
L&U~ -91-896

—

LA-UR--9l-896

DE91 009954

TITLE INFORMATIONDYNAMICSOF SELF-PROGRAMMABLE
~TTER

AUTHOR(S). CARSTENKNUDSEN,RASKLJSFELDBERGand
STEEN RASMUSSEN

SUBMITTEDTO Proceedings of “Ct~mplex Dynamics and Biological
Evolution” held AuSust 6-10, 1990 in Denmark

DISCLAIMER

This report wus prepnrcd t!snn account or w,~rk sponaorcd by an agency of the United !htcs

Government, Neithcrtlte [lnitd States Govelnmcnt nornnyagcncy thcrcof, nt]r any of their

emplcryccs, makes any wurranty, cxprexa or imp~kd, or acaumcs any !cgal Iiuhility or rcxponsi.

bility for the accuracy, complctcncac, or uac(ulnatof any information, npparatus, product, or

proccxx dixcloacd, or reprcacnts that its uas would not infringe privately owned r,ghts. Rc(or-

encc herein to any .qrccitic commercial product, prm’cm or acrvwc by trade name, trademark,

manuracturcr, or crthcrwiac dots not ncceuaardy con, tttutc or Imply IW cndorxcmcnl, rccom-

mcndation, or favoring hy the United Staten Govcrm, wnt or any sgency Ihercd The views

and opinions of aulhorx eaprcaccd herein do m)t ncc,wamrily siatc or reflect those or the

(Jnitcd S!atea Government or any agency thcrwf,

8yaccop!an~o o!thlsarl!cla th@publ,snaf rUqn!zoalhaltho US C30wmmOnt WlalnSanOfWCWaWQ ?oyalty. ffMl,con3a lo Dubl!?hoff@oroduco

lhep”bhgn~d form n! IIIIS Conlf,butfoo O? to allow otl-tors to do ao. Ior US Govornmonl owboaos

lr!. Los Alamos Nal,onal L8boralofv fequ.als Ihat lfw pubhahor IrjwItIly Ihla af!Kl@alwOfI(oo?fofmed u,, ~eflhoauaplcos ollngu S Dopaf!monlol Eno,gv

anrilos Los Alamos National Laboratory
Los Alamos,New Mexico 87545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

IXFORMAmON DYNAM:3 OF SELF-PROGRAMMABLE MATTER

Carsten Knudsen,t R=mus Feldberg,t and Steen Rasmussent

‘Center for Nonlinear Studies and‘Physics bboratory In and
Center for !kfodelling, Complex Systems Group,
Nonlinear Dynamics and Theoretical Division
Irreversible Thermodynamics MS B258
Technical University of Denmark Los A.lames National Lakorato~
DK-2800 Lyngby Los Aiamos, New Mexico 87545
Denmark USA

ABSTR4CF

Using the simple obsemation that programs are identical to data programs alter
data, and thus programs alter programs, we have constructed a self-programmingsystem
based on a parallel von Neumann architecture. This system has the same fundamental

property as living systems have: the ability to evolve new properties, We demonstrate
how this constmctive dynamical system is able to develop complex cooperative

stntctures with adaptive responses to external perturbations. The experiments with this

system are discussed with special emphasis on the relation between information
theoretical measures (entropy and mutual information functions) and on the emergence

of complex functional properties. Decay and scaiing of long-rmge correlations are
studied by calculation of mutual information functions.

INTROfXJCI’ION

A fundamental feature of living organisms is the ability to compute, or p oces!,
information. Information processing takes place over Awide scale of complexity,ranging
from the simple processes by which an enzyme recognizes a particular substrate
molecule, to complicated feedback regulations contairdng many different levels of
information processing, to the extremely complex processes of the human brain,

An example of biological information processing in a fee+back loop is provided
by one of the negativt feedback loops described by Sturis et al, (1991) in their model
of o$cillsto~ insulin release. The feedback control can here be divided into at least
four different components: (i) an increased amount of Ulucosein the plasma stimulates

insulin production in the pancreu and secretion of insulin into the plasma; (ii) from

the plasm% ir.wlin diffuses into the interstitial fluid; (iii) here insulin molecules a~tach

to receptors on the surface of the cell; and (iv) insulin activated receptors enhance the

uptake of glucose by the cells, which, of course, implies a decrease in glucose outside

the cc]k.

This loop involves simple biochemical information processing such as the

recognition of receptors by insulin molecules and the subsequent attachment of the

molecules. In addition, there is a more complex information process involving actite

transport of glucose over the cell membrane facilitated by a cacade of confirmational

changes in the cell membraues protein molecules.

The most complex kind of biological information processing is probably (he

abstract and creative symbolic information processing in the human brain. Simple

aspects of these processes are subjects of numerous investigations, In particular a

variety of models of artificial neural networks have recently been proposed (see for

example Palmer 1988, and Touic&ky 1990).

The theoretical foundation of information processing in man-made machines can

bc described in terms of computation theory (Hopcroft and Unman 1979), In computa-

tion ;.,:oty, a number of different formalisms exist, of which the Turing machine (TYf)

for historical re~orts is the mcst well. known. The Turing machine has been examined

thoroughly by mathematicians and computer scientists because it is believed to be able

to perform the most general type of computation, universal computation, This

conjecture is known u the Church.Tunng thesis (Hopcroft and Unman 1979),
Besides Turing machines, several other systems have been shown to support

universal computation, including cellular automat% the A-calculus, Post systems, ~he

hard billiard ball computer, general recursive functions, clwifier syst~ms, partial
differential equations, von Neumann machines, and even ~ maps of the unit ~quarc
onto itself. Ithas been shown that each of these formalisms is equivalent, since any one
of them can simulate any other,

The information processing found in biological systems seems to be different in

nature from that of a Turing machine. In facg none of the above mentioned

computational paradigms capture the full spectrum of bi~rnolecular information
processing.A fundamental property of computation {nbimolecular systemsarises from
tl,eir ability to alter or program themselves. Self.progrmt.rnirtgoccurs at all times and
length scales in bimolecular systems, &though the above mentioned computational
$ystcrnsin principlo can program themselves, this capacity hm never been studied or
used. It is knowmthat any of the universal systems have the foilowing properties: (1)

Ihe ability to store information, (11)the ability to communicate information, and (III)
the ability to perform non-trivial information processing,

The$e abilities arc also found in the living cell, aithough they we more difficult

to cl~si$, Howrver, using the same scheme to discuss elements of biomoiccular

computatio~ we obtain:

(T)Storage and memory abilities: (1) single molecules, e,g, DNA and proteins, and
(2) assembly/disassembly of suprarnolecular structures, e.g. the cytoskcleton and the ceil
membrane.

(11) Signal abilities: (1) diffusion (passive transport of materials, energy, and

information) occurs everywhere in the cell, (2) active transport (non-specific
(convection) and specific transport of materials, energy, and information) convection

occurs in the cytoplasm and specific transport occurs for example over the cell

membrane and along the microtubules, (3) confirmational changes (transfer of energy

and information), e.g. of dynein and kinesin in relation to cilia mobility, and (4)

electromagnetic irradiation (transfer of energy and information), e.g. photochemical
processes in chlorophyll.

(HI) Transformation abilities: (1) chemical reactions - often using signal molecules
tu reactants to produce new signal molecules as products or using sigtwk which act 3S

catalysts or triggers, and (2) transcription of DNA to RNA and translation of RNA into

protein molecules which fold up and act as constructive and regulatory units in the cell,

From this scheme it should be obvious that most fundamental bimolecular
processes can be interpreted in terms of computation, These bimolecular processes
are all coupled through a very complex network of functional interactions about which
we oniy know certain details and in which the overall bauplan is still a mystery, The
cell continuously programs and re.prograrns itself, and in multicellular organisms this

self-programming alsb occurs at the organism level (recall the discussion of the

feedback loop controlling insulin relew).
Livhg systems can through a re.programrning of some of their parts alter

functional properties which are of vital importance for survival. Viewed over Icnger

time scales this seif-prograrnming ability is also used to create new properties which are

incorporated through the selection process of evolution. Since any comput~t;onal
universal system in principle, is able to program itself, wc shall modify one of them ro
that we can study self-programming as a phenor non in a much simpler arid more

tractable system We have chosen to modify the parailel von Neumann architecture,
The modified von Neumann machine (MVNM) is easy to program since most modern

digital computers are based on the von Neumann principle, and since the autonomous
dynarnia of such a system even at its lowest level (one single instruction) has 4 clear
computational interpretation, We shall in the following focmson the emergence of new

functional properties in MVNM’Swhich most clearly reflect the evolutionary aspect of
biocomputing.

SELF-PROGRAMMABLE MATTER

We can in genera] terms define self.prcgrnmmable matter as a dynamical system
of functional interacting elements, or compositions of elements, which through

.
.

.
. autonomous dynamics can develop new compositions of functionally active elerrlen:s.

Such systems are characterized by an ability to constmct novel elements wi!hin

themselves. Thereby chemistry by definition becomes a particular kind of self-

prograrrtmab]e matter. The physical properties (e.g. shape and charge) of the chemic~l

species define the possible interactions with other molecules and thereby their
functional propenies. Chemical systems create new properties through recombination

of molecules via chemical bonds. New combinations between existing molecules and

combinations of new molecules with other molecules then define new functional

properties, This defines a constructive or seif-programming loop given by:

nlolecules + p}l~sical propenies + ji.mctional propenies + interartiorts - new molecules<

As an example of a self-programmi~g

system wc have defined a modified von Neu-

mann machine, called Venus, It consists of a

one-dimensional memory array, called the

core, This corresponds to the MM (random

access memory) in a modem digital computer.

Each element of the core, a word, contains a
machine code instruction. There are 10

different instructions, which are listed in

Table 1,An instntction has three elements, an

opcode and two fields, A and B, Each tleld
coriists of an addressing mode and a numeric

field, the latter containing a nonnegative
integer, There are four different addressing
modes, as shown in Table 2.

Many programs simultaneously execute
instructions in the core. A monitor-like

function always discovers whenever two or
more instructions simultaneously try to obtain
write access to the same core addresses,
Thereby, write cordlicts are resolved.

The model has several features which -

OPCODEI twNc710N

DAT B

MC)V &B

Non-executable statement.
Terminate the process
currently executing, Can bc
used for stork data.

Copylhe contentsof A to B,

ADD A,B

SUB A,B

Add thecmsten!s of A to (he
contents of B and save the
resultissB.

Subtractthe contents of A
from B and save the result in
B,

JMP A

JMZAB

Move tbe pointer IO A,
.
If B etysats wo, move [he
pointer !O A.

JMN A,B

DJN&B

If B differs from uro, move
(be pointer to A.

De=ement B, and if B differs
from zero, move he poinlcr
to A.

CMP &B

SPL B

If A differs from B, skip [he
next isswuction, e.g. move (be

~~~~ ~o::ps alsehd

Crests! a new process it the

address minted 10 bv B,

are not found in ordinary multi-tasking
I able L

VNM’S.One of the major differences is the pre$cnce of noise in our system. The task

of an ordinary VNM is to perform ve~ specific calculations, detailed via programs
written by human subjects either in machine code or in a high-level language such u

FORTRAN or C, In the presence of noise, most programs, e.g,, ordinary differential

equatio;, solvers or bookkeeping programs, would crx’~ or give more ur Ie\s

meaningless outputs. This is ccmtra~ to the computations in biological systems in *hich



noise usually hx a very limited effect. One notion of noise in Venus is built inlo the

execution of ~he MOV instruction. When the MOV instruction (see Table 1) copies G

word, something might go wrong, and the word written to the memory can be altered.
This is the reason why ordinary programs have a hard time executing properly. Such

routines rely on perfect copying of data. There is an additional source of noise [ha;

drives our system, Once in awhile a random pointer is appended to the execution

queue. Since processes can termina[e by executing the DAT instruction, we make sure

[he system is supplied with pointers via this stochastic mechanism. ‘The mutation fre-

quency is one per Id copyings, and a pointer is appended to the execution queue ap-

proximately evety twentieth generation. A mutation of a machine code program always

yields a new legal prograrm as opposed to a change in a high-level language, which 31-

most certainly will result in a syntax error.

The Venus system also incorporates a

notion of computational resources This pre-

vents the simultaneous execution of too many

processes both in total and within a limited

spatial addressing area. The first limitation is

expressed in terms of an execution queue of
fried length, which in all the simulations to be

discussed were of size 220. The execution
queue contains the addresses of the
instructions to be executed. The second
limitation is due to address-localized comput-
ational resources, which are measured in
fractions of one execution. Each address in
the core y is at any time t associated with a

certain fraction r(t,y) of one execution. This
value is incremented by a f~ed amount & at

each generation. However, the value can
never exceed some constant predefine
fraction rm= of one execution. When the
system executes a pointer from the execution
queue, it looks to the addresses in the im-

ADDREWNG
MODE

(imm$diate)

(d~ect)

(ind%t)

Table 2.

WFECTIW.
oPErLwD

Tbe cffcc(ive operand is
the value in the data
field. E:wpk: MOV
#3,,, , Ima the effeuive
operand 3,

Tbe effective operand is
the word pointed to by
the value in dw data
field. E. XUrlpk:MOV
S2., , ha he effective
operand located two
words tows.rdaincreuing
addreaaes.

The effective operand ia
found by Imking at [he
data field pointed to by
tic actuat data field, and
then using the ducct
mode.

& indirect, onty [he
value poinledto by !he
actual data tleld u
dccrernmed before being
used.
—

mediate neighborhood of the pointer and finds the sum of computational resources. If

this sum exc~edsone, then the instruction will be executed. If no~ the pointer will dis-
appear, The resource radius Rm, defining the immediate neighborhood is three in all

simulations,
Instructions are only allowed to cornrmlnicate, e.g. to read and write dat~ locally,

The allowed distance for read/write access is 800 in all simulations, However, in

contriut with normal multitasking VNM’S, all processes can overwrite anything in their
neighborhood, u long as it does not occur simultaneously with other processes, This



means that there is no notion of individual work space or, in biological terms, \ht’e m

no predcfined “proto-organisms” (cellularity).

In all simulations, the system has been initialized randomly by a uniform

distribution of opcodes, addressing modes, and data fields. Previous studies showed that

the system can only evolve simple structures from a uniform distribution (Rasmussen

et al. 1990). One can increase the complexity of the dynamics of the system grea[ly by

supplying some kind of biasing of the initial core. In other words, we need to supply

the system with a reactive potential, in the sense that the different machine code

instructions need to be inhomogeneously distributed in the core to enhance many

spontaneous computations. This potential is conveniently introduced by placing a seif-

replicating program in the randomly initialized core. This program has a replication

cycle of 18 generations and will very quickly produce a considerable number of

offspring, all of which will attempt to replicate unless they have been modified by noise

or have been ovenvritten. As mentioned earlier, most programs designed to work in a

noise-free environment very quickly crash by making erroneous copies. Another way in

which these programs begin to malfunction is by copying cm top of ether offspring,
which eventually happens since the core has a limited size, 3,584 ad? ’esses in the

simulations to be discussed. By using our interactive graphics simulator, we have

determined the lifetime of a well-functioning population of self-replicating programs to

be around 200 generations. After this, no copies of the original programs are left. Only
mutated versionswith different functional properties are found. It is important to notice
that the effect of the self-replicating program is a good mixing of insmctions, and not

a probing of the system with self. replicating properties. The last bit of this sophisticated

self. replication is gme after 200 generations.

An alternative and conceptually more sati@ing method for supplying the system

with a reactive potential is to generate a, andt.m core by using a set of coupled hlarkov

matrices. This approach is currently bein~ investigated (Rasmussen et al, 1991).

In the simulations with Venus, many different evolutionary paths have been

obsewed. Typically, after extermination of weiidunctioning sclfweplicating programs,
the system enters a phase in which massive copying of one or more instructions takes

place, In the beginning, this is mainly caused by the copying loops of the former sclf-
replicating programs. Typically such a partially malfunctioning loop will move copies

of a single word out into the vicinity of the loop, As a resul~ large areas of the core
will be filled with a single word, with urlaltered opcode, amode, afield, and bmode, but

possibly different bfields. This runaway process introduces a kind of sensitive

dependence on initial conditions, as known from chaotic dynamical systems,However,



after some generations the copying ]OOpSare destroyed, either by noise or by \lOV

instructions ovenvriting them. This signals the beginning of a new epoch for the system.

From this point on, the dynamics of the core is governed by large coherent groups of

single instructions of sizes ranging from one word to several hundred words. This is in

strong contm.t to the dynamics in the first phase of the evolution, in which relatively
few instmction,s placed in the self-replicating programs were responsible for the

dynamics.

Naturally, the further development of the core depends heavily on the distribution

of opcodes at this point. The distribution of opcodes is determined by the instmction

copying, and therefore from this point on we see different evolutiona~ paths. For

instance, a core consisting mainly of SPL instructions will lead to an evolution involving
large areas crowded with pointers, while a core containing mainly MOV insttu:ticrii

will lead to a very dynamical behavior concerning the contents of the core, but also to
a core with a small concentration of pointers. In the following, we shall take a look at
three different evolutionary paths that are often observed in simulations with Venus,

If the core contains relatively many jump instructions (e.g. JMP, JMZ, JMN, and

DJN) with immediate amode, the pointers will get caught at these, because an afield

with immediate addressing mode points to its own location in [he core. In other words,

a pointer meeting one of these instructions will keep jumping to the same instruction

over and over again, until it is either killed by lack of computational resources. or !he

jump instruction is overwritten by noise or a MOV instruction. Of course, such a core

will be quite static with respect to the c!kibution of different instructions, because

most pointers will be trapped at the jump instructions, Therefore, possible \fOV
instructions will only rarely be executed. This kind of core will be referred to as a f~ed

point core. This state constitutes a quite trivial form of cooperation. The self-reinforcing
mechanism is characterized by the special mixture of instructions, With the presence

of noise in this core, a new pointer will occasionallyactivate a successive number of the

MOV instructions, which, with a probability close to one, will repeatedly copy o[her

MOV irtstnlctions or one of the jump instructions until the r~ewpointer gets trapped

at one of the jump irtstnxtiorts. Here, it may or may not survive, depending on how

many pointers each jump instmction in the neighbothood cart cany in terms of compu-

tational resources. Such a f~ed point structure is very stable towards perturbations,
As indicated shove, another common evolutionary path evolves from a core with

a considerable number of SPL instructions. In such a core, a large pointer
concentration in an area will imply the execution of many SPL instructions, leading to
even more pointers, comtituting a positive feedback loop, The pointer concentration

in such areas will increase until lack of resources or the limited execution queue leng~h
puts an end to the growth. ‘These SPL colonies have a more interesting cooperative

dynamics than the flied point cores, The SPL instruction colonies cooperate in the
sense described above: Locally, they distribute pointers to their neighbors, which do the

same, and 8]obal]y,the colony occupies all available computational resources in terns

of pointers, Sometimes we observe several addressin8 areas with this kind of behavior,



.

.,
Above a certain size, the different colonies compete for pointers, and an in~enni[:en:

behavior between the areas can be obsenwd. However, because of Ihe lack of \fOV

instructions, the contents of the core will be consemed.

A third and even more interesting evolutionary path is that of the MOV-SPL

structure. If a core has a large number of MOV and SPL instructions, a very com,~lex

cooperative stmcrure can emerge. The cooperation works in the following way: SPL

in.stmctions supply the structure with pointers, both to SPL and MOV instr~ctions.This
is somewhat similar to their function in SPL colonies, where they distrfou[e poin~ers to

themselves, We can interpret this as a supply of free energy in thernod,yrtarnic ~erms,

The MOV part of the structure makes sure that both MOV and SPL instructions are

copied, giving the structure the ability to move around in its environment and to locally

explore the spatial resource in terms of addresses in memory. The copying is [hereby

also responsible for the growth of the sttucture. This of course means that the strucmre

does not have a well-defined genotype in a contemporary biological sense,

It generally takes several thousands of generations from the extermination of

copying loops before the cooperative MOV-SPL structures appear. Typically the system

goes through several phases with relatively large concentrations of instructions other

than SPL and MOV before reaching the MOV-SPL state. Usually a core with a \fOV-

SPL stmcture consists of up to 80 percent SPL instmctions, with most other instructions

being MOV instructions; however, the ratio of SPL to MOV instructions may change
during the epoch.

w
Rgurt 1, The shading used in
core and cellular w“ews.

The MOV.SPL structure is very stable, even though it is constantly subjected to
perturbations, because the MOV instructions copy words continuously, However, the

structure apparently does not change its basic functional properties. If we were to

change the opcode of a word, the functional properties of this word would clearly be

altered drastically. Since this happens all the time in the MOV-SPL stmcture, the

system has found an area in rule space where it is stable towards such perturbations.

Stability in Venus is an emergent property rather than an intrinsic element of the

chctnistry, because the elements of which the structures are composed are themselves

very fragile,

In order tO illustrate ~he micro. and macroscopic dynamics of the VIOV.SPL

structure, we have made rwo different kinds of projections of the high-dimensional



Figure 2. Core portrait of a MOV-SPL structure. The upper row shows the opcodes at
addresses Othrough 127, the second row the addresses from 128 through 255, etc. Black
lmderscores represent pointers, White squares indicate no recent references.

discrete phase space. The macroscopic dynamics is illustrated in Figures 2 and 3, in

which each opcode in the core is represented by a small bar, The shade of each bar
corresponds to the instmction type as explained in Figure 1, The figures show the
opcodes in the core at two different times in the evolution. Note that in both of the
core views,large parts are white. This merely means that these addresses have not been
referenced for a while; there are no empty words in the core. In Figure 2, we see that

the activity is restricted to higher addresses, whereas in Figure 3, approximately 100

generations later in the evolution the structure has increased its domain, Note also that
most words are occupied by either SPL or MOV-instructions, The black underscores
represent pointers.



Figure 4 shows a cellular automata-like view of part of the core. We have chosen

128 consecutive addresses within the MOV-SPL stnxture. The opcodes of the words
in this addressing region are shown as horizontal lines at consecutive time points. In
this figure, time increases downwards. The black underscores here also represent

pointers. It is obvious that the microscopic dynamics is ve~ irregular, although he

macroscopic dynamics is preserved. We see how single words or sometimes consecuti~e

words are ovetwitten. MO note that once in awhile an opcode different from \lOV

or SPL appears, caused by mutations. Groups of pointers suddenly appear or dijappear.

In biochemical terms, this structure has an irregular metabolism.

The evolutionary stones described here, and additional ones, were discussed in

greater detail by R=mussen et al. (1990 and 1991).

Figure 4, A cellular automata-like view of a part of the core.

INFORMATION DYNAMICS OF VENUS

The dynamicsof self-programmable matter is generally quite complex m described
in the previou scctiom and at the same time simulations are computationally vety time

consuming. It is therefore preferable to have some quantitative measures that are easily
computed and that signal changes in local or global dynamics. The calculation of such

measures would enable us to characterize the system’s behavior in terms of well-

established quantities.

In order to make sampling frequent and simple, we have computed some simple

infomtation theoretic measures. The chosen measures contain both spatial and temporal

ingredients. Such a combination of spatial and temporal measures is not necessarily

ideal for all applications. It can be required, however, if the ingredients of the computa.



tional chemistries in question are such that there exists a preferred direction in space.

To simplify thinqs further, we shali here only consider the opcodc, since the functional

properties of a word are mainly determined by this clement.
The simplest of the measures is the spatial entropy for templates of size one S1.

The spatial entropy is aefined as the usual Shannon entropy, calculated from the

probability distribution Pk Miring the probabiliv of finding an imtmc~ion ~i[h tke

opcode k at an arbitrarily chosen site in the core

k=O

Another quantity of interest is the mutual information ,Wi. This is defined in term of

the spatial entropies SI and .S2

where

k=O 1.0

The interdependence between nvo events A and B ~an be measured by the mutual

information. The mutual information can therefore reveal the emergence of correlations

between neighboring instructions and thereby the occurrence of new properties of

interactions, Of course, too large correlations, such as for the pattern “101O1O1O1O1O.,.,”

are not desirable, since they simply indicate that eve~~hing is overly dependent. The

appearance of mutual information of intermediate values is of more interest, since this

could indicate that the system is able to perform non-trivial information processing

(Lmgton 1990).

The spatial entropy for templates of size wo $2 is calculated f~om a probability

distribution pU which, as wc shall discuss shortly, also captures some very important

temporal correlations that determine the system’s potential functional properties. The

probability pti is defined u the probability of finding an instruction with opcode k at

an arbitrary address n, and an instn.tction with opcode 1 at address n + 1, Note that this

probability is not the same as the probability of finding opcodes k and 1 as neighbors,

The reasons for the chosen definition are that pointers are incremented one word after

each executiom and that the pointers therefore in general travel towards increasing

addresses, with the obvious exception of the jump instructions. This means that changes

in S2 can signal a change in the typical sequential order of sxeoJtion of wo

neighboring instructions. A change in the typical sequential execution order of
instructions is of considerable interest, since a change in the potential functional

properties can indicate that the system is in the process of changing its global dynrwics



through some self-organizing process. If the spatial entropy for !empla[es of size one

S1 is approximately constan~ the effect of a chang: in S2 w-illimmediately show up in

the mutual information h-fl.

All experiments are performed with the parameters and initial conditions discussed

in the previous section, During simulations, the above mezmres were calculated

frequently. The sampling rate is the same in all computer experiments, namely one

sampling every 10 generations, A can be seen from Figures 5 and 6, the monitored

:nemures change reasonably \tith this frequency, i.e. there are apparently n~ sudden

jumps in the measured quantities be~ecn samplings.

Figure 5 shows the enttopi and the mutual information vs. time for a particular

simulation. In Figure 6a we see the muturd information vs. entropy for ~he same

simulation, and Figure 6b shows the mutual information vs. entropy for another

simulation. In the following we shail describe these simulations in terms of their

information dynamics,

It appears that the process sta~Mwith a drastic increase in the mutual information,

while the entropy is almost unchanged, This is obse~ed in both Figures 6a and r5b(?,he

simulation starts in the lower right-hand corner of the plots) and is caused by offspring

of the program initially placed in the core distributing their code. l%is piocess does not

il ltcnce the opcode distribution very much, since the program has a distribution of

opcodes fairly close to that Gfa randomized core. However, the spreading of this code

influences the spatial correlations in the core and thereby the mutual infcrrnation, After

about 2“N generations the self-replication of programs stops because of malfunction

introal~ QIJ by noise and programs writing on top of each other. Now the entropy starts
fallingwh~’:the mutual information remains in the vicinity of 0.6 bits, This is especially
clear in Figure 6b but can also be observed in Figure 6a as a noisy plateau at the right.

most comer of the figure, The decreasing entropy in this phase is caused by partially

malfunctioning copying loops spreading out a large number of a particular instruction,

For the simulations shown in Figures 5 and 64 we see that after about 4,000

generatimt$ the mutual information drops to a level of abotit 0,2 bits. At the same ,ime
the er,tropy drops to about 1,5bits, and some oscillations in both the entropy and the
murual information are observed, giving rise to a “cloud-like” picture of the information

dynamks in Figure 6a, In this part of the simulation the core is mainly populated with
MOV and SPL instmctions and the pointer density is very high,

The epoch of the MOV-sPL structure continues until I *20,000, where a large
peak in the mutual information reflects a change in the functional properties of :he

system (recall the discussion on mutual information in the previous section), From t?is

point ON the changes in the entropy as well as in the mutual information become ICS,
rapid and exhibit a stepwise character signaling yet another epoch of the system, In

this phase the core mainly consists of MOV., SPL-, and jump. instructions where most



3.!3

3.0

2.5
n

“520
w.

0.s

0.0L.
0 10000 20000 30000 40000 50900

Time (generations)

1,0

1

0.0 1 ,
1Oqo 2do0

1
30600 4odoil 50000

Time (generations)

Flgurc S, (a) The usual Shmnon entropy of the opcode distribution versus time. (b)
The mutual information versus time.



,4’

s.,

0.0 I r-t 1
0.0 0.5 10 1.5 2.0 2.5 3.0 3.s

Eltropy (bit)

1.0

1 i

,.,.,

O!OI!. .!,.TT!,T7.1TT...!,,,,,,,,,,f
0.0 0<5 10 1.5 2,0 2,9 3.0 3,3

Entropy (bit)

Figusw6. (a)shows the mutual information versus theusual Shmnonentropyf orthe
simulation shown in Figure 5, (b) showsmutual information versus entropy for snother
simulation.



of the pointers are trapped at jump instructions.
In the simulation shown in Figure 6b, the system leaves the plateau of partia!!y

malfunctioning copying loops at t= 1,100. At this point there is a rise in the mutual

information to a little above 0,9 bits followed by a drmtic drop to a value of about 0.2

bits. After this we see the same cloud-like distribution of points in the figure as
observed in Figure 6a. Note that during most of this phase wc see rapid changes of [he
mutual inforrnatiow while the changes in the entropy are more moderate. These
changes indicate that some dramatic changes ocar, while the opcode dis~ribution is

only affected slightly. This kind of behavior is likely to be caused by MOV instructions

shifting the contents of the core as opposed to the partially malfunctioning cop)lrtg

loops multiplying single instructions into large areas of the core. These someu hat

organ.izcd changes signal that the MOV instructions are activated many at a time,
reflecting some kind of structure in the part of the core responsible for the dynamics,

Finally, at t=32,000 we observe a drop in the mutual information to about 0,1 bits and

the disappearance of the large oscillations in the mutual informatmn. This phase of the

simulation is obsenwd in fig~re 6b as a small point dense area just below the cloud.

like point distribution. Compared to Figure 6a this final phase is somewhar more ac[i~e,

with small oscillations in the entropy and the mutuai information. These oscillations we

caused by MOV-instructions continuously reorganizing the contents of the core,
however, in a less organized and dramatic way than in the previous phase of the

simulation,
A rather coarse-grained resum4 of the simple information dynamics would be that

the system starts with a high degree of disorder, low complexity, and a high reactive
potential in terms of the initial distribution of opcodes, The system then evolves,

lowering the entropy towards intermediate values, while the complexity increxes, Then

the system wanders around in information space in a very complicated manner

according to the information theoretic measures characterized by sudden changes in

both order and complexity,where all major changes aIwaysare iusociated with changes
in the functional properties, With a time horizon of S0,000 generations, most processes

end up in one of two different dynamical states. One is best characterized u a frozen

state, and the other may be characterized as recurrent or chaotic, The frozen state is

a perturbed fixed point consisting of a variety of jump-instructions which have trapped
the pointers. The futed point dynamics is in this situation often perturbed by two
factors, One factor is that some of the conditional ]ump.instmctions periodically have
their bflelds counted dowm allowing trapped pointers to escape, l?te other factor is the

introduction of random pointers, The overall effect of both of these perturbations is

small changes in the core reflected by small steps both in entropy and mutual

information. This type of dynamics is seen in the simulation shown in Figure 6a,
Another example of this type of dynamics is the coilapse, where all pointers disappear,

This also occurs quite often. ‘he terminal state with recurrent dynamics is typically

found in situations where a major part of the core is occupied by either MOV. or SPL.

instructions, The MOV.dorninated cores have many MOV.instmctions executed at each



generation changing the content of the core all of the time. This Me of dyrnics is

seen in the simulation shown in Figure 6b. In SPL-dorninated cores the composition of

instmctions remains virtually constant, whereas the pointer dynamics exhibits

pronounced intermittent behavior, The SPLdomirtated cores of course have muimal

pointer density, The MOV-SPL structure often emerges as a transient structure active

from generation 4,000 until generation 20,000. ln rare situations the MOV-SPL

structure can sutive even after 100,000 generations. Since Venus is a universal system
it of course supports the three main ingredients of computation (recall the discussion

in the previous section): (i) the capacity to store information, (ii) the capacity to
exchange or communicate information and (iii) the ability to process itiormation in

a notvtriw’al way. Dynamical systems with these computational capabilities cJn

apparently, in thermodynamical terms, be characterized u operating in the irnmedia[e

vicinity of a phase transition (1.atgton 1990).
Since ‘he dymamicsof Venus changes the instruction contents of :he core and

thereby the tulcs governing the dynamics, the system often changes its computational
capabilities during a simulation. An exar~ple is one of the terminal states, the frozen

state (fued point cores with pointers trapped at jump instructions), vcv efficient in

storing information. However, the system has in this state, which in thenrtodynamical
terms is equivalent to a solid state, lost its ability to communicate and process

information. The chaotic or recurrent state (for example cores mainly populated with
MOV instructions) exhibits a pronounced ability to exchange or communicate
information but only a limited ability to perform nontrivial information processing.
This state can be characterized as a fluid state in thermodynamical terms, The MOV.

SPL structure is from a computational point of view more interesting. It is clear that

the MOV+PL structure does not have a well-defined geno~e, and consequently it

does not store information in the usual sense of data storage (recall (i)). However, it
is also clear from the previous anaIysisthat the macroscopic dynamics is presemd. lle
system therefore, through some complicated codin~ stores its phenotype rather than
its genotype, With respect to (ii) and (iii), it is fairly obvious that nontrivial
cothputatiow are performed, and that information is being communicated by the MOV

instructions, within the structure itself,

one can generalize [he mutual information be~een neighboring words to
investigate longwange correlations. When looking at long-range correlations, almos( all
temporal effects are removed, Changes in the functional properties/potential we
certain to have taken plncc if long-range congelations should appear or disappear,

In tiw followln~ we shall discuss the simulation shown in Figure 5 from this point
of view,

At time I- S,000, ●n interesting phenomenon is observed in the simulation
concerning the spa[ial correlations, Here, the mutual information of opcode, amode,



and bmode v:rsus distance all decay smoothly. If we try to fit a powet law IOthe decay,
W- can describe the decay by a scaling exponent @

M(n)= M(l) n-a.

What is particularly interesting here is that all three decays can be characterized by the

same scaling exponent, a= 0.4. One might suspect that this is always the cue since the
three elements of a word cannot be altered, but for example at t = 1,000,we find three

different scaling exponents, ranging from 0.64 for the opcode to 1.1 for the amode. At
later stages in the evolutiom e.g. at time t=20,000 and t= 21,000, the exponents aiffer
by more than 30940from each other. In Figure 7, the decay of correlations for the
opcodes is shown.

0.6

FlguIw 7. The figure shows the decay of correlatkms between opcodes as computed by
the mutual infortrmtiom

After approximately 20,000 genera~iow both the sprthl entropy S1 d the mutual

{nformatlonMl have mdmw Sinco both S1 and Ml change rtpkt!y uound IhiS time,

as can be seen {n Figure 5, we expect to bc ●ble to find some indication in the long.

range correlation. At time t ● 19,0W, w see from Figure 8 thatthere is a smooth decay
of Ml to vtdues below 0.01 bh. The same is dnetved at time t =21,000 (see Figure 8c),
except that tho value of the mutual ktformt{on here sIightly exceeds 0.01 bit. If we

look at the correlations at time r= 20,0tX3(Figure 8b), sever81peaks are observed, At



m

distances near 55 and 100, significantlygreater values of the mutual information than

in the surroundings can be seem indicating Ion&range correlations Since long-range

correlations indicate some relationship between sites in the core separated with some

distance, the emergence of such correlations signals that one or more MOV-instructions

move the contents of the core that specific distance. Thus, the long-range correlations

can be used to detect activity of one or more such MOV-instructions, enab!ing us to

detect changes in the core that have only insignificant influence on the total distribution

of opcodes, i.e. the entropy,

Yet another way of describing cohersfice in the core is by means of correlations

defined by Markov matrices. In the case of opcodc we can define a S4arkov mat~~

c!eterrnining the probability pu of opcode i at address n is followed by opcode j at

address n +1. Actually, such a matrix is intimately related to the spatial entropy S,.

Furthermore, u we mentioned earlier, such Markov matrices can be used for supplyin~

the system with a reactive potential, instead of using a small self-replicating program,

simply by generating the initial conditions on the basis of a set of low order ,Marko\

chains. We have calculated how the Markov chains determining the correlation

between an opcode at address n and an opcode at address n + 1 actually look at the
sampling times corresponding to Figure 8. Figure 9 shows 3-D pictures of these Nlarkov

matrices. Note that the figure shows log(NV), where Nij is the number of occur ences

of opcode j following opcode i, Note that pi, can readily be calculated from Ni,
In Figure 9a the strong correlations between subsequent MOV- and SPL-

instntctions indicate that the core is mainly populated with these instructions at
f = 19,000.At ~=20,000several smaller peaks appear indicating fluctuations introducing
JMZ and DJN instntctions. This signals that an instability is underway leading to an

increased concmttration of instructions other than the ones ruling ~.hecore earlier,

Finally, at t= 21,000 a new set of high peaks appears revealing a strong presence of
JMZ. The instability has thereby changed the macroscopic composition of ihe

instructioaa, Note also that the small peaks indicating the emergence of DJN

instructions have vanished. Tle DJN fluctuation has died out. TIM transition occurring

in the system around t =20,000 indicated by the information dynamics is thereby also

reflected in the opcode correlation matrices. In addition these matrices indicate which

instruct jorta are involved in the transition and which new instructions emerge in the new

epoch.

Obviously, the chosen measures are not sufficient to charactei ize the dynarnim in

all details, However, the proposed measures have the advantage of being very

~ccessible from a computational point of view, Also, some of the measures are closely

related to the functlona~ properties of the system. Several other more complicated

memrfs have been proposed, but they are either very complex to compute or cannot

be computed at all, Some of th :se measures are discussed in 6ertnett (1988 and 1989),



0.2s

n
.= 0,20
n

:.,10
c.-

0.00

0,2s

4

f-,
o 2s so 100 125 150

Distfnce

&Jo
c,-

0.00

0,00 +

Ik
Dist$nce’

FIPrw 8. (a) The spatlai mutml information vs. distance ●t t- 19,000. (b.c) as (a)
except at t -20,000 and I =21,000.Note the peaks in (b) around d{stancesof 55 and 100,



Flgmw 9. The occurrence of correlated opc-mha ●t f= 19,000 (a), r= 20,000 (b), and
r= 21,000 (c), respectivclyt



DISCUSSION

Of the information processing features associated with living systems, Ihe abili~i
of systems to alter themselves through an introduction of novel properties is what has
made biological evolution possible. Novei properties are introduced through changee
in ~he biomolecules that constitute the organisms. We refer to systems with these
properties as being self-programmable. To investigate the scli’-programrnicgproperty
of living systems, we have designed a system far simp!er and more tractable than

contemporary bimolecular systems. Despiie its simplicity, our system has the same

fundamental constructive properties as contemporary bimolecular systems. We have

seen how this parallei von Neumann based self-programmable system is able to
successively develop novel functional properties and 5C}.Vcompl?x cooperative stmcturcs

spontaneously emerge in the system. Frozen accideri~< determine t!le different

evolutionary paths in the system and thereby the particular details of the emerging

structures. We have discussed cooperative properties of the MOV-SPL structure, of [hc

SPL colonies, and of the jump cores.

These macroscopic cooperative structures are spontaneously generated in the

computational system. They emerge in a similar wtiy as macroscopic dissipative

structures do, im for instance, physico-chemical systems. A thcrmodynamical

interpretation of the computational system yields an equivalence between the flux of

free energy and the flux of computational r?sources (executions per iteration), and an
equivalence between the microscopic degrees of freedom in the physico-chemical
system and all the possible functional interactions in the computational systcm, A
notable difference is, however, that our macroscopic computational structures change
even with a constant pumping (executions per iteration). ~ue to our systcm’s self-

programming properties it does not stay in any fwed macroscopic patte~ as for

insutme a RaleiQ#t=Benardconvection or the chemical reaction waves in a Belousov-
Zhabotinski reaction do. Our system has in addition the property biological systemsalso
have: it cart change itself and thereby undergo d?velopment.

How close the details of the processes and the details of the emerging cooperative

structures are to evoh~tionary processes iit biological systems and to the strucwres
undedyfng contemporary living systems we cannot say. me detailed properties of

biological evolution as well as the fundamental dynamics underlying life itself are yet
unknown. However, our definkjon of constructive, or self~prograrmnable, dynamical
systemshas allowedus to start a systematic invedgation of truly evolutionary proccsscs,
We have freed our formal tools from any predefhted evolutionary possibilities. Our

system picks its own evolutionary route and constructs its own functional properties.
This is in contrast t~ most formal approaches discussing evolutionary processes. A

formal discussion of self-programmable systems it found in Rasmussen et al. (1991),
Another corutmctive system based on the A-cakulus is discussed in Fontana (1991),

One of the major problems aasocfated with self-programmable systems is their
complexity.Since the functional properties of such systems depend on their dynamics,



any characterizatiott of dynamics ~ well as functional properties is difficult. We would

of course Ike to be able to detect when novel functional properties are introduced and
how such new properties are characterized. It turns out that the Shannon entropy, the
mutual information, and !vfarkov chains constructed from correlations, in particular
when combined, can be used for that purpose.

The ‘simultaneous calculation of S, and $2 (or Ml) is an efftcient way to determine
when a complex system is in a quasi-steady state and when the system is in a transition.

An alternative is to compare the states of the system at subsequent generations, which

perhaps is a little faster. For large systems such as Venus, this requires a considerable

amount of storage and retrieval of datz which can be rather time consuming. The

calculation of the Shannon entropy S1 alone is, of course, fu~ but if the imt~ction set

includes an instruction to exchange the contents of two words (which is an instruction

actually found in most modem microprocessors), then the execution of a large number

of exchange instntctions would in general alter the functional properties drastically,

while S, would remain constant. In this case calculation of the mutual information
captures that something happens. Another example of the mutual information changing
while the entropy is virtually constant occurs when the small self-replicating prograrm
distribute their code into the core.

By also considering long-range correlations and the Markov matrices we obtain
more detailed information about the dynamics of the system. ‘X’heemergence of long-
range congelations indicates changes in the local interdependence of the core.
Similarities and differences in the scaling e~onents describing the decays of the
correlations of the different fields as a function of distance cart be used to uncover

details about the dyrtamics of the individual fie}ds. Finally, the Markov matrices reflect

instabilities and fluctuations in the opcode distribution and they in particular signal
which opcodes are involved in the transitions of the system.

Obviously, these measures are not sufficient to characterize the dynamics in all
details, and they do not uncover all the interesting details of the emerging cooperative
structures. However, the proposed measures have the advantage of being very
~ccessible from a computational point of view, Several other measures ha~~ebeen
proposed, but they are either very complex to compute or cannot be computed at all,

Some of these measures are discussed in Bennett (1988 and 1989).

ACKNOWLEDGMENTS

We would like to thank Jeppe Sturis, Walter Fontan% Doyne Farmer, Chris

tingto~ and Erik Mosekilde for valuable discussions. Erik Mosekilde and Ellen
Buchhave are acknowledged for arranging such an enjoyable workshop,



REFERENCES

Benrtetq C. H,, 1989, Dissipation, Information, Computational Complexity and the
Definition of Organization ti: “Emerging Syntheses in Science,” Pines, D., cd.,

Addison-Wesley, Reading.

Bennett, C. H., 1988, Computational Measures of Physical Complexity, in: “hctures in

the Sciences of Complexity I,” Stei~ D. L, cd., Addison-Wesley, Reading.

Fontan& W., 1991, Algorithmic Chernistty, in the proceedings of the Second Artificial
Life Workshop, SFI Studies in the Sciences of Complexity, Farmer, J. D. et
al., eds., Addison-Wesley (in press).

Hopcro~ J. E., and Ullmaz J, D,, 1979,“Introduction to Automata Theory, Languages,
and Computation” Addison-Wesley, Reading.

Langtom C., 1950,Computation at the Edge of Chaos: Phase Transitions and Emergent

Computation _ D Q, 12-34.

Palmer, R., 1988, Neural Nets, ~ “bctures in the Sciences of Complexity I,” Stein, D.

L, cd., Addison-Wesley, Reading.

Rtimussem S., fiudse~ C., Feldberg, R., and Hindsholm, M., 1990, The Coreworld:

Emergence and Evolution of Cooperative Stntctures in a Computational
Chemistry, MD 42, 111-134.

Rasmussem S., Knucise% C,, and Feldber& R., 1991, Dynamics of Programmable
Matter, in the proceedings of the Second Artificial Life Workshop, SFI Studies in

the Sciences of Complexity, Farmer, J. f). et al., eds. Addison-Wesley (in press).

Selris, J., Polonsky, K S., Blackrmq J, D., Knudsen C,, Mosekilde, E., and Van
Cauter, E., 1991,Aspects of Oscillatory Insulin Secretiom these proceedings.

Touretzky, D,, cd,, 1990,Proceedings of the Neural Information ProcessingConference,
NIPS A Morgan Kaufman Publishers.


