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Moving Finite Elements:
A Continuously Adaptive Method

for Computational Fluid Dynamics

Alan H. Glasscr, Los Alamos National Laboratory
Keith Miller and Neil Carlson, University of California at Berkeley

Introduction

Moving Finite Elements (MFE),l’5 a recently developed method for computational fluid dy-
namics, promises ma@r advances in the ability of computers to model the complex behavior of
liquids, gases, and plasmas. Applications of computational fluid dynamics occur in a wide rango

of scientificidly and technologically important fields. Examples include meteorology, oceanography,

global climate modeling, magnetic and inertiai fugion energy refiearch, scmicondur.tor fabrication,

biophysics, automobile and aircraft dmign, industrial fluid processing, chemical engirwcring, and

combustion research. The improvements made pomiblc by the new method could thus have sul)-

stantiai economic impact.

Numerical methods for treating such problems have been studied for mom than forty ~~iirs,

starting primarily with the work of John von Neumann and coinciding with his dcwclopnwnt of [ho

programmable digital computer in the early 1950s. In spite of these cffort~, there arc important
features of fluid flow which remain di~cult or impossibl~ for most numcricai methods. NII?E

provides a new approach for handling these chailengcs,

Modeling a fluid on a digital compulcr requires approximating the smooth variation of fluid
quantities, such as cicnsity, velocity, tcmpcraturc, and electromagnetic fields, hy a large numlmr or

discrete vaiucs. The most common approach is to roprcmnt thcsr quantitms by their vidll(’~ m a

regular mesh or grid covering tho spatitd .Iomain of il:’.crcst, ‘l’ho behavior of t}w fluid at succmsivr
moments of tilllc is calculated hy ronvorting the known fluid equations to R Iargo systcm of i’!gvl)rilic

equations which can hc solvml on tho computer, The finer t)w mmh and the Rhortm the tiltlo stops,

the more ar.curato the solution Imonws, at th~ CXIMWSOof greater demands on comput(~r tinw wd
Btoragc capacity, In fact, the f~tmt and Iarpywt eupmccmlputrrs have bmn dcvolopod nmillty I()

allow accuratt? nolution of Rurh romplcx fluid problmnn.

Some of the most c.halhwging fluid proMmn6 arc thotw characterized hy Rnitill regions of rapid
variation which muNt bc accurately rwmlvcd to @ thr righ[ beh~vior, HXiIIIIplWI m shook”~il~tls,

burn frontR, and boundary l~yors. For a method which UMW a fixwi, uniform grid, it may rwlui rr
such fine grid ripacing and etmt time ntrpn to molve thr nhmk that nolutior is imprnctirid own

on the nmnt powerful n~ll~rrroltll)~]tcrn.

Moving Finite Hlonwntri in a moving node adaptive grid nwthod which has a tondwlr,, to prick

the grid findy in rogionn whcr~ it IH rmmt rwcdwl at mwh tim and to Imv( it mirhr (’lMW’ti(’H..

It Am m in a mannnr which in ninIp10 and automrdic, and dom not rcquirv n Iiqy ILIIIIUIIII (d

human ingvnuity to apply it to each p~rticuhw prohhvn. At tho RRIII(* tinw, il O(IPII Idhmw t Iw

tim ntq to bo iargc CIIOURII to advanw a moving nlmrk hy many ~limck ti~irknomw in M Ringlr

tinw ntop, moving tiw grid rnmoothly witi] the solution mnd minimizing tho numhr’ (Jf L: I,IO HII’IIS

r~quircd for tho whcb prohim. For 2i) proi~imw (two nimtinl varialdvn) tilo grid iH COIII]MMIOII (I(

irrrgulariy nhqmi ml irregularly ronnortrd triangim whirh aro wry floxii~ir in tlwir aijiiity to
ndnpt to tiw mmlving m(dulion. Whih’ othm ml~i~t ivo griti mot imdtI hnw’ Iwn (iwoh)i)wi whit”il

nhnro nomc of thww (iemird)iv imqmrtim, thiH in ttw only nwtiltd whicil r{mti~inm t lIIItII IIli, III

mhny ramw, tlw motimd ran mw ordvrn of mngnit udv d I. IMIIpIIl ing limo, qlliv~ll(.111 II} HOv(~ral

gmwdionR of a(ivarrring rmputor hmiwarp.
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While the MFE method has been tested on a variety of 21) problems and shown to Lcllavc as

desired, several essential improvements are still required before it is ready for r,>utinc ap]jliratioll.

The code currently uses a simple direct method for solving large, sparse linear .riystcms of al~cl)rair

equations, which would be inefficient and impractical for large problems, Work is in progress to

replace this technique with a more efficient iterative solution procedure. This should also mako II,(I
code adaptable to efficient use on mamively parallel computers, such as tho Connection Maclli]lu

and the Intel Ilypercubc. It is desirable in certain CMCS to allow the grid to break and reconnect
infrequently in order to permit a better fit to the evolving solution. Such a procedure has been

tested on a few simple, special-purpmc applications, but has yet to be incorporated into the gcncral-

purpoae code. Once these improvements have hecn made, it shculd be straightforward to extend
the coue to 3D problems, using a grid of tetrahedral instead of triangles.

The range of applications of the MFE method is both somewhat broader and somewhat nnr-

rowcr than computational fluid dynamics. In addition to fluid problems, the method can also
be applied to studying the behavior of evolving manifolds and film~, such M soap films. This is

made possible by the fact that the indcpcndcnt spatial variahlcs and the dcpcndcmt varial)lcs a“ I

treatcct on an equal basis, allowing the mctlmd to follow the hchavior of quantities whirh aro Ii.)t
single-vahmd functions of the indcpcndcnt varialdos.

There arc fluid prohlcms for which MFE is not suitable. The clcarcst CLSCSarc sys(onls wi[h
wmdcsprcacl strong ltirbulcnrc. Tho strong point of the hfk’E method is it~ ability to resolve sll;~rl).

smoothly-moving fronts by automatically conccntratig the grid nodes in the front and moving tll(’1)1

with the front, In turbuhwt, systems, ilowcvcr, the motion is quite chantic and nonsrnooth, iill(l

a fine grid is often oft.cn roquircd mscntially cvcrmywhcrv. Such proldcms arc better IIiill(lll(’(1 I)y

methods which require Icss computation prr grid point and pcr time step. Prohlcms in wllirll
turbulc nco is mmklcd by mnpirical wlhanrcd transport coclTlcimlts might ncvcrt hclcss ho f;lir ~illll(’

for 1110mdhod.

Vi~ua]ization of the complex rmults of our computations is trcatd wilt] I ho 11(111)d [II(’ stalo-
of-the-art graphics hardware and rioftwarc providd hy the Silicon (;rr. phirs Iris \\’orksti~l ions.

Comp[ltcr-gcncratt*(l mcwics with hidden surfarcs, rwd-tinw animation, nciirly continuous Vilria[ioll

of color, and Ilcxihlo uhcr int mwt.ion have hn dcvolopcd to provido maxilnum collll~rf’llt’llsi{~ll,

The rcma,indm of the thiH paper iH dcvotwl to a mill hClllilliCd (ormulalion of lho IIICIII(N1 illl(l

an examples of rmull H,

Mathematical Formulation

Wc t real a pywcral syfitcnl of fluid equal ion~ of I ho form

F = C(l, x,u) – D(f, x,u). vu, s = S(l, x,u, ru), (2)

(3)



with w an arbitrary weight function, is variational in the sense that

iJL

qLA1/iw) = 0
(4)

recovers Eq. (1).

The general clews of conventional Galerkin methods is obtained from Eqs. (3) and (4) hy

expanding u in a set of basis functions,

U(x, t) = Gi(t)~l(X)j (5)

where the Ui(t) are time-dependent amplitudes and the ~i(x) are the spatially-varying basis func-

tions, which may, for example, be Fourier series, orthogonal polynomials, or conventional fixed

finite elements. Since the time derivative of Eq. (5) contains only the amplitude variations,

U(x, t) = Ui(f)tli(X), (c)

the discretizcd equations of the method arc obtained from

(i)

which yields a coupled systcm of ordinary diffcrtmtizd equations,

((ii, (?j)Uj = (Oi,g), (8)

whcrcg=S-V, F.

The key issue for any adaptive grid method is how to move the grid, In hfoving Finite
Elements, this issue is rescdvcd by treating ~:;.?grid positions in exactly the same manner M tho

nmplitudcs, icco as variational parameters. 14m dasis functions wc choose linear finite elmnont~ oil a

grid of irregularly rdlapm.1and conncctcd triangles in 2D, tctrahcdra in 3D, and simplicm in g(~ll(~rid.

l)ccausc the grid is allowed to m(wc, wc mplacc Eq~. (5) and (6) hy

U(x, f) = Ui(f)fli[X, Sj(t)], (0)

(11)

(12)
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over this larger space, and thus obtain a better minimum. This causes the nodes to move where

they are needed to resolve the solution.

While the b~ic idea is simple, there are computational details which are essential to make tllc

method work correctly. In regions where the solution i~ flat, the prescription for moving tllc l~odcs

becomes indeterminate because a range of different node motions give equally “best” fl[s. ‘1’ilis is

manifested mathematically in the vanishing of the determinant of the mass matrix in E(ls. ( 1 I ) ant]

(12), and is resolved by adding regularization terms to L which can be interprctccl as intc’r,lodal

viscosity and grid tension, The weight function in Eq. (3) is chosen to be w = [1 + (vi, )’]-’/’,

which converts the integral over the domain into aJl integral over the area of the solution rl]allifold,

resulting in much better node motion and in placing the indcpcrrclcnt spatial variables x all(] III(I

dependent variables u on more of an equal b~~is. The time step must be implicit in orr.lcr to CXCC(I(I

the Courant condition and use efficiently large step sizes, This requires the solution of large, sparse

linear systems, which is currently done with a direct band solution but will ~hortly hc r~])lii~(~(l
with a more efflcicnt iterative method using buflered relaxation aA a preconditioned for a t]olilil)(tilr

Krlov suhspace mcthocl.

W’c conclude wilt) aJl

dcvclopmcnt of a very thin

Illustration: Shock Formation

illustration of the ability of tl~c MF1. mctlIod t{) uflicittl~tly trrat [Ilo

moving shock front. \\’c study the 21) Durgers’ (~(l~liiti~]l,

lIcrc u represents a vclocily wtlich is nonlinearly ccmv(’ctcd in its own dirvctioll, If III(I illi( ial Villll(’

of U is positive on the lcfl and ncgativo on the right, the solution convects to~ilrd tllv nli(l(lltt illl(l
forms a shock, The final thickness of the shock is dctcrrnincd l)y the difrusion co(’ffiri(’llt l), In tll~I

cxamplo shown below, thv diffusion cocfTcicrlt i~ 10-:, and so the ~l]ock width is al)oIII I/1()()()1 II

the width of the clmnai’1. For a method using a fixrd grid, accurate rcsoll]tion of tl~is slitwk froll[

would require a grid sifi(’ of scv~ral ttlousall(i on each Bidv and a silllilarly slnal! tilll(, sl(Il), ‘] ’]1(1

solutimr shown bclmv usm a grifl of 13 x 1S and required al)out 1.5 II)illutcs of cpu time oil illl lll\l
1{S/6000 Mode! 320 workstation. l’hc pictures r(’prmcnt four equally sI)ircu(l tinl(’s (Illtillg III(I rllll.

The long ~traight Iiuvfi clvnotr x, y, and z axes, ‘J’hum arc rxanll)lcs of the Silicon (;r;]l)llics :11)

aniniatwl griil)hics dvvclol)cd for this Co(lc, with colors rcplacwl I)y patlcrns,

References

1. K. Mill(’r wid R. N. Mill(’r, ‘Moving I;initt’ klvlrwtll~ l,” SIAhl J. NIIIII, Anid. 18, [;, IOI!I
(I!-)ul).

2, K. hlilh”r, “Moving l’inito I;lvlllcnts II,” SIAM J, NIIIII, Allid, ]8, fi, 10:1:1 (I!]H I),

#. K. Millm, “Altvrnativc M(NIw to (’(mtrot the NodvH in lhv M(wing I“illitr lI;lv)II(Int hlt’llll~fl,”

in: ‘Adaptive (hrnput~tionid Mvthods for l’I)l;’H,W ml. t]ii~)~l~kil, (!liiili(lrit, ILII(I I“la]l(’rty,

Work#hop held in (ld]vgc I’ark, Ml), I’cl)rllilry 14-10, IW!;l, SIAhf, I!)H:I.

4. Neil (;tirlmll mrld Krith Mill~r, “(;radirnt Wv!ght.wl Moving l“initc I’hllivllts ill ‘1’w(j I)illlrl)

niong, “ in Pr(mvdillgH of the l(:ASI’; /NASA Wmksl(q) [m ‘1’hw)ry mrltl Al)l)l)li(iltioll IIf 11’illi[()

]’:h’111(’llt~, July 2fl-~lo, 1!N6, ]inrllpt(m, Virginia, puhliHhv{i I)y sl)rill~-\’(lrliLK,

5, AIMI 11, ~;lswwr, “A M(ning I!’inito I’lvtlwnt M(MIvI t)f tho Iligh Ih’nsity X I’illt II,” J, (’{11111~,

]’]IYM. 85, l!)!] ( l!)~!)),



Illustration of Moving Finite Elements

Four equally spaced time steps illustrating the formation of a shock in the solution of thr 2D
Burgers’ equation. Trangular cells of the moving grid is shown in these DersDcctivc viou. with——
straight lines denoting x, y, and z axes,
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