LA-UR _y5-897 N\

e LA-CR--90-2897

DE90 (016437

A Aamoa AT ca 4T At - \ . S
4 NN 2 4T A 5 2Cera'ed by 'me unwerety Of Canterr g ‘or the Urled Stales Department o! Energy .rder conract W "3C5.ENG. 36

TTLE Object-Oriented Inventory Classes: Comparison
of Implementations in KEE and CLOS
AUTHORIS. Richard R. Silbar, T-5
S.BMTTED 'O Society for Computer Simulation Vestern Multiconference,

Anaheim, CA, January 23-25, 1991

DISCLAIMER

This rejort was prepared as an account of work sponsored by sn agency of the United States
Government Neither the United States Guverrment nor any agency thereof, nor any of their
cmplovees. makes any warranty, express o implied, or assumes any legal hability or responm-
bility for the accuracy, compleieness. or usefulness of aiy information, apparatus. product, or
pricess disclosed, ur represents that its nse would not infringe privately owned rights Reler
enee herei Lo ans s ifin commeryidi product, provess, af wrvice by trade name. trademark.
manufecturer or atherwive dues not necessanily constitute ar imply its endorsement, recom-
mendation. or fasonng ' the Utited States Government or any agency thereol The views
and opimons of authory expressea herein do not necessanly state ar reflect thowe of the
U nited States Government or any agency thereo!

' [' " B TR e e gl e N Oyt mant CEIA T R A SORERC 8 vB Ty Ry M ee L @nBe e [ub: 8P 0f Teprid e e
4 e frery T g g0 T LS aeerrment pyrpiees
Aoy e Y) e m e gt e L ATe BTy e At e Ay e perhir e @t R GLED B8 OF TRe 1 Yy Dep e traet ot e

| 0s AlaMNOS e saiszsen

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Object-Oriented Inventory Classes:
Coniparison of Implementations in KEE and CLOS

Richard R. Silbar

Los Alamos National Laboratory, University of California,
Los Alamos, New Mexico 87545

ABSTRACT

The modeling of manufacturing processes can be cast in a form which relies heavily on stores to and
draws from object-oriented inventorizs. which contain the functionalities imposed on them by the other
objects (including other invenrories) in the model. These concepts have been implemented, but with some
difficulties, for the particular case of - rochemical operations at the DOE's Rocky Flats Plant using KEE,
a frame oriented expert system shell. An alternative implementation approach using CLOS (the emerging
Common Lisp Object System) has been explored and found to give significant simplifications.

Introduction and Background

A manufacturing process involves draws from a number of inventories of different types--inventories
for materials and resources—and it eventually stores products and residues to appropriate inventories and
returns resources to their inventories. The inventories may be concrete (e.g., a supply of chemical beakers)
or highly abstract (e.g., an inventory recording operator exposure to hazardous matenals).

Inventories can play an even greater role in process modeling when one allows them to carry their own
functionality. For example, one task that might be performed by an inventory is keeping a history of its
draws and stores. Or, a draw request on some inventory might trigger other actions, such as calling for a
draw from another, related inventory or starting a whole new production process.

Having functionality in inventories is very natural in an object-oriented programming (OOP) approach
(1] to the simulation of the manufacturing processes. The general OOP description of a manufacturing
plant might also involve objects representing a foreman, a controller queue, workcenters, and parts, and
inventories. In a working simulation there would be generic class-objects which would be fleshed out with
member-instances, such as particular inventories or workcenters. The objects communicate with one another
by passing messages; an object receiving a message chooses to deal with that requesc according to coded
methods incorporated in the data structure for the object itself.

At LANL we have undertaken a discrete-event simulation of the pyrochemical manufacturing processes
at the DOE's Rocky Flats Complex [2]. In this work we have worked in the QOP paradigm (3], using the
concept of object-oriented inventories discussed above [4]. Our initial prototype has been implemented using
Sun-4 workstations running the KEE expert system shell [5], which is built on Sun Common Lisp [6].

The following section gives a brief discussion the general types of inventories needed for process simulation.
Section [Il goes into the KEE implementation of the generic inventory classes in niore detail, laying out their
functionalities, slots, and inherited behaviors and some of the implementation issues we had to face. We then
briefly discuss some false leads and paths not taken in our work. These appeared to us as approaches worth
pursuing. and perhaps our remarks here can save the reader some grief. The last major section describes
how many of the proble.ns found in our KEE implementation can be avoided using CLOS. & more powerful
object-oriented system. The paper closes with a summary and notes some questions to be addressed in
future work.

Generic Inventory Classes

In brief, inveutories should inherit their behavior from the following set of inventory classes. More details,
along with exam ples, are given elsewhere [4).

Simple Draws and Stores: These inveutories silnply contain some bu:+ amount of a material or
resource, and a draw or a store just decrements or increments the inventory level (a cuwber). These
sitaple inventories have wo limits on the quantities drawn or stored. We neced to distinguish a draw
function from a “negative store™ hecause a given inventory often needs to differentiate between these two
functions and because they can involve different arguments and side-effects (see bhelow).

Sub-Inventories: Inventories for which, say, a store must also increment some parent inventory. In fact,
there might be a whole hierarchy of sub-inventories contained by higher-level inventories.

Item Inventorles: luventories which track individual parts (which might be compheated stretures in
their own night) rather than a bulk amount,

Limited Inventories: Inventories which have underfow or overflow functions which are iuvoked when
a (Jdraw or sture request buips into a floor or ceiling. One cannot store wore than dhere s cupacity to
store, nor can one draw more items than there are.

Walting-Llst inventorles: For certain critical resources such as a purticular kind of equipment. mate-
rial. or storage space A process may have to wait antil that resource becomes avalable, Such inventories
mamtrun waating sta for those processes which have made unsatsfied requests, When a subsequent store
or draw tmaken the resource avadlable, the (oldest waiting) process v informed to make its reguest agan.

Partial inventories: Inventories that accumulate a bulk amount that will eventually form a complete
unit (e.g., residues which are packed in a drum). Such inventories typically pass the completed unit along
to a parent item-inventory and re-initialize themselves to start a new unit.

Trigger inventorles: Inventories which invoke some special action when a threshold is reached. There
may well be several such thresholds and response functions for such an inventory.

On top of all these inventories is a generic top-level object, of which all inventories are subclasses. Figure 1
shows the class hierarchy for these general classes of inventuries and how they (multiply) inherit fuiictionality
from one another. Note the doubling of types for draws and stores.

Functionalities are not only inherited by, but can be compounded by subclass inventories. As a result,
behavior tends to become more complex the lower down the hierarchical tree one goes. Figure 1 shows the
multiple parentage of the generic inventory classes; Store-Partial, e.g., is a subclass of the Store, Partial
and Sub inventory classes. Inheritance of behavior from multiple parents allows us to exploit the existing
technology of flavor-mixing and/or wrappers.

Not shown in this hierarchical diagram are any inventory instances. In the RFP pyrochemistry model,
there are about 75 different inventory instances. Many (if not most) of these inventory instances are a
miz of some number of the generic inventory classes shown in Fig. 1. For example, the inventory named
MSE-FURNACES is an example of a Draw-Limited-Waiting inventory (c¢f an equipizent resource) which inherits
behavior from the Draw-Item, Draw-Limited, Draw, Item, and Waiting classes. Il is also a Stoure inventory;
otherwise there is no sense waiting for a furnace to become available. It happens in fact to be a Store-Item
inventory.

Inventory Classes: the KEE Implementation

The functionality of an inventory, in our model of the RFP manufacturing processes, is largely assembled
through inheritance of behavior filtering down through the hierarchy of class objects to the member instances,
That is. a given inventory is usually completely specified by assigning it as a member instance of some set
of parent inventory classes (although, in principle, a given functionality for an inventory instance could have
its method overwritten with a specially-designed function). The following describes some details of how this
was done in the framework of the KEE software.

First, 0BJECT provides two methods, GET-ATTRIRUTE and SET-ATTRIBUTE, {or accessing slot values. These
methods are also available to any child of OBJECT (7). Further down the hierarachical inventory tree there
are methods for other functionalities, such as GET-AVAILABLE- INVENTORY, DRAW, etc.

In KEE methods are stored in special “tnethod slots”, either as named LISP procedures or as explicit
lambda-functions. We have chosen to store all our methods in methods files, rather than in the KEE
knowledge base itnelfl, su that we have use of documentation strings, comments, and ease of maintanence
and transportability. There is a draw-back to this, however; we are unable to take ndvantage of the KEE
wrapper-body macros. It is necessary to restrict our wrappers to the “before™ and “after™ types, the wrappers
thetselves being defuns that are tiien inserted in the proper KEE way in the respective method slot, This
leads to some complexity in the logic of storing to and drawing from inventories.

Store aud Draw inventories can be treated in a parallel fashion, except that the store method may require,
ax an argumend, a list of items to be stored and that the draw method may return, in addition to a keyword
:SUCCESS and the quantity drawn, a list of the itemy deawn, To simplify the following discussion, I discuss
only the care of drawing. Storing to an inventory is handled in a similar way.

Conxider the case of a draw-inventory instance which is 8 member of several different inventory classes,
i.e., an inventory which has a “wrapped”™ draw function. There are two major methods involved in drawing
from such an inventory, a predicate called DRAW-FAILS? and the DRAW function itsell. Ax the names imply,
the first method checks to see if a draw is possible wnd the other actually performs t draw,

The DRAW-FAILS? method cousists of a basic function that is performed by every invocation of the method
plus a number of “before-wrappers™ for handling the mix of constraints that must be checked before a draw
can occur, To simplify program logic (within the constraints of the KEE software), DRAW-FAILS? has, by fiat,
no after-wrappers. The method returns nil if it is all right to draw, i.e., all the constraints on this inventory
can be met. Otherwise, DRAW-FAILS? returns a list of keywords which indicate where the draw would fail
and why. For example, the return value might indicate a failure to draw from some parent inventory of the
Draw-Limited type because it would drop that parent’s inventory level below a floor. These keywords can
be very useful for development and debugging purposes, as well as for the planning that other objects iu the
simulation model might undertake in the case of a failure.

The DRAW-FAILS? method has an optional boolean argument SIDE-EFFECTS, which, if nil (the default
value), means that DRAW-FAILS? acts as a pure, standalone predicate. If SIDE-EFFECTS is set to t, however,
the method accumulates a list of side-effect actions that will be performed by the generic DRAW method if and
oaly if all the DRAW-FAILS? before-wrappers return nil (i.e., there are no failures). That list is stored in a
private slot (in each inventory involved), A-TO-EVALUATE-IF-0K, so those side-effect actions will be available
to the subsequent DRAW message.

As an example, a Draw-Sub inventory will put a message on A-TO-EVALUATF-IF-0K to carry out the draw
from its parent inventory. Similarly, a Draw-Item inventory puts on A-TO-EVALUATE-IF-0K a functiou which
removes an item from the inventory item-list, checking v.at the number of items in that list is consistemt
with the inventory level (the number of items).

On the other hand, the DRAW method is often just the generic version and contains only after-wrappers.
if any. There are in fact only two cases:

For Trigger inventories. the after-wrapper checks to see if a threshold has been reached or passed. If so, it
then carries out the particular response function {defined separately in the methods file) associated with
that threshold.

For a Draw-Limited-Waiting inventory. a successful store may aliow some waiting process to have its
draw request sers ced. If so, that waiting item is removed from the list and a “run™ message is sent
to the waiting process. The sleeping process awakes and attempts another draw (which should now be
successful).

After decrementing the inventory level, the main DRAW method evaluates each side-effect function placed
in the A-TO-EVALUATE-IF-0K list by the DRAW-FAILS? method. On exit, DRAW also resets A-TO-EVALUATE-
IF-0K to nil in preparation for the next draw request.

For calls to DRAW {from parents of sub-inventories, which must be Landled with some care. an optional
boolean urgument FAILURE-CHECK (which is t by default) can l:e set to nil to avoid re-invoking the DRAW-
FAILS? method with its SIDE-EFFECTS argument set to t. This avoids over-drawing grandparent inventories.

Most of the above complication involving private slots and boolean argnments results from the inability
to use KEE WRAPPERs programmatically, that iy to say. with named defuns defined in the meth. s tile,
This was a disappointinent to us, since the ability to do so would have been very useful for checking, e.g..
whethier the conditions to be satisfied for a successful draw held. and if so, completing that draw. However, a
WRAPPERBODY iv KEE is not a true lambda-function but a special form. One therefore cannot simply teplace
it with a defun name and have the arguiments for the cemponed method come out properly. (WRAPPERBODY
gets cvaluated twice.) This is not a problem for BEFORE and AFTER wrappers in KEE, just for WRAPPERs. [u
fact WRAPPER: work well when the coding is entered directly into the method slots of a KEE knowledge base,
Having to “handeraft™ wranoved methods, however, does not fit well into our design decision to use methods
files and to build aud load the KEE knowledge bases programmatically. This is, to a large extent, why we
decided to use two methods, DRAW=-FAILS? and DRAW, as described in the last section.

Another complication of the KEE software forced us to keep the inheritance tree for methody relatively
shallow. Thin was for the following two reasons. The DRAW-FATLS? hefore-wrapper for Jraw-Limited-
Whaiting, for example, will be performed before that of ity pareat, Draw-Limited. This may not be what the
programmer/developer flways wants, Also, having most nesting go to only two levels, as in Fig, 1 gives the

programmer better control over what is being done and when. (At an earlier ~tage of our development, we
had considered Draw-Partial to be a subclass of Draw-Sub.)

Sketch of a CLOS Implementation

As we have seen in the last section, the problem with the present KEE implementation is that the
inability to use KEE WRAPPERs programatically forces us to write an an extra method, CAN-DRAW?. This
function checks the constraints that a particular inventory instance has to satisfy, such as whether it can
draw from a parent inventory or hits a floor or ceiling. CAN-DRAW? writes out, to private slots, error messages
if it can not draw and, if it can, the side-effects that are to be evaluated.

It appears there can be considerable simplifications in tke coding of the inventory class hierarchy using
CLOS [8] over the present version written using the frame architecture of the KEE shell. As an experiment,
I tried to see how things would look in a CLOS implementation of inventory classes. The test code included
definition of the Inventory, Limited-Inventory, and Sub-Inventory classes and the draws and stores to/from
them. (I did not bother trying to include functionality for recovering histories and the like; there should be
no problems in doing so, if desired.)

The basic point is that, because of the ability in CLOS to invoke call-next-method. things become much
cleaner and easier to read. There is no need to invoke a DRAW-FAILS? sub-call at all (although one might wish
one in any case). Nor is there any need for the private slots A-FAILURE-LIST and A-TO-EVALUATE-IF-0K.
These simplifications are illustrated by the following code fragments for the DRAW generic function:

(defgeneric drav (iuv amt))

(defmethod draw ((inv inventory) amt)
(decf (level inv) aat)

‘(:success ,(name inv) draw ,amt))

(defmethod draw ((inv limited-inventory) amt)
(if (< (- (level ipv) amt) (inv-floor inv))
‘(:failure :draw-hit-floor ,(nare inv))

(call-next-method)))

(4defaethod drav ((inv sub-inventory) aat)
(lets ((drav-parent (draw (parent inv) aat))
(retpar (car draw-parent))
(restpar (cdr drawv-parent)))
(1f (egl retpar :failure)
‘(:failure :cannot-draw-parent ,(name inv) ,restpar)

(call-next-methed))))

where the functions level, inv-7loor, and parent are CLOS accessors for those slot-values (defined in the
appropriate defclass statements),

The simplicity of the abo,~ code, compared with the KEE version we impleniented first and discussed at
length above, suggests that generie inventory classes implemented in CLOS would be both simpler to explaig
and to maintain,

-t

Summary and Future Directions

The main conclusion of this paper is that an implementation of our object-oriented inventory classes

would have been much easier in CLOS than in KEE. Having said that, however, I must say that we do not
have plans. at present. to re-write our RFP pyrochemical operations simulation in CLOS. The point is that
there are many other reasons why we use KEE for our simulation besides object-oriented programming—-the
graphics capabilities being the most important of these. At the moment, however, it appears that KEE
cannot be compiled with the CLOS extensions to Common Lisp.

Nonetheless, it may someday be possible to have a version of KEF which is compatible with CLOS. This

would be a very useful enhancement of the KEE expert system shell which we would welcome.

o

(<1}

REFERENCES

. See, e.g., B. J. Cox. Object-Oriented Programming—An Evolutionary Approach, Addison-Wesley (1987).

C. A. Hodge. R. R. Silbar. and P. D. Knudsen, “Modeling Nuclear Materials Processes™, annual meeting
of the Inst. for Nuclear Materials Management, Los Angeles CA. July 1990.

C. A. Hodge. R. R. Silbar. and P. D. Knudsen, “Interaction of Objects in Marufacturing Process Simula-
tion™. Simulation Worksnop, bi-annual meeting of the Am. Assoc. of Artificial Intelligence, Boston MA,
July 1990.

R. R. Silbar, P. D. Knudsen, C. A. Hodge. and J. W. Jackson, “Object-Oriented Inventories for Simula-
tions of Manufacturing Processes™, Proc. of the Conf. on Artifical Intelligence Systems in Government,
Washington DC. May 1990.

. Knowledge Engineering Envnironment, Version 3.1, a software package produced and sold by IntelliCorp

(Mountain View CA).

Sun Common Lisp is provided for Sun workstations by Lucid Lisp Corporation.

. In practice, only those attributes that have been declared “public” can be accessed this way. This allows

the programmer to reserve some “private” slots for internal use.

. See. e.g.. S. E. Keene, Object-Onented Programmeng sn Commen Lusp, Addisou Wesley (1988).

6

Figures

DRAV-LINITED-VAITING

OBJECT INVENTO

STORE-LIMITED-VAITING

Fig. 1. Hierarchy of inventory classes. (Tangle graph created using KEE.)

