
LA-UR -9(j-.Is97i
I

.-
\-

.- r

LA-uR--9O-2897

DE90 216437

‘f -$ ~E Object-Oriented Inventory Classes: Comparison

of truplementations in KEE and CLOS

A~THoR,s, Richard R. Silbar, T-5

S.BM,’’EL! “Y Suciecv for Computer Simulation Hestern Multiconference,
Anaheim, CA, January 23-25, 1991

DISCLAIMER

,.,,., ,,, ,

NkNmilosLos Alarnos Nahorial Laboratory
Los Alamos New Mexico 87545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Object-Oriented Inventory Cbiaaes:
Corupariaon of Implementations in KEE and CLOS

Richard R. Sifbar

Los .Ahmos Xationaf Laboratory, University of California,
Los Akunos, Sew Mexico 87545

ABSTRACT

The modeling of manufacturing processes can be ca5t in a form which relies heavily on stores to and
draws from object-oriented inventon-~. which contain the functionalities imposed on them by the o? hrr

objects (including ocher inventories) in the model. These concepts have been implemented, but with some
difficulties, for the particul~ cawe of ~:”rochemical operations at the DOE’s Rocky Flats Plant using KEE,
a frame oriented expert system sttel.i. An alternative implementation approach using CLOS (ttcc enwrging

Common Lisp Objecc System) haa be~n explored and found to give significant simplification.

Introduction and Background

A manufacturing process involves draws from a number of lnV~IILOriW of different types- inventories

for materials and resources—and it eventually stores products and rmidues to appropriate inventories and

returns resources to their inventories. The inventories may be concrete (e.g., a supply of chemicaf beakers)

or highly abstract (e.g., an inventory recording operator exposure to hazardous materials).

Inventories can play an even greater role in process modeling when one allows them to carry their own

functionality. For example, one task that might be performed by an inventory is keeping a history of its

draws and stores. Or, a draw request on some inventory might trigger other actions, such as calling for a

draw from another, related inventory or stating a whole new production process.

Having functionality in inventones is very natural in an object-oriented programming (OOP) approach
[1] to the simulation of the mmufacturing processes. The general 00P description of a manufacturing

plant m]ght also involve objects representing a foreman, a controller queue. workcenters. and parts. and

inventories. In a working simulation there would be generic class-objects which would be fleshed out with
member-instates. such M particulu inventories or workcenters. The objects communicate with one anothrr
by paamng messages: an object receiving a message chooses to deal with that request according to codrd

methods incorporated in the data structure for the object itself.

.A[LASL we have undertaken a discrete-event simulation of the pyrochemical manufacturing procrssrs
at the DOE’s Rocky Flats Complex [2], In this work we have worked in the 00P paradigm [3], using (hi=

concept of object-oriented inventories discussed above [4]. Our initial prototype has been implemented using

Sun-4 workstations running the KEE expert system shell [5], which is built on Suu Common Lisp [6].

The following section gives a brief discussion the Keners.1 types of inventones needed for procw sinlularion,

Sectiou 111gom into the KEE implementation of the generic inventory clsmww in more detail. laying out their
functionafities, slots. and inherited behaviors and some of the implementation isuum we had to face. W’e thrn
briefly discuss some hike leads and paths not taken in our work, These appeared to us = approaches wort 11
pursuing. and perhaps our remarks here can save the rrader some grief. The la~t major sectiol~ dw.ril)rs

bow many of :he prolde’,ns found in our KEE ill]l)lell~~ntati(jll can Iw avoide(l using CLOS. % mur~ ;)(~w~’rflll
ohjm-!-oriented systrm. Tbe paprr closes with a summary and notm sonic (Iurstions to br addrcsswl ill

fu! ure work.

Generic Inventory Ciaseec

Ill brl~f, Iii\’\’llt JrltW ShOUh] lllberlt tbelr bFhavlOr frOlll the fUhJWIIlg Yet Of il)V~lltor~ (’hIMN’S.\[orV {11’tdh.
ah)Ilg with vxalupirs, arr givrn eisewilere [4].

Sirnpie Drawa and Stores: Tbm~ inventorim simply cuuttin womr bu~ amount uf a nl~trriu.1 {Jr

rrsourrt’. aJld a draw ur a store Jl18t drrrplnrnts or incr~nlcntn tile lnvrntohy i~vrl (a l!ulll~lrr). Tllrsr
simple inw=ntorim have uu iimitu on th~ quantitim drawn or utor~d. We nmw! to (ii~tinguisb a dr~w

function from a ‘negallve store- bm-ause a givrll invrlitory oftrl~ neodu to (lifl~relltiatfh bet wrrn t hvsv Iw()

fuhct ion~ fuld bmaurw t hpy csm involvr diffrr?nt argulnent n allfl side-ethtft (Her Iwlow).

Sub- lnventoriea: Invrntotieu for whicil, My, a slorr [nust ah) illcrrlnent some parrt)! illvrutory. !II fm’(,
t Ilrrr Il)igllt IN a wiIolr hirrarchy of slll~-illvt’llt(]rirs conttinrd I)y higher- lrvrl invrntorim.

Item inventories: inw=ntorirfi which t rack ilitlivitlucd lmrt~ (whi(h lnight Iw ctjnll)lwwtwl St r,:t urrs ill

t I)rlr own right) rat hrr than a bulk anloullt,

,).

Partial Inventories: Inventories that accumu12ce a bulk amount that will eventually form a complvtt,

unit (e. g., residues which are packed in a drum). Such inventories typically pass the completed unit along

to a pment item-inventory and re-initialize themselves to start a new unit.

‘lligger inventories: Inventories which invoke some special action when a threshold is reached. There

may weU be severaf such thresholds and response functions for such an inventory.

On top of all these inventories is a generic toplevel object, of which all inventories are subclasses. Figure 1

shows the claw hierarchy for these general classes of inventories and how they (multiply) inherit fu;ictiona.lity

from one another. Note the doubling of types for draws and stores.

Functionalities are not only inherited by, but can he compounded by subclass inventories. AS a result.
behavior tends to become more complex the lower down the hiermchical tree one goes. Figure 1 shows the

multiple parentage of the generic inventory classes; Store-Partial, e.g., is a s~bclass of the Store, Partial

and Sub inventory classes. Inheritance of behavior from multiple parents allows us to exploit the existing

technology of flavor-mixing and/or wrappers.

Not shown in this hierarchical diagram are any inventory instances. In the RFP p~ rochemist ry rnodrl,

[here are about 75 different inventory instances. Many (if not most) of these inventory instances are a

mu of some number of the generic inventory CIMSCWshown in Fig. 1. For example, the inventory named

PISE-FURNACESis an example of a Draw-Linlited-lVaiting inventory (cf an equipir. ent resource) which inht)rils

behavior from tile Draw-Item, Draw-Limited, Draw, Item, and Wating classes. IL is also a Store inventory:

otherwise there is no sense waiting [or a furnace to become available. It happens in fact to be a Store -Iten~

inventory.

Inventory Cla.mea: the KEE Implementation

The functionality of an inventory, in our model of the RFP manufacturing proctwww, is largely assrull)icd

through inheritance of behavior !iItcring down through the hi~rarchy of class objects to the mrmber instancvs.

That is. a given inventory irt usually completely specified by aasigning it as a member instflnre of sonlr SV(
of parent inv~ntory classes (although, in principle, a given functionality for an inventory instancv could bitvr

its nlrthod overwritten with a ~pecia.lly-detiigned function). TIItI following describes some detsilti uf how thih

wsA done in the framework of the KEE software.

First. OBJECTprovidtw two methodu. GH-AITRI@UTE and StH-ATfRIBUTE, for acctwsing dot vslurs. Thvs~I

Inrt hodrn are also avtulable to any child of 0BJEf3 [?], Furthrr down th~ hirrarhchiral illvrlltory trrr I IIcrr

nrr methods for other functionalities, such M GkT-AVAILABLE- INVENTORY,DMU, tltr,

In IiEE n)ethocfs are uttrred iu special ‘method rdotti”, vither M namd LISP procwlurm or M cxplicir

Imllll)da-fullctiollu. We have chouen to storr all our nlrIhodH in mrthodn filtw, ratlwr thm in IIIV KEE

knuwlmlge Imar ilwlf, mu lbat we have us? [)({lo(illl~t’l)tati4~l) Htril~,gn, cOnlnI(Int H, hnd MJWI {)(IIIti IItti IIVIIC{I

Rnrf transportability, Th~re is a draw-lmck tu this, howrvor: wv .=m un~ldr to t~kr ~(lvmnt~gv of tliv li~l:
wrapprr-lmly n)arros. It in ntwvmtry to rtwtrict our wrmpI)vrs to thr ‘brforr” MI(I “~ftrr - tyl)tw, the wrnl)l)rr~

t I) VIIISOIVPMbring defunm that are then inw.rtwl in tllr propor KEE w~y in t hr rvsljmtivr lllrtho(l slot, ‘1’llis

lra41fi to sotlle cornplrxity in th? logic of Storing 10 anti [Irmwing from illvcntoriwj.

The DMU-FAILS? method consists of a basic function that is performed by ewry invoratioil of rho metho(l

plus a number of ‘before-wrappers” for handling the mix of constraints that must be checked beforr a draw

can occur. To simplify’ program logic (within the constraints of the IiEE software), DRAW-FAILS? has. by fiat,

no after-wrappers. The method returns nil if it is all right to draw. i.e., all the constraints on this inventory

can be met. Otherwise, DMH-FAILS? returns a list of keywords which indicate where the draw would fail

and why. For example, the return value might indicate a failure to draw from some parent inventory of rhc

Draw-Limited type because it would drop that psuent’s inventory level below a floor. These keywords cau
be very useful for development and debugging purposes, as well aa for the planning that other objects iu tllr

simulation model might undertake in the cue of a failure.

The DMU-FAILS? method has an optional boolean argument SIDE-EFFECTS, which, if nil (the default
*:alue), mezms [hat DRAU-FAILS? acts as a pure, standalone predicate. If SIDE-EFFECXS is set to t. bowevcr.
the method accumulates a list of side-effect actions that will be performed by the generic DRAWmethod if and

only if all the DRAU-FAILS? before-wrappers return nil (i.e., there rue no failures). That list is stored in a
private slot (in each inventory involved), A-TO-EVALUATE-IF-OK, so those side-effect actions will be avsilal)lr
to rhe subsequent DRAWmessage.

AS an example, a Draw-Sub inventory will put a message on A-TO-EVALUATF-l F-OK to carry out tli~ draw

from its parent lIIVenLOry. Similarly, a Draw-Iten] inventory puts on A-TO-EVALUATE-IF-OK a functiou wllicb
removes an item from the inventory item-list, checking ~1.~t the number of items in that list is consistt’11[
with the inventory level (the number of i[ems).

On the other hand, the DFUH method is often just the generic version and contains only itfter-wrapp(’rs.
if any. There are in fact only two cases:

For Trigger inventories. the after-wrapper cberks to see if a threshold has been reached or p=smf If so, it
(hen carries out the particular response fuuction (defined separately in the methods file) ~sociated with
that threshold.

For a Draw- Limited-W’aiting inventory, a successful stor~ may AUow some waiting process tu llavc its

draw request serf .:ed, If so, that waiting item is vnmved from the liut and a “runw mcssagr is wilt
to the wtiting process. The sleeping process awakes and attempts anuthcr draw (which should IIOW !)r
Succrwful),

After rfecrenwnting the inventory kvcl, the main DMU method eva.luatm each si(le-vtfrct functio~l ljlwx’tl
ill tl~r A-TO-EVALUATE-IF-OK list by thr DRAM-FAILS? nlrthnd. (Ju rfit. DMU also rmrts A-TO- EV’.LUATE-
IF-OK to nil in preparation for the n~xt draw requtwt.

For rails to L)RAUfrom parents of tiub-invcl)toricti, which u)ust he Laudlcd with soIne cnre. WI oljti(juml

I)oolran ~rgument FAILURE-CHECK (which is t by default) ran I;e set to nil tcJ avoid rr-invoking lhv DRAU-

FAILS? method with its SIDE-EFFECTS argulllcnt set to t. This alwidrn over-drawing grrwdpstrvnt illwjntorir~.

hlo~f of the nlmve complication involving privatr slots nn(l Imolrarr fmgllm~nt~ rrsultn from thv illal)ility

to use KEE WRAPPERSprograllllllatirdly, that is to ~ny. with nhnltwl drfunn drflnml iu thr mrtll, Is tilr

This WIM a dimappointnwnt to us. sill~”s’thp i=tbi]ity’ to {10 so would have l)een vrry urwful for chw”killg, r.g..
whrti~or I hf=conditions to be rmtiufiwl for a sucf’rssflll druw Ilchlm Mld if sol colnploting tllml draw. Ilowvvrr, n

WRAPPERSODYill fiEE io not a true Iallll)(la-fllll(tii)ll Ijtlt msl)ocial forll). 0110 tllorvforr twlnot sill]~dy I(Il)l;iI’(1

it wit b a dvfun natu~ an(l havo the argulllrllt~ f~lr t h{, [I:IIIl)[MW~l IIict hod COIIIO out I)rolwrly. (URAPIJERBODY

K4’tN.,vslunted twice,) Thir irt not a proldrm for BEFOFlfZan~l AFT~ wral)pcrti ill I(EE, just for URAPPEk~. III

fwt WRAPPEfb work wrll wlwn tlw cuding is ~’tltrrml ~lirvrtly into [he method wlots of SIKEE knowh’f!gl’ INL.W’
I{nvillg to “h~utlcrnft- Wrn!)l)wl Illrtllmlti. Ii{]wrw’r. (100s Ilot fit vwll into uur tlrsi~ll IIr(isioll l{) lIWI111(,(1111(1*

filrs and to I)uihi Mill Imul Ilw KEE knowlwlgr IM.WISl)r~)grallllllnti(”dll), This i~, to R hrgv l’xtmt, WII.V w

IIrch!wl to UIW two II IrI hIMIN, DRAW-FAILS? hII(l DMbi. M {Im(ril)v(l In t br IMI w~tioll.

programmer better control over w!lat is being done and when. (.At an earlier ~tage of our development. W(I

had considered Draw-Part ial to be a subclass of Draw- Sub.)

Sketch of a CLOS Implementation

As we have seen in the I=t section, the problem with the present IiEE implementation is that th~

inability to use KEE URAPPEFQ programatically forces us to write an an extra method, CAN-DRAW?. This

function checks the constraints that a particular inventory instance bw to satisfy, such as whether it can

draw from a parent inventory or hits a floor or ceiling. CAN-DRAU7 Writes out, to private slots. error messagm

if it can not draw and, if it can, the side-effects that are to be evaluated.

It appears there carI be considerable simplifications in the coding of the inventory claw hierarchy using

CLOS [8] over the present version written using the frame architecture of the KEE shell. .As an experiment,

I tried to see how things would look in a CLOS implementation of inventory classes. The test code includd

definition of the Inventory, Limited-Inventory, and SubInventory chases and the draws and stores to/from

them. (I did not bother trying to include functionality for recovering histories and the like; there should br

no problems in doing so, if desired.)

The basic point is that, because of the ability in CLOS to invoke call-next-method, things become much

cleaner tmd e-ier to read. There is no need to invoke a DRAU-FAILS? sub-call at all (although one might wish
one in any c-e). .PJor is there any need for the private slots A-FAILURE-LIST and A-TO-EVALUATE-IF-OK,

These simplifications are illustrated by the following code fragments for the DRAWgeneric function:

(dofgonoric draw (iuv amt))

(defrnothod draw ((inv inventory) amt)

(docf (level inv) amt)

‘ (:euccess , (name inv) draw ,smt))

(defmathod draw ((inv limited-inventory) amt)

(if (< (- (lavol inv) amt) (inv-floor inv))

‘ (:failuro : draw-hit-floor , (nam inv))

(call-next--otnod)))

(iafnothod draw ((inv ●ub-inventory) amt)

(lot* ((draw-pucnt (draw (pa.mnt inv) sat))

(rotpu (CU draw-puant))

(rootpu (cdr draw-puont)))

(if (OF1 rotpti :failuro)

‘ (:failuro :can.not-draw-par@nt , (namo inv) ,rastpu)

(call -next -method))))

Summary and Future Directions

The main conclusion of this paper is that an implementation of our object-oriented inventory cli=Lsscs
would have heel] much emier in CLOS than in REE. Having said that, however, I must say that we do no(

have plans. at present. to re-write our RFP pyrochemical operations simulation in CLOS. The point is thal
there are maly other reasons why we use KEE for our simulation besides object-oriented programming-–tile

graphics capabilities being the most important of these. At the moment, how’ever, it appears that IiEE

cannot be compiled with the CLOS extensions to Common Lisp.

Nonetheless, it may someday be possible to have a version of IiEF which is compatible with CLOS. This
w!ould be a very useful enhancement of the KEE expert system shell which we would welcome.

REFERENCES

1. See, e.g., B. J. Cox. Objeci. Oriented Progmmmlng-An Evolutsonay Approach, Addison-1$’es]cy (1987).

2. C. .4. Hedge. R. R. Silbar. and P. D. Knudsen, “hlodeling Xuclear Materials Processes”, annual meeting

of the Inst. for Xuclear \faterials Nlanagement, Los Angeles CA. July 1990.

3. C. A, Hedge, R. R. Silbar. and P. D. Knudsen, ‘Interaction of Objects in Manufacturing Process Simula-

tion”. Simulation ~orksl~op, hi-annual meeting of the Am. ASSOC. of Artificial Intelligence, Boston 31.1.
July 1990,

4, R. R. Silbar. P. l). ~nudsen, C. A. Hedge. and J. W. Jackson, “Object-Oriented Inventories for Sinlula-

rions of Manufacturing Processes”. Proc. of the Conf. on Artifical Intelligence Systems in Government.

}Yuhington DC. \lay 1990,

5. Knowkdge Engineenng Bttw-onrnent, \’ersion 3.1, a software package produced and sold by IntelliCurlJ
(Mountain View CA).

6. Sun Common Lisp is pmvidrd for Sun workstations by Lucid Lisp Corporation.

7, In practice, only those attributes that have been declared ‘public” can be accessed this way. This allows
the programmer to reserve some “pnvaLe” slots for internal usr.

8. See. e.g., S. E. Kprne, Ob~ect-Onented)_%ogramm*ng In Cornrnon Lup, Addison Wesley (1’388).

Figures

V-L~VAITING

OBJEfi— Uvmro

TOIE- ~EB-VAITMG

Fig. 1. Hierarchy of inventory chases. (Tangle graph created using KEE.)

