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Modelling of Nuclear Explosions in Hard Rock Sites
Wendee M. Brunish and Fred N. App

Geophysics Group, Los Alamos National Laboratory
Los Alamos, NM 87545

This study represents part of a larger effort to systematically model
the effects of differing source region properties on ground motion
from underground nuclear explosions at the Nevada Test Site. In
previous work by the authors the primary emphasis was on alluvium
and both saturated and unsaturated tuff ([1], [2], [3]). We have
attempted to model events on Pahute Mesa, where either the
working point medium, or some of the layers abcove the working
point, or both, arc hard rock. The complex layering at these sites,
however, has prevented us from drawing unambiguous conclusions
about modclling hard rock.

In order to learn more about the response of hard rock to
underground nuclcar cxplosions, we have attempted to model the
PILEDRIVER cevei.«. PILEDRIVER was fired on June 2, 1966 in the
granite stock of Arca 15 at the Nevada Test Site. The working point
was at adepth of 4627 m and the yield was determined to be 61 kt.
Numecrous surface, sub surface and free ficld measurements were
made and analyzed by SRI [4]. An attempt was made to determine
the contribution of spall to the teleseismic signal, but proved
unsuccesslful becadse most of the data from below shot level gauges
was lost. Nonctheless, there is quite a bit of good quality data from a
varicty of locations.

Our previous modelling efforts have indicated that it is difficult to
characterize how hard rock will respond to ground shock from the
traditional methods of laboratory tests on core, and geophysical
fogping. Hard rock tends to have inhomogencities in material
properties o a Faicly large scale, due mainly to fractures and faults
The core samples, therelore, tend not to be representative,
particularly with regard to sound speed and shear strength. In order
to obtaimn rcasonable apreement with the wavelorm data obtained
from a nuclear underground test, itis typically necessary to model
the rock as bemg considerably weaker in shear than the core values
indicate  Also, the sound speed, based on the times of arrival of
accelerometer or velocity gauyes, is often lower than the values
obtanced f-om core, presumably due to the influence of Faults and



fractures. The rock may also undergo considerable damage from the
strong shock, so that its response, after the passage of the outgoing
shock wave, may indicate even further weakening of the rock mass.
This study attempts to confirm and better quantify these effects.
Our preliminary results indicate that the granodiorite at the
PILEDRIVER site is not significantly stronger than the welded tuffs
and rhvolites present on Pahute Mesa. In fact, the granodiorite may
be more subject to fractures and joints, making it more easily
damaged and weaker after damage. In particular, the near surface
layers scem to be severely weathered, resulting in lower strength
and greatly reduced sound speed.

A schematic diagram of the PILEDRIVER shot and most of the ground
motion stations is shown in Figure 1. The data quality is, for the
most part, very good For several locations we have velocitics both
from integrated accelerometer traces and from velocity transducer
gauges, and the agreement is generally excellent. The surface
stations shown were all on a line bearing NS8E from surface ground
zero (SGZ). A few other gauges located at a bearing of SSE were
situated across the Boundary Fault from SGZ to investigate possible
motion along the fault. We have not included these gauges in our
study at this time,

We have performed a series of calculations with different layering,
physical propertics and material properties in an attempt to
determine which properties are most important in shaping the
observed wavelorms  Although this study of hard rock 1s far from
exhaustive, and we have so far only looked at the PILEDRIVER
wavelorms, some conclusions are already apparent.

The treatment of damape is extremely important, i ¢, the amount of
shear the rock can support after the passage ol the initial "shock’
wave, as well as the strenpth of the shock required to damage the
rock. Calculations were performed for HARDHAT, ina similar
granodiorite to that found at PILEDRTVER, by Wagner and Louse [N
they found that despite numerous vartions in the way the equation
of state ol the rock was modeled, they were unabie to mateh the stow
drop ol the traithny end ol the velocty wavelorm  They concluded
that "shock conditionmg”™ wias an rmportant missing component of
ther model More recent work by Rimer et al [o] among others, has
confirmed the tmportance of how damage s modeled on the resulting
wavelarme
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Figure 1. PILEDRIVER ground motion stations



Another important aspect is the presence of the near-surface
weathercd layers. Both the dispersion in the waveforms themselves
and the arrival times at the ncar surface stations confirm the
degraded condition of these lavers. The arrival times for the stations
in the "zcro” hole indicate that while the sound speed at depth is
near 6000 m/s, the sound speed within SO m of the surface drops
down to about 1600 m/s. An intermediate layer has an acoustic
velocity, based on arrival times, of about 4500 m/s.

In the calculations we performed for the present study, we varied
the strength, the amount of damage and the compressibility of the
working point layer, and the thickness, the sound specd, the
compressibility and the shear sirength of the weathered layers.
Some of the more important parameter variations are shown in
Table 1.

Somc of the results for the aforementioned calculations are shown in
Figures 2 through S, In all of the plots, the solid lines are the
calculational result and the dashed lines (or symbols in Figure 3)
represent the experimental data.

Figure 2 shows best vertical velocity waveform matches achieved so
far (for calculation P12 as shown in Table 1). In Figure 2, we show
a comparisoa of peak vertical velocity versus range for this

calcutation and the PILEDRIVER data.

Figure 4 shows the waveforms obtained when we use "good quality”
granite, as deseribed by Hoek and Brown [7], for the working point
material tcalculation BFD1 ). This is the same material response
model used by App [R]in his 1 D study of material property effects
on the sersmic source function,. The calculated waveforms are much
more mmpulbive and lack the broad tail scenin the experimental

data  The pranodiorite at PILEDRIVER, based on the characteristics of
the recorded wavelorms, s considerably weaker than the type of
rock that is usually characterized as granite. Apparently the
PILEDRIVER modium s not "good quality” granite

Figuire S shows some of the surface yround motion for the PP
“"hasehne” caleulation and for a calculation (PD18) where the
waeathered faver: were modeled as signiicantly slower and weaier
than the workbing pomt matevl The weak near surface laves
spread oul the wavelorm  Also, we =eem the data that the overall



Table I.
PILEDRIVER calculation material properties

Calculation

PDI11 PD12 PD18
Weathered layer:
thickness (m) 35 150 507150
initial crush pressure (kb) 0.10 0.10 0.10/0.05
sound spced (m/s) 2100 2100 1600/4700
Working point layer:
max unconl. strength* (kb) 2.52 0.945 0.945
initial crush pressure (kb) 0.10 0.40 0.40
sound speed (m/s) 4000 S500 5500

PDI11 - "good quality” granite
PD12 - weaker, casily damaged granite
PD18 - like P12 but thicker, weaker surface layers

maximum stress difference material can support in triaxial loading
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slope of the velocity decrease is not consistent with a -1 g spall
signa!, although porticns of it niay be. In the baseline calculation, we
do see a -1 g spall. The calculation with the weaker surface layers
does roughly replicate the less than -1 g spall, although the rise time
and peak values do not match the data. Obviously we are not
correctly modceling th2 contributions of the weathered layers to the
surface waveforms. The behavior seen here is similar to our earlier
caiculations of the MERLIN event in alluvium ([1], [2]). [9]), where we
found that the spall closure acceleration was less than -1 g if the
near-surface material was weak enough to fail due to the reflected
shock.

We have becen able to obtain relatively good agreement with the
experimental PILEDI IVER waveforms. In order to do so. we had to
model the gran liorite as being considerably weaker than "good
quality” gran: ¢, and it had to undergo considerable weakening due
to shock damage aus well. In addition, the near-surface layers had to
be modeled as being weak and compressible and as have a much
lower sound speed than the material at depth. The is consistent with
a fractured and joinicd material at depth, and a weathered material
near the surface.

The authors would like to thank Tom Tunnel and Albert Martinez of
EG&G for the rapid and excellent digitization of the PILEDRIVER
waveforms. We would also like to extend thanks to Charles Sncll for
providing us with copics of many reports on ground motion in hard
rock. Thanks are due to Norton Rimer fo - supplying us with
information about some of his calculations and for helplul
discussions. We are grateful to Jack House and the Nuclear Test
Containment! Program and to Tom Weaver and the Source Region
Program for supporting this work. And thanks to Marie Kaye for her
help in preparinig this paper. This work was perfornm "d under the
auspices of the U S Department of Energy by Los Alamos National
Laboratory which is administered by the University of California
undcer contract W 7405 Eng 36.
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