is, the intensity r Poisson-commutes with all functions of u when the above
Lie-Poisson bracket is used; so r in the Stokes description of lossiess polarized optical beam
dynamics may be regarded simply as a constant parameter. (See Holm, er al. [1985], for
discussions and references concerning Lie-Poisson brackets and their usage, for example, in the
study of Lyapunov stability of equilibrium solutions of dynamical systems.)

Solving the system (2.4) when (a) two eigenvalues of W coincide, and (b) one or more
of the components of b vanish, can be done easily for two cases which are inequivalent under
cyclic permutations of indices of u. In the first case, we set W = mdiag(l, 1,2) and b = (b, b,
0); equatiuns (2.4) then read

dul/dt = (b2 - muz)u3, duzldt = ((oul - bl)u3, du3/dt = blu2 - bzul. 2.7

Hence, a Duffing equation emerges for us,

2 2
A =—1-w2 B =-%E - r2 - ———-—Z(bl . bz) . 0
o w°

The other two components of u may be determined algebraically from the two constants of motion

r and H. When B iiicreases through zero, ihe Duffing equation (2.8) develops a pair of orbits,
homnclinic to the t:xed point uj (see, e.g., Guckenheimer and Holmes [19%3] and Wiggins

[1988]). Likewise, in the second case, we set W = wdiag(l, 1, 2) and b = (by, 0, by); equations
(2.4) then become



dul/dt = -b3u2 - Mu duzldt = 0, u, + b3ul - blu3, du3/d1: = bluz. 2.9

27y

Hence, provided b, # 0, we find

2 2 , , , 2 v 3
d u3/dt =A+ Bu3 +Cu3 +Du3,

v 1, .2 . 1,22 ,2 2 _ 3
A—b3(H-?o)r), B-mH-zmr bl-b3, --2mb
Thus, the polarization dynamics for this case reduces to the motion of a particle in a quartic
potential, whose solution is expressible in terms of elliptic integrals. Again, the components u; and
u, may be determined algebraically from the two constants of motion, r and H. We shall return to

these two cases later, when we discuss the effects of perturbations. For now, these cases suffice to
demonstrate that the system (2.4) possesses bifurcations in which homoclinic orbits are created.

The system of equations (2.9) further reduces the Poincaré sphere X, of radius r upen
transforming to spherical coordinates (u,, u,, u3) = (rsinBsing, rcos, rsinBcose). In these
coordinates, the reduced Hamiltonian function (2.6) and the symplectic Poisson bracket on Z, are
expressible as

H= -;—rzl(klsinch + 7\.3coszq>)sin20 + chosz(-)] + rsine(blsimp + b3coscp) + bzrcose,
(F.G) .= L9F 3G 193G iF (2.11)
’ I'9¢p dcos® T d¢ dcosd

and the equations of motion are

d8/dt = b, cos@ - b,sing + (A, - A, )rsinBeos@sing,
(2.12)
do/dt = b2 - (blsin(p + b3costp)cot9 - r(k‘sinztp + k3cosch - lz)cose.

The system (2.9) is completely integrable, since it is a one-degree-of-freedom Hamiltonian system.
Its solutions are expressible in terms of elliptic integrals.



§3 Bifurcation analysis

We now specialize to the case of a non-parity-invariant material with C, rotation

symmetry about the axis of propagation (the z-axis), for which material constants take the form W
= (A}, Ay, A3) and b = (0, b,, 0). (See David, Holm, and Tratnik [1990] for details of what

follows.) We also introduce the following parameters

M= }.3 - X], A= (Xz - )»])/(k3 - Xl), B= b2/[r(7\.3 - Xl)]. 31

In this case, the Hamiltonian in (2.11) and the equations of motion become

H= -i-;,x[(r2 - uz)cosch + kuz + 2Bru) + %)‘13' (3.2a)
dwdt = u(r” - uDcos@sing, (3.2b)
do/dt = u[Br - (cos® - Ayul, (3.2¢)

where u = rcos6. We construct the phase portrait ¢f the system and explain how this portrait
changes as the parameters in the equations vary. The fixed points of (3.2b, c) are easily located and
classified, using standard techniques. We list them in the Table, for p # 0. The special case where
p =0,ie., Ay =A,, requires a separate analysis. In that case, the right-hand side of (1.4a)
vanishes identically so that the set of fixed points of the system is the circle cos8 = by/r(A, - A}) =
f/A. The phase portrait depends on two essential paramneters, A and B, or equivalently, A, - A; and
b,/r. Bifurcations of the phase portrzit occur when the inequality constraints in the third column of
the Table become equalities; hence we observe that the pairs of fixed points (F, B) and (L, R)
appear or vanish as the lines B = (1 - A) and B = %A are crossed in the (A, B) parameter plane (see
Figure 1).



Constraint

Be(-A1-2) IBe (-2, 1-R)

BeA-1,A [ Ber-1,1 |

Table. The fixed points of system (3.2) and their types.

= A-1

\ £ad

Figure 1. The parameter plane and its bifurcation lines.



The (A, |3) parameter plane is partitioned into nine distinct regions separated by four critical lines
that intersect in pairs at four points. Typical phase portraits corresponding to each of these regions
are shown in Figure 2. Note that the phase portraits of the unperturbed system (3.2b,c) are
invariant under the following discrete transformations:

o-etm; o0t 8-5n1-0,p>o-5
PR/, A->1-AB>-B; P-o¢tn/2,A21-A,0-o>mn-0.

Thus, as far as the configurations of critical orbits on the phase sphere are concemed, it will be
cufficient to consider the quarter plane given by A < 1/2 and B > 0, i.e., 1o restrict attention to
regions 1, 2, 4, and 5. Although no bifurcations occur when the A-axis (f = 0 in the parameter
plane) is crossed (except for A =0, and A = 1, the set of fixed points does not change), this line is
nevertheless special. Indeed, in the interval A € (0, 1), i.e. within region RS, both poles are
hyperbolic, each one of them being attached to a pair of homoclinic loops. When [ vanishes, these
homoclinic loops merge together so as to form four heteroclinic lines (and thus four heteroclinic 2-
cycles) connecting the north and south poies together. On the A-axis the polarization dynamics
reduces to that of the rigid body. In that case, the phase portrait consists of the poles N and S, and
the four other points are located on the equator of S2 (this configuration of fixed points distributed
on the equator is obtained only on this line). Two of these, (N, S) or (F, B) or (R, L), are unstable
while the other four are stable; which pair is unstable is decided by the value of A = (A, - A)/(A5 -
A ). The pair (F, B) is hyperbolic when A <0, (N, S) are hyperbolic when 0 <A < 1, and (R, L)
are hyperbolic whenever A > 1; in each of these cases, the unstable direction is specified by the A,
which is neither the least nor the greatest among the three.
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Bifurcations taking place as the beam intensity is varied are those occuring along 2 veiical line in
the parameter plane; we present a list of the seven possible sequences (See David, Holm, and
Tratnik [1990] for an exhaustive list of the bifurcations that may take place in the phase phase
when travelling along these lines):

S;: A< Rle k2 R4 R7T&R9
Sy A=0 Rl & R2& R7R9

S 0<A<12R!eR2e RS« R7&R9
S¢ A=12 KleRS&R9

Ss: 1R<A<1RI&RIe&RS&R8-RI
S¢: A=1 Rl «»R3 & R8 & R9

S0 A>1 Rl&R3& R63R8§ - RI

§4 Homoclinic chaos.

In this section, we consider spatially periodic modulations of either the circular-circular
polarization self-interaction coefficicnt A, in W or the optical activity b,. In each case, when the
unperturbed medium satisfies the additional condition A, = A4, the Meinikov technique (Melnikov
[1963], Guckenheimer and Holmes [1983] and Wiggins [1988]) leads to an analytically
manageable integral for the Melniov function, which is shown to have simple zeros. In this way,
horseshoe chaos is predicted in the dynamics of the single Stokes pulse. We also discuss the
physical implications for measuring this horseshoe chaos in an experimental situation.

We concentrate on the north pole uy = 1, @ = @, with cos?2¢g = A + B, and evaluate the
conserved Hamiltonian at this point to find a relation between u and ¢ on the homoclinic orbit,

u

, =T - 2bu(cos’@ - 1), (4.1)

which, when substituted into the equation of motion for ¢, gives
2 2
dg/dt = ur(cos ¢ - cos (po). (4.2)

Upon integrating (4.2) we obtain (with T = z + vt, the travelling-wave variable)

12



tang = tancpoltanh(Ct), (= %msin(Zcpo). (4.3)

Substituting this formula into (4.1) gives an analytical expression for u on the homoclinic orbit:

2b,[1 - cos @ sech (L]
= 2 2 2 2 ' (4.4)
p(cos @, tanh (€t) - A[1 - cos @, sech (4 9)}]

We consider a periodic perturbation of the eigenvalue A, and the optical activity b,, that
is,

Ay =Mk, +€,cO8/vVZ), b, =b, +E,cos(vz), 4

1 2 2

where €, ; << 1 and v is the modulation frequency. Then from (2.6) the perturbation Hamiltonian
18

Hl

1

7 Uy(€,u, + 2€,)c08(V2), (4.6)

and we easily calculate the Poisson bracket of this perturbation with the unperturbed Hamiltonian:
0 .1 . 2 2

(H",H } = -usin@cos@(r” - u )uzcos(vz). 4.7)

which when formally integrated becomes the Melnikov function

M(t,) = ujsintp(t)cos(p(t)[rz -u¥(V)e,u, + £, )cos[V(T - T]dT, (4.8)
R

where 1, = vt. In the particular case A, = A,, this integrable is manageable and can be found in
standard tables. Hence,

13



2
2 2 2
Mty = in—;—[f(elf +E,)+ %Elr [cos™@, + (v/2b,) 1]csch[vn/ursin(Z(pO)]sin(v1:0), (4.9)
b .
2

which clearly has simple zeros as a function of T, implying horseshoe chaos (see. e.g.,
Guckenheimer and Holmes [1983] and Wiggins [1988]). When the Melnikov function has simple
zeros, the dynamical evolution of a rectangular region near the homocli iic point shows {under
iteration of the Poincaré map induced from the periodic perturbation} that the region is folded,
stretched, contracted, and eventually mapped back over itself in the shape of a horseshoe. This
horseshoe map is the underlying mechanism for chaos. As the horseshoe folds and refolds, the
rectanguiar region of phase points initially lying near the homoclinic point develops a Cantor set
structure whose associated Poincaré Map can be shown to contain countably many unstable
periodic motions, and uncountably many urstable nonperiodic motions. (See Guckenheimer and
Holmes [1983] and Wiggins [1988] for the methods uf proof of these statements and further
descriptions of homochnic tangles.)

§5 Conclusions.

Physically, the horseshoe chaos in the case of a periodically perturbed single Stokes
pulse corresponds to intermittent switching from one elliptical polarization state, to another one
whose semimajor axis is approximately orthogonal to that of the first state, with a passage close to
the unstable circular polarization state during each switch. This intermittency is realized on the
Poincaré sphere by an orbit which spends most of its time near the unperturbed figure eight shape
with a (homoclinic) crossing at the north pole (circular polarization) in Figure 2. Under periodic
perturbations of either the W-eigenvalues or the optical activity b,, this orbit switches
deterministically, but with extreme sensitivity to the initial conditions, from one lobe of the figure
cight to the other each time it returns to the crossing region near the north pole where the
homoclinic tangle is located. Thus, for the one-beam problem we predict intermittent and
practically unpredictable switching under spatiaily periodic perturbations of the material
parameters, as the optical polarization state passes through a homoclinic tangle near the circular
polarization state.

From considerations of the special case in which the Duffing ¢quation (2.8) appears, one
could have expected homoclinic chaos to develop for nonlinear optical polarization dynamics.

14



Indeed, a related special case is studied numerically in Wabnitz [1987]). As opposed to such
numerical studies, our analytical treatment explores the bifurcations available to the polarization
dynamics under the full range of material parameter variations, demonstrates that the horseshoe
construct is the me hanism driving the chaotic behavior, and characterizes the location of the
chaotic set, or stuchastic layer, and the dependence of its width on the material parameters,
modulation frequency, and optical beam intensity.

In the cases under consideration, this stochastic layer is bounded by KAM (Kolmogorov-
Amold-Moser) curves on the Poincaré sphere, inside of which the travelling-wave dynamics is
regular and orbitally stable. For a given choice of beam and material parameters, these KAM
curves define phase space regions where chaotic behavior (for example, sensitive dependence on
initial conditions, or orbital instability) may be found, and complementary regions where chaos is
absent and only regular, predictable behavior may be found.

The strong dependence on intensity of the phase-space portraits reported here indicates
that control and predictability of optical polarization in nonlinear media may become an irportant
issue for future research. In particular, the sensitive dependence on initial conditions in nonlinear
polarizaton dynamics found here to be induced by spatial inhomogeneities may have implications
for the control and predictability of optical polarization switching in biretringent media. For
instance, an input-output polarization experiment performed with input conditions lying in the
stochastic layer for some set of material and bean. parameters will show essentially random output
after sufficient propagation length, depending on the amplitude and wavelength of the material
inhomogeneities and the type of (transparent) material used for the experiment.

While in Australia, the author learned from D.J. Mitchell and A. W. Snyder that the
equations studied here also apply to nonlinear directional couplers (Snyder and Love [1983]), and
that recent experiments in these couplers also show the sensitive intermittent switching effect
explained here in terms of Smale horseshoe dynamics. See also Snyder er al. [ 1990).
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