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Abstract

The Human Genome Project has as its eventual goal the determinaiion of the entire
DNA sequence of man, which comprises approximately 3 billion base pairs. An important
aspect of this project will be the analysis of the sequence to locate regions of biclogical
importance. New computer methods will be needed to automate and facilitate this task. In
this paper, we have investigated the use of neural networks for the recognition of functional
patterns in biological sequences. The prediction of Escherichia coli transcriptional
promoters was chosen as a model system for these studies. Two approaches weic
employed. In the first method, a mutual information analysis of promoter and non-
promoter sequences was castied out to determine the informative base positions that help to
distinguish promoter sequences from non-promoter sequences. These base positions were
then used to train a Ferceptron to predict new promoter sequences. In the second method,
the experimental knowledge of promoters was used to indicate the important base positions
in the sequence. These base positions were used to train a back propagation network with
nidden units which represented regions of sequence conservation found in promoters.
With both types of networks, prediction of new promoter sequences was greater than
96.9%
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Introduction

The increase in the number of tiological sequences necessitates the development of
computer methods for the prediction and analyses of important functional regions. These
analyses should identify significanc patterns to guide researchers in their experimental
efforts to elucidate the functional role of a particular nucleic acid or protein sequence.
There are a number of computer methods that have been applied to the recognition of
specific patterns in biological sequences. These include consensus sequence matching,
probability matrices, and various scoring techniques based on nucleic acid or protein
similarities (for reviews see Waterman, 1989; Doolittle, 1990).

In this study we have investigated the use of various neural network archiiectures
for the recognition of transcriptional promoter sequences derived from the bacterium
Escherichia coli. E. coli promoters can be recognized by two somewhat conserved six-base
sequences, termed the -35 and -10 regions (see Figure 1A). The numbering refers to their
approximate distances from the start of transcription. The -35 region has the consensus
sequence "ttgaca”, and the - 10 region has the consensus sequence "tataat”. Most promoters
do not contain these exact sequences. The separation distance between these two regions
can vary from 15 to 21 bases, with an average of 17-18 baces. Previous analyses of
promoter sequences used consensus sequence maiching and base probability matrices to
predict promoter sequences (Hawley and McClure,1983; Mulligan, et al., 1984, Harley and
Reynolds, 1987; Rozkot, et al., 1989; O'Neill and Chiafari, 1989). Several studies have
used a neural network algorithm and used only the -10 and -35 regions to train the
networks (Nakata et al., 1988; Lukashin, et al., 1989; Alexand-ov and Mironov, 1990).

We have combined a neural network approach with two different techniques for
selecting the data that is used to train the neural net. In the first case, we have carried oura
statistical analysis of promoter and non-promoter sequences. From these results, we have
used the most informative base positions to train the neural network. In the second case,
we have used our biological knowledge of promoters to set up a neural network
architecture.

System and methods
Programs

Programs were written in . . C programming language. Programming was carried
out on a Sun SPARCstation | computer from SUN Microsystems, Inc. with the Unix
operating system, SunOS 4.0.

Sequence Information

Candidate promoter sequences were obteined from the compilation ot Harley and
Reynolds (1987). We have removed sequences that relate to mutant promoters and te
romoters that use different sigma factors (e.g. the heat shock promoters), Sequence
information for these promoters was obtained from GenBank, release 62.0. Each of the
128 promoters included %) bases of sequence around the conserved - 10 and -35 regions.

For the training of the neural network it was necessary to gencrate a set of
sequences which were not promoters. To do this we selected at random 90 base sequences
from various coding regions of known E. coli genes. "These coding sequences were used as
examples of non-promoters. They included sequences from the following genes: lacZYA,
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alaS, rpS, avtA, aceEF, Ipd, frdAB, ampC, aspA, pfkA, sbp, cdh, cyaA, dnaAN, pheA.
tyrA, aroF, malEFK, lamB, and hisGCDHAFIE.

Muzual Information

The sequences were aligned by their -10 regions as published in Harley and
Reynclds (1987). The set of promoters contained 128 sequences and the set of non-
promoters contained 1300 sequences. From these two classes of sequences two data sets
were constructed. Each set contained 64 promoters and various numbers of non-promoters.
The number of non-promoters was varied between 64 and 625. There were no sequences
in common between the two data sets. One of these, called the training set, was used to
train the neural network and the second, called the testing set, was used to test it. The
single letter designation of bases, "a, c, g, i" was converted to a "unary"” notation, where
"a" is replaced with the binary string "0001", "c¢" with "0010", "g" with "0100" and "t"
with "1000". Thus each base position has a 4 bit unary code denoting the presence or
absence of the bases "a, c, g, t". Since only one base appears at each position, each group
of four bits has only one "1" indicating the presence of one of the bases "a, c, g, t",
depending on whether the first, second, third, or fourth bit is set to "1". The mutual
information of each of these bit positions within the class, "T" (for promoters) and "F" (for
non-promoters), was calculated for the training set according to equation (i).

) Prob{C.b]
P TR i  JProblChI x| FProb(Ch

(D

C is the class of sequence, "T" for promoter and "F" for non-promoter, and 'b =
0,1" denotes the presence or absence of bases "a, c, g, t" at each base position. Eyuatior.
(1) measures the mutual information between bit positions and the class, arnd can be
interpreted as measuring the importance of the presence, or absence, of each base in each
position for determining class. We have also measured the mutual information for pairs of
bits where the same formula applies but the "b" summation is over the {our possibilities
"00, 01, 10, 11", This quantity measures the importance in deterruning class of the
presence or absence of pairs of bases in the various positions, and is of interest because of
the possibie interaction of the -10 and -35 regions in determining wiether or not a sequence
contains a promoter. The real valued mutual information scores may be ranked from high
to low values, with high values identifying a base positior,, and also the base in that
position, whose presence or absence is informative abou: the class. When the mutual
information is applied to pairs of bits one may determine the important pairs of base
positions, and the bases in those positions, whose presence or absence is important to
determining class.

When sequences were later input to a Ferceptron network only those bit positions
of the unary coded data were used that have mutual information above a centain arbitrary
cutoff value. For example, one may choose 2 cutoff so that only the top 10 bit positions are
used by the network. This has the effect of reducing the number of weights in the
network, which is often an aid to achieving good generalization outside the training set, and
of course, the actual bit positions determined by the mutua! informaticn may be examined
in the context of biological knowledge. The highest fifty mutual information values of bit.
and bit pairs, arc presented in Table 1. The -10 region correspords to positions 53-58 in
Table 1, while the variable -35 region corresponds to positions 26-35. (Sce Figure LA).
Not unexpectedly, the highest values include mainly positions in the -10 and -35 consensus
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tron network is therefore a go quence of s and 1's

18 tt 0r u s an

1t positions over a cenau cutoff.

A4

Perceptron

In the Perceptron neural network, there are two layers of processing units, an input
layer representing the sequences and an output layer which signals the class that the
sequence belongs to, either a promoter or non-promoter (see Figure 1B). A Percept.on is
trained using the sequence information translated into numerical values based on the mutual
information analyses as described above. This type of network was previously used for
recognition of ribosome binding sites (Stormo et al., 1982). In the Perceptron, the output
layer consists of a single unit. Its value can vary between 0 and 1 and is calculated
according to equations (2a) and (2b) (Rumelhart et al., 1986).

N
netp = zwcighti x inputj + bias (2a)
i=1

outputp = (2b)

l + c'netp

The bias term is equivalent to a learned weight that is connected to an input unit that always
has a value of 1. The above equation is somewhat different from the original Perceptron
formalism in that a sigmoidal threshold function was used to generate the output value,
rather tha. a linear step function. A value >= 0.5 predicts a promoter, while a value < 0.5
predicts a non-promoter sequence. In all of the tables the results are presented as the
percent correctly predicted. This is calculated from the number of promoters with an output
greater than or equal to (.5, divided by the total number of promoters. Similar calculations
are made for the non-promoter sequences. The number of input units was varied between
10 and 50 depending on the number of single and pairwise bit positions that w1s used. A
series of real valued weights connects each input unit to the output unit. During training,
the error was calculated over all the patterns as shown in equation (3), as the difference
between the expected target value of the outpur unit (0.9 in the case of a promoter and 0.1
in the case of a non-promoter) and the caiculatesd output.

Error = Z(targcto outputp)? 3)
p_
If the error was greater than some leve! (usually 10 percent ot the initial error at the start of
trairing), then the values of the weights were changed to minimizc the error by using a

gradient descent method (Rumelhart et al., 1986). The weights were changed according to
the learning rule given in equation (4).

AW, = 31’ 4)

QU
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Table 1. 50 Highest Positions of Mutual Information

Rank NumBits Positions Bases

1 2 58:53 t.Not_t : t, Not_t
2 2 54:53 aNot_a : t,Not_t
3 2 58:54 t.Not_t: aNot_a
4 1 53 t.Not_t

5 1 58 t.Not_t

6 2 56:53 aNot_a : t,Nog_t
7 1 54 aNot_a

8 2 58 : 56 t.Not_t: a,Not_a
9 2 53:31 t.Not_. : t,Not_t
10 2 56:54 aNot_a:aNot a
11 2 5430 aNot_a: t,Not_t
12 2 57:53 aNot_a : t,Not_t
13 2 55:53 t.Not_t : t,Not_t
14 2 58 : 22 t.Not_t: a,Not_a
15 2 58 :30 t.Not_t : t,Not_t
16 2 58: 31 t.Not_t : t,Not_t
17 2 53:30 t.Not_t : t,Not_t
18 2 53:22 tNot_t : a,Not_a
19 2 54:22 aNot_a: aNot_a
20 2 53: 6 t,Not_t : t,Noe_t
21 2 54 : 31 aNot_a : tNot_t
22 2 53:158 t.Not_t : t,NCe_«
23 2 54 : 50 aNot_a: tNot 1
24 2 81:53 aNot_a : t,Not_t
25 2 85:53 aNot_a : t,Noi_t
26 2 85: 54 aNot_a: aNot_a
27 2 88: 53 g.Not_g : t,Not_t
28 2 58: 5§ t.Not_t : t,Not_t
29 2 53:13 t.Not_t : t,Not_t
30 2 58 :26 t.Not_t : t,Not_t
31 2 53:26 t,Not_t : t,Not_t
32 2 5348 t.Not_t : t,Not_t
33 2 58:15 taNot_t @ tLNot_t
34 2 56 : 1 aNot_a : t,Not_t
35 2 76 : 52 aNot_a : t,Not_t
36 2 67 : 58 aNot_a : t.Nnt_t
37 2 53:16 t.Not_t: a,Nnt_a
38 2 58: 16 tNot_t: a,Not_a
39 2 55:54 t.Not_t : aNot_a
40 2 58 : SO t,Not_t : t,Not_t
41 2 33: 51 t,Not_t : gNot_g
A% 2 53: S t.Not_t: t,Not_t
43 2 53:29 t.Not_t: t,Not_t
4 2 53: 11 t.Not_t : ¢t,Not_t
45 1 56 aNol_a

46 2 81:54 aNot_a: aNot_a
37 2 53:50 t.Not_t : ¢,Not_t
48 2 58: il t.Not_t : t,Not_t
49 1 58 g.Not_g

5C 1 53 ¢,Nout ¢
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Expansion of this equation in terms of the output and weight values gives equations (5a)
and (5b). This shows hew the changes in the values of the weights depend on the values of

the output, the expected target, and the previous weight. In equation (5a), € is the value for

the learning rate and « is the value for the momentum term used during training. These
values were usually set to 0.05 and 0.90, respectively. These constants affect the rate of
learning during the training procedure.

AWi(n+1) =€ x §; x outpu; + a x AWj(n) (5a)
3i = (target; - outputj) x output; x ( 1 - output;) (5b)
Experimental information

In the second method, we know from experimental work that the -10 and -35
regions are important for promoter recognition (Hawley and McCLure, 1983). Therefore,
only bases surrourding these regions are used as input for the neural network. For the -10
region we use 6 bases at the positions that coincide with a -10 consensus region. From the
analysis of many promoter sequences, it 1s known that the distance tetween the -35 region
and the -10 region is variable. This spacing is usually 17-1% bases but can vary between 15
and 21 bases. Therefore, we have used 12 bases beginning 27 bases away from the -10
region. This set of bases should contain information for all possible -35 regions beginning
15 to 21 bases away from the -10 region. As input for the network, these 18 bases are
extracted from the promoter sequences and are converted according to the following coding
scheme "a" = "0001", "c" = "0010", "g" = "0100", and "t" = "1000". This results in an
array of 0's and 1's for each sequence, of length 72. The remainder of the bases are not
included. Tnis data was used to train the back propagation network which is described
below.

Back Propagation

The back propagation network consisted of 3 layers of units, the input layer
containing 72 units, a hidden laycr of 8 units and an output layer of a single unit (see
Figure 1C). The 8 hidden units were chosen to represent the 7 possible -35 regions, i.c.
those separated by 15-21 bases, and the -10 region. Not all input units were connected to
every hidden unit. The input units 1-24 were connected to the first hidden unit, input units
5-28 were connected to the second hidden unit. input units 9-32 were connected to the third
hidden unii, etc. Finally, the last 24 input units were connected to the eighth hidden unit.
The 24 weights from the input units to cach of the first seven hidden units comprise
feedforward subnets in the full network architecture. Each of these seven subnets was
constrained to have the same weights so that the hidden units can respond to the presence
or absence of a -35 signal in 4 translationally invariant manner. Thus, the weights in these
subnets were initialized identically, and constrained during training to have the identical
weight values. Therefore, there is really ouly one distinct subnet for these connections, and
this single sutnet is duplicated over the connections of the first seven hidden units to the
inputs. The total number of weights is 56, 48 between the input and hidden layers and 8
between the hidden and output layers. There were also three bias terms. The training was
carried out using similar error minimization and weight change rules to those described
above (Rumelhart et al., 1986).
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Interactions between -10 and -35 regions

To investigate whether the -10 and -35 regions show any interaction we have
trained a Perceptron using these regions either alone or in combination. The network was
trained on the - 10 region alone or, on the -35 region alone, or on both regions 1ogether. For
this procedure, the 6 bases of the -10 region and the 6 bases of the -35 region were used
and converted with the 4 bit coding described above. This gave 24 input units when either
the -10 or -35 regions were trained alone, or 48 input units when both were used.

Results

Muwual Information and Perceptron

For training the Perceptron, three cases were chosen using either the top 10, 30 or
50 values of mutual information. In the case where only ten values were used, this
corresponded to 5 base positions within the 90 base promoter region. Using the top 30
values involved 17 positions and the top 50 values involved 25 positions. Table 2A shows
the results after training the Perceptron. In all cases, the network predicts the training set
with an accuracy greater than 96.9%. However, learning of the training set is better when
30 or 50 values of mutual information are used (98.4% versus 96.9%). As a measure of
how well the network can generalize, the prediction of the network was determined using
the testing data set. The results, shown in Table 2B, demonstrates that the network can
predict new promoter sequences with an accuracy of 96.9%.

Table 2. Pe..ceptron using Mutual Information

(A) Training Set

Input Units Total Promoter Non-Promoter
10 96.1 96.9 953
30 99.2 98.4 100.0
50 99.2 98.4 100.0

(B) Testing Set

Input Units Toial Promoter Non-Promoter
10 ST T 96.9 98.4
19 98.4 96.9 100.0
50 97.7 96.9 98.4

The training and testing sets included 64 promoter and 64 non-promoter sequences There
was no duplication of sequences betwecn the two data sets. The numbers in columns 2-4
refer to the percent predicted correctly.
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Table 3. Back Propagatior Results

Data Set Total Promoter Non-Promoter
Training 99.2 100.0 98.4
Testing 97.7 96.9 98.4

The training and testing sets included 64 promoter and 64 non-promoter sequences. The
numbers in the first row correspond to tiie percent predicted correctly for the training data,
while the second row corresponds to the percent correct for the testing data.

Back Propagation

The results using our experimental xnowledge of promoters and the back
propagation network are shown in Table 3. In this case there were 72 inpurt units derived
from the six bases comprising the -10 region and the 12 bases that comprise the 7 possible
-35 regions. After training this network, piomoters in the training set are predicted with
100% accuracy. On the testing set, the network can predict new promoters with an
accuracy of 96.9%, which is equivalent to the Perceptron network described in the
previous section.

Interactions between the -10 and -35 regions

Since the -10 and -35 regions of promoters are known to be important for function,
and since these regions were used in previous studies (Lukashin et al., 1989), a Perceptron
was trained using only the bases from these regions. Six bases from the -35 region and 6
bases from the -10 region were used The network consisted of 48 input units and 1 output
unit. Table 4A shows the results following training with a data set containing 64 promoters
and 625 non-promoters. The overall prediction rate was 99.3% (-10 aad -35). Similar
results are obtained with the test set data (Table 4B), where the prediction rate was 99.5%
(-10 and -35).

To determine if there might be some interaction between the -10 and -35 regions,
we compared the test results from a network that was trained using both the -10 and -35
regions (-10 and -35) versus a network that used the weights derived from training with
each region alone. To examine the importance of both conscrved regions in determining a
promoter sequetce, we also trained a Perceptron using just the -10 region alone or just the
-35 region. In this case the appropriute six bases were used and the Perceptron consisted cf
24 input units and one output unit. The results from these networks (see Table 4A) show
that the overall prediction was 95.6% on the training set and 95.7% on the testing set using
the - 10 region alone. For the -35 region, the results were not as good, with 89.4% overall
prediction for training and 88.7% overall prediction for testing.

We tested whether the neural network could pick up any extra information during
training by using both the -10 and -35 regions. To do this, we compared the results, using
the testing data set, on the network derived from waining with beth regions versus a
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Table 4. Perceptron -10 and -35 Region Interaction

(A) Training

Region : Promoter Non-Promoter
-10 Region 95.6 96.T 95.5
-35 Region 39.4 92.2 89.1
-10 and -35 99.3 98.4 99 4

. (B) Testing

Region Total _ Promoter Non-Promoter
-10 Region 95.7 92.2 96.1
-35 Region 88.7 93.7 88.2
-10 and -35 99.5 98.4 99.7
Combine -10, -35 98.5 85.9 99.8

The numbers correspond to the percent predicted correctly. For this table, only the -10 and
-35 regions from the 64 promoters and ccrresponding regions from the 625 non-promotcrs
were used for training and testing. The region refers to the region used for input to the
networks. -10 refers to training in th7, presence of the -10 region alone. -35 refers to
training in the presence of the -35 region alone. -10 and -35 refers to training in the
presence of bcth the -10 and -35 consensus sequences. Combine - 10, -35 refers to using
the networks trained in the presence of the -10 alone and the -35 alone and combining
them, then testing using this combined network.

network which combined the connection weights from the networks trained on the -10
region alone and trained on the -35 region alone. This network had 48 input units, 24
weights derived from the -10 region network, 24 weights derived from the -35 region, 2
bias terms, and 2 output units. If both output units gave values greater than or equal to 0.5,
then the test sequence was classified as a promoter. The results are shown in Table 4B and
indicate that promoter sequences are predicted with far less accuracy, 85.9% versus
98.4%, using ihe weights derived from networks that were trained on individual regions,
then when a network was trained using both regions.

Discussion

This study investigated the utility of neural networks for learning to distinguish
prokaryotic promoter sequences from non-promoter sequences.T'wo approaches were
employed. In the first, the sequences of promoters and non-promoters in the training set
wi-re analyzed for the mutual information at each base position. This information indicated
the base positions that best distinguished promoter sequences from non-promoter
sequences. This information was then used to train a Perceptron. In the second case, the
available experimental information on promoters was used to set up and train a back
propagation network. With either tyne of network, the results were fairly similar and the
trained networks predicted promoter and ion-promoter sequences in a training and testing
data set with an accuracy greater than 96%. For the prediction of promoters these results
using neural networks seemed much higher than the results from previous studies which
used statistical methods different from neural networks. Although the exact promoters used
in these studies were not identical, there was a lot of overlap in the sequences used. The
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algorithm of Mulligan et al. (1984) predicted promoter sequences at the 83% level, while
that of O'Neill and Chiafari (1989) correctly identified 77% of the promoters tested.

We also investigated the effects of training a neural network on each of the -10 and
-35 consensus regions alone, versus using both regions. If there are no interactions, the
weights from a network trained on the -10 region could be combined with the weights from
a network trained on the -35 region to predict promoters. This level of prediction should be
equivalent to a network that was trained using both regions. However, our results indicate
that the network can learn to predict promoter sequences more effectively when both
regions are present during the training.

A major part of the human genome effort will be the analyses of sequences to
determine their biological functions. Efficient computer methods for pattern matching will
need to be develeped to carry out this task. From the results presented here, it appears that
neural networks may prove useful for this problem and the method is general enough to be
applicable to most patterns where there are a representative number of known examples.
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FIGURE 1. (A) E. coli Promoters. This is a diagram of the relevant features found in
prokaryotic transcriptionai promoters.The two conserved regions are indicated, and their
consensus sequences are shown. -10 and -35 refers to their approximate location from the

start of RNA transcription. These two conserved regions can be separated by a variable
distance of between 15 and 21 bases. (B) Perceptron. This shows a Perceptron neural
network architecture, consisting of input units, which are connected to a single output unit.
The connection weights are represented by lines connecting an input unit to the output unit.
(C) Back Propagation. The back propagation network contains three layers of processing
units. The input units connect to units in the middle or hidden layer, and the hidden units

connect to the outpnut unit. In this network, not every input unit is connected to every
hidden unit.
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