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Abstract

A binary model of the immune system is used to study the effects of evolution on
the geneti: encoding for antibody molecu'es. We report experiments which show that
the evolution of immune system genes, simulated by the genetic algorithm, can induce
a high degree of genetic organization even though that organization is not explicitly
required by the fitness function. This secondary organization is related to the true
fitness of an individual, in contrast to the sampled fitness which is the explicit fitness
measure used to drive the process of evolution.

Keywords: immune system, genetic algorithm, V-region gene libraries

1 Introduction

The interplay between concrete actions at a local level and emergent behaviors at the global
level is one of the major themes of artificial life. In the context of evolution, an important
question is how selection pressures operating only at the global, phenotypic level can pro-
duce appropriate low-level, genetic structures. This question is most interesting when the
connection between phenotype and genotype is more than a simple, direct mapping. The
immune system provides a good subject for experimentation from this point of view--the
phenotype is not a direct mapping from the genotype but the connection is simple enough
that it can be studied.

In order to defend against foreign cells and molecules, called antigens, an immune system
must first be able to recognize them. Antibody molecules are one of the agents responsible
for antigen recognition. Recognition is achieved when an antibody physically binds to an
antigen molecule. Molecular binding requires that the two molecules, antibody and antigen,
have complementary shapes. Hecause the two molecules must “match” in order to bind, it
would seem that every antigen requires a corresponding antibody molecule in order to be
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detected. An undetected antigen could cause infection, illuess, or death, so a fit individual
should have an immune system that can recognize all possible antigens.

There arc, however, an almost limitless number of antigens to recognize, and an individual
has only limited genetic resources to allocate to the immune system. Both mice and humans,
for example, have fewer than 10° genes in their entire genome but their immune systems can
make on the order of 10'! different antibody molecules {1, 2]. Both the mouse and the
human immune system use a collection of gene libraries to code for components of antibody
molecules. Because the components can be combined in a large number of ways to produce
an antibody, these immune systems can generate a large number of antibodies, even though
the libraries contain only a small amount of genetic information.

Each antibody molecule, for example, is composed of two types of polypeptide chains: the
heavy chain (H) and the light chain (L). If the immune system could construct 104 dif-
ferent light chains and 10* heavy chains, then the random combination of light and heavy
chains would allow the construction of 10® different antibodies. The chains themselves are
constructed from interchangeable components. The heavy and light chains both contain a
variable (V) region of about 100-110 amin» acids that differ from one antibody to the next.
The structure of the antibody V-region is encoded by multiple gene segments, whereas most
biological molecules are encoded by a single contiguous length of DNA. The V-region of the
heavy chain, for example, is encoded using three gene segments, each of which has a anumber
of different variants. Every combination of gene segments produces a uniue V-region, so the
large number of genetic combinations makes it possible to construct large number of different
V-regions. All the interchangeable variants of a gene segment are stored in a library of gene
segments. (Immunologists call these li'.raries multigene families.)

The gene segments are combined together before translation to an amino acid sequence
takes place. Fo. example, the variable region of the heavy chaiu is constructed by selecting
one gene segment from each of three libraries, combining the three segments into a single
picce of DNA, and then constructing from that strand the amino acid sequence which is the
final heavy chain. The V-region of the light chain is made in an analogous way but it is
constructed from only two gene segments, each with their own libraries. The V-regions for
an antibody, then, are eacoded by five different gene segments, each drawn from a separate
gence library. When gene segments are combined, nncleotides can be added or deleted at
the junctions adding a another level of diversity called junctional diversity. This additional
mechanism for achieving diversity will not be considered in the model presented here.

By constructing antibodies {rom separate gene segments, each of which has a number of
possible variants, the immune system leverages a small amount of genetic material to create
a large number of antibody molecules. As will be argued later, this combinatorial mechanism
is most eflective when the variants (referred to as entries in the library) are dissimilar. If
all variants were the same there would be little advantage to interchangeability. To study
this effect, we have defined a simplified model of an immune system, and used the genetic
algorithm to evolve individuals (each individual represents the genetic specification for one
immune system). Our expeciments show that the entries in the libraries become progres-
sively more dissimilar under evolution, even though dissimilarity is not directly required by
the fitness function, This organization of the libraries is -+ “secondary effect” that can be



interpreted as a balanced partitioning of the antigen recognition task.

The organization of the libraries is a genotypic effect that is caused by selection pressure on
the phenotype. The organization is implicit while the selection process is an explicit action.
This distinction between phenotype (the aggregate level at which selection takes place) and
genotype (the level at which variation takes place) is a hallmark of artificial life systems.
Our immune system model illustrates the explicit/implicit theme in two ways. First, the
secondary organization of the immune system libraries is necessary because antibodies must
collectively be able to recognize all antigens. The interdependence among components is
a secondary organization, and is not measured directly. Rather, an individual’s fitness is
evaluated according to how well it matches randomly selected antigens. Secondly, only a
small fraction of an individual’s possible antibodies are ezpressed at any one time, yet an
individual’s fitness is determined by how well its expressed antibodies match the presented
antigens. In some cases, an individual may be “unlucky” in the sense that it has the genetic
material to match an aniigen, but that material was unexpressed at the time the antigen was
presented. As we will see, our model shows a separation between genotype and phenotype
in a highly simplified setting, which allows us to quantify the effect.

In Sections 2 and 3, we review our artificial immune model an. summarize earlier experiments
which tested the performance of the model on various antigen recognition tasks. These
experiments demonstrated the capability of a library mechanism for encoding antibody genes
and showed that the genetic algorithm could optirnize the antigen recognition capability of
the model. However, it was not clear from these experiments exactly how the system evolved
as well as it did. In the extended experiments described in Section 4 we explore the behavior
of the model more carefully. Specifically, we study the relationship between sampled fitness
(an incomplete testing of an individual’s fitness that guides the selection process) and a
complete measure of the individual’s fitness which we call true fitness. Finally, in Sections 5
and 6, the effects of evolution on the genome are considered. Section 5 motivates a measure
of library organization called Hamimning separation, and Section 6 experimentally compares
this measure with true fitness.

2 Artificial Immune System

Our simplified model of the immune system uses bitstrings to represent molecules and the
gene segment libraries. The patterns of the bits represent the shapes of molecules and
determine their ability to bind with other molecules. This representation is loosely bused
on a bitstring universe introduced by Farmer et al (3. In our bitstring universe, molecular
binding takes place when an antibody bitstring and an antigen bitstring “match” each other.
A match occurs when the antigen and antibody have complementary shapes (i.e., binary
patterns), which reflects the lock-and-key fit of actual wolecules during binding. Figure
1 shows a binary antigen molecule and a binary antibody molecule. The binding affinity
between real antigens and real antibodies is primarily determined by molecular shape and
physical properties such as electrostatic surface charge, both of which are complementary
when the molecules have a high aflinity.



Matching is not required to take place perfectly along the entire length of the molecules.
The exclusive-or operator (XOR) is used to compute which bits are complementary matches
between the two molecules. The bits that match can be used to compute a “match score”
in a number of differeat ways. In the experiments described here, the match score is simply
the sum of the number of matching bits. In the figure, for example, the XOR operator has
found 27 bits that are complementary between the antigen and the antibody, so the match
score is 27.

Antigen: 110C190I2:12130110101260010000111221005100:C8:01C1001013100110101
Antibody: 001172:3121201213C121173001C10111912.101513€2210011001221230100111
XOR: it N LiLil ot P N P S N i1

G —

Figure 1: Binding/recognition process for binary molecules

2.1 Antibody Libraries

Each individual in the simulated population contains four equal-size libraries of antibody
segments as shown at the top of Figure 2. Within each library there are eight elements,
represented as bitstrings of length sixteen, so each individual has a total of 512 bits. This
structure is a simplified model of the human immune system which has seven? libraries, each
with a different number of gene segments [4].

The ezpression of an antibody is also shown in Figure 2. One segment from each library
is chosen, usually at random, and the four selected elements are concatenated into a siugle
bitstring that is sixty-four bits in length. We call this bitstring an antibody molecule, one of
severa] that will be used to compute the fitness of the individual. The set of antibodies that
can be constructed from the libraries is called the potential antibody repertoire. Not every
antibody from the potential repertoire is present in an individual at a given time. The set
of antibodies that have currently been expressed is called the ezpressed antibody repertoire.

The fitness of an individual is determined by its overall ability to recognize antigen molecules.
Fitness is evaluated by exposing an individual to a set of antigens and testing how well it
recognizes esch antigen in that set. The expressed antibodies are used to do the recognition.
Each antigea receives an antigen score, which is the maximum of all the match scores com-
puted hetween that antigen and the expressed antibodies. The antigen score quantifies how
we!l the immune system recognized that particular antigen. The overall fitness of the indi-
vidual is found by combining the various antig~n scores. The simplest method for computing
the fitness, used here, is to average the scores for the different antigena.

-"l‘lhic aré ';W(; ty.pel nf.li'ght chniﬁn. A And x, each of which has two V-region libraries. So while a gives,
antibody in the product of gene negmenta from only five libraries, each cell contains a total of seven V-region
libearies,



One individual genome equals four libraries;
Library 1 Library 2 Library 3 Library 4
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Figure 2: Process of constructing/expressing antibody from genetic library

2.2 The Genetic Algorithm

The effects of evolution are simulated on the binary immune system by using the genetic
algorithm, a computational model of genetic evolution [5, 6]. A population of individuals
is represented in the computer as bitstrings. At each generation the population is evalu-
ated according to soine measure of fitness. A new population is formed from the evaluated
population, wherc the individuals with higher fitness have more offspring than the less fit in-
dividuals. This cycle of evaluation and reproduction continues, and through time the average
fitness of the population increases. Two genetic operators, crossover and mutation, modify
the contents of the population as the genetic algorithm progresses. Crossover combines the
binary patterns of two individuals into a new individual, whereas mutation changes the bits
of an individual with some small probability. A discussion of genetic algorithm methodology
is found in [6]. The experiments reported here were conducted with Genesis 1.2ucsd, which
is a genetic algorithm tool written in C [11].

3 Previous Results

In earlier experiments the artificial immune system was used to test whether the genetic al-
gorithm could evolve the gene libraries effectively [9],(10]. Preliminary experiments showed
that the genetic algorithm could easily evolve an immune system (one using gene libraries)
that recognized 100 percent of all possible antigens. Thus, even though the genetic represen-
tation of antibodies was complex, it was possible to optimize the antigen recognition task.
This first experiment, however, was based on perfect information from the environment, so
the recognition task was rot as difficult as that faced by the real immune system.

In the next set of experitnents the evaluation of individual fitness was subjected to two types
of sampling noise, simulating the incomplete inforination available to real immune systemas.
First, each individual was exposed to a only subset of the existing antigens, modeling the
fact that real individuals are not exposed to all diseases during their lifetirmes. Second, each
individual was only allowed to cxpress a fraction of their potential antibody repertoire. This
sampling operation was motivated by the fact that at most 107 of the 10'! possible antibodies



are present 1n the body, as expressed molecules, at any given time.

Genetic algorithm experiments were performed for varicus antigen exposure rates and anti-
body expression rates. This type of partial evaluation of the fitness, due to sampling noise,
reduces the efficiency of the selection process and the rate of cvolution is slowed. Both sets of
experiments showed that even with sparse and incomplete information, the immune system
libraries could evolve and make continued improvement in overall fitness. This result holds
across a wide range of sampling rates, with the implication that the mechanism for gene
libraries is robust and not a fragile construct.

The question arose has to how well the libraries that were evolved in the later experiments
comnpared with the first libraries that were evolved using perfect information. That question
is the basis for this paper, where the sampled fitness, based on incomplete information, is
compared with the true fitness that is based on perfect information.

4 True Fitness vs. Sampled Fitness

In general, true fitness can be defined as an individual’s fitness when evaluated in all possible
conditions. Within the context of the immune system model, true fitness is an individual’s
ability to recognize all possible antigens using its entire potential antibody repertoire. Asthe
name suggests, sampled fitness measures an individual’s fitness for only a sample of possible
environmental corditions. In the context of the immune system model sampled fitness is an
individual’s ability to recognize those antigens it stochastically encounters, using only that
portion of the antibody repertoire it happens to express (the expiessed antibody repertoire).
Thus, sampled fitness is only an approximation of true fitzess. We would like to know how
well this approximation works when combined with the processes of evolution.

In the real world, true fitness is clearly a fiction. An individual would have to relive its life
many times in all possible circumstances so that its fitness could be completely tested. While
this is impossible in the real world it is feasible for the artificial immune system. True fitness
is computed by expressing the entire potential antibody repertoire and using the highest
match score found for each antigen being recognized.

In the experiment described in this section, our artificial immune system is evolved using
the genetic algorithm. Fitness is computed according to an individual’s ability to recognize
antigen strings. An individual expresses a small subset of antibodies from its potential
repertoire of antibody molecules. Then for each antigen presented to it, the individual
selects the expressed antibody that best recognizes the antigen, and receives an antigen
match score. The antigen match score, averaged over the set of antigers it encounters,
becomes the individual’s sampled fitness. The genetic algorithm determines an individual’s
reproductive future based on the sampled fitness.

The experiments used a population size of 500 individuals, and all experiments were run for
one thousand generations. Instcad of initializing the population with random bitstrings, as
is common practice for GA experiments, the population began as all zero-valued bits (the
teason for this is given in the next section).
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Figure 3: Sampled Fitness Curves and True Fitness Curves

We compare sampled fitness with the true fitness and the results are shown in Figure 3.
For this experiment, sampled fitness is computed by expressing only eight antibodies of the
4096 in the potential repertoire. Figure 3 shows the population average for true fitness
and the population average for sampled fitness. These curves have been averaged over thirty
experiments. Initially the population contains individuals that are all zero bits, so the fitness
of the population begins at 50 percent, i.e. no better thzn fair guessing.

In general, the true fitness will be higher than the sampled fitness, as is shown by the
experiment. When computing the sampled fitness, the best antibody for recognizing a given
antigen will not always be expressed, so with some fixed probability a less appropriate
antibody will be used instead. For the true fitness, however, all antibodies are always
expressed from the potential repertoire, so the best antibody is always available. Note that
the ratio of sampled fitness to true fitness remains almost constant at 0.615 throughout the
experiment (ratio taken with respect to the 50% fitness level: ratio = (sarnplefitness —
0.5)/(truefitness - 0.5)).

5 Coverage of Antigan Space

The set of all possible antigens is called antigen space. Because antigen molecules in the
binary model are 64 bits in length, the total number of unique antigens is 284 = 1.8 » 1019,
which is the size of antigen space.

A given antibody molecuie recognizes some set of antigens and therefore covers somne portion
of antigen space. The amount of coverage provided by one antibody is determined by the
acceptable matching error. If no error is allowed during matching an antibody can only
recognize the antigen that is its exact complement. If, however, the immune system is
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Figure 4: Coverage of antigen space by antibodies

allowed to make a one-bit error during matching then each antibody can cover 65 antigens:
the one antigen it matches exactly and the 64 antigens created by changing one of its 64
bits. The error radius, r, is the number of bits that may be in error during matching The
number of antigens covered by cne antibody within a given error radius is:

coverage = ) _ ( : )

=0
where | equals 64, the length of the bitstrings.

An error radius of two bits, for example, allows one antibody to cover 1 + 64 + 2016 = 2081
antigens, while an error radius of 25 bits lets one antibody cover 9.5 x 10!7 antigens, which
is roughly 5 percent of antigen space. Figure 4a shows an image of antigen space being
covered by antibody molecules. The crosses are antigen molecules while the black dots are
antibody molecules. Tk= circles around the antibodies show the coverage each one provides
for a given error radius. If the error radius were reduced then each antibody would provide
less coverage.

Figure 4 can be used to discuss some impcrtant aspects of the immune system libraries,
although both real antigen space and our model have a much higher dimensionality than
the two-dim.ensional picture shows. Note that every antibody is associated with a unique
location in antigen space-the location of the antigen that has an exactly complementary
shape. Second, the distance between two molecules in antigen space is equal to the number
of bits by which they differ. This is called Hamming distance.

Now, because the distance between twn similar antibody molecules is small, such molecules
would recognize many of the same antigens. Similar molecules would therefore have overlap-
ping coverage in antigen space. Overlapping coverage is redundant and reduces the usefulness
of an antibody. Because the imtnune system only has a limited number of antibodies it is
desirable to reduce redundant coverage by arranging antibodies as far from each other as
possible. This provides a possible way of indirectly measuring coverage, as discussed in
Section 6.
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Figure 5: Haraming Separstion for Thirty Experiments

Figure 4a suggests that if the Hamming distance between all antibodies is greater than or
squal to the efror radius, then gaps of coverage might exist. On the other hand, Figure 4b
shows that if the Hamming distance between antibodies is less than twice the error radius
(the radius of the circles in the figure) then their coverage will ovezlap.

Randomly generated 64 bit antibodies have an average Hamming distance of 32 bita. (Given
cne antibody, other Tandemly chosen antibody will bave a 50% chanee of having the
same value for any particular hit, so the two bitsizings will be different an an average of
balf their kits.) Now, if & set of antibodies are randomly genersted they will tend to be an
aversga of 32 tl&ommmthcr,whichnpmtangoodcovemgeofmhgmopm 8o
bacause ran individuals provide an unfmir head stast towards covering antigen space,
the experiments described in Section 4 do not begin with raademly generated individuals.
Another motivation for initiallaing the population to sll sero-valued individuals ia that resl

imrnune lyrm%.libruies probably developed thruagh a process of gene duplication. Because

all the genes have derived from the same paremt copy the immune system would have
bad an initial hornogenalty scross gene segments. This is duplicated in the model by uxing
all sero-valued|hits in the initial population.

6 Hamming Separation vs. True Fitness

Section § explained that similar antibodies have a small Hamming distance betwesn them
and this ponds to an overlapping coverage of antigen space. If the antibodies be-
come in closez together the redundant coverage incteases and their overall combined

coverage Is rediiced. Compere Figure 4a with Figure 4b to sea this affect.
I the converse were truae, the maximum coverage of antigen spacs would be achiaved when




the antibodies were maximelly distant. The sndibodies would be far apart and the amount of
overlapping coverage would be minimized, This suggests an indirect method for measuring
the efficiency (of antigen coverage and a direct method of mensuring genetic organizatios,
The Hamming distance between pairs of antibodies, averaged over all pairs of antibodies in
the repertoire| might have s high correlation with true fitness.

This new measure of genetic organigation was called the Hamming separation. In general
the Fammmgi separation would be computationally expensive as a way of measuring or-
gexisation because it requires N? comparisons and the sise of the antibody repertoire is
N = 4096. Huwever, the library encoding of agtibody componeats makes it possible to com-
pute Hamming separation with fewer computations. The elements of the libraries contribute
independently to the overall coverage so they can be independently analyzed (sce Figure 2 ).
Although thia still entails N? caomparisens, N is now equal to 8, the gize of tha libraries. So
Hamming separation is computed by finding the average Harnming distancs between all pairs
of gene scgments in each of the four libraries and summing the result. ‘I'n our model there
are 8 glexents in 2 Kbrary and cach library elements is 16 bits mlwgth. Recall, that the

sverage Hnmming distance between elements, for random libraries , is 50% of the bitstring
length, or 8 biits For four libraries, then, the average distance would be 32 bifs.)

The hypothesis that true fitness correlates with Hamming separation was tested by running
the same thicty experiments deseribed in Section 4 with the additional computation of the
Hamming separation. Figure 5 shows the results of $his experiment, The graph sbuws that
the Hamming fepantion gradually improves as the genctic algorithm progresses, as does the
fitness shown n Figure 3. What is the relationship between Hamming scparation and the
true itneas?

Figure 6 showe a graph comparing Hamming separation with average true fitness. Each
line in the graph is one of the thirty experiments. (The experiments are shown separately to
convey the distribution.) As mentioned previoualy the experiments begin with the individuals
in the populat:on initjalived to all zeros. This means that all agtibodies are initially zero, so
the Hamming separation begins at sere and the initial fitness s only fifiy percens. Both the
fitness measure and Hamming separatior improved steadily during the experimest, ending
with a true fitaess around 0.8 and a Hamming separatien neer 22.

The relationship between true fitness and the Hamming ssparaticn measure appears to be
nearly linear for the GA experiments. Do randomly generated individuals also fall on this
nearly linear crve? To test this question five hundred individuals were randomly generated
and tested for srue fitness and Hamming separation, The results are alse shown in Figure 6,
as & cloud of points in the lower right corner. The avezage fitnesy of these random individuals
seaxs to be argund 0.87 and the average Hamming separation is 32.

The data frex tk> randem individuals shows that the near linearity of the relationship is
not absolute 2 suggested by the data from the ™A experiments. The cloud of points is
well separated rom the trajectory of the GA data points. However, the correlation between
the true flines and the Hamming separation metsure is otill high, thus validating, at least
partially, the hypothesls that Atness is related to separstion of the antibodlies, Also, the fact
that not all do.u points formed a perfactly linear relationship may reflect on the partimla.r
method for mcfmrl.n‘ Hamwming separation, rather than on the hypothesls itself. It may be
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Figure 6: True Fitness versus Hamrring Separation

the case that ¥ aveseging the Hamming distances hetween the elements of a Bbrary is
not a suificiently accurate description of antibody separition.

The comparistn of true fitness and Hamming separation shows ozganisation taking place
at the genetle evelu & result; of the selection process taking place at the phenotypic level,

Hamming sepatation is & genetic mepsure, while true fituoss is an evaluation of the phenctype.

Organization a} the genetic level is a secondary effect in the evolution of the artificial immune
system, one thla.t is not explicltly required by the fitness function.

7 Conanions
|

The artificial itimune systam odel uses & binary representation for both molecular interac-
tion and the genetic encoding of individuals. The interaction between antigen and agtibody
molecules in this representation is suficlently complex to exhibit interesting behavior, with-
out being so complex as to be to computationally intractable, The library mechanism for
stering antibody components is a simplified vacsion of the real immune system and exhibits a.
non-trivial magping from genotype to phenotype. This binary model allows us to study con-
capis like the ctr e of antigen space and geaetic organisation with a manageable amount
of complexity.

The GA ts with the artificial immune systern show that gexetic algorithm can
optimize complex genetic information. In fact the genetic algorithm has been able 0 organize
the complex sthucture of the antibody librasies acting only oa the basis of sampled ftness.

The orgnuiuti&n of genetic material was shown in two ways. First, 2 distinction was mede
between true fitness and sampled fitness, showing that the genetic algorithm was cperating
at one level and producing results at a second level, The distinction betwesn true fitness and
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sampled fitness becomes importacnt for the evolution of complex systems acting in complex
environments, such as in most Artificial Life models. True fitness could be a useful tool
for monitoring the progress of more complex GA experiments. However, true fitness is
computationally expensive and in general would be infeasible tn compute. One advantage
of the artificial immune systemn model is that it is simple enough to study true fitness, but
just complex enough to have interesting behavior.

The second way of observing the organization of genetic material was through the use of a
special measure called Hamming separation. This measure was shown to improve in a steady
fashion along with the true fitness of the population. This provides additional evidence that
the genetic information is undergoing implicit organization than directly required by the
fitness function.
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