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Abstract

The gene identification problem is the problem of interpreting nucleotide sequences by computer,
in order to provide tentative annotation on the location, structure, and functional class of
proteincoding genes. This problem is of self-evident importance, and is far from being fully
solved, particularly for higher eukaryotes. Thus it is not surprising that the number of algorithm
and software developers working in the area is rapidly increasing. The present paper is an overview
of the field, with an emphasis on eukaryotes, for such developers.

introduction

In a rapidly moving ficld it is often easy to trace individual threads of work, but difficult to gain an
overview. The first purpose of this review is to provide a concise directory to both standard and
newer techniques, and so allow new developers to more quickly come to the point where they can
make their own original contributions.

The second purpose is to give some perspective on the structure of the field and current research
directions. This includes summarizing the high points of progress to date in each of several areas,
evaluating what seem to be the most productive current lines of inquiry, and attempting to predict
where the most useful developments will come from in the future. While large parts of this
perspective are shared by many practitioners in the field, the overall analysis necessarily represents
the personal views of the author.
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A number of re’~ted reviews exist. A few of the more recent works on sequence analysis in general
are [Adams, Fields and Venter 1994], [Doolittle 1990), [Gelfand 1995), [Gindikin 1992],
[Gribskov and Devereux 1991}, [Griffin and Griffin 1994], [Konopka 1994a], {Waterman 1989a],
and [Waterman 1995]. On-line bibliographies of publications relevant to analysis of nucleotide
sequences are maintained by A. Bairoch (SEQANALREF; URL http://expasy.hcuge.ch on the
World-Wide Web) and M. Gelfand (FANS-REF; ftp to imb.imb.ac.ru; in directory BIBLIO).
Staden [1990] and Gelfand [1990b] give overviews of the gene identification problem. Fickett and
Tung [199Z] review recognizable statistical regularities in protein coding regions. Doolittle [1986]
and Gish and States [1993] discuss the interpretation of similarity searches in the conatext of gene
identification.

The present review is primarily a guide to current techniques relevant to future development, rather
than being a guide to current tools. The review is mostly restricted to published work, though
unpublished developments may be mentioned briefly. In most sections, coverage is limited to
techniques that are either widely used, or which seem to us to be particularly important for future
developments. Although the number of papers cited is already large, there are doubtless many
others that should have been included. Experimental approaches to gene identification are
assuming an increasing importance. These will not be covered here, but the computational
developer must stay abreast of the rapid developments in experimental techniques as well. For a

recent overvicw see [Church et al. 1994,

The paper begins with a definition of the problem. The main body of the paper consists of an

overview of computational tools and techniques, broken into six (somewhat arbitrary) categories:

» Sequence similarity search
 Statistical regularities in exons

» Signals: introduction

 Signals: basal gene biochemistry

e Signals: regulation of gene expression

e Gene syntax and integration of informaticn
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In each of these categories the state of the field is summarized. In the last two sections, some higher

level issues are considered.

Definition of the problem

Sequence (eld or new) to biochemistry

A framework for much of the work in computational analysis of nucleotide sequences may be had
by seeing this work as directed towards the eventual goal of automatic annotation: automatically
producing a draft feature table that is as complete, accurate, and intercsting as possible. Sequence
“features”, in the common usage of the term, include many kinds of information; the core probiem
in automatic annotation is to describe the sequence in functional erms. Concretely, this means to
discover all biochemically active sites in a region of 8 DNA/RNA molecule, and describe the

associated reactions and reaction products.

The ability to predict the biochemistry of a new sequence -- one under design, say, by a
pharmaceutical company -- in a specific context, is of just as much interest as the ability to discover
the function of naturally occurring genomes. One very important long term goal of nucleotide
sequence analysis, then, is to generalize from the biochemistry of natural genomes to give rules for

designing new genes and genomes.

The current gene identification problem

Although the identification of protein coding genes is clearly influenced by the knowledge of other
significant features of the sequence, the difficulty of considerin, the automatic annotation problem
as a logically integrated process has caused the gene identification problem to usually be
considered independently of 1nost other sequence analysis. Most of the rest of the paper will follow
this tradition.

Eukaryotic gene regulation is complex and is just beginning to be understood. It still seems a rather
difficult goal even to predict from sequence the course of the key biochemical reactions of gene
expression: transcription, splicing, and translation. At the present time the succcss of gene
identification algorithms is measured in terms of the degree to which ihcy correctly predict the

amino acid sequence of protein products and, perhaps, some hint of product function.
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Computational techniques
Overview

The sections that follow survevy the various computaional techniques relevant to gene
identification. In the first five sections, methods for recognizing some particular aspect, or
component, of genes, are covered. ihe last section then covers methods of integrating all the
evidence and components into higher level statements about genes.

There are several higher ! svel issues one should keep in mind. One is that the efficacy of many of
the methods is still being debated, or in some cases, has not yet been challenged or tested. Each
section will sumraarize what is known about the practical value of the techniques covered.

There is an emerging issue, possib’y of fundamental importance, in the development of techniques
for gene identification, which mizht best be expressed as the tension between template methods
and lookup methods (termed “intrirsic” and “extrinsic™ approaches in [Borodovsky, Koonin, and
Rudd 1994) and [Borodovsky, Rudd, and Koonin 1994]). Template methods attempt to compose
more or less concise and elegant descriptions of prototype objects, and then ideutify genes by
matching to such prototypes. A good example is the use of consensus sequences in identifying
promoter clements or splice sites. Lookup methods, on the other hand, attempt to identify a gene
or gene component by finding a similar known object in available databases. An excellent example
of a lookup method is searching for genes by trying to find a similarity between the sequence under
analysis and the contents of the sequence databases.

Much of the work that comes out of a mathematical or computational background (including
pattern recognition ir. particular) focuses on deriving prototype descriptions from the data. This
approach often makes important contributions to our understanding, but usually leaves out
important exceptions and ambiguities, most likely because genomes are not clegantly designed
from scratch, but are a collection of contraptions honed by experience. Thus as the field has
developed, and as molecular biological data has increased, lookup methods, which simply rely on
what is, without attempting to summarize it neatly, have gained in importance.

Finally, it should be noted that the field as a whole is making a transition from studying primarily
components of genes to studying genes and genomes in their entirety. Thus the issue of choosing
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an appropriate language in which to express and integrate the knowledge gained from the

component calculations is one of the most active arcas in computational gene identification.

Sequence similarity search

One of the oldest methods of gene identification, based on sequence conservation due to functional
constraint, is to search for regions of similarity between the sequence under study (or its conceptual
translation) and the sequences of known genes (or their protein products). A recent, large scale
example of the appication of this method, clearly illustrating both its power and its difficulties,
may be found in [Robison, Gilbert, and Church 1994).

A clear advantage to searching for genes by similarity is that, if a significant similarity is found, it
is likely to yie1d clues as to the function, as well as the existence, of the new gene. In addition, if
the search is carried out at the amino acid, rather than the nucleotide, level, the additional
advantage may be had of lowered sensitivity to mie “noise” of neutral mutations. The obvious
disadvantage of this method is that when no homologues to the new gene are to be found in the

databases, similarity search will yield little or no useful information.

The question naturally arises, then, of the likelihood that the databases will contain a homologue
of a gene awairing discovery. Seely et al. [1990], in an early attempt to answer this question, took.
one half of GenBank release 56 as a test set, introduced “mutations”, “introns”, and “intergenic
DNA" to make the test set resemble new genomic data, and searched for genes in this test set by
comparing it to the remaining half of GenBank as a reference set. In this experiment, they found
that approximatelv three-quarters of the genes could be clearly identified. Thus one might hope that

the majority of new genes could be found by means of simple similarity searches ir: the database.

When the comple’e sequence of yeast chromosome I [Oliver er al. 1992] was first reported, 26%
of the putative protein products (conceptual translations of all open reading frames over 300 bp in
length) were found to have significant similarity with some other known sequence. Similarly, in
reporting analysis of three cosmid sequences from C. elegans, Sulston et al. [1992] state that
roughly a third of the putative genes show clear homology to sequences already in the databases.
Both of thesc estimates have rather large ermor bounds, as the list of tentative genes depunds

prirrarily on computational, not experimental, evidence. Yet these studies do seem to suggest that
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the conclusions of the Secly er al. study are perhaps too optimistic. Probably the disparity betwzen
the simulation study and the results of actual genomic sequencing is due to the biased nature of the
databases. For example, both of the halves of GenBank used in the experimrent of Seely er al. are
much richer in highly expressed genes than is a eukaryotic genome in toto.

One overall lesson from 2 long line of work studying amino acid sequence motifs and blocks from
related sets of proteins (¢f. [Gribskov, McLachlan, & Eisenberg 1987], [Posfai, Bhagwat, Posfai,
& Roberts 1989), [Smith, Annau, & Chandresegaran 1990], [Smith & Smith 1990], [Henikoff &
Henikoff 1991], [Bairoch 1992), and [Ogiwara et al. 1992)), is that database scarches seem 10 be
much more sensitive if carried out with meaningful patterns such as motifs or profile matrices.
When Bork ers al. [1992a,b] studied the yeast chromosome III sequence using more permissive
cut-off scores, multiple alignment methods, and motf searches, 42% of the putative genes were
found to be similar to a known sequence or motif. Later, Koonin er al. [1994] revised the list of
putative genes and again used th: mast recent and sensitive known algorithms, ard found that 61%
of th= putative proteins exhibited significant similarities to known proteins or motifs. This increase
is due in part to revisions in the list of putative proteins, in part to the databases becoming more

complzate, and in part to improvements in computational methods.

In another vein, current efforts to sequence (at least fragments of) all transcribed sequences from
a nunber of genomes fe.g. [Adams et al. 1991]) concentrate much of the genomic information
necessary for gene identification. Boguski, Tolstoshev, and Bassett [1994] collected the 32 human
diseasc gene sequences that have been positionally cloned to date and found that 85% of them
showed homology to an entry in the dbEST collection [Boguski, Lowe, and Tolstoshev 1993) of
expressed sequence tags. This is a small sample, but the indication still seems strong that cDNA
sequence collections will be an impoitant resource for gene identificaticn. Note however that for
most of the sequences in dbEST, the only information available is that they are transcribed;
mapping and functional data will surely come, but are presently accunwlating much more slowly

than the sequences themselves.

How fast will the fraction of genes identifiable by similarity search go up? Green er al. [1993) (see
also [Claveric 1993a] and [Green 1994]) compare recently determined sequences both to each

other and to older sequences in the databases, and conclude that (1) most ancient conserved regions
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(or ACRs, roughly defined as regions of protein sequences showing highly signiii..ant homologies
across phyla) of the protein universe are already known and may be found in current databases, (2)
roughly 20-50% of newly found genes contain an ancient conserved region that is represented in
the databases (cf. also [Borodovsky, Koonin, and Rudd 1994)), and (3) rarely expressed genes are
less likely to contain an ancient conserved region than maderately or highly expressed ones.

Taken together, these results seem to suggest that on the order of one half of all new genes may be
discovered, and perhaps some functional information determined, on the basis of similarity to
known sequences or motifs, and that this fraction will continue to rise. Due to the larger variety in
non-ACR-containing proteins, hovsever, the rise will likely be rather slow.

Sequencing ermrors, particularly frameshift errors, can be a serious problem for gene identification
by similarity search. Gish and States [1993) discuss the effects of such errors, and the interpretation
of BLASTX search results. Shavlik 11994] shows how to tarn the difficulty o advantage, piecing
together matches from different frames to toth locate genes and detect the sequence errors.
Ciaveric [1992] also discusses practical aspects of similarity searching, in particular providing a
mcans to eliminate the most comunon source of high scoring similarities not due to gene function,

namely repeats.

Statistical regularities in exons

At the core of most gene recognition algorithms are one or more coding measures -- functions
which calculate, for any window of sequence, a number or vector that measures attributes
correlated with protein coding function. Aggregate properties of such function values on coding
regions thus form templates for exons in general. Common examples of coding measures include
the codon usage vector, the base composition vector, and some type of fourier transform of the
sequence. These measures, which have a long and rich history, have been reviewed, synthesized,
and uniformly evaluated in [Fickett and Tung 1992] (cf. also [Gelfand 1990b]). The measures
tested there are the following (for more details and full citations see the review: in the definitions
that follow, the “test-codons” of ar arbitrary sample window of sequence are defined as the

successive non-overlapping trinucleotides of the window, beginning with the first base).

Codon Usage Measure: the 64 element vector giviig the frequencies, among the test-codons, of

7 32195



each of the 64 possible codons.

Hexamer-n Measure (for n=0, 1, 2): the counts of all hexamers offset by n from the starting base
of a tzst- “odon. (The Hexamer-0 measure gives dicodon counts).

Hexamer Measure: the frequency count in the window of all hexamers.
Open Reading Frame Measure: the length of the longest stretch of sense test-codons in the window.

Amino Acid Usage Measure: the 21-vector obtained by translating the sample window of
sequence, beginning with the first base, according to the appropriate genetic code, and counting the
frequencies of the 20 ami-> acids and “stop”.

Diamino Acid Usage Mecasure: the 441-vector given by translating the window and counting all
the (overlapping) dipeptides (including “stop” as an “amino acid™).

Stability of Hydrophobicity Measure: First define the information value of a codon as
Zie1,3(%5<1 0j(P*dij. I/, where n; is the number of sense mutazions of the codon, p; is the
probability of the i mutation, and d;; is the difference in hydrophobicity caused by the mutation.
The information value of a window, which we take as the Stability of Hydrophobicity Measure, is

then the average information value of the test-codons in that window.

Composition Measure: [f(b,i)], where for each base b = A,C,G,T and each test-codon position
i=1,2,3, f(b,i) is the frequency of b in position i.

Codon Prototype Mcasure: Let p(b,i) be the probability of finding base b at position i in an actual
codon. Let q(b,1) be the probability of finding nucleotide b at position i in a tric:ucleotide that is not
a codon. Consider p and q to be 4x3 matrices, with rows indexed by the bases b=A,C,G,T. Let B
be the matrix with element (b,i) = p(b,i)-q(b,i). B can be considered a linear functicn on
trinucleotides in an obvious way: each base b of a trinucleotide may be considered a column vector
of a 3x4 matrix, with a 1 in the b™ row. Then B of that trinucleotide is the dot product of B and the
matrix representation of the trinucleotide. Elementary calculus shows that, up to a multiplicative
constant, B is the matrix which maximizes the average of the difference B(codons) - B(noncoding

trinucleotides). We define the codon prototype measure to be the sum, over the window, of the dot
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product of B and the west-codons of the window.

Position Asymmetry Measure: Define ju(b) = E(f(b,i))/3 and asymm(b) = Z(f(b,i) - (b)) Then
define the position asymmetry measure t0 be [asymm(A),asymm(C) asymm(G),asymm(T)].

Entropy Measure: Given f(b,i) as above, define entropy(i) = Ly [f(b,i)In(f(b,i))). If the three values
of entropy(i) are significantly different a coding region is predicted, and the one with the largest
difference from random is predicted to be third codon position. We define the Entropy Measure to
be [entropy(1),entropy(2),entropy(3)].

Autocorrelation Measure: Let auto(b,i) be the number of pairs of base b with i intervening bases.
For the measure we correct for the number of such pairs expected on the basis of base composition
alone, giving the matrix [auto(b,i)/(window_length-i-1 )(ﬁequcncy_of_b)zl. where b=A,C,G,T and
i=0,...9.

Fourier Measure: Let the window be 2M long. Let EQ(x,y) be the function which is 1 if x=y and 0
otherwise. Define the n'" Fourier coefficient (dropping the constant 1/4M2 for simplicity) by: FC(n)
= L,[Ey(EQ(basc m,basc m-p))jc™M. Then define the Fourier Measure to be [FC(2M/2),
FC(2M/3),....FC(2M/9] (i.e. the Fourier coefficients of the autocorrelation function for periods 2 to
9).

Period 9 Measure: Define f(j) = frequency of R(j-other-bases)RYR and Period 9 Measure as the
vector of values [f(5),f(8).f(11)].

Dinucleotide Frame Measur.: Make three frequency distributions of dinucleotides in the window:
test-codon positions 1 & 2, positions 2 & 3, and positions 3 & 1. The indicator will be the three
chi-squared values measuring bias of these distributions from the overall dinucleotide distribution
of the training set (coding and noncoding).

Word Measure: Divide the window into successive, non-overlapping words of length 2, and also
into words of length 3. The measure is the pair of chi-squared values comparing the frequency
distributions of these words with the uniform distribution.

Run Measure: Let 8, S,.... S;4 be the nontrivial subsets of the set {A,C,G,T}. For each §; construct
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a new sequence by replacing each basc in §; with 1 and replacing each base not in S; with 0. Using
this sequence define 1y to be the number of runs of 1 of length j, for j=1,2,3,4,5, and let rig be the
mnnbaofmnsofloflmgthgrumdnninemnmmwillbelhcsctofvduu[ru].

Dinucleotide Bias Measure: Let f(w), for ar.y possible word w, be the frequency of w in the sample
window. Now for each dinucleotide ab let bias(ab) = [f(ab) - f(a)f(b)}/f(a)f(b). The Dinucleotide
Bias Measure w  he the bias values for the 16 dinucleotides.

Repeat Measure: Take all hexamers which occur, on average, more than twice every 4096 bases 1o
be in the “repetitive” set. Using only the counts of these hexamers (324 in human, 247 in E. coli),
in the coding and noncoding reference sets, gives the Repeat Measure.

In brief, the benchmark used is defined as follows. Homogeneous (fully coding or fully noncoding)
windows of fixed size were taken from the international nucleotide sequence collection. The data
corpus was split in half, and the first part was used as a training set. Discriminant analysis (in two
fornys: classical linear discriminant analysis, which requires inversion of the covariance matrix,
and Penrose discriminant analysis, which does not) was uscd to define a lincar function of the
measure which discriminates coding from noncoding. A threshold was then set to equalize the error
rates on the coding and noncoding training scts. Then the performance of the algorithm so defi.ied
was cvaluated on the other half of the data as test set. The average accuracy on the coding and
noncoding parts of the test set was taken as the overall accuracy of the measure. The whole process
was carried out both for a region-specific definition of coding and for a phase-specific definition.

There is a great deal of redundancy in the suite of measures proposed to date. In some cases two
measures are sensing very similar things (e.g. autocorrelation and fourier). In many cases one
measure is derivable from, or a specialization of, another (e.g. composition can be derived from

codon usage counts). Figure 1 shows which measures can be derived from others.

The tree in the right half of the figure contains most of the measures currently used. It is remarkable
that, without exception, measures higher in this tree have higher accuracy than those below (and
derived from) them. That is, in every case, if we derive an exon recognition function directly from
a measure by using the Penrose discriminant, the result is higher accuracy than if we try to extract

information from the measure in some clever way, and apply the Penrose discriminant procedure
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t0 the result

Of the measures not in the main tree at the right of the figure, the period 9 measure and the word
measure yield rather poor results, and the autocorrelation measure is essentially equivalent 1o the
Fourier measure. The first main result of the review, then, is tlat of the measures tested, future
algorithms should probably be based on Fourier, nin, ORF, and in-phase hexamer counts.

Combining scveral measures does improve i ccuracy. The highest score of any measure in the
region-specific prediction of coding function on 108 hase human windows was 76.6%. But E.
Uberbacher kindly applied the Coding Recognitior. Module of GRAIL {Uberbacher and Mural
1991] to the 108 base human test set (using oaly the first 100 bases of each window), and when a
threshold was set to equalize sensitivity and specificity the resulting accuracy was 79%. For
phase-specific discrimination we combined the six measures just discussed, again using classical
lincar discriminant analysis, and obtained 87.8% accuracy on human 108 base windows (compared
tn 84.9% for the most accurate individual measure). This last combination was also applied to
human 54 base windows, giving 82.4% accuracy (compared to 80.7% accuracy for the highest
individual measure).

The second main result is that a measure which seems to embody little biological understanding --
counts of in-phase hexanucleotides -- is in fact the most effective one. In-phase word count
measures have a long history. The first use we know of the codon usage measure in a published
algorithm is in [Staden and McLachlan 1982]. Separate word counts of different lengths for each
phase were considered by [Borodovsky et al. 1986a, 1986b, 1986¢c]. These papers considered
words of length 1, 2 and 3 (limited data were available at that time). More recently the same author
[Borodovsky and MclIninch 1993] has extended his work to include words of length 6. [Claverie,
Sauvaget, and Bougeleret 1990] was the first published use of in-phase hexamer count measures.

Since the time of iiic above survey, other measures have been proposed. Snyder ané Stormo [1993]
use the average complexity of octamers (measured by entropy in the sense of information theory;
cf. ([Konopka & Owens 1990], which takes a somewhat different approach towards entropy than
docs [Almagor 1985], reviewed in [Fickett and Tung 1992]). Solovyev and Lawrence [1993],
extending the in-phase hexamer approach in a direction that takes on some characteristics of

similarity search, report that in-phase octamers and nonamers give even higher accuracy.
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[Ossadnik er al. 1994] suggest a measure based on fluctuations in purine/pyrimidine window
content (in a rather large window; >800 bp suggested by the authors). Often, when new coding
measures are introduced, it is difficult to tell whether the measures are, in themselves, better or
worse than existing ones, or whether, on the other hand, the context in which they are applied gives
better performance. It would be interesting to apply the benchmark of [Fickett & Tung 1992] w0

these new measures.

In a related vein, experimentalists often use the length of an open reading frame as primary
evidence for the existence of a gene, particularly in organisms like yeast, where splicing is rare. In
[Fickett 1994] and [Fickett 1995] nieans are intvoduced for quantitative evaluation of the strength
of such evidence.

We will likely continue to see incremental improvements in coding measures. First, Guigé and
Fickett [1995] have shown that dependence of most measures on C+G content is high, and that
mere base compositional differences can cause larger fluctuations in the values of coding measures
than the differences between coding and noncoding regions. So tailoring the measures to differing
base compositions may well improve accuracy. In this regard, [Xu ez al. 1994] have adopted the
strategy (not separately evaluated) of measuring hexamer counts for “high” and “low” CG content
reference sets, and then using linear interpolation to make a set of counts intended to be appropriate
for the CG content of the test sequence.

Second, it will probably be useful to systematically distinguish between several classes of
sequence, rather than just “coding™ and “noncoding”. Konopka has long proposed a general
framework of “functionally equivalent” classes of sequences (for a concise introduction see
[Konopka 1992)), and early showed that introns, in addition to lacking typical features of exons,
also have features of their own, for example a tendency to show a two-base periodicity in the
occurrence of certain oligonucleotides [Konopka er al. 1987][Konopka & Smythers 1987]. Guigé
and Fickent [1995] show that intergenic DNA has very different statistical properties than gene
flanking sequences. Krogh, Mian and Haussler [1994] found it profitable to explicitly model
intergenic DNA in E. coli (see below).

Finally, one wonders whether the many variables of some of the above coding measures (for
example the 4096 variables of each hexamer measure) are all making important and independent
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contributions to discrimination. It might be, for example, that the signal to noise ratio of the
measure could be improved by pruning out the less informative variables.

The means by which the information in a coding measure is reduced to a single score, or a yes/no
answer, has varied g. atly. In the case of in-phase hexamers, for example, Claverie, Sauvaget, and
Bougeleret [1990] weight the observed count of each hexamer by the ratio of its frequency in
coding regions to that in all DNA. Farber, Lapedes, and Sirotkin [1992] use a neural net with 4096
inputs to derive a discriminant. Borodovsky and Mclninch [1993] derive two non -homogeneous
(frame-dependent) 5-step Markov roodels, one for the coding regions of each strand, and a
homogeneous model for noncoding regions, calculate the probability of observing a windcw under
cach of the seven corresponding hypotheses, and then use Bayes’ theorem to derive the posterior
probability of each hypothesis given the window. (It is worth noting that in most algorithms, the
method is appliéd separately to the two strands, and .ne results combined in a post-processing step.
In the work of Borodovsky and Mclninch, on the other hand, the seven relevant hypothesis —
coding in each of six possible frames, or noncoding -- are directly compared in one step.) Thomas
and Skolnick [1994] conzider seven classes of nucleotides: those in the three codon positions, those
in intergenic regions, and those that are in introns breaking the coding sequence at each of the three
possible codon positions. Assuming a one step Markov model for the state variable, and that the
probability distribution of the bases at each position of the sequence depends only on the bases and
states in the immediate vicinity, they use Bayes’ theorem to make a maximum likelihocd estimate
of the state at each base of a given sequence. There is very limited information on which of these
methods (or the many others that have been used with these measures, other measures, or
combinations of measures) is best. The general feeling among developers is that the differences are

usually small, but comparative objective testing would be very valuable.

Signals: introduction

The coding measures considered above are all closely related to patterns of codon usage. In what
has now become common usage, Staden [1990] termed the use of such measures “gene search by
content”. Of course codon usage is merely a side effect of the biochemistry of organisms. It will be
more enlightening when we are able to recognize the locations in a genome 'where the gene

expression machinery interacts with the nucleic acid, and so rzcognize the genes in a way parallei
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to the action of the cell. This approach Staden termed “gene search by signal”.

Any portion of the DNA whose binding by another biochemical plays a key role in transcription is
variously called a signal, a binding site, a recognition site, or a sequence clement. Regions on a
geoaome that correspond directly to regions on an mRNA or pre-mRNA with analogous function in
splicing or translation are also referred to by the same terms.

‘The collection of all specific instances of some particular kind of signal, for instance the set of all
intron donor sites in human genes, will normally tend to be recognizably similar. In the early days
of sequence analysis it was hoped that this similarity could be captured adequately by a consensus
sequence. That is, one aligns all the specific sequences, and then takes the most commonly
occurring base at each aligned position to form the consensus. Then, it was hoped, the actual sites
would be differentiated from spurious sites simply by distance (e.g. number of bases different)
from the consensus. This approach turned out to be too simple, though the consensus sequences at
various sites are still useful for their mnemonic value.

It is now most common to summarize the commonalities in (that is, form a template for) a
particular signal by recording the frequencies of each nucleotide at each aligned position, rather
than simply recarding the most frequent one. That is, the individual sequences are aligned, and the
frequency of base b at position i is tabulated as f(b,i). Then a position weight matrix m is derived
from f, most often by m(b,i) = log(f(b,i)/p(b)), where p(b) is the genomic frequency of base b
(reviewed in [Stormo 1990]). Any sequence to be tested for signal function is represented
analogously, with s(b,i) = 1 iff the ith base of the sequence is b, and 0 otherwise. Then the test value
of a sequence is the dot product of these two matrics, Iy ; [ m(b,i) * s(b,i) ). (Because of the form
of representation of the information, this approach is sometimes called, among computational
biologists, the “matrix method™).

This approach is justified by several theoretical studies of protein-DNA binding (e.g. [Berg & von
Hippel 1988}, [von Hippel 1994], and references therein), and a number of experiments in which
a DNA signal sequence is systematically varied and the activity of the variants measured (e.g.
[Mulligan er al. 1984), [Takeda, Sarai, & Rivera 1989}, and [Barrick et al. 1994)).

Overall, we may summarize the results of these studies as follows. The activity of a signal sequence

14 327195



is determined by the proportion of the time that the sequence is bound, which in turn depends on
the abundance of the binding molecule (typically protein or RNA) and its binding specificity, that
is, the degree to which the binding molecule “prefers™ the signal sequence to pseudosites. In
comparing the activity of different signal sequences for the same binding molecule, or in
attempting to distinguish the signal sequences from pseudosites, we may take as constant all factors
affecting the availability of the binding molecule (overall abundance, the frequency of pseudosites,
and the average affinity of the pseudosites), and deal simply with the binding energy of the binding
molecule to the site at hand. The first major result from experimenii is that this binding energy is
often closely approximated by simply summing the contributions of the individual base positions,
as if they were independent. This of course means that activity can be predicted reasonably well
hy some matrix calculation as described above, though it does not determine the form of the matiix.

If we assume that the f(b,i)/p(b), as defined above, is representative of the ratio of bound to free
reaction concentrations for base b in its interaction with a specific site on the binding molecule,
then the logarithms in the position weight matrix are proportional to the free energies of binding
for each base. This is one way of justifying the particular form of the position weight matrix.
Alternatively, one may note that the sum in the dot product above is, from a statistical point of view,
just the log likelihood ratio of the test sequence being found given (1) the hypothesis that the
sequence comes from a set in which the bases at position i have probability distribution f(b,i) and

(2) the hypothesis that the sequence comes from a set in which the bases occur with frequencies
p().

In many cases, the dot product of the position weight matrix with the sequence seems to be a
relatively good predictor of signal sequence activity. In [Barrick er al. 1994), for example, 185
clones with randomized ribosome binding sites were selected, and for each the activity was
measured and the binding siic sequenced. A matrix was first determined by multiple linear
regression. The regression matrix predicted actual activity with a correlation coefficient of 0.89
(when cases with alternate start codons were eliminated, this rose to 0.92). Further, when a position
weight matrix was calculated from natural sites, the correlation coefficient between the two

matrices was 0.88.

However, position weight matrices do not alway: work well, and it must be recognized that a
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number of simplifying assumptions underlie their use. The use of position weight matrices ignores
the availability of the DNA or RNA (the effects of chromosome packaging and secondary
structure), non-independence between bases (important, for example, in conformational changes
due to base stacking), different versions or conformations of the binding molecule, and interactions
between multiple binding molecules.

Non-independence between bases may be taken into account by a relatively simple extension of
the position weight matrix, namely using a larger matrix where columns correspond to the various
possible oligomers at various positions, rather than to individual bases. One example of this
approach may be seen in the work of Thomas and Skolnick already cited (the uniformity of their
approach makes “retraining” the algorithm very easy). Another will be seen below in the work of
Solovyev, Salamov, and Lawrence. Of course, the longer the oligomers, the more data is needed to
reliably calculate the matrix.

The use of position weight matrices in recognizing key elements of cukaryotic genes, namely
splice sites and promoter sequences, has to date led to relatively limited success. All of the above
limitations of the method probably play a role here. However we would hazard the guess that the
main factor is the cooperativity among multiple binding molecules. It is rare in cukaryotes, for
example, for large numbers of genes to have precisely the same complement of proteins involved

in the initiation of transcription. We will return to this point below.

Where applicable, the consensus and position weight matrix methods have the advantage of being
relatively simple and well understood. Assessing the significance of search results has been treated
in [Waterman 1989] for approximate matches to a consensus pattern, and in [Claverie 1994a] and

[Goldstein and Waterman 1994] for scarches using position weight matrices.

A wide variety of other methods, difficult to summarize in a limited space, have been proposed to
recognize signal sequences in genomes. Most of these have not come into wide use, and the reader
must be referred to [Gelfand 1995) and the on-line bibliographies mentioned above for more
details. One method which has seen fairly extensive use is that of neural networks. When the
network has only one layer, it produces a lincar discriminant function that is usually fairly close to
the position weight matrix derived by the methods described above. However when the network

has multiple layers, with hidden units, the function encoded is more complex. The use of neural
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networks in the analysis of nucleotide (and amino acid) sequences was reviewed in [Hirst and
Sternberg 1992). The neural network algorithms reviewed showed better performance than more
statistical approaches in a number of cases. However it is not altogether clear whether the
improvement was due to integration of several kinds of evidence (discussed below) or to the neural

network means of integration.

One dificulty with neural nets, and in fact with machine leaming methods in general, is the
distance between the understanding in the machine and the understanding in the human expert.
Most such algorithms are designed to begin from a randomized state, that is, without the benefit of
any knowledge already gained by experiment or other methods. And, when the algorithm has
finished the training stage, it is typically rather difficult to retricve the “understanding™ that has
been captured. In this regard, Shavlik, Towell, and Noordewier [1992] have made interesting
progress by developing neural net methods that can start from an intelligible base of rules and, after
training, can return a refined set of rules.

Many methods of sequence signal recognition require a set of sequences with functional sequence
clements already precisely located and aligned. However, it is often the case that experimental
work has only approximately located the sequence element, and that the best alignment is unclear.
Thus several groups have developed methods to optimize the localization of the sequence
clements, the alignment, and a weight matrix or other discriminant, simultaneously; see for
example [Cardon and Stormo 1992), [Lawrence et al. 1993}, [Borodovsky and Peresetsky 1994],
[Krogh ez al. 1994]. These methods have to date been applied primarily to other problems, but
show significant promise for the identification of eukaryotic signal sequences.

Signals: basal gene biochemistry

Gene signal recognition work to date has dealt with the problem of recognizing the signals
common to essentially all genes. For example Bucher [1990]) has defined weight matrices to
partially characterize four elements common to most eukaryotic pol II promoters: the TATA-box,
cap-signal, CCAAT-, and GC-box. These were derived from the Eukaryotic Promoter Database
(Bucher 1988]. In [Cavener and Ray 1991] sequences flanking translational initiation and
termination sites have been compiled and statistically analyzed for various eukaryotic taxonomic
groups. The polyadenylation reaction is relatively well understood now [Wahle and Keller 1992]),
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and information on translation termination sites has been collected in the Translational Termination
Signal Database [Brown et al. 1993). Yuda er al. [1994) use discriminant analysis to derive a
position weight matrix to recognize the polyadenylation signal. All of this information is useful in
helping to recognize the beginnings and ends of genes, however computational methods for such
recognition are in their infancy, and will require significant further development to attain high
reliability.

Consensus sequences for splice junctions have been recognized for many years [Breathnach and
Chambon 1981). A comprehensive collection of splice junctions and weight matrices, commonly
referred to, may be found in [Scnapathy, Skapiro, and Harris 1990). Consensus sequences alone
give rather unsatisfactory results. The best successes to date in predicting splice junctions come
from integrating several kinds of evidence. Shapiro and Senapathy [1987] combine base frequency
information at the splice site with a check for an open reading frame on the correct side, and an
cvaluation of a potential polypyrimidine tract near the acceptor. Including a requirement for related
patterns (e.g. a branch point within a specified distance upstream of the acceptor, and no AG
dinucleotide between these two sites [Ohshima and Gotoh 1988), [Gelfand 1989]) seems to
improve accuracy. At true splice sii*s, coding measures should give values characteristic of coding
regions on one side of the splice, and values characteristic of noncoding regions on the other. Thus
in [Nakata, Kanehisa and DeLisi 1985] and [Brunak, Engelbrecht and Knudsen 1991] information
concerning splice sites per se, for example positional frequencies and binding energies, are
combined with the values of coding measures on either side of each potential splice site, to give
itnproved splice site prediction. Solovyev, Salamov, and Lawrence [1994b] give an excellent
overview of the literature and a careful synthesis of existing techniques. They report what appears
to be the most accurate algorithm for human sequences to date, using triplet counts (due to [Mural,
Mann, and Uberbacher 1990)) at significant positions near the branch point and splice junctions,
octamer counts on either side of the junction, counts of G, GG, and GGG downstream of potential
donor sites, and counts of T and C upstream of potential acceptor sites, all combined using linear
discriminant analysis. Taking the sets of GT and AG dinucleotides as the set of all potential splice
sites, Solovyev, Salamov, and Lawrence report 96% sensitivity and 97% specificity for donors, and
96% sensitivity and 96% specificity for acceptors. (These methods are combined, using linear

discriminant analysis, with oligonucleotide-based recognition methods for coding regions and the
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beginnings and ends of genes to produce an exon recognition algorithm FEX.)

In as many as 90% of the vertebrate mRNAs, the first AUG codon is the unique initiation site, and
in the exceptional cases a number of factors have been elucidated that govern the probability of
translation initiation at a particular ATG. These include neighboring nucleotides, leader length,
distance to other ATGs, ORF length, and secondary structure; cf. [Kozak, 1991].

Signals: regulation of gene expression

The complexity of gene regulation naturally increases greatly with the number of tissue and cell
types in an organism. Thus, although some universal commonalities have been identified in the
known genes of some prokaryotes, it would now appear unlikely that any simple characterization
will be found for the gene promoters of Homo sapiens (or, probably, of any other differentiated
metazoan species). Thus, although the regulation of eukaryotic gene expression has attracted
relatively little attention to date from developers of gene identification algorithms, such algorithms
will, in the future, almnst certainly take into account the complex signals for transcription initiation
of specific classes of genes.

Utilizing this sort of information will bring an added advantage, in that specific transcription
clements previde important clues to gene function. This is an opportune time to begin making use
of information on gene regulation, for a remarkable amount of information is now appearing, with
new papers daily, on gene-specific, tissue-specific, stage-specific, and stimulus-specific
transcription signals.

Several collections of sequence elements for transcription factors have appeared, including the
Transcription Factor Database [Ghosh 1990}, the collections in [Locker and Buzard 1990) and
[Faisst & Meyer 1992]), TRANSFAC [Knueppel er al. 1994), [Wingender 1994), TFDB
{Mizushima and Hayashi 1994}, and TRRD [Kel ez al. 1995]. The first three of these are no longer
mecintained. These collections, in addition to incorporating the sequences of individual signal

instances, sometimes include consensus sequences or weight matrices.

It is not clear at this point to what extent consensus sequences or weight matrices can differentiate
true from false transcription elements. This remains a research area, as does the problem of how
best to use the transcription element information in gene identification algorithms. One promising
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approach is reported in [Prestridge 1995]: In the calibration step, consensus sequences are used to
recognize putative transcription factor binding sites in a training set of promoter and non-promoter
regions, and ratios of densities for putative binding sites in promoters and r.Gii-promoters are
recorded for all transcription factors in TFD. In application, the density ratios of putative
transcription factor binding sites (again recognized by means of consensus sequences) are
summed, and this score is combined with the Bucher weight metrix score of any putative TATA
box. When the score threshold is set so that 70% of promoters are recognized correctly, one false
positive is recorded about once every 5600 bases. (An zarlier paper, [Prestridge and Burks 1993],
found that the simple density of putative transcription elements is not discriminatory).

Gene syntax and integration of information

It i5 well known that gene cxpression in vivo involves considerable interaction and
interdependence among various components of the transcription and translaton machinery.
Exaing;les include coordinate binding of multiple transcription factors and mutations in a 5’ splice
sitc resulting in the skipping of an upstrecam 3’ site. Thus it is not surprising that programs
incorporating some overall model of gene structure give increased accuracy even for the
recognition of individual gene components. In the case of intron splice sites, the integrated
methods discussed above give roughly a factor of 10 improvement over recognition by consensus
or matrix methods. Another example is seen in [Einstein et al. 1992], where it is shown that 60%
of exons under 50 bp missed by the original GRAIL e-mail server may be detected by a logical
analysis of splicing and frame.

A number of programs have appeared in the lasi few years that are integrated in the sense of taking
gene structure into account to predict exons (SORFIND, [Hutchinson and Hayden 1992, 1993];
FEX, [Solovyev, Salamov, and Lawrence 1994a, b]) or genes (GM, [Fields and Soderlund
1990j{Soderlund et al. 1992); the Gelfand program, [Gelfand 1990a)(Gelfand & Roytberg 1993);
GenelD, [Guigo et al. 1992)[Knudsen, Guigo & Smith 1993]; GenViewer, [Milanesi et al. 1993);
GeneParser, [Snyder & Stormo 1993]; GRAIL II, [Uberbacher er al. 1993]1(Xu er al. 1994];
GenLang [Dong and Searls 1994] (cf. also (Searls 1992]), and the program of [Krogh, Mian,
Haussler 1994)).

(There are other gene prediction algorithms not yet published. In one prominent case, the analysis
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of the C. elegans genomic sequencing group (cf. [Wil<on ez a!. 1994]) makes use of an algorithm
GerneFinder developed by P. Green.)

The goal. In writing any new algorithm, the single most impoitant design decision is often, of
course, the choice of a precise goal. Today, *-e goal of a gene identification algorithm is usually
taken as obvious. Though there are minor diffe;zences, mostly associated with whether or not only
optimal solutions are shown, developers take the essential goal to be the assembly of all
components of a gene and the reperiing of an integral gene to the user.

In the long run it will be important to extend this goal to meet the practical needs of more complex
situtations. Cumrent algorithms typically expect to find all components of each gene and,
sometimes, of only one gene. In practice, however, a sequence presented for analysis may have no
genes, partial genes (parsicularly in the case of very large genes, such as human dystrophin, which
is over 2 Mb long), multiple genes, genes embedded in the introns of other genes (cf. [Levinson ef
al. 1990)), or genes with multiple expression patterns. Unusual mechanisms such as genome
rearrangements (as in the immunoglobulins), trans-splicing and RNA editing (as in some
organellar genes), and the use of unusual tRNA species, are rarely dealt with. Thus it will be
necessary to develop algorithms that can produce a feature table of relevant gene features in

whatever combinations they happen to occur.

In addition, it is now widely recognized that an important part of the goal must be to recognize
when a small change in sequence will result in a large change in function. This is important for
recognizing non-functional alleles of ‘“‘discase genes”, psecudogenes, and genes in first pass
sequence data (¢f. {Claverie 1993b], [Krogh, Mian and Haussler 1994}, [Fieids 1994].)

Kinds of integration. Gene identification algorithms typically begin by attempting to evaluate
possible component objects or aspects of genes, proceed to integrate these into exons, and finally
integrate the exons into genes. At both the exon level and the gene level there are two very different
kinds of integration involved. The first is primarily biological, taking into account the syntax of
genes, for example typical spacing of components and the partitioning of the primary transcript
into alternate exons and introns. The sccond is primarily logical and statistical, taking into account
the relative importance of different kinds cf evidence, and the combining of scores into overall

measures of optimality in gene models. We will take these up in tumn.
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Syntactical integration. All integrated gene identification programs make use of the high level
syntax of genes resulting from our basic understanding of transcription, splicing, and translation.
Taking “exon” in the coding sense, rules similar to the following are normally used:

s The first coding exon begins with the start codon and ends with a donor site (or the stop
codon, if there are no intemnal exons).

e Any intema! exons begin with acceptor sites and end with donor sites.
» The last exon begins with an acceptor site (or the start codon) and ends with the stop codon.

» The primary transcript consists of the transcription initiation site, a 5'UTR, alternating
exons and introns, the 3'UTR, and the transcription termination site.

» When the introns are excised and the combined exons read in frame, no intcrnal stop codons
are found.

In addition to this syntax of oider, there is also some information on distance, as for example
appears in known size distributions for exons and introns (¢f. [Naora & Deacon 1982], [Hawkins
1988] and [Smith 19881).

Although this basic syntax is clear enough, biology is of course far more complex, and less weil
understood, thai these simple rules would imply. Such facets of gene syntax as alternative splicing,
overlapping gencs, and promoter structure remain beyond the reach of the current generation of
alzorithms.

In many of the algorithms available today, the rules of gene syntax are implicit in the structure of
the algorithm, but no “gene grammar” is explicitly listed. Two groups have, however, taken a more
linguistic approach, making an explicit grammar the foundation of the algorithm.

D. Searls suggesied, some years ago, that a linguistic approach to the analysis of features in DNA
sequences could be beneficial (for an overview, see [Searls 1992]). This approach is first applied
to the identification of protein coding genes in [Dong and Searls 1994), where a formal, definite
clause grammar of genes is described. Partial scores are passed up the parse tree, and combined by
ruies stored as part o1 the grammar. A training procedure is used to alter the score combination rules

in order to optimize gccuracy. Standard parse tools are used to find correct and high scoring parses

22 3/21/95



of a sequence.

Krogh, Mian, and Haussler [1994]) use a Hidden Markov Model (HMM) to integrate gene
components inw overall gene models for E. colli sequences. In essence, this means that they
construct a probabilistic finite automaton that assigns a probability to every possible parse of a
sequence into promoter, start, coding, stop, and intergenic regions. The Expectation Maximization
algorithm is used to estimate the parameters of the HMM. Then the Viterbi algorithm is used to
find the most probable parse of the sequence.

Logical integration. A variety of evidence is typically employed in computer searches for protein
coding genes. One of the critical choices in algorithm design is the choice of method for combining
these different types of evidence.

Gelfand [1990a) was the first to explicitly discuss the question of providing a natural framework
for the integration of coding measures, matrix scores of signals, and overall syntactical
requirements. The approach chosen was basically statistical. To avoid dependence of score on the
length of the gene, raw scores are taken as the average donor score, the average acceptor score, and
the average TESTCODE window score [Fickett 1982] over the exons. Then all scores are put on
the same scale by expressing them in standard deviation units about the means of their observed

distributions. The sum of these normalized scores is the score for the gene.

Several other authors have also taken a fundamentally probabilistic/statistical approach. The
discriminant analysis approach of [Solovyev, Salamov, and Lawrence 1994a, b] is of course
statistical. Stormo and Haussler [1994] suggest a general probabilistic framework in the situation
where one is partitioning a sequence into two classes of intervals (¢.g. exons and introns), has a
number of scores for each possible classificatiorn of each possible interval, and is combining these
scores as a lincar weighted sum. Théy suggest interpreting the scores and the sum as log
probabilities. They then give efficient algorithms for scaling the scores so that the probabilities will
sum to one, for calculeting the probabilities, for choosing the weights in order to maximize the
probability of given (“training set’’) sequence parses, and for finding the top ranked optimal and
suboptimal parses. (Compare also [States and Gish 1994], where codon bias is integrated into
BLAST searches using a likelihood approach.)
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A particular advantage of the HMM approach of Krogh, Mian, and Haussler [1994] is that it
naturally provides a joint probability distribution over sequences and parses of those sequences.
The HMM thus provides a very natural vehicle for considering the possibility of introducing a
sequence correction to get a more probable parse.

The salient advantage of taking a probabilistic point of view is that it may be possible to assign a
natura! meaning to the scores. It would seem 10 be very desirable to apply the probabilistic point
of view consistently to the sequence interpretation problem, in a way that allowed one to provide
answers for such questions as “how likely is it that at least one exon of this predicted gene is
completely correct?”, “how likely is it that the correct gene and this predicted gene have at least
90% of the translated protein in common?” or, “how likely is it that this is in fact the most
commonly used translation initiation site?".

Applying probabilistic notions consistently is, however, very difficult, because of our limited
knowledge. Most authors, therefore, have taken what might be termed a machine leaming
approach, in which scores of various aspects of putative genes are meaningless numbers, and the
rules for combining these numbers may therefore be manipulated at will to improve the accuracy
of prediction. The advantage of this point of view, successfully exploited by a number of
investigators, is that purely empirical machine leamning techniques may be used to improve the
algorithms by which scores are combined. Thus for example both Guigé er al. [1992] and Snyder
and Stormo [1994] use a neural net to revise the weights by which different atomic measures are
combined, Dong and Searls [1994] use an ad hoc training procedure to revise the score-combining
rules associated with each node of the parse tree, and Salzberg [1995] uses a decision tree algorithm
to combine information from several coding measures. In these cases it is reported that machine

learning algorithms combine informaticn in a way that significantly improves performance.

Orthogonal 1o the choice of a probabilistic or a machine leamning approach to the interpretation of
scores, there is also the issue of organizing one’s evidence. Most gene identification algorithms
recursively construct gene models from partial subassemblies. For instance, atomic components
may be scored first, then exons constructed and scored, and finally genes assembled from exons
and a final score assigned. Further, most evidence gathered by gene identification algorithms fits

neatly into this recursive hierarchy. Thus Dong and Searls [1994) elegantly summarize the basic
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Unfortunately, however, not all of the evidence that one needs to take into account is directly
related to a subassembly of the gene. For example, if the translated protein from a candidate gene
contains a region similar to a known protein motif, and this region corresponds to parts of cach of
two exons, it is not obvious how this should affect either the scores of the exons or the scor: of the
gene ovenall Dong and Scarls solve this problem by specifying a grammsr in which not all
components of a parse are components of the gene; for example, one parse component is the
average exon quality. Another commaon approach is to append postprocessor rules to the main
algorithm. Thus GRAIL [Uberbacher et al. 1993), [Xu et al. 1994] incorporates a number of
heuristic rules for finding the boundaries of exons, and Krogh, Mian, and Haussler [1994] complete
independent analyses of the complementary DNA strands, and then combine them by means of a
small set of rules.

Efficient computation. The number of possible genes 1o construct, score, and rank, even in a
sequence of a few kilobases, is quite la-5= Snyder and Stormo [1992] end, independently, Gelfand
and Roytberg [1993], introduce dynamic programuming algorithms to efficiently find optimally
scoring solutions. Guigé er al. (1992] introduce the idea of exon equivalence -- using one ¢xon o
represent a class of roughly equivalent exons -- as an altemmative (and possibly coordinate)

approach.

Despite significant advances in sequencing technology, it still takes longer to produce a sequence
than it does to submit it to the analysis of even the slowest gene identification alge-ithms. What
may be an even more serious bottleneck is the human attention required to interpret and integrate
the output from the several kinds of important computational analyses. Thus in addition to efficient
computation, significant attention should be devoted to the problem of building algorithms to truly
integrate all the evidence for gene location and function, and to give accurate answers to

biologically meaningful questions.

Summary. As will be clear from even this short overview, the area of whole-gene recognition is
moving rapidly, with advances being made on several fronts. Divergent, and sometimes ever

conflicting, innovations are being made by different groups. Particular techniques are rarely
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evaluated in isolation, and each pair of programs usually differs in many aspects. Thus there is no
one best program, nor is there likely to be one soon.

Accuracies of the above programs are somewhat difficult to compare, as benchmark sets and
testing methodology are not yet standardized. Roughly speaking, the accuracy of most of the above
programs is reported so: when a new (not seen before by the algorithm) sequence is chosen that
contains all of one gene and its flanking regions (and no other genes or partial genes), and this
sequence is presented to the algorithm, the predicted gene will typically largely overlap the known
gene, in such a way that about 85-90% of the predicted coding bases are in the kaown geae, and
about 85-90% of the known coding bases will be in the predicted gene. That is, the predicted gene
will look very much like the known one, but there will usually be significant differences as well.

There are, however, hints that this performance may not extend to genes typical of the genome
(rather than of the database). For example Lopez, Larsen, and Prydz [1994] report that when
GRALL is used on long, recently determined sequences, the accuracy is significantly lower than on
the original test set. It is quite possible that similar results will be found for other tools.

The development process

This paper is concemed primarily with algorithm design. However, it is important to mention
briefly some closely related issues.

Data. Itis beyond the scope of the nucleotide sequence databases to maintain a reflection of current
biological understanding in the features recorded on all known sequence=. Thus the algorithm
developer must be aware that annotation in the databases is often incomplete and sometimes
incorrect.

One solution to this difﬁculty is to take a set of a few tens of sequences, verify the annotation in
detail for this set, and then use it for algorithm dcvclobment and evaluation. The advantage of this
approach is, of course, that one can be personally assured of the quality of the data. A disadvantage
is that the variety in such a set is rather limited, and algorithms developed in this way may not
generalize well to new data.

Another solution is to accept the databases as they are, perhaps removing some large classes of
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entries likely to confuse one’s study (for example, entries with no annotation, STS sequences, or
duplicates) and take the incompleteness of annotation into account in interpreting results.

A compromise between these two approaches is to take advantage of on: of a number of
specialized, curated databases of intermediate size. One such, of particular relevance to the
development of gene identification algorithms, is the collection of Functionally Equivalent
Sequence sets (including, for example, a number of specialized collections of exons and introns)
described in [Konopka 1994a).

Evaluation. When only a few techniques had been developed for gene identification, it was often
sufficient to demonstrate the value of a new technique in a few special cases. However, extensive
benchmarking is now widely appreciated, and an innovative technique that is objectively shown to
be of value in a large number of cases also stands a better chance to be widely adopted. It is also
increasingly important to know the performance of new techniques not only on the “mainstream”
genes common in the public databases, but on genes with unusual base composition, on -rarelly
expressed genes, and on single pass, error-prone sequences.

The evaluation of integrated algorithms is complex because there is no one best interpretation of
the questio~, “.how correct is this prediction?”. Guigé er al. [1992] made an important advance by
suggesting that accuracy of integrated algorithms be evaluated on a nucieotide basis. They report
the counts of three classes of nucleotides: those in the known coding region and the predicted
coding region; those i.. the known, but not the predicted coding region; and those in thz predicted,
but not the known .oding region. These numbers are combined in the set-theoretic correlation
coefficient [Cramer 1946), [Matthews 1975] betwcen the set of true coding nucleotides and the set
of predicted coding nucleotides. Since the correlation coefficient depends not only on the
algorithm, but also the data set, developers should always give the raw numbers as well as the
summary coefficient. Evaluation is also difficult because there is as yet no consensus on the form
of the algorithm output, and different forms (e.g. a set of coding regions, a set of exons, a single

most likely gene, a ranked list of possible genes, efc.) are not completely comparable.

Performance of algorithms is, of course, in part dependent on the quality and contiguity of the
sequences presented. Claverie [1994c] evaluates the performance of GRAIL when raw, single
sequencing runs are aralyzed, and suggests that it is unlikely for the use of first pass, fragmented
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data, in itself, to lead to failed detection of genes. Kamb et al. [1995] evaluate XPOUND [Thomas
and Skolnick 1994] on 400 bp sequences containing coding segments of various krown sizes and
positions. They conclude that in performing 100 sequencing reactions on randomly selected
fragments of a P1 clone, followed by XPOUND analysis, between 50% and 75% (depending on
the types of sequencing errors) of all genes present in the P1 would be detected.

Benchmarking is also a significant issue for users, who need to know not only how good the
algorithm is, but how to interpret a particular score. In the case of SORFIND, which predicts
internal exons, Hutchinson and Hayden {1992, 1993] divide the range of the output score into four
ranges, and for each report the actual frequency with which the algorithm correctly reports exons
in that score range. The situation becomes more complicated when the output consists of genes (or
feature tables) rather than exons. By considering many suboptimal solutions, Snyder and Stormo

[1992] attempt to give the user a feel for which parts of a predicted gene are most likely to be
correct.

sirgh and Krawetz [1994) compare the peiformance of four coding measures and the GRAIL
¢-mail server on one E. coli and four human genes. This sort of objective, third-party, comparative
performance measurement is very valuable and unfortunately rare. It is to be hoped that further,

and more comprehensive, studies will appear.

Communication of results. Since a large number of reasonably good techniques are already in
existence, every developer must be aware that in order for an important innovation to spread, it
needs to be described clearly, in enough detail that other investigators can easily duplicate the
work. This has, of course, become more difficult as algorithms have grown more complicated. Yet
the developer who is able to completely specify the algorithm in print will find others much more
willing to adoy« proposed techniques.

Interface. It is a remarkable fact about‘ the field of gene identification today that many, perhaps
most, of the best algorithms are not widely available. This is first of all simply because many
developers have not had the time to develop an intuitive interface for those whose primary business
is experimental biology. Indeed, one of the most important factors in the widespread use of GM
and GRALIL is the effort that its developers have put into interface development and community
education.
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A second limitation on availability is less obvious but no less real. This is that most algorithms
today are organism specific, in implémcntation even if not in concept. To overcome this problem
research on the degree of generality of various techniques is needed. For exampie, are in-phase
hexamer counts, the single most useful coding measure, fairly stable only within species? Or can
discriminant vectors for this measure be meaningfully calibrated for all mammals, or even for some
wider group, in one step? If most techniques are highly specific to relatively small parts of the
taxonomic tree (similar remarks apply to classes of genes), then a way needs to be found to allow
the typical computational support person in larger biological laboratories to tailor existing
algorithms to a particular context. -

Summary

Thcie has been a great deal of progress in gene identification methods in the last few years. At least
in the case of sequence data from mammals, C. elegans, and E. coli, the older coding region
identification methods have given way to methods that can suggest the overall structure of genes.
And for all organisms, computational methods are sufficiently accurate that they give practical help
in many projects of biological and medical import.

Yet there is still room for significant improvement. Many of the better algorithms are not widely
available. Investigators studying organisms other than those mentioned above may find that only
the older algorithms are available to them. For the more advanced algorithms, it is still the case that
predicted genes, while largely overlapping expressed natural genes, are typically incorrect in a
number of details. Further, it is not clear that current algorithms, developed on the very atypical
gene sample available in current databases, will perform as well on genes more typical of the
biological universe as a whole. Essentially all current algorithms depend her.vily on codon usage
bias, but it has been shown that this bias is less informative in genes with low-level expression
[McLachlan, Staden, and Boswell 1984)[Sharp e: al. 1988][States and Gish 1994]. |

Perhaps the single greatest opportunity in the development of gene identification algorithms is to
include more detailed biological knowledge, relying less on techniques that atempt to provide a
single elegant description valid for all cases. The description of (say) human genes inherent in any

of the current gene recognition programs could be written down in a few pages. Given the extent
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to which evolution is opportunistic and haphazard, and given the prevalence of exceptions to
essentially all general principles in molecular biology and biocheinistry, it seems most unlikely that
essential aspects of any genome will be described in such simple terms. Greater emphasis should
probably be placed, then, on lookup methods over template methods; more richness is needed in
the modeling of eukaryotic gene regulation; and, in general, a trend may be expected towards gene
identification algorithms becoming interfaces, with a general model of gene syntax, to a large
number of databases of specific facts. First steps in this direction may be found in [Borodovsky,
Rudd, and Koonin 1994], [Claverie 1994b] and [States and Gish 1994).

The single most important area where specific aspects of geaes are important, even to discover the
coding regions. is control of gene expression. Further, control of gene expression is very closely
connected to product function. Thus, in addition to providing greater accuracy, bringing gene
identification algorithms closer to models of underlying bioiogical mechanisms will also bring
them closer to answering what is, in the end, the more important questions: not just “Where are the
genes in this sequence?”, but “How do they determine the biochemis&y of the cell?”.
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Figure Legend
Figure 1. Derivability of coding measures. Each measure is derivable from any measure above it

and connected to it by a line. The dotted line shows that the Fourier measure is essentially
equivalent to, though not formally derivable from, the Autocorrelation measure.
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