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ABSTRACT

Using convenuonal diffusion limit analysis. we asymptoticallv compare three compeuiive ume-
dependent equations (the telegrapher's equauon. the time-dependent Simplified P: (SP:) equauon, and the
imz-dependent Simplified Ever-Panty (SEP) equation). The time-dependent SP: equation contains
higher order asympiotic approximations of the ume-dependent transport equation than the other equations
in a physical regime in which the ime-dependent diffusion equation is the leading order approximauon.
In addition. we derive the multigroup modified time-dependent SP; equation from the multigroup time-
dependen: transport equation by means of an asymplolic expansion in which the mulugroup ume-
dependent diffusion equation is the leading order approximation.  Numerical comparisons of the time-
dependent diffusion. the telegr-oher's, the time-dependent SP., and Se solutions in 2-D X-Y geometry
show that, in most cases, the SP: solutions contain most of the transport corrections for the diffusion
approximaton.

I.  INTRODUCTION

A more or less complete model cf the transport of neutrally-charged sub-atomic particles, as well as
charged particles in some imponant physics regimes, is given by Bolzmann Equation.' The Discrete
Ordinates (S~) method has been conventionally usad to snlve this equation numerically. The S« method
provides great accuracy but for many applications, ¢specially time-dependent, muitidimensional cases,
such as reactor-core-disruptive problems, requires 0o much computational time. To cvercome the high-
cost of the conventional Sw equations, scversl competitive simplified equations, such as the telegrapher's
equation’ and the ume-dependent Simplified P: (SP:) equation ™ which could be solved with almost the
same computatiocal effort as the ume-dependent diffusion equation, can be used to oblain relauvely

inexpensive, but approximate solutions to the transport solutions which are more accurate than the
diffusion solutions.

An asymptotic analysi. can be performed to show that, for an important class of problems, the
diffusion equation is an asymptolic limit of the transport equation.” A recent paper by the authors*
provides a broadened view of the result discusced above. It shows that the time-dependent SP: equation
has high-order asympiotic approxiinauons of the ume-dependent ‘ransport equation in a physical regime
in which the coavenuonal time-dependent diffusion equation is the leading-order approximation. In this
paper, we compare the telegrapher's equation and the time-dependent SP; equation using the conventional
asympiotic approaches.  As a result we find that the time-dependent SP: equation hos the same



asvmptotic approximations as the uime-dependent transport equation up to the third order in a physical
regime in which the time-dependent diffusion equalion 1s the leading order approximauon. whereas the
iclegrapher's equation has the same asvipilouc approxumauons only up to the second order. This implies
an advantage of the former over the latter.

We formulate the telegrapher's equation and the ime-depe: dent SP: equation for one-group, 2-D X-Y
geometry problems and compare numerical ime~dependent diffus:on, SP., Se. and telegrapher's solutions
in various classes of problems. As we have shown previously for slab gecometry problems, * the results
show that, in most cases. the tume-dependent SP: soluuons are sigmificantly more accuraie than the
diffusion solutions and can be obtainen with a very small fraction of th» computational effort of an Se
calculationi. And even in the opucally-thin regimes, :n which bou. the imme-deperdent diffusion and the
telegrapher's equation are no longer good approximatuons to the ume-dependent transport equation, the
ume-dependent SP: solutions are quie close to the S« solutions.

In addition, as we have previously shown in a one-group problem.’ we also denve here the
multigroup modified ume-dependent SP: equation from the muluzroup ume-dependent transpon equation
bv means of an asympiotic expansion ' in which the multigroup time-dependent diffusion equation is the
leading order approxamauon.

Accord’ng tc the recent paper by Noh et al..” in 2-D X-Y geometry, there is another competitive
enuauon called the Simplified Even-Parity (SEP) equauon which is much more computationally efficient
than the even-parity equauon. We denve here the ume-dependent SEP equauon in 2-D X-Y geometry
and analyze this equation asvmploucally. The results show that the ume-dependent SEP equation also
has the same asympiotic approximations as the time-dependent transport equation only up to the second
order.

An outiine of the remainder of this paper is as foilows. In Sec. I, we carry oul an asymptotic
analysis of the (elegrapher’s equation and the time-dependent SP: equation in general geometry. In Sec.
i1, we present numerical comparisons of the ume-dependent diffusion, SP:, Se, and the telegrapher's
solutions. In Sec. IV, we asymptotically derive the multigroup modified Lime-dependent SP: equation
from the multigroup time-dependent transport equation. In Sec. V. we carTy oul an asymptotic analysis
of the time-dependent SEP equation in 2-D X-Y geometry. In Sec. VI, we conclude with a summary and
recommend for future work

II. ASYMPTOTIC ANALYSIS OF THE TELEGRAPHER'S EQUATION AND THE TIME-
DEPENDENT SP: EQUATION IN GENERAL GEOMETRY

In this section, we shall consider the one-group time-dependent transport probiem in multidimensional,
multplying medium with aelayed neutrons and isotropic scatiering. Multigroup problems require a more
complicated .symptotic analyzcis that we wil! discuss in section V.

Tie one-group, multidimensional ume-dependent transport equation with delayed neutrons is

10
—a—V+Q-Vw+o,v={(l—B)vo’, +0,}10+AC+Q,
v of

and aa—Cz-Bvo/tp—AC,
t

where the notations are standard (see Ref. 1).

If we consider the asymptotic scaling;
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the scaling defined above has been known 10 be one in which the diffusion equauon is an asympictic Limit
of the transport equation as £ — 0.

We expand,
Y=Y, HEY, +E Y, + . 0=0,+€0 +. 0, + - and C=C, +€C, +€ C, +---

Applying these to the ume-dependent transport equation and equating the coefficients of different
powers of €. we obtain the following equations:
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A. The Telegrapher's Equation

The one-group, multidimensional telegrapher's equation with delayed neutrons is

1 a's 1
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Applying the same scaling and ¢xpaasion (o these equations, we obtain the following equations;
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Comparing these asymptotic approximations with those of the time-dependent transport equation, we
find that the telegrapher's equation has thc same asympiolic approximations as the time-dependent
transport equation up to the second order in a physical regime in which the umec-dependent diffusion
equation is the leading order approximation.

B. Time-Dependent SP: Equation

The one-group, multidimensional time-dependent SP: equations with delayed neutrons are
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Applying the same scaling and expansion (o these equations, we obtain the following equations;
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Thus., the ume-dependent SP: equation has the same asvinptotic approximauons as the time-
dependent transport equaton up (o the third order iu a physical regime in which the ume-dependeat
diffusion equatioa is the Jeading order approximation. Conclusively. we find that the ume-dependent SP:
equation contains higher-order asympiouic corrections (o the ume-dependent diffusion equauon than the
telegrapher’s equation.  Thus. onc might expect the higher accuracy from Lhe ume-dependent SP:
equation, especially 1n diffusive regimes.

III. NUMERICAL CALCUL_ATIONS AND RESULTS

First, differencing the time variable in the time-dependent SP: equations using a fully-implicit scheme
and formulating an equauon with the scalar flux, y (= ¢). only, we obtain;

»l 4 -l el A
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Equation (1) is in the form of a conventional diffusion equation. Spatially differencing this equation
in 2-D X-Y geometry, we obtin the matrix equation A-¢”~'=S" at each time step, n. where A is a five-
diaponal symmerric matnix. Since these equations are very similar to those obi~‘ned from differencing
the time-deperuent diffusion =quation, solutons are obtained with almost the same computational effort
and with a very smal! fraction of the time needed for the time-dependent S~ solutions.

V/e have compared the time-dependent diffusion, the tclegrapher's, the ume-dopendent SPi, and Se
solutions in varioug classes of 2-D X-Y geometry problems with and without delayed neuirons and the
numerical results show that, in most cases, the ume-dependent SP: solutions are siguificantly more
accurate than the conventional time-dependent diffusion and the telegrapher's soluticas and can be
obtained with a very small fraction of the computational effort of an Ss calculation (see Table 1). And
even in the optically-thin regimes, in which both the time-depenaent diffusion and the telegrapher's
equation are no longer good spproximations to the time-dependent transport equation, the time-dependent
SP. solutions are quite close 10 the Se solutions.

The configuration of a sample problem is shown in Fig. 1. In Fig. 1, o is the towal cross section with
a unit of [1/cm], ¢ is the scatiering ratio defined as o.'9, and Q is the internal source with a unit of

"l/cm’ /sec). The left and bottom boundaries of the system are reflective and the right aid top



boundaries are vacuum. We start with zero ininal fluxes evervwhere and compare the ume-dependent
vanapons of lhe scalar fluxes which are calculated by the ume-depepdent diffusion. SP.. Se. and the
ielegrapher's equauons at point 1 and 2.

vac.
10 cm I
. e=01
: c =09 o)
i =
ref. “ Q=00 T
1
5cm | pt.2 vac.
|
f c=10
; c =09
i Q=10
% |
S ref.
= pt |
0 cm Scm 10 cm

Fig. 1  1mple Problem

The results are shown in Fig. 2 and Fig. 3. At each point, the SP: solutions are much closer to the Se
solutions than the diffusion and the telegrapher's soluttons. Moreover. as shown in Fig 3, SP: soluttons
are guite close 10 the Se solutions even in the opucally-thin regimes in which both the diffusion and the
telegrapher’s tcquation are no longer good approximations.
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Fig. 2 Scalar Flux Variation at Pt. | Fig. 3 Scalar Flux Variation at Pt. 2



i Equation Diffusion Telegrapher's SP2 S8
CPU time (sec) 0.235 0.264 0.291 6.138

Table 1 Elapsed CPU Time for Each Ecuation

[V. ASYMPTOTIC DERIVATION OF THE MULTIGROUP MODIFIED TIME-DEPENDENT SP:
EQUATION
As we have shown in Section II. delayed neutrons do not alter the resuits of the asymptotic analyses
and wws, for simplicity, we shall not consider del-yed neutrons in this section (G, can be included in 5,).

For the same reason, we only present here the asymptotic analysis for planar geometry, however, we have
performed the multidimensional analysis and obtained the same results.

The multigroup, planar geometry time-dependent transport equation with isotropic scattering is'

1d 0 c N 1
——w(x.u,t)+u—v+0,v=—'-I_iv(x.u'.l)dll'+—Q(X-l), )
v ot ax 2 2

where
y(x.u,2) = angular flux (a G vector)
Q(x,t) = soune (a G vector)
o, = total cross section (a GxG diagonal matrix)
o, = scattering cross section (a GxG matrix)
G = number of energy groups.

1
Integrating Eq. (2) over the whole angle, ;I ! Eq.2)dh, and introducing

o(x,t) = f f.v(x,u,r)du = scalar flux (a G vector),

19 o
—a—¢(x.t) +;x-f RV R, DA +Ho, -0, )0 =0(x,1). 3)

v ot
And from Eq. (2) and Eq. (3), we also obtain

19 ov 1 19 0
—— V(XU D+ +0,¥ == {=—8(x,1)+0,0+—]_ W'V (x,1',)du'}. 4
vatv a “ax ' 2{vat¢( J+oe axI.HV(xll Y’} )

Introducing isito Eq. (3) and Eq. (4) the asymptotic scaling;

c o v
0, =+ ,0,2—+,0=%¢eQ ,va—,
€ ] €

we obtain
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And we introduce into Eq. (6) the expansion;,

v:yﬂ+ev,+e'v1+----. )]

and, equate the coefficients of different powers of £, we obtain the following equatiuns:

o 1
OCe™) W, =—0.

2
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" v, 6 &2 3 G ar 2
) 19 , 1 12 4 19,
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vo, of 3 o,0x 2 3 45 o, ax 2’

and so on. Introducing these moments into Eq.(7), we obtain an asymptotic expansion for ¥ in terms of ¢.
Applying this expansion 1n*o Eq. (5), we finally obtain the equation for ¢ as follows;

€ de 19 € 13 13 4
—_ i )-— _.__)__ .__._) ____.(___ }+O(e ) +_( 8
va«x {3(0 ( { o 150 ) (€ Y] Eo -0,)e=eQ(x,1). (3)

‘

1f we delete the t:rms of O(e') and higher in Eq. (8) and reapply the scaliny reversely, we obtain,

——— e+ -3, x,
v al ox 30

These are the conventional mulugroup time~dependent diffusion equations.

If we delete the terms of O(e’) and higher in Eq. (%) and introduce Eq. (9) into the resultant
equation, we obtain,
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These are the muitigroup medified time-dcpendent SPy cquatioms’ which couid be obtained by
neglecting the time derivative term of he seccnd moment of angular flux. 0V , /0!, in the multigroup

lime-dependent SP: equations.  We carty out the same asymptolic analysis on this equation as we do in
Sec. 11, and the resuits show that the modified ume-dep sndemt SP; equation has also the same asympiotic
approximations as the time-dependent transport equation up to the third order in & phyncal regime i
which the time-dependent diffusion equation s the leading order approximation.  The acvantages of
using modified time-dependent SP: equation for thv: one-group case are discussed in Re?. 6.

V. ASYMPTOTIC ANALYSIS OF THE TIME-DEPENDENT SEP EQUATION IN 2-D X.Y
GEOMETRY

In the recent paper by Noh et ai..” the authors introduced the Simplified Even-Farity (SEP) equation
which could be obtained from the even-parity equation using the assumption, x(K,N) = Y(}K.-n), in 2-D
X-Y geometry (y is even-party flux). With the resulting elimination of the cross-derivative terms of the
even-parity equation, SEP equation is much more computationally efficient than the onginal even-paaty
equation. All the woik in that parzr deals with the sicady-state case.

In this paper, we derive the titac-dependent SEP equation from the ume-dependent transport equation
using the s2me assumption. This derivation is straightforward, and we will not show it here for brevity.

The time-dependent SEF equat.on in 2-D X-Y geometry 1s

Ix 2w WK, L2 h6er0) an
» *

1 !

Applying the same scaling and expansion (0 this equation as in Sec. II, we obtain the following
equations;

l
O(e) a —-DV'y,+0,0,=0,

14
O(e™) -l-ét'-—DV‘¢l +0,9,=0,

v

4 4 )
o(e™) (-I—"a-—-—‘71 DV'é + e li’-‘- DV'¢, +0,9, =0 .
ve, ot 130] 150 a'dy’ v oo

Comparing Lhese asymptotic approximations with those o. the time-dependent transport equation in
Sec. I, we find that the time-dep'ndent SEP equation a1so has the same asymptotic approximations as the
time-dependent transport equation only up to the second order in a physical regime in which the time-
dependent diffusion equation is the leading crder approximation.

In addition, w= derive here the modified Lime-dependent SEP equation which could be obtained by
neglecung the time derivative term of the odd-panty flux, dB/dr, in the time-dependent transport
cquation. The modified me-dependent SEP equation in 2-D X-Y geometry is
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Compared with Eq. (11). Eq. (12) contains onlv the first order ume derivative term of x.

Accordingly, solutions can be obtained more computsationally efficiently than the original ime-dependent
SEP equabon. We carry out the same asympiotic analysis on this equation and the results are as follows;

1 :
O(e) —%—DVQ +0.¢9, =0,
vV
O(e’) l%"-\- DV'e +0 9, =0 .
14
Oce") (-—;V')DV'Q —4—-1’——+la° -DV'e,+a,9,=0.
150 150 ax'dy’ v or

Thus, the ime-dependemt mndified SEP equation also has the same asymptotic approximatioas as the
Lime-dependent transport equation up (0 the second order.

V1. CONCLUSIONS

We have shown that the time-dependent SP: equation contains higher order asymptotic
approximations (0 the time-dependent transport equation than the other compe.itive time-dependen
equations in 3 physical regime in which the time-dependent diffusion equation is the leading order
approximagion  And munencal results show that, in most of cases in 2-D X-Y geometry, the time-
dependent SP: solutions are a lot more accurate than the ume-dependent diffusion and the telegrapher’s
solutons. [n addition, we derive the mulugroup modified time-dependent SP: equation from the
multigroup time-dependent transpost equation by an asymptotic expansion. These results imply that, in
many problems in which the coaventional time-dependent diffusion equation is not sufficiently accurate,
the time-dependent SP: equation could give a lot more accurate solutions than the tme-dependent
diffusion equanion with almost the same computational efforts. A numerical test for the time-dependent
SP: equation 10 more general cases, such as in 2-D R-Z geometry, with a multigroup energy treatment, is
being carmied out by the authors to validate the advantages of the time-dependent SP: equation in more
realistic problems. Those conclusioas and future work meationed above for the time-dependent SPh
equation are also applicable to the modified time-dependent SP: equation.
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