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Scale-dependent Darcy flows in composite media 

DANIEL M. TARTAKOVSKY & C. L. WINTER 
Scient@ Computing Group, Los Alamos National Laboratorys Los Alumos, NM 87545, USA 
email: dmt@lanl.gov 

Abstract We develop probabilities and statistics for the parameters of Darcy 
flows through saturated porous media composed of units of different materials. 
Our probability model has two levels. On the local level, a porous medium is 
composed of disjoint, statistically homogeneous volumes (or blocks) each of 
which consists of a single type of material. On a larger scale, a porous medium 
is an arrangement of blocks whose extent and location are defined by uncer- 
tain boundaries. Using this two-scaled model, we derive general formulas for 
the probability distribution of hydraulic conductivity and its mean; then we de- 
velop a closed-form expression for mean head in one dimension. We express 
distributions and parameters in terms of mixtures of locally homogeneous block 
distributions weighted by large-scale block membership probabilities. 

INTRODUCTION 

According to Darcy’s Law, water in a porous medium moves down pressure gradients 
influenced by the medium’s permeability, or equivalently, by a hydraulic conductivity 
tensor. Darcy’s Law has been used to predict groundwater flows across a very wide range 
of experimental scales; however, different scales generally require different parameteri- 
zations, even within the same site. This may be due to sampling across increasing levels 
of material heterogeneity as the volumes used to average parameters expand. This begs 
a couple of critical questions: Is there a simple scaling law for permeability and other 
hydraulic parameters? How can we average flow parameters when the scale of averag- 
ing includes significant material heterogeneity? We address the second question in this 
note by developing ensemble averages for flow parameters that include multiple scales 
of heterogeneity. In later papers we will relate our multiscale averages to the existence 
of simple scaling laws. 

It has been hypothesized that effective flow parameters can be obtained by averaging 
local parameter values over representative elementary volumes (Bear, 1972). A repre- 
sentative elementary volume (REV) exists within a porous medium if there is a range of 
measurement over which averaged parameter values are approximately constant. Lately, 
the very existence of the traditional REV concept has been questioned (Neuman, 1994), 
because examinations of data indicate that permeabilities and other flow parameters vary 
over all scales (Neuman, 1994; Gelhar, 1993). The REV hypothesis is further compli- 
cated by our uncertain knowledge of the detailed structure of porous media. In fact, 
permeability and other parameters are usually observed at a relatively small number of 
locations in groundwater studies. 

It has become common to quantify this uncertainty through probabilistic models in 
which permeability is represented as a stochastic process. Then the dependent flux, 
q(x), and head, h(x), in Darcy’s Law are also stochastic processes. In most studies 
conductivity, K ( x ) ,  is represented as the sum of a mean, r(x), and a random deviation, 
K‘(x), so that K ( x )  = E(x) + K’(x) .  Similarly, h(x) = h(x) + h‘(x). In a steady-state 



flow regime, the averaged Darcy's Law becomes 

- q(x) = -E(x) VZ(x) + F(x) 

where q(x) is the average flux. The averaged equation (1) consists of a deterministic 
mean part, x(x)V%(x), and a deterministic residual flux, F(x) = -K'(x)Vh'(x). Solu- 
tions for E(x) require the statistics of K ( x ) ,  and in most cases, a method for closing an 
expansion of the residual flux. Usually Z(x) is approximated through perturbation ex- 
pansions based on OF, the variance of (natural) log conductivity. This approach works 
well so long as 0; is small. 

Small O; is often a reasonable assumption within a volume, or block, composed of 
a single type of material since the properties of every point in a block of a single ma- 
terial have been generated by basically the same physical processes. This is frequently 
used to justify a further assumption, that the permeability field is statistically homoge- 
neous within a block. The case is different at larger scales where permeability statistics 
are affected by variations among blocks of different materials, for instance, in stratified 
porous media. Here permeability variations can be expected to be large from one block 
to another. 

Uncertainty arises from two distinct sources in this view of composite media: small 
scale within-block variations and large scale across-block variations. Each block corre- 
sponds to a diffferent ensemble of porous media by definition. Thus, permeability fields 
are statistically heterogeneous when viewed across blocks, Solutions for z(x) require an 
expression of x(x)  that reflects heterogeneity at the larger, across-block scale. Further- 
more, closure approximations for the residual flux must accomodate the large variances 
that are due to across-block variability. Across-block variation adds the spatial extent 
and arrangement of the blocks themselves as a new element of randomness in the analy- 
sis of the stochastic Darcy model. We show that the permeability and head random fields 
can be averaged by dealing with each scale explicitly and more or less separately. 

The essence of our note is that the permeability and head fields can be averaged by 
using large-scale probabilities of across-block geometry to weight small-scale within- 
block probabilities. As a result, we can apply the convenient properties of small within- 
block to perturbation expansions, while at the same time we allow statistical non- 
homogeneity due to random variations in the large-scale geometry of blocks. Suppose 
the usual assumptions of stochastic hydrogeology hold: the statistics of the block struc- 
ture (for instance, the stratigraphy) of a porous medium are known, as are the distribu- 
tions of permeability within individual blocks (e.g., strata). The result of averaging is a 
mixture of small-scale probability distributions that leads to a straightforward expression 
for the critical parameter, z(x). Next assume, as usual, that 0; is small within blocks. 
Then our approach also extends the range of perturbation analysis to many heteroge- 
neous domains, although we do not explicitly show that here. It substitutes the relatively 
tractable problem of determining the spatial distribution of disjoint blocks of homoge- 
neous material for the difficult problem of dealing with large perturbation variances. 

Our approach is similar in its goals to the Boolean algorithms used in geostatistical 
simulations of heterogeneous random fields (Deutsch & Journel, 1992); however, the 
methods and results are completely different. We give explicit expressions for the uni- 
variate probability density of K ( x )  and of derived quantities like z(x) and the moments 
of h(x) in the next two sections. These expressions can be examined qualitatively to 
understand the general behavior of the averaged flow system, which of course, is not 
possible with a simulation-based approach. Simulations are generally used to estimate 



moments of h ( x ) ,  thereby requiririg large numbers of Monte Carlo trials. On the other 
hand, analytical methods are computationally efficient. Expressions for the moments of 
h ( x )  arise directly from (1) and related equations. 

Multi-scale averaging provides a natural framework for assimilating the results of 
different methods of aquifer characterization. First, the multi-scale method includes the 
kinds of spatially distributed material heterogeneities that are the result of most charac- 
terization studies; second, error models for characterization techniques can be explicitly 
included in models of random block boundaries; and third, the outputs of different char- 
acterizations can be combined using standard techniques like Bayesian updating since 
the multi-scale model is probabilistic. This is different from the ordinary approach in 
stochastic hydrology where observations of permeability are lumped together without 
regard to material distribution and are then used to estimate statistics for an equivalent 
continuum. In most cases this results in estimates of K ( x )  that are very coarse and esti- 
mates of uf that are very large. 

RE-SCALED PERMEABILITY 

In general, a porous medium contains blocks of many types of material, each material 
type having its own (multivariate) permeability random field determined by a probability 
density. Here we consider porous media composed of only two types of material for 
simplicity, but extensions to multiple materials are obvious. A point, x, of the medium 
lies in material M1 with probability P(x E M I )  and in material M2 with probability P ( x  E 
M2) = 1 - P ( x  E M I ) .  We suppose that P is a random boundary separating the medium 
into blocks of type M I  and M2 according to probability density function p ( P ) .  Also, 
conductivity, K ( x ) ,  has probability density functions p1 ( K ( x ) )  or p z ( K ( x ) )  respectively 
within the blocks, Usually, p i ( K ( x ) )  is log normal. We drop the dependence of K on 
x below except where it is needed for clarity. The joint density, p(K,P), defines the 
multiscale within- and across-block process. 

Our goal, the rescaled permeability density, p ( K ) ,  is the marginal of p ( K ,  p) = p ( K  I 
p ) p ( p ) .  Since the conditional probability fixes the boundary, we can use indicator 
functions to rewrite p ( K  I p) = 11 (x; p)p1 ( K )  + 12(x; P ) p 2 ( K ) .  The indicator function 
Zi(x; p) = 1 if x is in a block of type Mi and is 0 otherwise. Thus, 

since JZi(x; p) p ( P ) d p  = P ( x  E Mi) ;  i.e., since the probability that x is an element of the 
ith block, is just the measure of all p for which x falls in block Mi. In other words, ( 2 )  
states that p ( K )  is the weighted sum of the within-block densities, p1 and p2 where the 
weighting function is the probability of block membership for a point. When the point 
x is deep within a block of type Mi, P ( x  E Mi)  M 1 and p ( K )  M p i ( K ) .  As x approaches 
P, p ( K )  approaches the average of p1 and p2. In an unbounded one-dimensional porous 
medium where a single block of material M I  is below a single block of material M2, 
P ( x  E MI) = J,"p(P)dp and P ( x  E M2) = J f w p ( P ) d p .  It is obvious from (2) that the 
ensemble average of K ( x )  must be a weighted sum of mean permeabilities in the two 
material types, K ( x )  = K P ( X  E M I )  + GP(X E ~ 2 ) .  



CASE STUDY: ONE-DIMENSIONAL FLOW 

We use steady-state flow in a bounded one- dimensional porous medium to illustrate 
averaging (1). In this simple case we can derive closed-form expressions for mean hy- 
draulic head, z(x), and the derivative of z ( x ) ,  which is the reciprocal of effective con- 
ductivity. Both expressions depend on the variance of the location, p, of the boundary 
between material types. We are currently investigating similar questions in more com- 
plicated, higher dimensional media. 

Since the one-dimensional medium is bounded, we may as well suppose it is [0,1]. 
The medium consists of two materials with random hydraulic conductivities K1 (x )  (0 < 
x < p) and Kz(x )  (p < x < l), where p is the contact point between the two materials. 
The exact position of the point of contact is not known; instead, we assume it is a trun- 
cated normally distributed random variable with mean and variance 08. The hydraulic 
conductivities are treated as log-normal random fields. 

For one-dimensional steady state flow, continuity of the flux in Darcy's Law implies 
that 

- d [.(x)$y = 0 dx x E (0,l). (3) 

Then specifying constant flux 40 at the boundary x = 0, and zero hydraulic head at the 
boundary x = 1 , leads to the random head distribution 

The Heaviside function, g ( p  - x) ,  is the one-dimensional equivalent of the indicator 
functions used in the previous section. The ensemble mean of h(x) is just the expected 
value with respect to the joint probability density, p ( K ,  p). Rewriting p ( K ,  p) = p ( K  I 
p) p ( p )  as before, yields, after some additional manipulations, 

where K H ~  are the geometric means of hydraulic conductivities of Mi materials and 

If the medium consists of a single material, (5) reduces to a well known relation 

(7) 
40 h(x) = -(1 -x) 
KH 

where = K H ~  KH. If the location of the contact between the two materials is 
known precisely, then O; = 0 and p = p. Then w = 2erf(m) = 1, and (5 )  becomes 

- 
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Fig. 1 Mean hydraulic head distribution for several values of the standard diviation op. 

The derivative (or gradient in higher dimensions) of the right-hand side of (5) is the 
reciprocal of the effective conductivity for this problem, 

Uncertainty in the location of the contact affects both mean head, h ( x ) ,  and its deriva- 
tive. The magnitude of ob, the standard deviation of p, is a measure of location uncer- 
tainty. Supposing that p = 1/2 and considering x(x)  first, we see that large op leads to 
an almost linear trend from one boundary value to the other (Figure 1). This is to be 
expected, since in this case we are basically not sure whether there is one material or 
two; hence, P(x  E M I )  x P(x  E M2). In the deterministic case (op = 0), mean head x ( x )  
exhibits typical behavior: linear trends in each material and continuity at the boundary, 
but with a change in slope. Other values of op induce intermediate behavior with the 
greatest effect near the location of the expected contact. Mean hydraulic gradient, the 
reciprocal of effective conductivity, is similarly affected (Figure 2). In the deterministic 
boundary case (ob = 0) there is a jump at the boundary, just as there should be. The con- 
ductivity random fields are known to be different on each side of the known boundary. 
Large op, on the other hand, shows an influence of location uncertainty throughout the 
domain with a nearly linear trend in the gradient between the fixed boundary points. Of 
course, intermediate values of op cause mean head gradients to fall between these two 
extremes. 

It remains to investigate similar effects in two- and three-dimensional media with 
more realistic block geometries and for higher order moments of both K and h. 
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Fig. 2 Mean head gradient distribution for several values of the standard diviation op. 
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