LA-UR -91-1716
LA- UR--91-1716
DE91 013391

Los Alamas National Laboratary 18 operalad by the Umiversity of Califormia for the Uniled States Depariment of Energy undor contracl W-7405-ENG.J6G

-

TITLE MOVING FINITE FLEMENTS: A CONTINUOUSLY ADAPTIVE METHOD
FOR COMPUTATTONAL FLUID DYNAMICS

AUTHOR(S) Alan H. Glasser

SUBMITTED TO Procceedings of Energy Rescarch Power Supercomputer
Users Symposiam, Galthersburg, Maryland, May 21-22, 1991

DISCLAIMER

This report wan prepared as an uccount of work sponsored by an agency of the United Ntates
Guovernment  Neither the United States Government nor any agency thereof, nor uny of thewr
employees, makes any warranty, express or implied, or assumes any legal liability or rerponsi-
bility for the accuracy, completeness, or usefulness of any informution, apparatus, prodduc?, or
process disclosed, or represents that its use would not infringe privately owncd rights Refer-
cnce heran to any specific commercial product, provess, of xeevice by trade name. trademark,
manufnciurer, or otherwive does not pecessarily conshitute or imply ity endorsement, recom-
mendation, ur favoring by the Uinited States Governinent or any agency thereol The views
and upinions of authors expressed herein do not neceannly state ur reflect those of the
United States Gavernment or any agency thereol

By accoptance ot thes arta e the publasher cacogmizes that the U S Covernment retaas a noneag s raynlly frem hoenpe 1o pubiligh of reprodus
the puhbishing farm of s contnhubion  of 1o allow others 0 do so far U S Government purposes

The Lo Alanmos National L aboratlory regquoata that the pubiloher qlontily (his oo le as wirk pettormed under the auspu s of tha U S Departiment ol | nneygy

. MASTER
N® cN\[Y N Los Alamos National Labore
LOS [ANKNMOIS L Amoa Novs Moo

-
)
TONM MO AN I ’

AU N e DISIRICUTION OF Fill5 DNCUMINT IS UNLIMITLD


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


Moving Finite Elements:
A Continuously Adaptive Method
for Computational Fluid Dynamics

Alan H. Glasser, Los Alamos National Laboratory
Keith Miller and Neil Carlson, University of California at Berkeley

Introduction

Moving Finite Elements (MFE),' % a recently developed method for computational fluid dy-
namics, promises major advances in the ability of computers to model the complex behavior of
Jiquids, gases, and plasmas. Applications of computational fluid dynamics occur in a wide range
of scientifically and technologically important fields. Examples include mateorology, oceanography,
global climate modeling, magnetic and inertial fusion energy researck, semiconductor fabrication,
biophysics, automobile and aircraft design, industrial fluid processing, chemical engincering, and
combustion research. The improvements made possible by the new method could thus have sub-
stantial economic impact.

Numerical methods for treating such preblems have been studied for more than forty vears,
starting primarily with the work of John von Neumann and coinciding with his development of the
programmable digital computer in the early 1950s. In spite of these eflorts, there are important
features of fluid flow which remain difficult or impossible for most numerical methods. MFE
provides a new approach for handling these challenges.

Modeling a fluid on a digital computer requires approximating the smooth variation of fluid
quantities, such as density, velocity, temperature, and electromagnetic fields, by a large number of
discrete valucs. The most common approach is to represent these quantities by their values on a
regular mesh or grid covering the spatial lomain of ir.*erest. The behavior of the fluid at successive
moments of time is calculated by converting the known fluid equations to a large system of #igebraic
cquations which can be solved on the computer. The finer the mesh and the shorter the time steps,
the more accurate the solution hecomes, at the expense of greater demands on computer time and
storage capacity. In fact, the fastest and largest supercomputers have been developed mainly to
allow accurate solution of such complex fluid problems.

Some of the most challenging fluid problems are those characterized by small regions of rapid
variation which must be accurately resolved to get the right behavior. Examples are shock waves,
burn fronts, and boundary layers. For a method which uses a fixed, uniform grid, it may require
such fine grid spacing and short time steps to resolve the shock that solutior is impractical even
on the most powerful supercomputers.

Moving Finite Elements is a moving node adaptive grid method which has a tendene, to pack
the grid finely in regions where it is most needed at each time and to leave it conrse elsewliere.,
It does 8o in & manner which is simple and automatic, and does not require a large amount of
human ingenuity to apply it to each particular problem. At the same time, it often allows the
thime step to be large enough to advance a moving shock by many ahock thicknesses in a single
tiine step, moving the grid smoothly with the solution and minimizing the numbe: of Ciae steps
required for the whele problem. For 2D problems (two apatial variables) the grid Is composed of
irregularly shaped and irregularly connected triangles which are very flexible in their ability to
adapt to the evolving solution. While other adaptive grid methods have beea developed which
share some of these desirable properties, this is the only method which combines them all, In
many cases, the method can save orders of magnitude of computing time, equivalent (o several
generations of advancing computer hardware.



While the MFE method has bec¢n tested on a variety of 2D problems and shown to behave as
desired, several essential improvements are still required before it is ready for routine application.
The code currently uses a simple direct method for solving large, sparse linear systems of algebraic
equations, which would be inefficient and impractical for large problems. Work is in progress to
replace this technique with a more efficient iterative solution procedure. This should also make the
code adaptable to efficient use on massively parallel computers, such as the Connection Machine
and the Intel Hypercube. It is desirable in certain cases to allow the grid to break and reconnect
infrequently in order to permit a better fit to the evolving solution. Such a procedure has been
tested on a few simple, special-purpose applications, but has yet to be incorporated into the gencral-
purpose code. Once these improvements have been made, it shculd be straightforward to extend
the code to 3D problems, using a grid of tetrahedra instead of triangles.

The range of applications of the MFE method is both somewhat broader and somewhat nar-
rower than computational fluid dynamics. In addition to fluid problems, the method can also
be applied to studying the behavior of evolving manifolds and films, such as soap films. This is
made possible by the fact that the independent spatial variables and the dependent variables a- »
treatea on an equal basis, allowing the method to follow the behavior of quantities which are niot
single-valued functions of the independent variables.

There are fluid problems for which MFE is not suitable. The clearest cases are systems with
w’despread strong turbulence. The strong point of the MFE method is its ability to resolve siiarp.
smonthly-moving fronts by automatically concentratig the grid nodes in the front and moving them
with the front. In turbulent systems, however, the motion is quite chaotic and nonsmooth, and
a fine grid is often often required essentially everywhere, Such problems are better handlled by
methods which require less computation per grid point and per time step. Problems in which
turbulence is modeled by empirical enhanced transport coefficients might nevertheless be fair game
for the method.

Visualization of the complex results of our computations is treated with the help of the state-
of-the-art graphics hardware and software provided by the Silicon Graphics Iris Workstations.
Computer-generated movies with hidden surfaces, real-time animation, nearly continuous variation
of color, and flexible user interaction have been developed to provide maximum comprehension,

The remainder of the this paper is devoted to a mathematical lormulation of the method and
an examples of results,

Mathematical Formulation

We trcat a general system of fluid equations of the form

%:?4v-r=s. ()

waere tin the time, x is & vector of independent spatial variables, u is an n-vector of unknowns,
For each component of u there is a flux F and a source § with the general form

F = C(t,x,u) - D(1,x,u) - Vu, S =8(t,x,u,Vu), (2)

where € reprosents convective flux and D in a diffusion tensor, and all functions may depend in
an arbit.ry nonlinear manner on their arguments, A varintional for Eq. (1) is obtained by unoting
that

| du :
B S 4TS w A\, ‘ :
l 5 /[ Iy A w(f,x,u, Vu)dx )



with w an arbitrary weight function, is variational in the sense that

6L
#(u/or) - ° W

recovers Eq. (1).
The general class of conventional Galerkin methods is obtained from Eqs. (3) and (4) by

expanding u in a set of basis functions,

u(x,t) = wi(t)ai(x), (5)
where the u;(t) are time-dependent amplitudes and the a;(x) are the spatially-varying basis func-
tions, which may, for example, be Fourier series, orthogonal polynomials, or conventional fixed
finite elements. Since the time derivative of Eq. (5) contains only the amplitude variations,

u(x,t) = u;(ai(x), (€)

the discretized equations of the method are obtained from

5L _
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0, (7)

which yields a coupled system of ordinary differential equations,

(i, )0 = (a;,8), (8)

whereg =S -V .F,

The key issue for any adaptive grid method is how to move the grid. In Moving Finite
Elements, this issuc is resolved by treating .2 grid positions in exactly the same manner as the
amplitudes, i.e. as variational parameters. Fo: oasis functions we chnose linear finite elements on a
grid of irregularly shaped and connected triangles in 2D, tetrahedra in 3D, and simplices in general.
Because the grid is allowed to move, we replace Eqs. (5) and (6) by

u(x, t) = ui(t)aix,n;(1)), (9)

u(x,t) = u;(t)a;(x,t) + 8;(0)Ai(x,¢), (1m

where f; Is defined as the coeflicient of 8; obtained by differentiating Eq. (9). Then FEqs. (7) and
(8) arc generalized to

él, 6L

il Ty 0, (1)
(viya)ay + (g, f3;)8; = (e, 8), (12)
(Bivaj)a; + (4, 03;)8; = (Hi,8) (1)

Just as . (RB) determines the amplitudes by minimizing tae positive-definite variational over the
space of amplitudes, Egs. (12) and (13) determine the amplitudes and node positicns by minimizing

K]



over this larger space, and thus obtain a better minimum. This causes the nodes to move where
they are needed to resolve the solution.

While the basic idea is simple, there are computational details which are essential to make the
method work correctly. In regions where the solution is flat, the prescription for moving the nodes
becomes indeterminate because a range of different node motions give equally “best” fits. This is
manifested mathematically in the vanishing of the determinant of the mass matrix in Eqs. (11) and
(12), and is resolved by adding regularization terms to L which can be interpreted as internodal
viscosity and grid tension. The weight function in Eq. (3) is chosen to be w = [1 4+ (Vu)?*]~'/?,
which converts the integral over the domain into an integral over the area of the solution mauifold,
resulting in much better node motion and in placing the independent spatial variables x and the
dependent variables u on more of an equal basis. The time step must be implicit in order to exceed
the Courant condition and use efficiently large step sizes. This requires the solution of large, sparse
linear systems, which is currently done with a direct band solution but will shortly be replaced
with a more efficient iterative method using buffered relaxation as a preconditioner for a nonlincar
Krlov subspace method.

Illustration: Shock Formation

We conclude with an illustration of the ability of the MFLE method to efficiently treat the
development of a very thin moving shock front. We study the 2D Burgers' equation,
22+u-Vu:l)V2u, (1)

ot

Here u represents a velocity which is nonlinearly convected in its own direction. If the initial value
of u is positive on the left and negative on the right, the solution convects toward the middle and
forms a shock. The final thickness of the shock is determined by the diffusion coefficient 1), In the
example shown below, the diffusion coefficient is 1077, and so the shock width is about 1/1000th
the width of the domain. For a method using a fixed grid, accurate resolution of this shock front
would require a grid size of several thousand on cach side and a similarly smal! time step, The
solution shown below uses a grid of 13 x 15 and required about 1.5 minutes of cpu time on an 1BM
RS/6000 Model 320 workstation. The pictures represent four equally spaced times during the run.
The long straight lines denote x, y, and z axes. These are examples of the Silicon Graphics 3D
animated graphics developed for this code, with colors replaced by patterns,
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Illustration of Moving Finite Elements

Four equally spaced time steps illustratin
Burgers’ equation. Trangular cells of the
straight lines denoting x, y, and z axes.

g the formation of a shock in the eolution of the 2D
moving grid is shown in these perspective views, with
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