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ABSTRACT

We have described the implementation of a graphi-
cal programming tool in the object-criented language,
Smalltalk-80, that allows a user to construct a radio-
graphic measurement model. The measurement model
can be used to generate the measurements predicted by
a given parameterized model of an experimental object.
In this paper, we describe extensions to the graphical
programming tool that allow it to be used to perform
Bayesian inference on verv large sets of object param-
eters, given real experimental data, by optimizin- the
likelihood or posterior probability of the parameters,
given the roal data.

1. INTRODUCTION

The object-oriented (OO) paradigm has recently at-
tracted attention because of its promise for code re-
use and ease of maintairence, in addition to the nat-
ural and intuitive language it promotes for discussion
of software [3]. We have built and described an 0O
graphical programming tool [1) that allows a user to
connect icons, which represent data transforms, on a
canvas in order to deflne a data-flow diagram that acts
on a user-defined object paranieterization. In this pa-
per, we describe an extension of the graphical program-
ming tool that allows the user to interactively optimize
a 1D functional of the output of the data-flow diagram
with respect to object parameters. We discuss the ad-
vantages of programming the optimization tool in an
00 language.

We believe that the optimization tool will be useful
to scientists and engineers for orchestrating Bayesian
inference and hypothesis testing of geometric object pa-
rameters given real radiographic data [2]. The general
problem for which these tools are intended is the de-
termination of an object of unknown shape and wistri-
butioa, described by a user-defined parameterization,
given limited data generated by a well-characterized,
user-defined measurement system. The graphical pro-
gramming tool, in conjunction with a likelihood func-
tion, allows the user to define a complete model of a
measurement system. The maximum likelihood (ML)
estimate of the parameters that describe the experi-

mental object can be obtained using the optimization
tool. Maximum a posteriors (MAP) estimates can also
be obtained, if prior information is used.

3. THE OO PARADIGM

The OO paradigm is founded on the concept of an ob-
ject.  Objects have responsibilities, or methods, and
data, or attridutes. To talk about objects, ether to
one another in software analysis or design, or to the
computer in a programming session, is natural and in-
tuitive, since we think in terms of objects. Attributes
ere encapsulated by methods so that internal data stor-
age, accessing, and manipulation, is not important to
the “outside world”, whicn can only obtain information
about the attributes by messaging the object to per-
form some method. Encapsulation and messaging fa-
cilitate the construction of Aexible, easy-to-understand
software modules. Classes ae templates of objects, and
are contained in class hierarchies, wherein subclasses
inherid methods and attributes from superciasses, so
that code is re-used and sensibly organized. Finally,
typ~-casting is eliminated with the use of dynamic bind-
ing.
We are using Smalitalk-80 and the VisualWorks pro-
gramming environment from ParcPlace Systems in con-
junction with C, Fortran, and X-Windows. Smalltalk-
80 is a pure object-oriented programming language,
which truly encourages object-oriented thinking. How-
ever, its poor performance in executing loops and nu-
merical computations has forced us to use C and For-

tran for numerically intensive computations and X-Windows

fot loop-intensive graphics.

3. AN OO GRAPHICAL PROGRAMMING
TOOL

The graphical programming tool operates as follows
(refer to Fig. 1). The user is presented with a can-
var, on which appear buttons that allow the user to
add items to, or delete items from, the canvas. The
user can add or delete Transforms and Connections.
Transforms map input Data to output Data and are
represented on the screen by an icon. The user specifies



the data-flow by connecting one Trunsform to another
using a Connection, which is represented on the screen
as a set of connected line segments.

The Transforms are “living” objects, and the user
can interact with them in several ways. He can see
a description of a Transfors and change the param-
eters that define it. The user can also message the
Transform to display its output. This message is for-
warded to the Transform's output attribute, which is
messaged to display itself. The fact thiat the Transform
objects are alive distinguishes this graphical program-
mirg tool from one that allows & user to construct and
visualize a script that contains a sequence of actions to
be executed in a certain order.

We have written classes for several categories of
‘“vansforms, including MultiInputSingleQutput (Add,
Multiply, Subtract), SingleInputSingleCutput
(Convolution, Exponential, Log, Log10, SqAt, Sin,
Cos, LineIntegral, ParallellLinelIntegral) and no-
input single-output (Parameter and its subclasses).

Parameter and its subclasses define the object model
that is the input to the measurement model defined by
the data-flow diagram. For example, a
GeomatricObjectModel has a 1istOfCompouents that
might contain a Polygon2D, a Bezier2D, a Crid2D, and
a UniformGrid2D.

4. AN OO OPTIMIZER

Le: the output of the measurement system model

ified by the data-flow diagram be predicted data, d(9),
where 8 is a set of parameters that defines the object
model. For example, § = {6,;} might be the set of
density values in a UniformGrid2D of fixed size. If
the user has data, d, that are generated by a real mea-
surement system that corresponds well to the measure-
ment system model, plus some additive noise, n, with
probability distribution Pw(n), then Py(d ~ 3(0)) isa
1D functional on the output of the data-flow dingram,
call 4 the likelihood function. Optimizing Py (d —d(6))
over § produces the ML estimate of § given the data,
d. If Pe(#) is a prior probability distribution over 6,
then ¢(8) = log[Fn (d—d(8))] +log|Pe(9)] is a 1D fun~-
tional called the log posterior. Maximizing ¢(6) cver

6 produces the MAP estimate of ¢, given the data, d.
Thus, the capability for optimizing 1D functionals of
data-flow diagrams includes the capability for solving
Bayesian inference problems.

We have extended the graphical programming tool
to include Gaussian likelihood functions and the ability
to optimize them with respect to object-model param-
etres using conjugate gradient (for unconstrained prob-
lems) and gradient descent (for constrained problems)

methods.

4.1. The reverss adjoint method

We obtain the gradient of the log likelihood with re-
spect to object model pa.rameten(#‘) using a reverse
adjoint technique, which implements the chain-rule for
differentiation from back to front {4].

For examp'e, let us define a simple measurement
model (refer to Fig. 1) wherein d(z) denotes the data
predicted by taking line integrals of a UniforwGrid2D
object model, z, using ransform L, to produce path-
lengths, y, which are then pointwise exponentisted to
produce attenuations, z, and convolved with a point
spread function represented by the matrix H to finally
produce d(z). Then

d(z) = H(E(L(2))) (1)

is an approximation to a true radiographic measure-
ment system that can be easily built using the graphi-
cal programining tvol.

If our real data are d, and we assume that they
are produced by adding white gaussian noise to the
data predicted by the true object Traus, then ¢ is just
the norm of d — d, ang the derivative of ¢ w.r.t. d is
just d&° -qgr d). The derivative of ¢ wrt. z is
just z* = d”, that is, the adjrint operator for the
Convolution actiny on the the Data passed back to it
by the Likelihood. Similarly, the derivative of ¢ w.r.t.
yis just y* = —exp~?-z° = ET:", where - is point-
wise multiplication and y is the current input to the
Exponential. Finally, the derivative of ¢ w.r.t. the
object parumeters z can be nbtained by “backproject-
ing” the adjoint Data y* to produce z* = LTy".

Thus, the derivative of ¢ w.r.t. z can be wiitten:

¢ = LT(E] (HT (2(d-- d)))) (2)

This equation suggests a “reverse-adjoint” implemen-
tation. Each Transform must know how to calculate
the derivative of its onutputs w.r.t. ite inputs. These are
the “sensitivity matrices” LT, ET, HT, which may well
depend on the current input state of the Transfora
Rather than calculating the sensitivity matrices explic-
itly and thea having them operate on the adjoint Data
set passed from the upsiream Transform, we write ad-
joint operator codes that sutomatically process the ad-
joint Data set to produce a new adjoint Data set with-
out calculating the sensitivity matrices explicitly. So,
for example, we don’t explicitly calculate ET, which is
diagonal but rather use the adjoint Data 2° to produce
the adjoint Data y* = —exp~?.z* = ET(y)z°, which
only requires a vector multiply.



4.2. Exte: ling the clase hierarchy

Extending the responsibility of Transforas to include
an associated adjoint gradient operation is easily acco-
modated in our OO programming environment. The
adjoint method takes Data that has the structure of a
Transform output and maps it into Data that has the
structure of a Transform input. Dual to the data-flow
mode of operation, where outputs of the data-flow di-
agram query previous Transforms to generatefutput
until eventually Parameters are encountered and just
return themselves, in the gradient-flow mode of opera-
tion Parameters query forward Transforms to
generateiddjointOutput until eventually a Likelihood
is encountered and returns the gradient of itself with re-
spect to the present state of its input. Thus, the grrdi-
ents flow backwards, or in reverse, until each Par.meter
eventually returns the g adient of the Likelihood with
repect to itself.

Connections are also modified in order to propogate
Data in both directions. When a Connection is told to
getData it gets the Data from the previous Transfora
and sends it to the one upstream requesting it for input.
When a Connection is told to getAdjointData, it gets
the adjointData from the Transfora upstream and
seuds it to the Transform downstream, requesting it
as an adjointInput.

Note that, in general, computing the adjoint gra-
diert operator requires that the Transfora know the
current _:ate of its input, since the derivati/e may weil
depend on the input (the Fxponential, e.g.). Thus,
it is natural to bundle the Transfors with its current
state (stored in its inpat) as we have done.

Parawsters are given extended responsibilities in
order to accomodate the existing optimization strate-
gies. In particular, all Parameters must be respousi-
ble for add’ing themselves to and subiract'ing them-
selves from any instance of the same Cless. Parameaters
also must be able to sultiplyByScalar:aScalar, find
their noxm and determine their
innerProduct¥ith:anObject for anObject that ic an
instance of the same class. Furthermore, we have made
some Parametets capable of projecting themselv-s onto
certain constraint sets, namely upper and lower bounds.

Since addition, subtraction, multiplication by scular,
norm, inner product, and constraint satisfaction are all
the responsibility of Parameters, the Optimizer logic
can be applied to very different types of optimizations
problems, e.g. one or two-dimensional de-convolution,
tomographic inversion, inversion from noisy nonlinear
point functions, etc. The logic in the Optimizer can
work for any vector space, regardless of its detailed
structure. The detailed structure of the Parameters
being optimized is taken care of in the implementation

of the fundamental vector space operations (addition,
multiplication by scelar, etc.). The encapsulation and
polymorphism provided by the Parameters allows us to
concentrate on building and adapting robust, abstract,
opt.mization algorithms that can be widely employed.

4.3. Capabilities

The user specifies that a Parameter is to be optimized
by connecting it to the Optimizer. The user can spec-
ify an optimization strategy (conjugate gradient or gra-
dient descent), tolerances, and maximum nwunber of
iterations for the giobal search and each line minimiza-
tion, and gets feedback on the current step size, num-
ber of global iteratioas, and the number of likelihood
evautions thus far.

At any point during the optimization, the user can
interrupt the Optimizer so that he can see the present
state of the volution (and Data predicted by the present
solution) by using the graphical programming tool, which
contains icons that represent the “live” Data being op-
timized. The present solution can be modified inter-
actively using modelling tools that are called by inter-
acting with the icon that represents the Parameter of
interest. Transforms can also be changed at any time.
The log likelihood and likelihood can be plotted as a
function of step along the currenc gradient direction,
and the effe-t of stepping along the gradient from the
present sclution for various ctep sizes can be visualized
easily. Thesc capabilities are very useful for under-
standing how the optimiistion is working, as well as
for guiding the Optimiser toward a solution.

Note that a “global” derivative of ¢ w.r.t. object
parameters is obtained by “loca)” message-passing and
methods operating on encapsulated data. For example,
one can change the fundamental representation of the
object described above by having a Folygon2D parame-
terization § that feeds into a ConvertToUniforaGrid2D
Transform to produce a Uniformdrid2D z. Oae can
use the previcrus graphical program as it is, and just
insert the new Transform “before” z. Then z°, the
derivative of ¢ w.r.t. z, can be backpropogated to pro-
duce 8°, the derivative of ¢ w.r.t. 8. The ability to
cascade models of the experimental object suggests a
“level of detail” approach to optimization (called multi-
scale If the successfully-refined parameterizations are
UniformGrid2Ds with smaller pixels and called multi-
grid if the parameterizations are successfully-refined ge-
ometrical descriptions).

Finally, the Optimizer can he used to probe the
confidence that the user should have in the final solu-
tion. The user can select two states of the Parameter
set, say P, and P, and ask the Optimizer to provide a
one-dimensional plot of the likelihood as a function of



the new Parameter set, aP; + (1 — a)P. For example,
one could perturb a Polygon2D solution, P;, by mov-
ing a boundrry vertex to a new location to produce /.
Plotting the likelihood as a function of aP, + (1 -a) R
would then reveal th: ~onfidence one should have in the
positica of that boundary vertex - a broad likelihood
means that there are many positions of the boundary
point that are equally likely, and so the positioa of that
vertex should not be trusted.

5. SUMMARY

The advantages of an OO language are enormous in
the context of graphical programming, graphica cb-
ject modeling, and optimization. Not only did the OO
paradigmn mike extending the graphical programming
tool to include optimization easier than we expected,
it also stimulated our creativity. The potential exten-
sions we ervision to interastive, graphical optimization
using the /oundation we have discussed in this paper
are very exciting.

Our immediate future plans include exter .'ng the
2D raciographic measurement model to 3D olyhedra
and volumetric grids. We also plan tc incorporate
other measurement mods.s, such as range data (that
measures exterior surfuce location) and surface veloc'ty
data. Ultimately, we envision 3D time-evolving object
and measurement models that will be used to fuse dats
from a variety of experimental diagnostics.
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