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ABSTRACT

Modal parameters obtained from modal testing (such as modal vectors, natural frequencies, and

damping ratios) have been used extensively in system identification, finite element model

updating, and structural health monitoring. As an alternative to modal vectors, load-dependent

Ritz vectors have been shown useful in various areas of structural dynamics such as model

reduction and damage detection. The applications of Ritz vectors, however, have been mainly

limited in analytical and numerical analyses because of the difficulty to identify them from

vibration tests. This paper presents a procedure to extract load-dependent Ritz vectors using a

complete flexibility matrix constructed from measured vibration test data. The proposed method

can not only construct the Ritz vectors corresponding to the actual load pattern employed in

vibration tests, but also generate Ritz vectors from arbitrary load patterns. Experimental data

obtained from the vibration test of a grid-type bridge structure are employed to validate and

illustrate the proposed extraction procedure.
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1. INTRODUCTION

Modal parameters such as modal vectors, natural frequencies, and damping have been widely

employed in many fields of structural dynamics. For example, in numerical dynamic analysis, a

multi-degree-of-freedom (MDOF) system can be decoupled into a number of single-degree-of-

freedom (SDOF) systems using the orthogonality feature of modal vectors and the vibration

response of the system can be approximated by the modal superposition of a small set of the

SDOF system responses. For vibration test, the response time histories are typically transformed

into the frequency domain using a spectral analyzer and the test results are often presented in the

form of modal parameters.

It has been shown that load-dependent Ritz vectors have many potential advantages in

structural dynamics over modal parameters. For linear dynamic analyses, the response quantities

of interest can be approximated more effectively by a smaller number of Ritz vectors than the

modal vectors [Nour-Omid and Clough 1984, Wilson et al. 1982]. In numerical analysis, Ritz (or

Lanczos) vectors have been used to find partial extremal solutions of large eigenvalue problems

[Golub and Van Loan 1996] and to reanalyze a structural system with localized modifications

[Carey et al. 1994]. In structural monitoring and damage diagnosis, numerical simulations have

shown that Ritz vectors are able to identify damage better than modal vectors [Cao and

Zimmerman 1997a, Sohn and Law 2000]. For system identification and damage detection

problems, however, the Ritz vectors need to be obtained from experimental test data.

Cao and Zimmerman were probably the first to attempt extracting Ritz vectors from

measured vibration data using a state-space formulation [Cao and Zimmerman 1997a]. In this

paper, we present a new extraction procedure based on a complete flexibility matrix obtained
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from vibration test data. While the method proposed by Cao and Zimmerman constructs the Ritz

vectors corresponding to the actual load pattern imposed on the structure, the proposed method is

able to generate Ritz vectors from assumed load patterns as well. The residual flexibility, which

is the contribution of unmeasured dynamic modes, is explicitly included in the proposed

formulation. The effectiveness of the new extraction procedure is demonstrated using the data

obtained from a vibration test of a grid-type bridge structure.

This paper is organized as follows: First, the analytical procedure of generating Ritz vectors

is presented. Both the state-space based method and the proposed flexibility matrix based method

are then described. We briefly describe the grid-type bridge model employed in the experimental

study and the finite element model corresponding to the test structure. The proposed extraction

procedure is then demonstrated using the experimental test data. Finally, this paper is concluded

with a summary and discussions.

2. RITZ VECTOR EXTRACTION TECHNIQUES

In this section, we first review the analytical procedure for the generation of Ritz vectors [Leger

et al. 1986]. Second, a state-space based technique is described. A new extraction procedure

based on a complete flexibility matrix constructed using measured vibration data is then

presented.

2.1 Analytical Procedure for Generating Ritz Vectors

Let M , ςC , and K  denote the mass, damping, and stiffness matrices of a N-DOF system,

respectively. Then, the equations of motion can be expressed as

)()()()( tttt FzKzCzM =++ ��� ς (1)
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where z , z� , and z��  are the vectors of displacement, velocity, and acceleration, respectively.

)(tF is a 1×N  vector representing the input force excitation. ``Load-dependent" Ritz vectors are

generated by taking into account the ``spatial distribution" of the dynamic loading which is

neglected in the generation of classical modal vectors. Assume that the dynamic loading )(tF

can be separated into a spatial load vector f  and a time function )(tu :

)()( tut fF = (2)

The first Ritz vector is a static deformation caused by the spatial distribution of the dynamic load

vector f :

frK =1 :   solve for )~( 11 rr = (3)

Then, the first Ritz vector is mass-normalized as:

21
1

T
1

1
1 ]~~[

~

rMr
r

r = (4)

The subsequent Ritz vectors are recursively generated. Assuming the mass matrix times the

previous Ritz vector 1−sMr  to be a load, the recurrence relationship computes the next Ritz

vector sr :

1−= ss rMrK :   solve for sr (5)

The linear independence of Ritz vectors is achieved using the Gram-Schmidt orthogonalization.

That is, the current Ritz vector is mass-orthogonalized with respect to all the previous Ritz

vectors:

( )∑
−

=

−=
1

1

T~
s

t
tstss rrMrrr (6)

Finally, the current Ritz vector is mass-normalized:
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r
r = (7)

2.2 A State-Space Based Method

Recently, a procedure to extract Ritz vectors based on measured vibration test data has been

proposed by Cao and Zimmerman [1997b]. This method involves a minimum rank realization of

state-space models from vibration test data. The second order differential equations shown in

Equation (1) can be rewritten as the first order differential equations in a number of ways. In

classical control theory, the following state-space representation is often used (here, a single

number of input is assumed for simplicity):

uBxAx +=� (8)

where


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z
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x

�
(9)

When the response of a system is measured by the m output quantities )(ty  )( 1×ℜ∈ m  using

sensors such as accelerometer, the measurement vector )(ty  is related to the state vectors as

follows

uDxCy += (10)

where C is an 1×m  output influence matrix and D is an 1×m  gain matrix. Note that there exist

an infinite number of state-space models that can be constructed from the same input and output

relationship.

The state-space based procedure starts with a minimum rank realization of state matrices

( Â , B̂ , and Ĉ ) from the vibration data. In this study, the Eigensystem Realization Algorithm

(ERA) is employed for the system realization [Juang 1994]. Note that the realized state matrices
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preserve the actual input-output characteristics regardless of the selection of state variables, x.

The state-space based approach for the extraction of experimental Ritz vectors follows closely

the analytical procedure for computing the Ritz vectors. The main difference is that the triple

state-space matrices Â , B̂ , and Ĉ  are employed instead of the system matrices K, M, and the

spatial load vector f.

The static deformation vector 1x  subject to a load at the excitation point is computed by

solving the following equation for 1x :

BxA ˆˆ
1 −= :   solve for )~( 11 xx = (11)

where the input influence matrix B̂  contains the information of the load vector f. Then, the first

Ritz vector is normalized as:

21
11

1
1 ][ xx

x
x

T
= (12)

The subsequent Ritz vectors are recursively generated as follows:

1
ˆ

−= ss xxA :   solve for sx (13)

The linear independence among Ritz vectors is achieved by orthogonalizing the current Ritz

vector with respect to all the previous Ritz vectors:

( )∑
−

=

−=
1

1

T~
s

t
tstss xxxxx (14)

Then, the current Ritz vector is normalized:

21]~~[

~

ss

s
s xx

x
x T= (15)

Note that sx  is a Ritz vector in the state-space coordinate. Finally, the Ritz vector, which

corresponds to the actual measurement points sr , is computed as:
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ss xCr ˆ= (16)

It should be noted that the normalization and orthogonalization procedures in the state-space

method are not identical to those of the analytical generation procedure. Therefore, the Ritz

vectors obtained from Equation (16) should be normalized and orthogonalized with respect to the

analytical mass matrix M in order to compare the experimental Ritz vectors with the analytical

ones. In addition, matrix Â  obtained from vibration tests often contains the ``noise'' modes as

well as the actual system modes. Therefore, the true modes corresponding to the actual system

should be first distinguished before the Ritz vector extraction procedure. This process requires

some engineering judgment. Various approaches to distinguish the true modes from the noise

modes have been described in Juang [1994].

2.3 A Flexibility Matrix Based Method

In this section, we present a new extraction procedure of Ritz vectors based on a measured

flexibility matrix. A close look at the analytical generation procedure reveals that the generation

of Ritz vectors uses the flexibility matrix G (defined here as the inverse of the stiffness matrix)

rather than the stiffness matrix itself. If the modal vectors are mass-normalized such that

�KVV =T  and IMVV =T , the flexibility matrix can be represented with the modal parameters

[Doebling et al. 1996]:

T11 VV�KG −− == (17)

where �  is the diagonal eigenvalue matrix and V  is the corresponding eigenvector (modal

vector) matrix.

In most experimental modal analyses, only a few lower modal frequencies and modal

vectors are identified. For this case, the flexibility matrix is divided into the modal flexibility,
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which is formed from the estimated frequencies and modal vectors, and the residual flexibility

formed from the residual modes:

T-1T-1
�� rrrmmmrm VVVVGGG +=+= (18)

where the subscripts m and r denote the measured and residual quantities, respectively. Here, the

modal flexibility mG  is easily constructed using the measured natural frequencies and modal

vectors. The residual flexibility rG  is the contribution of the unmeasured dynamic modes to the

full flexibility matrix. In general, the contribution of lower modes, which are normally estimated

in experimental modal analyses, is more significant than those of higher modes because the

contribution of each mode is inversely proportional to the magnitude of the corresponding

natural frequencies. Deobling et al. [1996] report that the contribution of the residual flexibility

matrix is generally about 3-10% of the complete flexibility matrix. However, as shown in later

examples, the contribution of the residual flexibility cannot be neglected in the extraction

procedure of Ritz vectors.

The residual flexibility is constructed using a residual function )(&R , which is computed by

subtracting the reconstructed response of the identified modes from the measured frequency

response functions (FRFs) )(&H :

( ) 2T122)()( ����� rmmm GVI�VHR −=−+= −
(19)

Curve-fitting )(&R  over a set of frequency samples ( )set&&∈  yields an estimate of the residual

flexibility:

∑
∈

−=
set

r
ωω ω

ω
2

)(R
G (20)

In this paper, )(ωH  and )(ωR  are assumed to be squared matrices. That is, individual modal

testing is conducted by applying an impulse excitation force to a single degree of freedom (DOF)
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and the excitation is repeated for all measured DOFs. Doebling et al. [1996] discuss the

extraction of a complete flexibility when the number of excitation points are less than that of the

response points. While damping is not included in the formulation of the residual flexibility,

Equation (19) can be easily modified to take into account the damping.

From the measured flexibility matrix G (= mG + rG ) and the analytical mass matrix M, the

first Ritz vector can be computed as:

fGr =1 (21)

where f is the spatial load distribution vector defined in Equation (2). The first Ritz vector is,

then, mass-normalized as:

21
1

T
1

1
1 ]~~[

~

rMr
r

r = (22)

The subsequent Ritz vectors are recursively generated in a similar fashion to Equation (5).

The only difference is that the flexibility matrix is directly constructed from the test data instead

of inverting the analytical stiffness matrix. The orthogonalization and mass-normalization

procedures are identical to Equations (6) and (7).

It is worthwhile to compare the flexibility based extraction procedure with the state-space

based procedure. In the state-space method, the input influence matrix �̂  in Equation (11) is

estimated using the information of the experimentally applied load. While the state-space based

method only identifies Ritz vectors corresponding to the specific excitation pattern used in the

actual modal testing, the flexibility based method is able to generate Ritz vectors with arbitrary

load patterns as well. That is, the spatial load distribution vector f in Equation (21) can be

assigned arbitrarily to generate different sets of Ritz vectors. Furthermore, the contribution of the

residual flexibility is not included in the state-space based method. (The influence of the residual

flexibility on the accuracy of the estimated Ritz vectors will be addressed in Section 5.) Note that
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both methods require an appropriate approximation for the mass matrix. However, for problems

that stiffness changes are the main concern as in the case for damage detection, the exact

estimation of the mass matrix is not necessarily an important issue. One will be more likely

interested in the change of Ritz vectors caused by stiffness perturbation. It should also be pointed

out that Alvin [1994] has presented a theory to transform the realized state-space models into the

corresponding second-order structural parameters such as stiffness, mass, and damping matrices

based on an objective normalization of physical-coordinated modal vectors. Using these directly

computed stiffness and mass matrices, an arbitrary set of Ritz vectors could also be extracted in

theory.

3. AN EXPERIMENTAL BRIDGE MODEL

For this study, a grid-type bridge model has been constructed and tested at the Hyundai Institute

of Construction Technology (HICT), Korea (Figure 1). The steel bridge model consists of two

parallel girders and six evenly spaced cross beams connecting the two girders. The girders are

steel rectangular tubes and the cross beams are C-shape members. Using impact excitations, we

extract Ritz and modal vectors from the vibration response of this test structure.

A SA-390 signal analyzer with four channels is used for the analog to digital conversion of

accelerometer signals and the Fast Fourier Transform (FFT) calculation. Data acquisition

parameters are specified such that a frequency response function (FRF) in the range of 0 to 100

Hz could be estimated. Each spectrum is computed by averaging three 8-second long time

histories. A total of 2048 points are sampled for a 8-second time period and this sampling rate

produces a frequency resolution of 0.125 Hz. An exponential window is applied to all measured

time histories prior to the FFT calculation.
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For measurements, a Dytran 5801A4 impact hammer and three Dytran 3100B

accelerometers with a normal sensitivity of 100 mV/g are used. The excitation is applied at each

node as shown in Figure 2. The sensors measure the vertical accelerations at the twelve nodes as

indicated in Figure 2. Note that since the SA-390 data acquisition system has only four channels

and there are three accelerometers, the first channel is always connected to the input hammer and

the remaining three channels are connected to three accelerometers. To complete one set of

modal test, the hammer excitation is repeated twelve times at one point and the three

accelerometers are moved from one set of three nodes to another set of three nodes after every

three excitations. Note that each FRF is computed by averaging the three response time histories,

and there are twelve measurement points and three accelerometers.

The rational polynomial technique is employed to extract the first six natural frequencies

and the corresponding modal vectors from the recorded FRFs [Richardson and Formenti 1982].

Figure 3 shows a typical FRF and coherence function of the test structure. Figure 3 (a) is a FRF

obtained at node 5 when the structure is excited at node 4. Figure 3 (b) presents the

corresponding coherence function. Figure 3 (b) shows that the value of the coherence function is

close to unity at the resonance frequencies, which indicates that the output signals from the

sensors are reasonably strong as compared to the noise levels.

To validate the linearity assumption of the structure response, a reciprocity check has been

conducted. Figure 4 compares the FRFs obtained at node 3 with an input at node 14 and at node

14 with an excitation at node 3. For an ideal linear structure, these two FRFs should be identical.

For the grid structure, the linearity assumption seems valid up to the fourth mode but the

difference between the FRFs becomes noticeable after 40Hz.
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4. ANALYTICAL MODELING OF THE TEST STRUCTURE

A finite element (FE) model for the grid type bridge structure is constructed using twenty three-

dimensional beam elements. As shown in Figure 2, a girder segment between two nodes or a

cross beam is modeled as a single element. An elastic modulus of 5100.2 × MPa, a mass density

of 7850 kg/m3, and a Poission ratio of 0.2 are specified for the model. Since the accelerometers

measure only the vertical movement of the structure, the lateral DOFs are not included in the

analytical model. Therefore, each node of an element has two translational DOFs and three

rotational DOFs. The model has a total of 64 DOFs including four rotational DOFs at the

boundary. Both ends of the beam are modeled as simple pinned connections.

A pinned connection is modeled by a ball bearing with a 35 mm diameter in the

experimental setup. Based on a preliminary vibration test, the boundary conditions appear to be

less accurately modeled. The boundary conditions are then modified by introducing rotational

springs at the rotational DOFs of the boundaries. Furthermore, additional springs are added to the

rotational DOFs at both ends of the cross beams to simulate the bolted connection between the

girders and the cross beams. After these modifications, the relative errors of the first six natural

frequencies between the analytical model and the test structure fall within 4%.

Table 1 compares the natural frequencies of the analytical model computed after model

updating with the experimental frequencies. Here, the experimental frequency ω̂  is a mean value

of the twelve frequencies estimated with an impact load applied at nodes 2-7, and 10-15,

respectively. The damping ratios for the first six modes are also estimated: 0.8725%, 0.9780%,

0.3420%, 0.6151%, 0.4231%, and 0.4981%.

Figure 5 displays the analytical and experimental modal vectors of the first six modes. All

figures are plotted in the global X-Y plane of Figure 2, viewing the structure from the side. As
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for the scaling of the modal or Ritz vectors, a mass-normalization is conducted. However, since

the DOFs of the analytical model do not coincide with the DOFs of the experimental modal

vectors, a reduced analytical mass matrix is first computed using the Guyan condensation

procedure. Both the analytical and experimental vectors are normalized with respect to the

reduced mass matrix. Errors arisen from the model reduction are found to be minimum since the

inertial forces associated with the omitted rotational and axial DOFs (slave DOFs) are negligible

in this example.

5. EXPERIMENTAL VERIFICATION

The new extraction procedure for Ritz vectors is demonstrated using the vibration data obtained

from the test structure. Special focus is placed on the influence of the residual flexibility on the

accuracy of extracted Ritz vectors. Figure 6 compares the first six Ritz vectors estimated by the

flexibility based method with the corresponding Ritz vectors computed from the FE model.

Imaginary point loads are simultaneously applied to nodes 2 and 13 (upward point load at node 2

and downward point load at node 13), and the corresponding Ritz vectors are generated. A

complete flexibility matrix, including the modal and residual flexibility matrices estimated from

the measured FRFs, is employed for the extraction of Ritz vectors. Figure 6 shows a good

agreement between the analytical and experimental Ritz vectors. The first Ritz vector is

equivalent to a static deflection pattern observed when the unit loads are applied at nodes 2 and

13. Note that the discrepancy between the analytical and experimental Ritz vectors increases for

higher Ritz vectors.

To investigate the influence of the residual flexibility, Figure 7 shows the experimental Ritz

vectors obtained by only using the measured modal flexibility. Comparison of Figure 6 and
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Figure 7 reveals that the inclusion of the residual term significantly improves the accuracy of

higher Ritz vectors. More quantitative analysis is presented in Table 2, where the Modal

Assurance Criterion (MAC) value is defined as follows:

)ˆˆ)((

)ˆ(
),(MAC TT

2T

jjii

jiji
rMrrMr

rMr
= (23)

where ir and jr̂  are the analytical and experimental Ritz vectors, respectively.

Although not presented here, the state-space based method basically produces the same

results as the proposed method with only using the modal flexibility. Furthermore, as mentioned

earlier, only the flexibility based method allows generating Ritz vectors from any fictitious load

patterns as well as the actual load pattern applied during the tests.

In Table 3, the experimental Ritz vectors corresponding to a point load at nodes 2 - 7 and 10

- 15 are extracted, and the comparison of MAC values with the corresponding analytical Ritz

vectors are presented. Again, the measured complete flexibility is used for all cases in the table.

For brevity, only the diagonal components of the MAC values are shown in the table. The result

indicates that the Ritz vectors can be successfully generated from all the load patterns imposed.

Next, the Ritz vectors are estimated using only the modal flexibility, and the MAC values

are presented in Table 4. For all cases, the MAC values between the analytical and experimental

Ritz vectors fall below 0.8 after the fourth Ritz vectors. The inclusion of the residual flexibility

matrix into the extraction procedure allows the contribution of higher residual modes into

experimentally estimated Ritz vectors significantly improving the accuracy of the estimated Ritz

vectors.
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6. SUMMARY AND DISCUSSIONS

In this paper, a new procedure has been proposed to extract load-dependent Ritz vectors using a

statically complete flexibility matrix. First, modal flexibility and residual flexibility matrices are

estimated from measured FRFs. Then, Ritz vectors are recursively generated using the flexibility

matrix constructed.

The procedure is successfully demonstrated using an experiment of a grid-type bridge

structure. Particularly, the influence of the residual flexibility on the extracted Ritz vectors is

investigated. The proposed method has at least two advantages over the state-space method: (1)

the inclusion of the residual flexibility significantly improves the accuracy of the estimated Ritz

vectors, and (2) the proposed method is able to generate Ritz vectors from any arbitrary load

patterns. The increased amount of information and better sensitivity to structural parameter

changes, which are achievable by multiple loading and careful selection of load patterns, could

improve the results of damage detection, test-analysis correlation, model refinement, and system

identification.

Using the Ritz vectors extracted with the procedure described here, Sohn and Law (1999)

have applied and analyzed the various damage cases introduced to the grid-type bridge structure

presented in this study. Damage diagnoses of the grid-type bridge structure indicates that the

employment of Ritz vectors provides better indication of the actual damage locations than using

the modal vectors. The reason is that, using appropriate load patterns, Ritz vectors can be made

more sensitive to damage than modal vectors. The superior performance of Ritz vectors over

modal vectors attributes to (1) the better sensitivity of Ritz vectors over modal vectors and (2)

the increase amount of information obtained by employing multiple load patterns.
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There have been continuing interest in the application of Ritz vectors for experimental

dynamics problems. Rhee (2000) shows how Ritz vectors can be used to effectively characterize

the changes of the system dynamic properties caused by localized non-proportional damping

effects and/or structural perturbation. Model reduction and mode shape expansion techniques are

further developed for model updating purpose based on experimentally extracted Ritz vectors.

These techniques are demonstrated using experimental data obtained from an eight DOF mass-

spring system. To verify the feasibility and accuracy of the experimental Ritz vectors,

Zimmerman (1999) utilized the dynamic and static test data obtained from a space shuttle

vertical stabilizer. Compared to static test data, accurate Ritz vectors were extracted from a

modal survey test using both accelerometers and a laser scanning vibrometer. Then, a matrix

update approach using the measured Ritz vectors is conducted to update an FE model and to

estimate the location and extent of damage. The proposed Ritz vector extraction procedure

described in this paper could find many applications in system identification and damage

detection problems.
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Figure 1: An overview of a grid-type bridge structure
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(c) Modal vector 3 (f) Modal vector 6

Figure 5: Comparison of analytical and experimental modal vectors
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Figure 6: Comparison of analytical and experimental Ritz vectors (using a complete flexibility,
G = mG + rG )
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Figure 7: Comparison of analytical and experimental Ritz vectors (using only a modal flexibility,
G = mG )
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Table 1: Comparison of the analytical and experimental natural frequencies
Frequency (Hz)

Mode
Analytical Experimental

Relative error*
(%)

1st Bending 5.4488 5.5780 2.32

1st Torsion 10.1494 10.0610 0.88

2nd Bending 19.1841 18.6441 2.90

2nd Torsion 30.6216 29.4503 3.98

3rd Bending 41.6086 42.6292 2.39

3rd Torsion 54.9704 57.2512 3.98

*error = ωωω ˆˆ100 −× : ω  and ω̂  are analytical and experimental frequencies.
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Table 2: MAC values between analytical and experimental Ritz vectors

i for ),(MAC ii
G

1 2 3 4 5 6

rm GG + 0.9947 0.9930 0.9971 0.9956 0.9754 0.9720

mG 0.9946 0.9930 0.9876 0.9099 0.3932 0.0211

*MAC(i, j)= ])ˆˆ()[()ˆ( 2T2T2T
jijiji rMrrMrrMr , ir =analytical and jr̂ =experimental.
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Table 3: MAC values for different load patterns

(using the complete flexibility, rm GG + )

i for ),(MAC ii
Node

1 2 3 4 5 6
2 0.9944 0.9929 0.9980 0.9931 0.9888 0.9805
3 0.9983 0.9964 0.9955 0.9945 0.9485 0.9657
4 0.9994 0.9974 0.9966 0.9948 0.9857 0.9900
5 0.9994 0.9966 0.9903 0.9907 0.9761 0.9656
6 0.9989 0.9965 0.9967 0.9976 0.9755 0.9824
7 0.9954 0.9952 0.9917 0.9800 0.9717 0.9731
10 0.9937 0.9925 0.9950 0.9785 0.9697 0.9737
11 0.9984 0.9956 0.9978 0.9978 0.9790 0.9849
12 0.9995 0.9965 0.9932 0.9929 0.9825 0.9764
13 0.9996 0.9970 0.9968 0.9970 0.9885 0.9877
14 0.9993 0.9970 0.9951 0.9958 0.9542 0.9635
15 0.9963 0.9953 0.9956 0.9935 0.9866 0.9819

*MAC(i, j)= ])ˆˆ()[()ˆ( 2T2T2T
jijiji rMrrMrrMr , ir =analytical and jr̂ =

experimental.
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Table 4: MAC values for different load patterns

(using the modal flexibility, mG )

i for ),(MAC ii
Node

1 2 3 4 5 6
2 0.9944 0.9920 0.9913 0.9429 0.7541 0.3560
3 0.9982 0.9958 0.9887 0.9502 0.4777 0.0848
4 0.9993 0.9967 0.9678 0.9262 0.7802 0.3623
5 0.9994 0.9958 0.9472 0.8818 0.6782 0.2588
6 0.9989 0.9962 0.9909 0.9627 0.5722 0.1649
7 0.9952 0.9933 0.9779 0.9019 0.6498 0.2654
10 0.9938 0.9910 0.9827 0.9096 0.6753 0.2651
11 0.9984 0.9952 0.9925 0.9621 0.5631 0.1578
12 0.9995 0.9958 0.9569 0.8997 0.7208 0.2973
13 0.9996 0.9964 0.9630 0.9139 0.7431 0.3377
14 0.9992 0.9965 0.9895 0.9566 0.5213 0.1140
15 0.9962 0.9938 0.9847 0.9306 0.7229 0.3424

*MAC(i, j)= ])ˆˆ()[()ˆ( 2T2T2T
jijiji rMrrMrrMr , ir =analytical and jr̂ =

experimental.
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