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RELIABLE MODELING OF COMPLEX BEHAVIOR?

U. F. Kocks

Center for Materlals Science
Los Alamos National Laboratory
Mail Stop K765, Los Alamos, NM 87545, UsAa

Abstract

The status of modeling for large-strain plasticity is assessed, and this
overview is used to emphasize some general points concerning modeling in
Materials Sciepce. While a physical foundation is essential in order to
achieve generality and some measure of confidence in extrapo” .tions, pheno-
enological constraint is equally crucial to achieve reliability and pre-
ictive value in descriptions of the macroscopic behavior despite the
enormous complexity of the underlying physics. Many details that may be of
interest in modeling the physical foundation lose importance in the iuteg-
ration to an overall materials response, which depends on few parameters and
is quite reproducible. From this point of view, the current understanding
of large-strain plasticity is adeguate in many respects. However, some
problems are highlighted in which more quantitative modeling results would
impact the reliability and generality of macroscopic properties descrip-
tions, and which seem amenable to treatment with current techniques and
resources,
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Introduction

"This is just a model" is an excuse often heard when some aspects of a model
do not agree with some observations or with some presumed basic knowledge.
The implication is that this modeling is an intermediate exercise on the way
to a full theory: then, the current model may be helpful, but should not be
taken too seriously.

There are, however, many cases in Materials Sclence where the total set of
processes and properties (the material "behavior") 1s so complex that a
full, ab initio (and ad finem!) theory cannot be expected to be available in
any foreseeable future. In this case, modeling is a task to be taken very
seriously. A major part of the effort is to find an adequate model: one
whose predictions can be relied upon (to a specified accuracy). Two criteria
must be fulfilled: all features that are considered essential must be model-
ed vell enough; and no prediction or assumption of the model can be in clear
contradiction to other experimental or theoretical knowledge. (An example
of the latter would be some symmetry violation.) Finally, a model earns its
real merit when it is reliable not only in the measured range of variables,
but can be extrapolated into a regime that is inconvenient or even inaccess-
ible to experiment, but whose limits are at least approximately known,

These high demands on a model can be met only if, on the one hand, it cap-
cures the essence of the physics involved and, on the other, discards enough
of the detail to be operationally meaningful in the end. Experience has
shown that in Materials Science one is fortunate enough that the macroscopic
behavior can always be described by a much smaller number of parameters or
curves than one has any right to expect, given all the complex mechanisms,
This decimation of information happens at every level (of length scale, time
scale, dimensionality, etc.): as one progresses from one level to the next,
only little information is carried forward. Each submodel at one level may
be looked upon as a "black box": only its output matters at the next level.
It i{s the purpose of this paper to assess, in this light, the current status
of the modeling of large-strain plasticity.

Hierarchy of Physical Mechanisms and Macroscopic Propertiecs

Table I shows many of the mechanisms (not necessarily all) that are involved
in macroscopic plastic behavior based on dislocation glide (not involving
diffusion), at various levels. [t begins with atomic interaccionr and ends
with polycrystal strain hardening; it begins with scalar properties and ends
with yleld surfaces in five-dimensional stress deviator space. The part we
wish to concentrate on is the interaction between the various levels: each
one has been given a number, and before its number appear the numbers of
those "lower-level" mechani{sms whose output is needed for this current one.

Let s stavt with atomic mechanisms (#1). Thelr influence on dislocation
behavior is primarily through the lattice resistance (w}, "Pelerls stress"),
which {8 controlled by the dislocation core structure (#2). The number 3
appears twice later: the lattice resistance provides one of the components
of the flow stress (#11); and it may determine which slip systems are active
in low-symmetry crystals (w1f). But the interatomic for-e law (wl) and the
dislocation core structure (#2) do not appear evrr again!

Sim{larly, all the various properties of individual dislocations and thelr
interaction (numbers 4 thiough 7) are relevant only to the dislocation
component of the flow stress (w8); once this (s known, the details are not
needed for understanding at a mwore macrosocopic level (except perhaps the
self stresses, w6, in the context of straln hardening, wll).



1. Interatomic torces

1+ 2., Atomic arrangement in dislocation core ' incl.pressure effects)

1,2~ Lattice resistance -— TOTENTIAL SLIP SYSTEMS

w

Dislocation motiorn (phonon, electron, radiation drag)

. Dislocation interaction with individual obstacles (incl.disl’'s)

. Dislocation self stresses (bowing, perallel dislocations)

Thermal accivation of one dislocation over obstacles

4-7-
8-

Interaction of one dislocation with many obstacles (percolation)

O W N 0N

. Statistics of many dislocations (pile-ups, dynamics)
10. Superpositior. of mechanisms
3,8-10-11. -~ CRITICAL RESOLVED SHEAR STRESS

8~+12, Dislocation storage
6,12-13, Internal stresses, plastic relaxation
14. Dislocation rearrangement (thermally aided)
15. Dipote annihilation (diffusion aided)
11-15-16. == STRAIN HARDENING IN SINGLE CRY3TALS
17. -~ BAUSCHINGER EFFECT IN SINGLE CRYSTALS

3+18. Stress to uctivate an adequate number of slip systems in a grainm
11+19. Interaction of grains in a polycrystal (flow around hard grains)
18,19-20. Averaging over GRAINS OF GIVEN DISTRIBUTION OF ORIENT.& SHAPE
21. -+ POLYCRYSTAL YIELD SURFACE
22. =— GRAIN-TO-GRAIN INTERACTIO!M STRESSES

19-+23. Repartition of slip systems
24 . Kinematics of non-uniform deformations
23,24-25, -+ TEXTURE CHANGE

16+26. Multiple-slip hardening law for representa:ive grain
25,26~ -+ STRAIN HARDENING IN POLYCRYSTALS
17,22- -+ B USCHINGER EFFECT IN POLYCRYSTALS

“++++s++2 SIZE, SHAVE, AND LOCATION OF POLYCRYSTAL VIELD (FLOW) SULFACE
~+++a+rs+s  for given INITIAL STATE VARIABLES, and its EVOLUTION with strai.:

Various phy{cal mechanisms are highlighted that eventually contribute to
MACROSCOI'I1C PROPERTIES relating to large-strain plasticlity at low and
intermediace temperatures. The list proceeds from small length scales to
large ones, from zero-temperature mechanisms to those Involving thermal
activation, from scalar properties to those requiring tensor spaces. Each
mechanism Is assigned a number: these numbers are used to highlight where,
later on (n the list, this mechanism influences others. Note that many
never appear again, such as %l and w2 (except through wl), or w4 tl.rough #?
(except through »B).



Strain hardening in single crystals (or in a grain of a polycrystal — #16)
depends on many detailed dislocation processes; but once its laws are known
(including, for example, its dependence on straln rate and temperature),
none of the underlying mechanisms are needed for an understanding of poly-
crystal strain hardening (#26): the only information needed in addition is
the texture development (#25).

These examples illustrate a general principle of modeling: using details of
a "lower-level" process, even though they may be well understood, in the
description of a "higher-level" process is often unnecessary. In a certain
sense, it 1s even undesirable: it may involve superfluous parameters; and it
may falsely imply that the higher-level description must change when some-
thing has changed in the understanding oi the lower-level process.

v t [ ables

One cannot expect to ever have a single unique set of laws for all plastic
behavior of all materials at all temperatures, strain rat2:s, etc. On the
other hand, if Materials Science is to make any difference, one must be able
to do better than have a new law (or nomogram) for each material at each
temperature, each strain rate, etc. Figure 1 shows the stress/strain
behavior for four different cases (all schematic). It is seen that they
have a many features in common = provided that one ipnores some initial
behavior at low strains. Thus, "large-strain plasticity" may be &n aspect
of behavior that 1is amenable to some generalized treatment; we will come
back to what "large strain" means in this context.

The four examples in Fig. 1 all refer to metals of cubic lattice structure:
one single crystal and three polycrystals (one purv, one solution hardened,
and one dispersion strengthened). The polycrystal stress/strain curves have
been converted to resolv~d shear stress vs resolved shear. It does not
matter, for the current discussion, how this was done or, for that matter,
how accurate it is. But In order of magnitude, all show the same steepest
slope, 60, of order 1/200 of the shear modulus, p. If we use this slope as
the initial slope of what we will label "large-strain behavior", we have
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defined the "small-strain” aspects of the behavior, which for this treatment
will be ignored as initial "transients”™. This does not mean, of course,
that they are unimportant: merely that a different set of laws must be
discovered for this different aspect of materials behavior.

The same reference hardening rate 6o can serve to delineate the regime of
temperature and strain rate that can be treated by the same set of mech-
anisms: namely, all for which 8o=u/300, within a factor 2 at most. This
would still cover most if not all face-centered and body-centered cubic
metals over a temperature range of roughly 20 K to at least half the melting
point, and strain rates of at least 107 to 10°> :cec”!: an enormous regime of
variables, for a very large class of materials.[1]

It is this restriction to certain aspects of behavior, a certaln regime of
the variables, and a certain class of materials that makes it possible to
specify a general, closed set of equations, rules, nomograms, etc., for the
material behavior within these limits. An integral part of such a descrip-
tion is the specification of the limits to which it may hold, and a dia-
gnostic technique to ascertaln that one is within these limits for a part-
icular application.

Results of Dislocation Theory

We will now give an example of a set of equations that describes the
relevant results of dislocation theory sufficlently well for the reliable
use in more macroscopic models. We will point out current shortcomings and,
on the other hand, areas where further modeling efforts, ¢ven if successful,
would not impact macroscopic applications.

First, there is the flow stress: the current yleld stress of a material that
may have had arbitrary previous deformations. The current flow stress may
be due to many different types of dislocation interaction with a variety of
obstacles to glide: we will only discuss the contribution of dislocation/
dislocation interactions, which are the cause of strain hardening. (The
superposition of this contribution with others is one of the problems not
solved quite well enough at the present time.[2)) Flow stresses aie best
described as resolved shear stresses 7, and strains and strain rates are
best described as shears and shear rates y and y, because even in poly-
crystals the relation between these physical quantities and macruscoplically
mea:ured ones depends on an additional, geometric quantity: the orientation
of the crystal or the texture of the polycrystal. The dislocation (super-
script D) component of the flow stress is

D = b o+ 8(T.T) 1

where |1 is an appropriate shear modulus [3], b the length of the Burgers
vector, p the dislocation density, and a a constant that is empirically
between 0.5 and 1.0 [4]). This relation can be derived on the basis of any
type of dislocation interaction and almost any detailed definition of p (but
best for the "forest density"(5])); it is thus an example of a relation that
18 quite insensitive to details of the microscopic model.

The function s(T,y) at the end of eq.(l) expresses the effect of the glide
kinetics on the flow stress. For the purposes of later use In polycrystal
models, it {is opportune to {ntroduce a "staundard state", at a standard
temperature T; and shear rate y,, and express the kinetic relation as onc
between the flow stress 7, under these cond{dtiona and the values choren for
T: and yi1. (This will hold even when there are other wJditive terms to the
flow siress {n eq. 1). We choose the genvral form
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While # may be an arbitrary function, its argument expresses the fundamental
insight that the temperature and strain-rate dependence of glide are linked
through an Arrhenius-type equation for thermal activation. An additional
temperature (but not strain-rate) dependence enters througn the uhear
modulus, and its appearance on both the left- and right-hand sides is well
established. (3] Equation (2) contains one adjustable parameter, yo, vhich
is used to make all points for different temperatures and strain rates fall
on the same curve.

1f # were a linear relation, eq. (2) would amount to a power law between
strain rate and stress, which is not appropriate in this case: the power
would typically be between 30 and 300. (For this reason, also, any possible
stress dependence of Yo is negligible.) A form of * Is known that is
insensitive to details of the mechanism [3,6] and phenomenologically
sufficient; on the other hand, an exact form would depend not only on the
dislocation obstacle interaction, but also on the statistics, and therefore
would be unlikely to have generality for many actual cases.

Equation (2) 1s known to be incomplete at very high rates of strain (greater
than about 10%s°!): then, drag on dislocations in obstacle-free regions
becomes important and adds a stress dependence to the Yo/Y:1 term. Modeling
of this correction is also reasonably well advanced.{7]

Let us now. return to eq.(l). It predicts the flow stress once the disloc-
ation density is known. But the dislocation density is a difficult para-
meter to measure. From a phenomenological point of view, a measurement of
the initial flow stress itself is much simpler and more reliable. The real
application of eq.(l) comes in predicting the flow stress at a later time;
i.e., from a prediction of the evolution of the dislocation density.

The differential relation for the evolution of the flow stress with strain
may be written as

ay '.Y.T ‘r.

The current hardening rate depends on the current flow stress (not directly
on the straln, which is not_a state variable). The essential content of
eq.(3) is that both 6 and 7  can be scaled, by the parameters 6o and 74,
respectively, to bring all curves at different temperatures and strain ratcs
into coincidence.(8) This is not always true; but it is a sufficiently good
approximation for a large class of materials and a substantial regime of
strain rate and temperature (as explained with the introduction of Fig. 1).
The function £ may be arbitrary; when it is linear, the stress/strain curve
follows the Voce law. In fact, it usually saturates less rapidly, and
sometimes not at all ("astage IV"). Fig. 2 rhows some cases derived from a
match of polycrystal modeling with observations [9].

Equation (3) splits the strain hardening rate into two components: a posi-
tive, "hardening" ("stage II") contribution and a negative "dynamic recov-
ery" ("stage III") contribution. (4] These have been modeled with fair
success by dislocation theory. One result is that 8o should be (as it is)
athermal and insens{tive to material; the observed value of 6o ~ u/200 fis
reasonable in 1light of dislocation theory [5], but the actual number

by



(including, for example, its slight dependence on material) has not been
derived quantitatively. Here is an opportunity for further microscopic
modeling = although the result is unlikely to change anything in the
"output” used for macroscopic modeling. At very high strain rates, 6o has
been observed to increase markedly; only qualitative explanations have so
far been given for this effect {6].

The principal rate and temperature dependence of strain hardening resides in
7g. This was explained early on by thermally activated cross slip and lis
now more generally attributed to rearrangements of the initlally stored
dislocation tangles into cell walls, by a combination of scress and thermal
activation.[5] It therefore should follow a relation much like eq.(2):

T A}
log —= = 5[ E:—g log _fg (4)
m Y

again with a temperature-dependent p.[8] The function ¢ is again arbitrary.
Figure 3 shows observations for copper at elevated temperature [10). The
slope In this diagram is equivalent to the stress exponent of steady-state
creep, in units of ub3/kT. It varies from about ?7? to about 4 for the data
shown (meaning that strain hardening is much more rate sensitive than the
flow stress).

A significant implication of eq.(4) is that the stress exponent should de-
crease continuously as the temperature is raised. While a decrease is
observed experimentally, it is not well established that it is continuous
rather than discontinuous (as often assumed in creep theories and ceform-
ation mechanism maps).

Another consequence of a low effective stress exponent is that any stress
dependence of the adjustable parameter yg, would now matter, and it {is
indeed sometimes observed to matter at hig%er temperatures. An empirical
relation of the type

L] no

750 « T (3)

wvith no typically between 4 and 5 has been found useful [8]; it could be
explained fairly easily if the power were 1 or 2, but not higher than 3.
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It is seen that there Is a definite neced for additional modeling of dynamic
recovery mechanisms. Such modeling should also address the actual form of
the general function E above, which is not understood in sufficiently quant-
itative detail at low strain-hardening rates. Finally, an improved model
should incorporate a physical interpretation for the known existence of a
second state parameter (beyor1 7°), which controls the "long transients"
(about 3 to 5 percent long) after strain-rate or temperature changes in
"stage II1" of straln hardening, as well as the other idiosyncrasies of
stage I1I [4]).

Significant progress could perhaps be made by modeling static recovery,
which has been shown to have similar microscopic consequences as dynamic
recovery; namely, a sharpening of the tangles into cell walls and eventually
subboundaries [12,13]. This 1is clearly a local energy minimization process
(even though the original laying down of dislocations into tangles during
straining is not). It may involve the activation of additional ("second-
ary") dislocations to relax the internal stresses set up by the primarily
stored ones, and this 1s an interesting side effect by itself. A computer
study of a single tangle, and later of a single cell (with all walls), in
three dimensions, might provide significant Insight; it would be extensive,
but not intractable. However, one should not expect any change in the
equations 1 through 4 which, in this general form, are well established;
only the actual form of the functions £ and € might perhaps be obtained, and
an understanding of the term iso and its stress dependence.

Summarizing the situation in the aspects of large-strain plasticity that
depend on dislocation theory, we can say the following. The flow stress at
a glven state, including its dependence on strain rate and temperature,
needs no further modeling from an applications point-of-view, except perhaps
with respect to superposition laws. The strain hardening law at very low
hardening rates is not sufficiently well known, and does not seem, from
experiments so far, to exhibit a general type of behavior: additional
conceptual modeling is required. The processes of (static and) dynamic
recovery can be well enough described phenomenologically, but lack detailed
understanding of the processes involved, the dependence on material
(stacking-fault energy?), and the development of local misorientations
(important for plastic 1instabilities and subsequent recrystallization
behavior). These problems can probably be addressed with current simulation
texhniques.

Grains in a Polycrvatal

The grains in a polycrystal have complex boundary conditions imposed upon
them; in that sense, they are different from single crystals, which are
usually thought of as free test specimens. When one tries to derive the
properties of polycrystals in terms of those of single crystals, one really
means: in terms of the properties of the "representative grain".[l4]) These
may include direct effects of the grain boundaries, which lead to grain size
effects. And they may even refer to a part of a grain, if that 1is the
smallest unit in which some degree of homogeneity can be assumed. But the
most important property of the representative grain is the set of potential-
ly active slip systems to fulfill imposed straining ccnditions.

Each slip systems can be characterized by the unit distortion m it causes in
a sample frame R*[15]):

o 5wl



vhere b% is the slip vector and n° the slip plane normal. Then, the shear
rate on that system may be expressed as

m,,0 1/m
368 oy, | AL (7
+§8)
1 (o)

This is a linear approximation of eq.(2) in the neighborhood of the pair
{Y1.7:); the scalar m (not to be confused with the matrix m) is the local
rate sensitivity (dln1/dlny)T; and the resolved shear stress 1 has been
expressed explicitly in terms of the applied stress o. Equation (7) does
not really serve as a kinetic law: it is used only to distribute shear rates
between slip systems in the overall grain deformation

=3 symm(8)) 3(s) (8)

Slip rates that are less than 1/10 the maximum are of no concern here: that
is why a power law is a sufficlent approximation. The dependence of flow on
the macroscopic strain rate and temperature continues to be given through
the relation between 7; and y: in eq.(2) (or its extension to all relevant
mechanisms).

The most important term in eq.(7) is 1‘5) . In the rate independent limit
m0, it would be the "critical resolved shear stress (CRSS)" for the system
s; it may still be celled that, only now in the meaning: "at a standard
strain rate and temperature”. But in addition, it may depend on pressure
and indeed on the entire stress state o, through its effect on the disloc-
ation core structure and thus the Peierls stress. When a sufficient number
of slip systems of negligible Peierls stress is available (as in most FCC
metals), 1, is a constant and "the CRSS law holds". But in materials of
lower symmetry, it is typically the Pelerls stress that controls which slip
systems are available under which conditions, and then, typically, "the CRSS
lav is violated", because the applied stress dependence is now more complex.
The trouble is that the stress state dependence 1is virtually unknown; not
even its sign is generally agreed upon in the practically important case of
the influence of hydrostatic pressure.

It should be possible, in the foreseeable future, to model the Pelerls
stress quantitatively, on the basis of atomistic simulations. It would be
quite instructive to know results even at 2zero absolute temperature: to
compare different slip systems, e.g., in hexagonal metals, and to assess the
stress state dependence. The simulation need only te done for a single
straight screw dislocation (since screws always have the narrower core and
thus the higher Peierls stress); it is thus a two-dimensional problem. The
temperature dependence could later be modeled indirectly: through the simul-
ation of a double kink on the screw dislocation (which makes it now a three-
dimensional problem) in an unstable equilibrium configuration at a finite
resolved stress, and the ensuing relation between this stress and the area
swept out: thermal activation theory can take it from there.[3)

One further remark about eq.(7). The rate sensitivity m 1is meant to be
taken "instantaneously" or "at constant structure”. There ls one case where
this may be hard tu assess; viz 1s when the rate sensitivity is negative
(not truly at constant structure, but still "instantaneous" enough to lead
to instability under some circumstances). The mode of deformation 1is then
often localized, but still the distribution of slip systems may be an inter- -
esting problem that has, to the author’s knowledge, not been addressed.

To summarize, the constitutive behavior of individual grains in a poly-
crystal, in a given state, is well described by eqs.(6) through (8); the



only quantity in need of further modeling is the Peierls stress contribution
to the flow stress 7;, and its stress dependence.

The situation is again more complicated for the description of evolution.
In the last section, strain hardening was described as a scalar quantity
only. Under general, multiple-slip conditions, it is often described by a
relation of the form

dr§ = hSt 3t ac (9)

where each diagonal component of the hardening matrix h (or some other
scalar combination) is the hardening rate 6 defined in eq.(3); the other
components describe "latent hardening". The linear appearance of the matrix
equation (9) is misleading: each component of h may depend on all components
of 7, which makes it nonlinear and changing with strain. Useful modeling of
the hardening matrix has been undertaken only for FCC metals deforming
according to the forest model [16]. Completely unknown is the interaction
between slip and twinning mechanisms - but we have left deformation twinning
out of the discussions in this paper.

Models for Single-phase Cubjc Polycrystals

For all polycrystals that deform continuously (i.e., without grain boundary
sliding or void formation), two statements are easy to prove: the macro-
scopic strain rate is the volume average over the strain rates in each grain
(called € above); and the macroscoplc stress deviator is the volume average
over the stresses In each grain (called o above), of which only the devia-
toric parts enter into eq.(7) (except when T1; depends on pressure); the
hydrostatic stress everywhere, and in the average, would follow from
separate equilibrium conditions.

The problem lies in the inversion of this averaging procedure (called
"localization" in mechanics): the determination of the local distortions and
stresses from the boundary conditions, the maintenance of compatibility and
equilibrium everywhere, and the material response given in eqs.(7) and (8),
for a given state. One is helped by the theorem that enforcing equilibrium
ylelds a lower bound, enforcing compatibility an upper bound to the flow
stress.

The most prominent mndel for polycrystal plasticity is that of Taylor which
states, in its most general form, that an upper bound is likely to be closer
to the truth than a lower bound (for plastic strain rates large compared to
elastic ones)[l4]. In fact, using a uniform strain rate throughout the
material gives reliable results for polycrystals of cubic lattice structure
(pure metals and many solution hardened alloys), wirh a sufficient number of
roughly equiaxed grains in the cross section, and for grain sizes large
compared to those features of the substructure that determine the deform-
ation mechanism. The crucial property of cubic metals is that there is a
large number of equivalent slip systems, so that the stresses needed to
activate various combinations do not vary too widely from grain to grain.
For example, the Taylor fantor (the deformation work) during relling of a
random FCC polycrystal has a standard deviation of the order of 108. Thus,
the violation of local equilibrium, which is inherent in the theory, appears
to be not so excessive as to make the model inappropriate.

When the Taylor model is adequate, eqs.(7) and (8) can be used in an iter-
ative procedure to determine the stress for a given strain rate. An ex-
tension of the Taylor model to very flat grains leads to mixed boundary
conditions on the grcin (17]); but again eqs (7) and (8) can be used to

<



determine the nonprescribed components of strain rate and the nonprescribed
components of stress, which may then be averaged over the polycrystal.

A more difficult problem is the determination of local rotations. They are
important, because the change in the grain orientation (R"), which is needed
to evaluate eq.(6) for the next step, depends on the skewsymmetric part of
the local velocity gradient L™:

R® R'T = skew(L?) - T skew(m® 75) (10)

It has been shown that, for the Taylor model, the local velocity gradient
(not only its symmetric part) is the same as the macroscopic one; on the
other hand, any local variations in shear strains automatically lead to
local variations in the skewsymmetric part also.[18,19] In any case,
modeling for both the original and the extended Taylor models appears to be
nearly complete,

Comparison with experimental results leaves one major problem: the predicted
rotations seem to be always faster than (though in the same direction as)
the experimental ones. The vague truism that nature is not as deterministic
as computer simulations needs fleshing out: various ideas have been pro-
posed, but none quantitative. Another feature of cubic polycrystal deform-
aticn for which modeling has not come to a complete conclusion is the
development of macroscopic shear bands in plane strain at larger strains,
and their influence on texture development.

Effects of texture on macroscopic stress/strain curves can be substantial:
the change of flow stress with strain, specified by eqs.(3) and (9), gets
convoluted with the change in orientation of each grain, specified by
eqs.(6) through (B). Figure 4 shows a simulated case for demonstration: the
initial texture is assumed to be a <111> fiber in copper, as it would be
expected in a wire-drawn or cold-rolled rod, often even after annealing.
The rod is then subjected to tension (solid iine), in which not much further
change in texture is expected, and to compression (symbols), in which the
very high initial Taylor factor would decrease substantially: this leads to
classical "geometric softening"” and may be very important in applications.
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The second example we wish to show (Fig. 5) is of a polycrystal yleld
surface projection calculated subsequent to severe rolling, wunder two
different assumptions for the hardening matrix h. They look rather similar; '
but if one were particularly interested in the normal at the stress o,
(that is, the "R-value" in tension in the previous rolling direction), it is
substantially different in the two cases. The observation is general:
strain-rate ratios are very sensitive to many details, and are the ha.dest



to predict. This, however, seems more of a "calibration” problem thar a
model problem. In any case, the first task 1is extensive and detailed
comparisons of theory and experiment where all other properties are well
predicted.
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Fig. 5 - Predicted yield surface of a pclycrystal rolled to a strain of 2.0
(in the 11-33 directifon). Juter: with latent hardening; inner: without.
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In summary, the decreased rate of texture development, the development of
deformation heterogeneities, and the sensitivity of predicted strain-rate
ratios to various assumptions need further understanding. The stress/straln
behavior and the kinetics can, on the other hand, be predicted reliably,[11)

When the variation in stress from grain to grain, which would follow from an
asrumption of uniform strain rate, is very large, the assumption must be
wrong and straining must develop heterogeneities. An example of this
situation that is relatively easy to assess, is a cubic metal matrix with
nondeformable, isolated inclusions. The most obvious approach to this
problem is to assume that the lacking deformation in a particular inclusion
will be compensated for by extra deformation In its neighborhood. The
effect will decay with distance and, provided ti» inclusions are sufficient-
ly far apart, the material will decompose intc "clusters” that do, as a
whole, behave lik: a grain in a Taylor model.

This model does not seem to be appropriate, at least not in general. There
have been a number of finite-element calculations (generally two-dimension-
al) that indicate this. Figure 6 shows a 1esult from one of these, for a 20

volume percent concentration of nondeformable wires aligned with the
transverse direction in a plane-strain test.[{20] The particular quantity
contoured does not matter for the current discussion (it is the current
local spin of the principal strain-rate axes with respect to the curreut
local "rigid-body spin”, all after a strain of about 40%.) The point {s



that in the region labeled C, the deviations from the macroscopic conditions
are the greatest. This is more-or-less half-way between particles, not near
particles. It is true that there are also strong deviations in the very
neigaborhood of the particles, but they comprise a very small volume
fraction of the material. The most important effect seems to be a behavior
akin to fluid flow between the particles. These predictions have recently
been verified for the case of tungsten wires in a copper matrix (21].

Fig. 6 - Schematic "unit cell” of
fiber composite modeled by FEM.

The cross-hatched wires are unde- <=
formable. The flow pattern in the
matrix is changed: most severely at

C., far away from the wires,

There is, at present, no model that takes some general account of this
situation, and thus would lead to general predictions about local (and
average) hardening and texture development. It would get especially
interesting for concentrations where both phases are continuous (in three
dimensions): perhaps some percolation mrdel of macroscopic plasticity, akin
to that for dislocation percolation through a slip plane, could be
developed.

A similar, but even more difficult problem is posed by materials in which
the slip (and twinning) flow stresses are very disparate for different
systems: then, certain straining requirements imposed on a grain by Iits
surroundings cannot be easily fulfilled and substantial internal stresses
must develop. But these internal stresses would be different i{n tensor
character from grain to grain; thus it may be possible for the "hard” modes
in one grain to be compensated by soft modes in the surroundings: again,
this could lead to a percolation problem.

Summaxy Assessment

Large-strain plasticity is a prime example of complex behavior: reliable
macroscopic descriptions can be obtained only by judicious modeling of the
many physical processes occurring at various levels of length, time, and
dimensional scale. Much of the detailed physical information gets lost in
the progression from microscopic to the macroscopic propertiss, but some
essential features are retained and provide the means to extrapolate known
behavior into regimes in which less macroscopic information is available.
From thias point of view, modeling of large-strain plasticity, for a large
class of materials and in a wide regime of variables, is far advanced: the
results are reliable in many respects, and In these respecta, further
modeling ia not likely to have significant {mpact. On the other hand, there
are nome glaring holes in our overall understanding of plasticity. We
highlight one each on the atomistic, dislocation, and macroscopic ascales,.
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1. Calculation of the Peierls stress for various slip systems Iin non-cubic
materials, including effects of pressure and other stress components. This
is one case where there is a direct connection hetween modeling at the
atomistic scale and properties at the macro-scale. The principal obstacle
is that even the best avajlable interatomic potentials and calculation
methods do not seem to be quite good enough for this sensitive application,

2. Dynamic recovery of dislocation structures in deformed materials, under
the action of their own internal stresses and thermal activation. This
problem has been addressed by various simplified mechanisms since the fif-
ties. Progress could now be made by a simulation of realistic dislocation
tangles and cell walls. The macroscopic output could be a more quantitative
description of strain hardening at very large strains, of its temperature
and rate dependence, and of its contribution to local misorientations.

3. Plastic flov in macroscopically heterogeneous polycrystals, in which the
strength, at least in some directions, varies widely from grain to grain.
Here, further finite-element simulations, for various geometries, could help
assess the situation for some special cases, but the real need is for con-
ceptual modeling: some abstraction that will lead to a set of general rules,

All of these problems require extensive :ise of computers; but their require-
ments are not orders of magnitude away f.om currc.t possibilities.
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