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1. Introduction

Early efforts to decompose programs for parallel machines were very difficult and not always successful [1,2].
There were many possible paths that could be followed to partition a scientific code for parallelizauon. For exam-
ple. early researchers [3,4] in compiler methods of parallelization proposed a clustering scheme that atiempted to
tanslate a Fortran program into its most basic form—a directed graph of dependences where nodes represent ele-
mentary operations and edges show the flow of data. One would then tind clusters of nodes that could be computed
independently, coalescing the clusiers and increasing granularity until some desired degree of parallelization was
reached. This appreach was difficult to automate effectively, and so was never very useful.

Another method that seemed more accessible was 1o partition a code by hand based on some high-level knowledge
of the application. This approach, based on a proposed "top-down" methodology [5), required the use of snme sort
of dependency analysis tools for success on any large, realistic scientific code. At that time, nearly five years ago,
there were only a few such wols, mosuy in the research stage [6,7). These tools were cumbersome and difficult to
use, parly because their conservative approach required them to present as dependences anything that was in any
way questionable, crearing more information than one could understand or use. It was clear that for truly successful
partitioning of codes for parallel processing, tools not only had to accomplish this analysis automatically, but bad to
present the results of the analysis in a graphical, understandable "ormat. This problem still continues. Although
there are many more tools available today than five years ago, many still suffer from the problems mentioned above,
Researchers and ol-builders still debate what to give the user and how to present the information [8].

This paper will discuss one of these automatic tools that has been developed recendy by Cray Research, Inc. for use
on its parallel supercomputers. The tool is called ATEXPERT; when used in conjunction with the Cray Fortran
compiling system, CF77, it prcduces a parallelized version of a code based on loop-level parallelism, plus informa-
tion o enable the programmer 1o uplimize the parallelized code and improve performance. The information
obtained through the use of the tool is presented in an easy-to-read graphical format, making the digesuon of such a
large quanuty of data relatively easy and thus, improving programmer productivity.

In this paper we address the issues that we found when we took a large Los Alamos hydrodynamics code, PUEBLO,
that was highly vectorizable, but not parallelized, and using ATEXPERT proceeded 0 parallelize it. We show that
thiough the advice of ATEXPERT. bottlenecks in the code can be found, leading to improved performance. We
also show the dependence of performance on problem size, and finally, we contraat the speedup predicted by
ATEXPERT with that measured vn a dedicated eight-processor Y-MP.

2. Overview of PUEBLO

The PUEBLO code is used to numerically model point explosions in space. The code uses a three-dimensional,
(ime-explicit Lagrangian tinite-dilference numenrcal technique in which nll hydrodynamic varinbles including velo-
ciies, are cell-centered. This technique is based on a form of the Gudunov method, which uses a first-order
Riemann solver. [t also uses n Gamma-law Equaton-of-State. The hydrodynamics cycle is split inio a Lagrangian
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phase and a rezone-advection phase in which conserved quantities are transferred from the Lagrangian mesh to an
arbitrarily specified mesh,

The problem that we analyzed used two different mesh sizes: these were 22x32x32 and 64x64x64. In the code the
three dimensions of the mesh are merged into a single one-dimensional data structure, so that the primary loop
lengths are on the order of the cube of one dimension of the mesh. The problem that was run on the smaller mesh
size involved both the Lagrangian phase and the rezone-advection phase. The problem that was run on the larger
mesh involved only the Lagrangian phase,

3. Overview of CRI Tools

3.1. SCOUNT

SCOUNT is a benchmarking utility that counts the number of times each statement in a Fortran program is exe-
cuted. SCOUNT produces a source listing with an execution tally next to each line of code. We used SCOUNT to
ensure that during the initial phases o optimization, the concentrauon of effort was on those loops that our problem
actually executed.

3.2, PROF and PROFVIEW

Through u method of timing by address range, the PROF utility indicates how much time is spent in various seg-
ments of code within routines. At regular intervals, the operating system records the address of the instruction being
executed. Addresses are grruped in "bins” or "buckets,” whose size is selectable: these bins can be associated with
labels internal to a program,

The PROFVIEW utility generates reports in various formats from the raw data generated by PROF. Since the
UNICQOS 6.0 operating systeni release, PROFVIEW has provided an X-Window interface.

33. ATEXPERT

ATEXPERT is a tool developed by Cray Research, Inc. for accurately measuring and displaying information on the
Autotasking performance of a job that is run on an arbitranily loaded system. It predicts speedups that would result
during dedicated execution from data collected while running a code on a nondedicated system. [t provides a
wealth of information on the code under consideration enabling the programmer to find those spots in the code that
may he contributing to performance buitlenecks. ATEXPERT movides an X-Window interface as well as an
interacuve and batch ASClI intertuce.

ATEXPERT is actuaily more than a single command; it is composed of three phases:
(i) aninstrumentation phase,

(2)  adata-gathering phase, and

3)  an analyris phase.

During the instrumentation phase, the FMP preprocess or (from the CF77 compiling system) adds additional timing
code 10 the regions of the code determined to be parallelizable, that 18 then compiled into a user’s program. Figure |
shcws schematically how this is done. During the data-gathering phase, the program is executed and raw timing
informatir 1 is gathered. In nddition, the instrumentation also records the number of unitasked scalar iterations for
cach loop, the number of concurrent itzrations for each parallel loop, plus other relevant information associated with
each loop, When the program werminates, this information is written 1o a file. In the analysis phase. this file is read
by ATEXPERT which then displays through its X-Windows graphica interface program the Autowsking perfor-
mance data thus collected. An ASCI! ~.splay tormat is also avatlable,
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Timings
bp - time required to begin a parallel region
bes - time to beqgin a control structure

top of loop - time necessary to get to the top of a control siructure
bot of loop - time necessary to get to the bottom of a control siructure

Is - time required to do loop synchronization
il- time to get the naxt control structure started; interioop time
ap - time required to end a paraliel region

Top of subroutine

1 "
——r— becs — becs
— {OD Of (OOP 1 top of loop
- | -
bot ot loop bot of looo
s L
i l
bece bes
——— (0P Of 00N - top of lcop
L] .p ) .p

MASTER ~MAGTER-

Figure |. Schematc of timing-call inserion by ATEXPERT.

ATEXPERT decompuses the exccution ume of i program into parallel region time and preceding seaul time (time
spent outside of parallel regions). Parallel region uming is obtained for unitasked execution of each parallel region
us well ns multitasked ~xecution of the region. Multitesked execution is further decomposed into measurewnent of
distnibution of work among processors and measurement of overhead costs for parallel execution.

Overhead. in this case, 13 detined 7] as the difference in speedup between thut predicted by Amdahl’s Law and taat
tneasured or projected from an actual Auttasking rur. Amdabl's Law (8], as quandfied by the Ware model [9), and
extended to multiprocessing i3 given by

SO =[(L=fpN+fpvP]!

where
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S(P) = maximum expected speedup from multitasking,
P = number of processors available for multitasking,
f(p) = {raction of program that can execute in parallel, and

L= f{p) = fraction of program that is serial (=f (s5)).

ATEXPERT obtains the fraction that can execute in parallel (f (p)) from expluited parallelism rather than from
exisung parallelism. This is an imponant difference because it is a measure of the detected parallelism rather than
of potenual parallelism. ATEXPERT cannot currenuy detect potenual parallelism, due in pant to CF77s inability to
carry out interprocedural analysis. A user can change this fraction from notential to detected parallelism by use of
inserted directives. Uvertiead thus calculated (or projected) is further decomposed into various contributing factors
associated with the Cray Autotasking S:stem, such as Begin Parallel overhead, Slave Arrival overhead, Convoy
Time, and others. [t is interesting to note that this idea of overbead as the difference in predicted versus measured
speedup was first proposed as a extension 10 the Ware model by Buzbee [10] in 1984.

4. Results

The goal of this project was (o take the serial, but highly vectorizable program, FUEBLO and using various CRI
tools to parallelize the code, obtaining the best possible speedup through the use of informauon provided by the
tools. A constraint was not to change the algorithm and o allow only the minimum changes in the code necessary
for successful execution. We will first detail the resuits from the 32x32x32 mesh problem and then give results
(rom the larger mesk.

After some iritial information-gathering runs using SCOUNT that provided information about which loops were
actually being executed by onr problem, we began our analysis with the use of PROF and ATEXPERT. The initial
PROF runs showed that a routine named ISMIN took 11.7% of the runtime. When we allowed the compiler to
replace ISMIN with a more efficient version from the Cray scientific library, SCILIB, the time spent in ISMIN
dropped to an insignificant amount and the total execution time improved by 10%. This improved version was run
through the CF77 compiling system (o enable automatic parallclization, called Autotasking. A Profile from this step
shows in Figure 2 that the subroutines RIEMAN and ADVECT are the most heavily used routines. This chows us
where we need to look first to improve parallelism. In this code, RIEMAN dominates in both serial and parallel
mode; it is clearly an important subroutine in the code.

Next we ran the code using ATEXPERT. The results of this eftort are shown in Figure 3. Notice in the plot on the
left side of the figure that the predicted speedup is only 2.5 out of a possible 4.8, (assunling 8 processors) using the
Amndahl's Law calculation described above. Since & highly vectorizable code implies many loops that should be
amenable to parallelization, this result is both puzzling und disappointing. Further invesugaton of the plot in Figure
3 shows us that the problem begins when more than three processors are used. By inspecting additional infcrmaiion
provided by ATEXPERT, we find that loop 20 in the most heavily used subroutine, RIEMAN, is performing poorly.
Clicking on "Source Files" in the command menu allows us to bring up a window containing source code for RIE-
MAN, zeroing in on loop 20. Figure 4 shows the fragment of code representing this loop. This fragment makes the
problem obvious. The Autntasking system, by default, tries 1o vectorize inner loops and multitask outer loops. The
outer loop 1n this piece of code has an upper limit of 3. The inner loop, however, bas an upper limit of 32768 (for
the small problem)! If we could sun the inner loop as concurrent vector, that is, sending "chunks” of the inner-loop
vector to each of the processors, the performance would improve. Checking our Autotasking manual, we see that
there is a Cray microtasking directive that lets us do just that. By inserting a directive of the form cmicS do parallel
vector we get the long inner loop partitioned across the cight processors, thus allowing both vectorization and full
parallelization, improving our granularity and giving a better speedup.

Since PUEBLO is a three-dimensional code, the upper limit of three on outer de -loops should be quite common, and
i check of other subroutines that contribute hewvily 10 the runume is probably a good idea. Duing so shows several
more instances of the same problem. Adding directives to these subroutines gives us the results seen in Figure 5.
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PROFVIEW

RE-P-O_H-'[ FUNCT'ONS [LIITTITLLLT )
TREres BRmnanmsmsner PRZSS MOUSE BUTTON *** MODULES US'NQ THE MOST TIME ***
Summary WHILE INSIDE
Modules PIE SLICE TO VIEW
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Environment
Options
GRAFHICS FUNCTIONS | ALL OTHERS
Aclivity Graph
Memory Graph
Remove Graph PERCE!.TAGE MODULE

20.94 RIEMAN
SPECIAL FUNCTIONS | 18.00 ADVECT

11.50 LAGHYD
Quit 8.90 VOLUME
Help 8.03 %SORT%

32.04 ALL OTHERS

Figure 2. Graphical output from prof/profview showing where the percentage of execution time is spent in the intial
run of PUEBLO.

Note that the speedup is now 6.4 out of a possible 7.2, or 90% of the Amdahl's Law prediction. By the judicious
use of these directives, we have improved both the predicted parallelism and the measured parallelism. Remember,
however, that the fraction of the code that can execute in parilel is obtained from detected parallelism rather than
from potental paratlelism. The box at the bottom of Figure 5 (left side) provides us with some potential problems
that n.y be inhibiting parallelism in the code. By making use of this additional information we may be able o con-
tinue to improve the Amdahl’s prediction as well as the actual speedup.

ATEXPERT uses measurements, sophisticated projection algcrithms, und cipert systems heuristics to arrive at the
various staustics that it provides. In order to test the accuracy of this system, we ran PUEBLO on a dedicated
YMPS/3128 using various numbers of processors and measured the actual speedup using the CF77 compiling sys-
tem and autotasking. When we compared the results of this test with what ATEXPERT predicted, we found that at
all levels of optimization, the differences were less than 10%. For example, at the highest level of optimizauon that
we achieved (Figure 5), ATEXPERT predicted a speedup of 6.4, and we measured a speedup of 6.1 based on the
sequential code using our version of ISMIN and 5.9 with the SCILIB version of ISMIN. This is a diffe ence of $%
and 8%, respectively. The varintion from what is predicted probably siems (rom several causes. One is there is a
varinble anount of work done in some of the loops in PUEBLO. This is known o affect the accuracy of the predic-
tions from ATEXPERT. Another is the magnitude of the effect of memory contention, which is also known to be
present in the code, The first effect could cause ATEXPERT to predict either higher or lower than what is meas-
urcd; the sccond effect would cause the measured time to always be higher and therefore the speedup wonld be
lower.

The success that we had in parallelizang PUEBLO came without nearly as much cifort as had heen required in the
past and we decided to try newrly the same problem on a larger mesh size. The advantages of this would be that
la-ger mesh sizes should give us longer vector lengths and better speedups. We used the same optimization direc-
tives that had been used on the smaller problem. We first used the ProfView tool 1o determine that the relntive
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Figure 3. Graphical output from ATEXPERT showing the predicted speedup of 2.5 for the Initial Autotasking run
of PUEBLO. This figure also shows the overheads associated with running the code.

subroutine usage had not changed. The results of that are shown in Figure 6, and we see that subroutine RIEMAN
is stll the most beavily vsed routine. However, because we are no longer doing the rezone-advection phase of the
calculation, subroutine ADVECT is replaced by LAGVEL, which calculates ihe Lagrangian vertex velocities, as the
second most heavily used routine. The results of the 64x64x64 size are shown in Figure 7. Note wat both the
Amdahl’s Law prediction and the ATEXPERT prediction for specdups have improved. This is due, of course, to
the fuct that the vector lengths ure now 262144; thus a larger percentage of the execution Ume is spent in the parallel
parts of the code. These longer vector lengths algo enable us to amortize more of the overhead associated with mul-
titasking, and we see a decrease in predicted overhead from 0.8 cpus for the smaller problem to 0.6 cpus for this
one, 1 25% improvement. When we ran this version of the code on a dedicated system (again, a YMP8/128), the

measured speedup for eight processors was 6.6. Again, this measured speedup is within 10% of the speedup
predicted by ATEXPERT.



X view
do 10 I=1,lendv(ir)
w(1,1) = 0.5e0"ss(i)/ra(l)
w(1,2) = rho(l)*ra(l)
10 continue

do 20 m=1,3
men = len(m,ir)
do 20 I=istrt(Ir),lendv(ir)

c compute the normal projections of the cell-centered velocities.

uni = ((uc(l+mcn,1)*fn(l,m,1) + uc(l+mcen,2)*tn{(,in,2))
& + uc(l+mcn,3)*in(l,m,3))

unr = ((uc(i,1)*fn(l,m,1) + uc(i,2)*tn(i,m,2))
& "+ uc(l,3)*tn(i,m,3))

c solve for the pressure and normal velocity of tha face.
umax = uni + w(l+mcn,1)
umin = unr-w(l,1)
plmin = pr(l+men) - w(l+men,2)*w(l+men,1)**2

prmin = pr(i) - w(l,2)*w(l,1)**2
bl = w(l+men,2)

br = w(i,2)

a = (br - bl)*(prmin - pimin)

b = br'umin*‘2 - bl*'umax**2

c = br*umin - bl*umax

d = br*bl*(umin-umax)**2

d = sqrt(max(0.e0.d - a))

Figure 4. Code fragment from subroutine RIEM AN showing a loop that contributes to low-perforinance figure.

5. Conclusions

The conclusion that one can draw from this is that based on our experiences with PUEBLO, ATEXPERT does an
cxcellent joh of assisting in parallelizing a large code. The fact that this code is nearly 100% vectorizable helps
because the analysis needed to determine vectorizability is essentially the same as that needed to determine loop-
based parallelism. ATEXPERT's analysis provides the user with more information than previous tools have pro-
vided. Furthermore, this information is presented in several easily-understood forma... We were able 0 take a
large sequenual, but highly vectonzuble code, und with a modest amount of effort parallelize the code obtaining
predicted speedups of beiween 6.1 and 7.2. When the code was run on an actual eight-processor YMP, the speed-
ups obtained were within 10% of those predicted by ATEXPERT. The effort that would have been required before
the CF77 system and the advent of tools such as ATEXPERT would have been much greater. The information pro-
vided by ATEXPERT has also given us i better understanding of the performance characiernistics of PUEBLO.
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