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  A flow in d space dimensions is described by three quantities, a state vector u, a
flux tensor f, and a source vector h.  In general -

The principle of conservation states that the rate of change of the quantity of u in
any region Ω within the domain of the flow is given by

where n is the outer pointing normal vector to the boundary of Ω. More compactly
in vector notation this system can be written
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If the region Ω is in motion with velocity vector v on the boundary of Ω then the
conservation principle becomes:
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An alternate formulation of the conservation laws that is useful in analysis is the
distributional form of the equations.  This formulation requires that the equality
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hold for arbitrary test functions φi(x,t) that are infinitely differential with compact
support in the domain of the systems of equations.

We can also write this equation in a more compact vector form:
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Various generalizations and specializations of the conservation law equations are
important in applications.

Homogeneous flows: The flux and source functions do not depend explicitly on x
or t. (This is the typical case considered in this course.)

Anisotropic flows: Flows where the flux function f depends on the normal
direction n. Note that in such flows the conservation law must be defined by

formula 1.  An example of an anisotropic flow is elastic flow in a crystal.
Viscous and heat conducting flows: The flux function also depends on the gradient

of the solution.  Note that in such cases it is assumed that solution function is
sufficiently smooth.

The fluxes and sources may be functions of other variables that are solutions to
separate dynamical equations.

Most of the examples considered in this course will be isotropic, homogeneous,
inviscid (i.e. non-viscous and non-heat conducting) flows, so that the fluxes and

sources only depend on the state vector u.
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It is traditional and convenient to rewrite the integral form of  a conservation law
in differential form.  Suppose u is a smooth solution to the conservation law,

d
dt d dA dx u fn xh
Ω Ω

Ωdomains+
∂Ω

= ∀ .

Also assume that the flux and source vectors are smooth functions of their
arguments.  Then we can move the time derivative inside the integral and apply
the divergence theorem to the surface integral to obtain.

dx u f h  t +∇• − ∀
Ω

Ωdomains .

So that u satisfies the partial differential equation.
u f ht +∇ • =

For nonsmooth u, stating that u is a solution to this partial differential equation is
interpreted to mean u is a solution of the associated integral equation.
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All of the numerical discussions in this class will focus on the flow of a
compressible fluid,  which is a special case of a general continuum flow.  The state

of the flow at a given point (x,t) is defined by a mass density , a momentum
vector m = v (v is the fluid velocity vector), and a total energy density E. Usually

we write the total energy density in terms of the kinetic energy density and the
specific internal energy e,  E = (v2/2 + e). Here v2 = <v,v> is the square of the
fluid flow speed. We will show in the next few slides that the physical laws of
conservation of mass, momentum, and energy imply that such flows satisfy a

system of form (1), where:

Here σσσσ======(σij)=is the Cauchy stress tensor. The surface force per unit area on a
given surface element is given by σσσσn .  The vector g is the body force per unit

mass.
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A flow field is a time dependent vector field defined in some domain D in space
so that at a given time t and position x, a velocity vector v(x,t) is defined.  This
field need not be smooth (indeed it is in general not continuous),  but we will

assume sufficient regularity in the field so that all of the integrals considered in the
subsequent discussion are well defined. The flow is defined by the solution to the

set of ordinary differential equations:

If Ω=is a regular region in D,  we define the flow of Ω, Ω(t) defined for t > t0,, as
the set Ω(t) = {x(x0,t) | x0 ∈ Ω}.  Physically Ω(t) corresponds to the location of the
fluid “particles” at time t that resided in the set Ω=at time t0.  A volume that moves

with the flow is called a material volume. More generally we define a flow as a
function x = x(X, t), so that x(X, t) gives the position of particle X at time t. The

variable X is usually called the Lagrangian position of the fluid particle.

( , ) ( , ), (x , )0 0 0 0
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( 0) ( )

Let V*(t) be a moving volume with bounding surface S*(t) and outward unit
normal vector n.  Let b denote the velocity at a point on S*(t).  If χ(x,t) is a
integrable function on V*(t) the quantity of χ in V*(t)  and the rate of change of the
quantity of χ in V*(t)  are given by the two integrals:

V t V t
( , ) ( , ) .

*( ) *( )
and respectively

Reynold’s transport theorem states that the rate of change of the quantity of χ in
V*(t) can be computed by the formula:

V t V t S t

( , ) ( , ) ( ) ( , ) ( , ) ( , ).
*( ) *( ) *( )

0

0

0 0 0

0
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( 0) ( )

Conservation of mass states that the quantity of matter in a material volume does
not change,

t t( ) ( )
0

0

0

Ω Ω t( )Ω
or equivalently

Using Reynold’s transport theorem and letting Ω = Ω(t0), we have at time t = t0:

Ω ∂Ω
where n is the outer pointing

unit normal to which is just the first equation of the conservation laws for
continuum flows.
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Conservation of Momentum (or Newton’s second law) states that the time rate of
change of the quantity of momentum in a material volume is equal to the net body
forces plus the net surface forces that act on the volume.  It can be shown that the
force per unit area T acting on a surface element with unit normal n is T = σσσσn,
where s is Cauchy stress. If g is the body force per unit mass acting on the material
volume. Then momentum conservation implies that:

t t tΩ Ω( ) ( ) ( )
( , ) .

∂Ω

Applying Reynold’s transport theorem to the left hand side we obtain with
Ω = Ω(t0):

Ω Ω Ω
•

∂Ω
.

We note that both σσσσ and g may be functions of space, time, or other dynamical
variables such as density and temperature.
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Conservation of energy is a formulation of first law of thermodynamics,
dE = δW + δQ, i.e. the change in energy of a material volume is equal to the work
done on the volume by body and surface forces plus the change in heat of the
body. In integral terms this can be stated:

t t t t
( ) .

( ) ( ) ( ) ( )

1
2

2
∂Ω ∂ΩΩ Ω

As before using Reynold’s transport theorem with Ω = Ω(t0) we can write this
equation as:

Once again we have introduced a new unknown variable q, the heat flux.

( ) ( ) .1
2

2 1
2

2
∂Ω ∂ΩΩ Ω Ω
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The second law of thermodynamics states that the entropy of a closed system can
never decrease.  In contrast to the previous conservation laws,  which can be stated
in terms of equalities,  this law is expressed as an inequality:

t tΩ( ) ( )∂Ω
0

S is the specific entropy, and=
==

=ΞΞΞΞ is the entropy flux through the boundary of the
material region.  For a Newtonian fluid,  it can be shown that ΞΞΞΞ = q/T,  where T is
the temperature.  For the inviscid flows considered in much of this course, equality
will hold in the above equation with ΞΞΞΞ===== 0 (the flow is adiabatic).  An important
exception is for flows across shock waves,  where there is net entropy production.

(Second Law of Thermodynamics)
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The equations for a continuum flow consist of up to five conservation laws in up
to three space dimensions and time.  The dependent variables are the mass density

, the fluid velocity v,  the Cauchy stress tensor σσσσ, the body force g,  the specific
internal energy e, and the heat flux q. In addition to apply the entropy inequality
we have the specific entropy S,  and the entropy flux ΞΞΞΞ.  Since the Cauchy stress
tensor is symmetric, we have respectively:

N u m b e r  o f  S p a c e  V a r ia b le s N u m b e r  o f  C o n s e rv a tio n  L a w s N u m b e r  o f  D e p e n d e n t  V a r ia b le s
                    1                        3                       8
                    2                        4                     1 4
                    3                        5                     2 1

We see that the system in not closed in the sense that we have more unknowns
than equations.  In many applications closure is obtained by imposing constitutive
laws among the dependent variables and the space and time coordinates.  For
example in an inviscid gas flow,  the heat and entropy fluxes are zero,  the body
force is independent of the state variables (perhaps constant), and the Cauchy
stress is a scalar tensor σij = -Pδij, where δij = 1 for I = j, 0 otherwise. P is the
thermodynamic pressure and is a given function P = P( ,e).  This special case of
the continuum flow equations is called the Euler equations.

(closure of the systems)
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With this reduction we obtain the same number of equations as dependent
variables and the system is closed.  The relationship between pressure, density,
and energy is called the equation of state (more properly the incomplete equation
of state) of the material.  It characterizes the material.  By far the most common
equation of state is the perfect gas (polytropic, gamma law) equation of state,
where:

The constant γ is the ratio of the specific heats of the material γ = cP/cV, where by
definition:

P P

V V V

= change in heat per unit temperature at constant pressure

= change in heat per unit temperature at constant volume

(equations of state)
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The formulas for the specific heats use a version of the first law of
thermodynamics that identifies the change in heat with the differential TdS,
δQ = TdS,  which in turn is related to the change in internal energy by the formula
de = TdS - PdV, which is basically the statement that the change in energy of a
system is equal to the work done on the system by the pressure plus the heat
gained.  The variable V is called the specific volume and equals 1/ .
The relationship between density, pressure, and energy is called the incomplete
equation of state since it does not include any information about the temperature
of the system.  In ordinary gas dynamics this is all that is needed to solve the
systems of equations.  In more complicated systems (such as molecular mixing),
the temperature is an important variable.  The corresponding complete equation of
state for a perfect gas is:

e = cVT,    PV = nRT
Where cV is constant, n is the molecular weight of the material (moles/unit mass),

and R is a universal constant.  Both cV and n are material properties.

(incomplete equations of state)
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1. Consider the scalar advection equation in one space dimension, ut + (a u)x = 0, a constant.
For smooth u derive both corresponding conservation laws (integral and distributional), and
show that for general (i.e. measurable and locally integrable) u both the integral and
distributional form of the conservation law are equivalent.

2. Derive the incomplete perfect gas equation of state from the corresponding complete
formulation.  In particular what is cP and what is γ in terms of cV, n, and R?

3. Write down the differential form of the Euler equations.

4. Prove Reynold’s transport theorem for smooth χ:

Advanced Optional Exercise for the Mathematically Inclined:
Show that in general the integral and distributional form of the conservation laws are

equivalent.  Consider some of the following questions.  Under what circumstances are the
integrals that appear in the formulation defined,  and what sort of assumptions need to be

made regarding the dependence of the flux and sources on their arguments?

d
dt

d t d
dt

d t dA t
t t t t t t t

x x x x x x v nχ χ χ, , ( ) ,
a f b g b gΩ Ω= = ∂Ω

= + •
0

0
0

0

0

where v is the velocity of ∂Ω and n is the outer normal to ∂Ω.
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• P. Thompson, Compressible-Fluid Dynamics, McGraw-Hill 1972. (Main reference but out
of print.)

• R. Menikoff and B. Plohr, The Riemann problem for fluid flow of real materials,  Reviews
of Modern Physics, Vol. 61, No. 1, January 1989.

• R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,  Springer-Verlag
1948.

• L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press,1959.
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Consider the pure initial value problem for a homogeneous system of conservation
laws with no source terms in one space dimension:

a

b

0

Where as discussed previously we interpret solutions to this partial differential
equation in the weak sense:

The Riemann problem is defined as the initial value problem for this system with
two valued piecewise constant initial data.  More precisely we have initial data:

0
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The Riemann problem is a fundamental tool for studying the interaction between
waves.  It has played a central role both in the theoretical analysis of systems of
hyperbolic conservation laws and in the development and implementation of
practical numerical solutions of such systems.  Basically the Riemann problem
gives the micro-wave structure of the flow.  One can think of the propagation of
the flow as a set of small scale Riemann problems between adjacent regions,
followed by the interaction between the waves arising from these Riemann
problems.  This idea was formalized in the fundamental paper of Glimm,
“Solutions in the Large for Nonlinear Hyperbolic Systems of Equation”,  that
established the first existence theorem for solutions to the initial value problem for
nonlinear hyperbolic systems of equations,  as well as numerically by Godunov,
“A Finite Difference Method for the Numerical Computation and Discontinuous
Solutions of the Equations of Fluid Dynamics” , which forms the basis for many
advanced numerical methods.

Before proceeding further we need to review briefly the notion of hyperbolicity.
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Smooth solutions of a system of conservation laws are also solutions of a
corresponding quasi-linear partial differential equation.  Let A = (aij) be the Jacobi
matrix corresponding to the flux function f(u):

ij
i

j

( )

∂
∂

+ ∂
∂

=u f u
t x

( ) ,0Then smooth solutions to also satisfy the equation ∂
∂

+ ∂
∂

=u A u u
t x

( ) .0
This system is said to be hyperbolic if the matrix A has all real eigenvalues and a
complete set of eigenvectors:

1 2≤ ≤ ≤ = = =n i i i i i i i i ij, , ,

Where n is the number of equations in the system.  These eigenvectors are called
the characteristic speeds of the hyperbolic system.
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For gas dynamics we have the Euler equations:

∂
∂

+∇• =
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∂

+∇• ⊗ +∇ =

∂ +

∂
+∇• + + =

t
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v e
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2
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For smooth flow we can write this equation in quasi-linear form:
D
Dt
D
Dt

P

De
Dt

P

+ ∇• =

+ ∇ =

+ ∇• =

v

v

v

0

0

0
D
Dt t

= ∂
∂

+ •∇vWhere, is the material derivative of the flow.
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The pressure P is related to the density and energy by an incomplete equation of
state, P = P( ,e).  If we define the Grüneisen exponent Γ and the sound speed c by
the formulas:

Γ

Γ∇ Γ

= ∂
∂

= ∂
∂

+ ∂
∂

∇ = + − ∇

ρ ρ

P
e

c P P P
e

P e c P
e

, ,2
2

2

We can write the one dimensional Euler equations in quasi-linear form

∂
∂

+ − ∂
∂

=
t

u
e

c P
x

u
e

u

u

P
u

ρ

ρ

0

0

1 02 Γ Γ

Where u is the x component of the velocity vector.
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One can easily compute the eigenvalues and eigenvectors of this system.  We
have:

1 1 1

2

2 2

2 2 2 2 2 2

3 3 3

2

2 2

2
1
2 2

0 0

2
1
2 2

= − = − = − −
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The analysis of the characteristics for gas dynamics can be considerably simplified
by introducing the entropy S (the evaluation of which requires the complete
equation of state), and using pressure as a fundamental thermodynamic variable.
By the first law of thermodynamics we have TdS = dE+PdV,
and if we write  = (P,S), (recall V=1/ ). Then one can show that:

Γ = − ∂
∂

= ∂
∂

= ∂
∂

−
c
T S

c P
PP S S

2
2

1

,

DP
Dt

c

D
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2 0

0

0
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v ∂
∂
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u c
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2 0
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0 0

1 0
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In terms of pressure, velocity, and entropy,  the eigenvectors become:

1 1 1

2 2 2

3 3 3
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1
2

0

0
0
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0 0 1

1
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1
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An important property of gas dynamics and other nonlinear hyperbolic systems is
the existence of discontinuous solutions.  Indeed such discontinuities are
unavoidable and can arise spontaneously from smooth solution through the
phenomenon of shock breaking.  Such solutions must be interpreted in the weak
sense as described in the previous lecture.  A critical aspect of discontinuous
solutions is that the states on either side of a discontinuity are not arbitrary but
must be related by a system of algebraic equations known as the
Rankine-Hugoniot equations.  The next series of slides will discuss the derivation
of these equations and their applications to gas dynamics.

Consider a system of conservation laws,                       in a domain Ω. Suppose
that the flow in Ω=is smooth except across a smooth moving surface S(t). We
assume that S(t) divides Ω into two regular regions Ω1=and=Ω2 . Let φφφφ(x,t) be a
vector of  C∞ test functions with support in the interior of Ω.

u f ht +∇• =
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Applying the distributional form of the conservation law, we have:

dt d

dt d dt d

t
t

t t

t
tt

t t

t
tt

t t

x u f h

x u f h x u f h

• + •∇ + • =

• + •∇ + • + • + •∇ + • =

+

+ +

φφφφ φφφφ φφφφ

φφφφ φφφφ φφφφ φφφφ φφφφ φφφφ

Ω

∆

Ω

∆

Ω

∆

0

0
1 2

,

( ) ( )

Using the fact that u is smooth inside both Ω1(t) and Ω2(t), we can add the quantity
(ut+∇∇∇∇ ••••====f  - h) •••• φφφφ===== 0 inside the two integrals over these two regions separately to
obtain:

dt d dt dt
tt

t t

t
tt

t t

x u f x u f( ) ( ) ( ) ( )
( ) ( )

• +∇• + • +∇• =
+ +

φφφφ φφφφ φφφφ φφφφ
Ω

∆

Ω

∆

1 2

0
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Applying the divergence theorem to the space time regions swept out by Ωi(t), we
obtain:

S tt

t t

( )

+∆

Where n(x,t) is the spatial unit normal to S(t) and s is the speed of the moving
surface in the direction n, and [] denotes the jump in a quantity across the surface
S(t) in the direction n. Since the test function φφφφ  and  ∆t are arbitrary we have at
each point on the discontinuity surface the equations:
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Applying the Rankine Hugoniot equations to the gas dynamic equations,  we
derive the formulas:

ρ ρ

ρ ρ

0 0 1 1

0 0 1 1

0 0
2

0 0 0 1 1
2

1 1 1

1 0
1 0

0 12
0

s s m
m P m P
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m e e P P V V

− • = − • =
− = −

• − + − − • = • − + − − •

− − + − =

v n v n
v n v n

v n n v v n n v n n v v n n

,
,

,

.

or

There are two cases depending on whether the mass flux m is zero or nonzero:
m

m P P
V V

P P
m

s V m V m

e e P P V V

≠

= −
−

= +
−

= • + = • +

= + + −

0

2

2 1 0

0 1

1 0
1 0

0 0 1 1

1 0
1 0

0 1

,

,

,

,

,

v v n

v n v n

m
P P

s

=
=

= • = •

0

0 1

0 1

,
,

.v n v n

Waves with m ≠ 0 are shocks, waves with m = 0 contact discontinuities.
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For perfect gas the Hugoniot equations for shocks can be further simplified.  Here
we have c2 = P/ , and:

We see that the flow state behind the shock is completely determined by the flow
state ahead of the shock, the shock normal, and the pressure behind the shock.
This statement is still true for general equations of state,  but it may not be
possible to explicitly write down the solution as for a perfect gas.  More generally,
given the state ahead of a shock and the shock normal,  the flow behind the shock
is determined by one additional condition.  The variables commonly used include
the shock speed, the shock Mach number (ratio of the speed of the shock with
respect to a fluid at rest and the sound speed),  the pressure behind the shock, or
the density behind the shock.

m c P P

P P
P P
c

P P

2
0
2

0
2 1 0

2

2

1 0
1 0

2

2
1 0

1 0
0

1 0
2

2

1

1

1

= +
+

= +
+

= ±
+

−

ρ µ
µ

ρ ρ µ
µ

µ
µ

,

,

,v v n

s c P P

e e P P P P
P P

= • ± +
+

= +
+

= −
+

v n0 0
1 0

2

2

1 0 1 0

2
1 0

1 0
2

2

1

1

1
1

µ
µ

µ
µ

µ γ
γ

,

,



Los Alamos National Laboratory
Hydrodynamic Methods The Riemann Problem for Gas Dynamics 14LA-UR 99-3985

Homogeneous, isotropic conservation laws with no body forces,  and the Euler
equations for gas dynamics (with no gravity) in particular, satisfy the important
property of self-similarity,  the equations are invariant under the transformation
t→ t, x→ x, =>=0.   If  u(x,t) is a solution,  then so is u( x, t).  Since the initial
data for a Riemann problem is invariant under the transformation x→αx, we
conclude that if the solution to the Riemann problem is unique,  then it must
satisfy u(x,t) = u( x, t), i.e. u(x,t) = u(x/t) for t >=0.  If we let = x/t, assume the
solution is smooth, and insert this into the quasi-linear form of the partial
differential equation,  we obtain:

We see that  is an eigenvalue of A(u)=df/du, and du/d  is a corresponding
eigenvector.  Such solutions are called centered rarefaction waves or centered
simple waves.  Alternatively, if  u is not smooth, then it can consist of a jump
discontinuity connecting two constant regions,  and the values of the solution are
related by the Rankine-Hugoniot equations.
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Applying the simple wave equations to gas dynamics we obtain the solutions:

= ±

= ±

=

P
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,1 0

1 0
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1

=
=
=

,
,1 0

1 0

For the left hand case,  the density is found by solving the equation  = (P1,S0)
given by the equation of state relation between density, pressure, and entropy.  For
a perfect gas this can be solved to obtain:
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The shock wave curve through a given state (indexed by 0) is defined as the locus
of all states that can be connected to that state by a shock wave.  This curve
consists of two branches corresponding to a positive or negative mass flux across
the wave.  The side of the shock from which fluid particles travel into and through
the shock is called the ahead side of the shock.  If the given state corresponds to
the state ahead of a shock, and m is positive,  we say the wave is forward moving,
for m negative we call the wave backward moving.  Thermodynamics requires that
the entropy produced across the shock be nonnegative.  For most equations of
state this corresponds to an increase in pressure from the ahead to behind side of
the shock.  Thus only the branch of the wave curve corresponding to increasing
pressure is physical. A decrease in pressure across a wave corresponds to a
rarefaction wave.  The wave curve,  defined for all P is the concatenation of the
shock wave curves for P > P0 and the rarefaction curve for P < P0.  It can be
shown that this curve is twice continuously differentiable.   Of particular interest is
the component of the wave curve that relates the velocity behind the wave and the
pressure behind the wave.  The formula for this curve is given on the next slide.
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The function V(P,P0,V0) is found by solving the Hugoniot relation,
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and P = P(e,V) is the incomplete equation of state.  If we define the mass flux
across a general wave m, by the formula [P] = m[u],  we can write the wave curve
as:
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For a perfect gas Riemann wave curve can be computed explicitly.
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The solution of the Riemann problem for gas dynamics consistsof constant regions
separated by waves.  Moving from left to right,  these are a backward shock or
rarefaction wave,  a contact discontinuity,  and a forward moving shock or
rarefaction wave. The Riemann data on the left will be the ahead state for the left
moving wave, while the Riemann data on the right will be the ahead state for the
right moving wave.  The Rankine-Hugoniot conditions (which agree with the
simple wave conditions for a contact discontinuity) for the middle wave are the
pressure and velocity are continuous across this wave.  If we let um and Pm  denote
the common values of the pressure and velocity on either side of the contact,  and
let ml = m(P,Pl,Vl) and mr = m(P,Pr,Vr).  We have:

m l
m l

l m l l
r

m r

r m r r

m

l r
l

l

r

r

l r

m
l l r r l r

l r
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+
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The set of equations on the previous slide give the mid state pressure as the
solution of a nonlinear algebraic equation.  Once the mid state pressure is
determined, the mid state velocity is computed from the corresponding formula.
Finally using the mid state pressure, the left and right data states,  and the
Hugoniot or rarefaction equations, as appropriate, we evaluate the densities on
either side of the contact discontinuity, and the corresponding waves.  If a wave is
a shock,  its space-time position is a line from the origin with slope equal to the
shock speed.  If it is a rarefaction,  it corresponds to a fan the slope of each ray of
which is equal to u ± c (+ for a forward wave, − for a backward wave).  Thus the
entire structure of the solution to the Riemann problem is determined once the mid
state pressure is found.  One exceptional case occurs when the wave curves do not
intersect for positive pressure.  In this case the solution consists of two rarefaction
fans,  each of which expands into a vacuum.  In this case the mid state velocity is
undefined.



Los Alamos National Laboratory
Hydrodynamic Methods The Riemann Problem for Gas Dynamics 21LA-UR 99-3985

In conclusion we show that a graphical representation of the Riemann wave curves
is useful in understanding the structure of the solution to the Riemann problem.
Given the location of the right state,  the wave structure is determined by the
location of the left state with respect to the wave curve through the right state.

(Pr,ur)

Forward Shock Wave curveBackward Shock Wave curve

Forward Rarefaction Wave curve Backward Rarefaction Wave curve

Left Shock,
Right Shock

Left Rarefaction,
Right Shock

Left Rarefaction,
Right Rarefaction

Left Shock,
Right Rarefaction
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1. Derive the quasi-linear form of Euler’s equations from the conservation form.

2. Derive the Hugoniot relations for gas dynamics.

3. Verify by direct calculation that the Riemann wave curve for gas dynamics is C2.
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All numerical solutions to systems of partial differential equations are based on
the notion of the discretization of the solution.  For time dependent problems the
basic concept is to use time-marching to advance the solution from one time level
to the next,  moving from a discrete representation of the solution at one time to
another discrete representation of the solution at the next time.  Conservation laws
are uniquely suited for such a method since the divergence form of the equations
gives a natural relation between spatial averages of the solution at two time levels
and the space-time averages of the fluxes.  Suppose Ω(t),  tn  ≤  t  ≤ tn+1 = tn+=∆tn
forms a set of smoothly moving regions in space.  We define the average of the
state vector:

( )

( )

t

t

Ω

Ω
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If we define                  then integrating the moving region form of the
conservation law:

u un
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This equation is considerable simpler for a fixed domain, Ω(t) = Ω:

Here       is the average of flux over a space-time ray on ∂Ω=and       is the average
of h over the space time region swept out by Ω from tn to tn+1.

f
n+1

2 h
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The conservative difference equations of the previous slide form the basis of many
advanced numerical methods.  The basic operation is to construct approximations
for the integrals of the flux functions over the space-time boundaries of the region
over which the region is averaged,  together with an approximation of the integral
of the body sources over the space-time volume swept out by this region.  For
simplicity let us focus on the case of one space dimensional flows with no body
forces.  Then if we let Ω correspond to a mesh interval
the conservative difference equations become:

u u f fi
n
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i

n

i

nt
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Here     is the average of u over the ith interval, and        is the average of the flux
over the interval x =       , tn ≤ t ≤ tn+1.
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In order for a numerical method to be effective there must be some notion of
convergence of the discrete solution to the exact solution of the differential
equation in the limit of vanishing grid size.  Convergence is generally not obtained
in the pointwise sense (except where the flow is smooth) but is instead obtained in
some integral norm such as in L1 or L2 if the domain is compact (as is always the
case in real computations) on locally in the sense that convergence occurs in the
appropriate function space on every compact subset of the domain.  Since the
exact solution to the system of equations is generally unknown,  the exact error in
the numerical solution is also unknown. One measure of the appropriateness of a
numerical method that can often be computed is the order of accuracy of the
method.  This is defined as the residual value of the difference equation if an exact
solution of the corresponding partial differential equation is substituted into the
difference equation.  More precisely, we say that the order of accuracy of the
numerical method is  if:

Note here we assume that ∆x is of the same order of magnitude as ∆t.

u u
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A positive order of accuracy ensures that the finite difference method is consistent
with the corresponding partial differential equation in that, as the mesh is refined,
solutions to the partial differential equation solve (to the order of accuracy) the
difference equation.  To be useful in practice a numerical method needs to be at
least first order accurate.  Most modern shock capturing numerical methods are
second order accurate everywhere except near shocks or contact discontinuities.
Also the order of accuracy is generally computed using smooth solutions.  If
discontinuous solutions are consider as well,  the accuracy of the method must
also include some notion of locating the discontinuities in the approximately
correct location.  For example we might require that the integral of the difference
equation residual over any finite domain be proportional to the volume of the
domain times the appropriate power of ∆t.

This formula ensures that the jump discontinuities are located correctly to within
the accuracy of the method.
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In order for a difference method to be useful it is important that effects like
truncation errors (closely related to the order of accuracy of the method) and finite
arithmetic round off not dominate the numerical solution.  Ideally these errors
should stay bounded as the solution operator evolves.  More formally, we interpret
the finite difference method time stepping in terms of an evolution operator C(∆t)
so that the solution at each successive time is found by the operation un = C(∆t)un-1

=  ⋅⋅⋅  = C(∆t)nu0.  For simplicity let us assume that ∆t is fixed and C(∆t) is linear.
Richtmyer expresses the notion of  stability as the requirement that as ∆t → 0 no
component of u0 be amplified by the numerical procedure.  Therefore,  we say the
numerical method is stable, if for a given T there is some τ > 0, so that infinite set
of operators:

is uniformly bounded.  Note that stability is a property of the numerical method,
not the partial differential equation.

n∆
∆
∆

,
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One of the few general theorems on the convergence of finite difference methods
is due to Lax and states that for a consistent scheme (positive order of accuracy)
stability is a necessary and sufficient condition for convergence.  More precisely
we have:
Suppose that the initial value problem for the linear differential equation,

where A is a linear operator on a Banach space   and u0 is a given element of 
is well posed.  Then for a finite difference approximation that satisfies the
consistency condition, stability is the necessary and sufficient condition for
convergence.

For our purposes   is a function space such as L2 and A is a differential operator
on the function space.  See Richtmyer and Morton, “Difference methods for initial
value problem” for a proof of the Lax Equivalence Theorem.

d
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The notion of order of accuracy of a numerical method can be illustrated by
deriving the Lax-Wendroff method for the system of conservation laws,

0.

This method is also very useful in practice.  The basic idea is to expand u(x,t) in a
Taylor series to second order in time for fixed x, use the partial differential
equation to replace the time derivatives with spatial derivatives, and the use
central differences to approximate the resulting spatial derivative to second order.
The resulting finite difference equation is then by construction second order
accurate.  Let A = df/du be the Jacobi matrix for the flux function.  Then we can
expand u(x,t+∆t) as follows:
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If we let x = i∆x, t = n∆t,  we obtain the difference method:
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and we let                                      In practice the Lax-Wendroff method is
implemented as a two step method that is identical with the above formula for
linear fluxes (constant A), and is also second order in general.
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It can be shown (see Richtmyer and Morton) that for constant A the Lax-Wendroff
method is stable provided |λ|∆t/∆x < 1 for all eigenvalues of A.  For gas dynamics
this condition becomes (|u|+c) ∆t/∆x < 1 for all velocities u and sound speed c.

A Ai
n

i
n

i
nu u+ += +1 2 1 2/ / .



Los Alamos National Laboratory
Hydrodynamic Methods Finite Difference Methods for Gas Dynamics  11LA-UR 99-3985

One further modification to the Lax-Wendroff is needed before it can be used as
an effective finite difference method for gas dynamics.   In the presence of
discontinuities this method generates severe oscillations that can destroy the
integrity of the computation.  These oscillations can be damped by the addition of
artificial viscosity to the numerical method.   It is beyond the scope of this course
to discuss the analysis of artificial viscosity.  Listed below are two modifications
to the Lax-Wendroff fluxes that have proven to be useful in practice.

Linear artificial viscosity: We modify the Lax-Wendroff fluxes by adding a term
that mimics the diffusive term uxx added to the right hand side of the
conservation law.

i
n

i
n

i
n

i
n

+
+

+
+

− + −1 2
1 2

1 2
1 2

1 1/
/

/
/

Lax Wendroff

The artificial viscosity coefficient a might be taken of the form a = χs where χ is a
numerical parameter and s is the maximum wave speed at the point being updated.
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Lapidus artificial viscosity: For gas dynamics a more adaptive method of
artificial viscosity that increases the artificial viscosity in regions of large gradient
while reducing it in smooth regions was proposed by Lapidus (see Richtmyer and
Morton).  Let the coefficients        , k = 0, 1, 2. be chosen by the interpolation
formulas:
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Then the modified Lapidus artificial viscosity Lax-Wendroff method is:

Remark: For this method the stability condition is modified:
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Godunov’s method computes the numerical fluxes using the solution to a Riemann
problem. The value of the numerical flux is given by the formula:

i
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1 2

1 2
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/
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Where         is the solution evaluated along the time axis of the Riemann problem
with data ul = ui and ur = ui+1.  This method has the advantage of producing
smooth and stable shock profiles.  Its disadvantages are that it is only first order
accurate and is quite diffusive.  In practice the Godunov method is used as a
component in a higher order method in which the numerical method adapts
between a high order method for smooth flow regions and the Godunov method in
regions with large gradients in the flow variables.   Stability requires that the
solutions to the Riemann problems at the cell edges not interact during the time
step.  Thus the stability condition becomes:
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n
+
+
1 2
1 2
/
/

max , :shock speeds u c all Riemann problem solutions t
x

+ <∆
∆

1



Los Alamos National Laboratory
Hydrodynamic Methods Finite Difference Methods for Gas Dynamics  14LA-UR 99-3985

Most modern compressible hydrodynamics use some version of a higher order
extension of the Godunov method.  It is beyond the scope of this course to go into
these methods in detail.  These higher order Godunov methods are all outgrowths
of the original method of van Leer.  Some of the basic ideas in these higher order
extensions of Godunov’s method include:

•Reconstruction: Given a piecewise constant function construct a higher order
interpolant whose cell averages equal the piecewise constant values.
•Limiting: Modify the high order interpolant to eliminate or moderate overshoot
at cell edges.
•Riemann solvers: Construct approximate solutions to the Riemann problems
between states at the cell edges as determined from the interpolant.
•Method of Characteristics:  Use the smooth form of the partial differential
equations to compute high order updates of a spatially variable flow.  (The
method of characteristics will be discussed in the next lecture.
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All of the difference methods discussed in this lecture have extensions (often quite
complicated) to systems with more than one space dimension.  Current computer
technology makes high resolution computations possible for two space
dimensional flows on moderately priced computers.  Currently three dimensional
flows require expensive supercomputers for even moderate resolution.
One standard technique for constructing multiple space dimensional solvers from
one space dimensional solvers is operator splitting.  This method has proven to be
quite effective in gas dynamics.  The basic idea is to solve one dimensional
problems by freezing the flow in all directions except one, and then use the
solution from each successive one dimensional problem as the data for the next
sweep.  We can illustrate this more easily by example in two space dimensions.
Suppose we have the system:

∂
∂

+ ∂
∂

+ ∂
∂

=( ) ( ) 0

Consider the two one dimensional systems, where we treat on space variable as a
parameter:

∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

=, , ( ) , , , , ( ) , ,0 0
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If we treat y as a parameter in updating the x operator split equation and x as a
parameter in the y equation,  we obtain two one dimensional systems of equations.
Suppose that      is a discrete representation of the solution.  Let                denote
the row and column vectors of the solution respectively, and let Lx and Ly be
discrete update operators for the two respective operator split equations.   Then we
update the solution a follows.
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Omitting the spatial subscripts we see that an update from an even time step to the
next odd time step consists of an x sweep following by a y sweep,  while odd steps
are updated by a y sweep followed by an x sweep.
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y x
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n
x y
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The technique of alternating the order of the sweeps is called Strang splitting and
increases the order of accuracy of the 2D update from first to second order
assuming the one dimensional methods are at least second order accurate.
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1. Show that for the scalar advection equation ut + a ux = 0, a > 0, the Godunov method is
first order accurate for smooth solutions. (Hint: the general solution of this equation is
u(x,t) = f(x at) for an arbitrary function f(x).)

2. Show that the Lax-Wendroff method for the scalar advection equation corresponds to a
finite central difference expansion of the equation ut + a ux = a2/2 t uxx.  This illustrates
the presence of numerical viscosity in the Lax-Wendroff method.  One goal of artificial
viscosity is to cancel this viscous term.

3. Suppose that un(x) is periodic on the interval [- , ].  Define un+1(x) by the Lax-Wendroff
update of un(x) for the scalar advection equation:

    If ûn(k) are the Fourier coefficients of un(x) show that:

    The quantity g is called the amplification matrix (here 1x1) of the difference method.
Show that the stability condition a∆t/∆x < 1 is equivalent to the requirement that
g(a∆t/∆x, )  lies inside the unit circle except at   = 0.
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• R. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problem (2nd ed.),
Interscience Publishers, 1967

• R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1990.

• E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-
Verlag, 1997.

• E. Godlewski, P.-A. Raviart, Numerical Approximation of Systems of Hyperbolic
Conservation Laws, Springer-Verlag, 1996.

• See the references in the books of Toro, or Godlewski and Raviart for references to the
original papers of van Leer, Colella and Woodward, and Harten for more information on
higher order Godunov methods
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Flows with two or more materials are very important in applications and create a
number of difficulties for numerical simulation.  Examples of such flows include
Rayleigh-Taylor and Richtmyer-Meshkov instability in which one fluid is
accelerated into another by either a body force or shock wave respectively.  These
instabilities occur in such applications as inertial confinement fusion and
supernova explosions.  At an opposite end of the spectrum are diffusive type flows
such as the motion of a hot fluid in a cold fluid,  or the diffusion of a dye.  These
two extremes illustrate a general division of flow regimes,  non-diffusion regimes
where the interface between the two materials remains sharp,  and diffusive
regimes where the materials mix at the molecular level.  Of course in reality all
flows contain some mixture of the two regimes,  but in practice the choice of the
relevant length and time scales of interest dictate the appropriate flow regime.
Compressible flows are usually associated with time scales that are short relative
to the rate of molecular diffusion and so are often in the non-diffusive regime.
Indeed the applications such as inertial confinement fusion and supernova
explosions, the time scales are on the order of nanoseconds and are as much 6-9
orders of magnitude smaller than the time scale for significant molecular mixing.
In this course we will focus on the sharp interface flow regime, and will discuss
numerical methods that attempt to maintain relatively sharp material interfaces.
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Numerical methods for the solution of a multi-material flow are generally one of
several types,  although it is possible to develop algorithms that combine features
of any or all of these methods.

•Mixed cell methods in which the fractional volume and fractional mass of each
species is computed and the material is assumed to be well mixed at the cell
level. Such methods are extremely diffusive,  but when combined with adaptive
mesh refinement that keeps the size of the mixed cells small this method can be
quite effective. One important question that arises in mixed cell methods is how
to specify the thermodynamic properties of the mixed material.  If the mixing is
molecular one generally has that the multiple materials are in thermal and
mechanical equilibrium (equal temperature and pressure).  This provides a
method for computing an effective multi-material equation of state for the
mixture.  However for the applications considered in this course the mixing is
very far from molecular and the question of an appropriate mixed material
equation of state is quite open and indeed is problem dependent.
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•Volume of fluid and interface reconstruction methods.   Like the mixed cell
method, fractional volumes and masses of the individual species are computed.
However this information is used to reconstruct interfaces between the materials
so that they become effectively demixed at a subcell level.  These interfaces are
then used to compute the numerical fluxes at the cell boundaries to that mass for
a given species can only flow into and out of the boundary through regions
occupied by that material.  This method eliminates the need for mixed material
equations of state since the interfaces separate the materials into separate regions
inside of which each material is pure.  At the end of each time step the interfaces
are discarded and recomputed during the next time step  using only the fractional
volume and mass information.  Care is taken during the reconstruction so that
the interfaces created in each cell are as consistent as possible with those in the
next cell.  This method is much less diffusive than the mixed cell method but is
still much more diffusive than the real physical process.



Los Alamos National Laboratory
Hydrodynamic Methods Front Tracking in One Space Dimension 4LA-UR 99-3985

•Level set methods.   In this method the interface between separate materials is
modeled as the level set t = (x), and the numerical calculates seeks first to
compute the level set as a solution to a Hamilton-Jacobi equation and then to
update the physical flow variables using the computed interface.  A nice feature
of this method is that interface interactions are handled automatically.  A major
problem is that the level set function is not a true physical variable and as such
the interface interactions may be handled in an unphysical manner.  Depending
on the implementation, the equation of state may be misapplied to materials due
to the artificial location of the interface.  Also this method has difficulty in
treating triple points where three or more material meet at a point.  Another
problem is the topological restriction that the interface be the level set of a
global function.  This problem can be address by using a local level set approach
in which the level set function only applies to a local region.  Most of these
difficulties are being addressed in current implementations of level set methods
by applying front tracking type approaches to the algorithm.
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•Front Tracking.   The numerical method that comes closest to modeling the
physical behavior of a non-diffusive flow is front tracking.  In this method the
material interfaces become part of the numerical representation of the flow.
These fronts are propagated using the mathematically correct Rankine-Hugoniot
conditions at the front together with a method of characteristics (see the next
slide)  computation for coupling the front states to the flow adjacent to the front.
For the update of the non-front (cell centered) states, the fronts provide moving
space-time boundary conditions.  The problem of mixed material equations of
state does not occur since the fronts provide a sharp division between pure
material regions.  The physically correct balance conditions are maintained at
material fronts so that the pressure is continuous (in the absence of surface
tension) at the front,  but temperature is maintained independently in the
adjacent two materials.  (Recall that the Euler equations models adiabatic flow.)
Mathematically, front tracking eliminates numerical diffusion at the interfaces
since the flow variables are allowed to jump discontinuously across tracked
fronts.  The remainder of this lecture will discuss front tracking algorithms for
one dimensional flows.  The following lecture will discuss extensions of this
method to higher dimensional flows.
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For simplicity we consider a one space dimensional gas dynamical flow with a
single material discontinuity.  Let the two materials be labeled by the indices l and
r,  where l indicated the material to the left of the material boundary and r
indicates the material to the right.  The flow is modeled by the Euler equations in
which it is understood that at any position in space only one of the two materials is
present.  The two materials may have separate equations of state. Again for
simplicity let us assume both materials are perfect gases with gammas and specific
heats              , i = l,r that are possibly different for the two materials.   Suppose
the position of the material interface is given by xc(t).  The discrete representation
of the flow consists of a set of cell centers and mesh sizes, xi,  ∆xi i = 1,⁄,N,
where xi+ ∆xi/2 = xi+1− ∆xi+1/2, together with a density i, a momentum density mi
= iui, and a total energy density Ei = i(           ) associated with each cell.  Except
for the cell containing the tracked point xc(t) these values can be regarded as the
cell averages of the corresponding flow variable over the indicated cell.
Quantities derived from these primitive flow variables will also be indicated by
the appropriate index.  Associated with the tracked point xc(t) we have two sets of
flow variables, l, ml,, and El corresponding to the flow on the left of xc(t), and r,
mr,, and Er corresponding to the flow on the right of this point.

i V
icand

1
2

2u ei i+
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The states at the front can be interpreted as the limit of the flow as the
discontinuity front is approached from the appropriate side.  The state associated
with the cell center in the grid block containing the front is not the average of the
flow across that cell, since such an interpretation would involve smearing the flow
variables across the front,  rather it should be regarded as a quantity associated
with the side of the front on which the cell center lies.  For example this value
might be thought of as an approximation of the pointwise value of the flow
variables at the given position.  For simplicity we assume the mesh size ∆xi = ∆x is
constant, so that xi+1 = xi + ∆x.  The diagram below shows a schematic
representation of the density.

x1 x2 x3 x4 x5 x6 x7xc

r

l
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The time step propagation consists of advancing the flow states at each cell center,
computing the new position of the tracked front and updating the left and right
states at the tracked points.  As implemented in the front tracking code FronTier,
this consists of the following steps.

•Use Riemann problem solutions and method of characteristics computations to
compute the time updated position and states at the propagated fronts.

•Use finite differences to time advance the interior states using the old and new
front states and positions (i.e. the states and positions of the fronts at the
beginning and end of the time step) as interior boundary conditions for the cell
centered states.  The critical operation here is to avoid taking finite differences
across a tracked front,  so that all difference quantities are taken from the same
side of a discontinuity.
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The method of characteristics has now been mentioned at least twice without any
explanation.  Let is take a minute to review this important concept.  Recall that for
smooth flow the Euler equations can be written:
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The important feature of the characteristic equations is that all of the derivatives in
each equation appear in the same directional form.  More precisely we define the
characteristic curves through each point in our domain by the formulas:

d
dt
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These three curves are referred to as the forward, particle, and backward
characteristics through the given point.  From the characteristic form of the Euler
equations we see that the evolution of the state variables along the characteristics
are related by the formulas:
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The algorithm for propagating a contact discontinuity point (most commonly
corresponding to a material interface) uses what is called a three point wave speed
calculation.  The data for the propagation consists of the position of the contact
xc(t), the states on the left and right of wave, sl and sr, and two states sll and srr
obtained by sampling the solution a distance ∆x to the left and right of the contact
point.  Here by a “state” we mean the flow variables describing the flow at a given
location, so for example sl represents the density, velocity, and internal energy
(and any other derived flow variable) at the left side of the contact.   The off front
states sll and srr are obtained by sampling a reconstructed interpolant of the
solution.   One possible choice for such an interpolant is the piecewise linear curve
obtained by connecting the cell centered data and the front data with line
segments,  while allowing a jump in the variables across tracked fronts. The graph
on slide 7 shows such an interpolant for density.  Generally we only interpolate a
minimal set of flow variables (such as density, momentum density, and total
energy density or density, velocity, and specific internal energy) and compute the
other flow variables using their formulas in terms of the minimal set.

(Method of Characteristics Version)
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The chart below illustrates the choice of initial data.

(Method of Characteristics Version)
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The first step in the propagation algorithm is to solve a Riemann problem with
data sl and sr.  The mid state speed um from the solution is used as a predictor for
the updated contact position,  xp(t0+∆t) ≈ xc(t0) + um∆t.

xc(t0)

(xp(t0+∆t), t0+∆t)

(Method of Characteristics Version)
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Using the forward characteristic speed on the left side of the interface and the
backward characteristic speed on the right,  trace back a linear approximation to
the incoming characteristics at the propagated point from time t0+∆t back to time
t0,  obtaining positions xlf(t0) = xc(t0) - cml∆t, and xrb(t0) = xc(t0) + cmr∆t together
with interpolated state values slf and srb at these locations.

dx
dt

u cm ml= +
dx
dt

u cm mr= −
dx
dt

um=

(Method of Characteristics Version)
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Solve for the updated states on both sides of the contact using an implicit Euler
integration:
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Note that we use the separate equations of state on either side of the interface to
relate the pressures, densities, specific internal energies, and sound speeds on
either side of the interface.  Finally we use central differences in time to determine
the net interface speed and updated contact position.

v u u x t t x t v tm c cinterface interface= + + = ++1
2 0 0, .∆ ∆

(Method of Characteristics Version)
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The algorithm just described makes an implicit assumption that the main
discontinuity is at the tracked contact and that all other waves,  either incoming or
outgoing are relatively weak.  This assumption is used to validate the use of the
method of characteristics on either side of the interface, since this method is based
on the smooth flow Euler equations.  An alternative algorithm that replaces the
method of characteristics calculations with the solution of Riemann problems has
proven to be more useful in practice,  especially for flows with strong captured
waves.  This variation proceeds identically to the previous version up until the
point where the two states slf and srb have been found at the feet of the traced
backed characteristics  from the predicted new position of the contact.  Then
instead of applying the method of characteristics we solve a Riemann problem
with data slf and srb and use the mid state solutions from this Riemann problem to
replace the method of characteristic solutions found from the equations on the
previous slide.  The remainder of the algorithm proceeds as before.   Variations of
this algorithm may replace slf by sll and srb by srr to provide more upwinding for
the incoming waves.

(Riemann Problem Version)
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The final step in the time step update of the solution is to use finite differences to
advance the cell centered states.  For cells whose discrete domain of dependency
stencil (i.e. the set of states used in the finite difference formula to update the
solution at a given position) does not overlap the fronts,  this is done using
standard finite differences as described in the previous lecture.  At points whose
stencil overlaps the front we wish to use front information as local boundary
conditions for the finite difference method.  This can be done in a variety of
different ways,  but in practice a very simple method has proven adequate for
many problems.  We call this method extrapolation by constant state.  We simply
replace any state in the finite difference stencil that lies on a different side of the
point being updated (with respect to the propagated interface) by the state on the
interface nearest that point.   This of course introduces some error in the
computation near the front,  but this is compensated by the removal of the
differencing across the front and the more accurate computation of the front
position and states.   Several authors have proposed alternative methods that use
more complicated algorithms,  but the above method has proven to be surprisingly
successful in practice.



Los Alamos National Laboratory
Hydrodynamic Methods Front Tracking in One Space Dimension 18LA-UR 99-3985

1.Show that for a perfect gas, with e = cVT, PV=RT (V=1/ρ):

where Sref is some reference entropy. (Note only changes in entropy have physical
meaning for a perfect gas.)

2. Show that for a perfect gas,

3. For fixed P0 , define

    Show that the forward and backward characteristic equations can be written:
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Flows in two or more space dimensions are intrinsically more complicated than
one dimensional flows.  Primarily this is due to the greater degree of freedom of
motion in higher dimensional flows,  but there are important and related
mathematical reasons for the greater complexity as well.  As we saw in the
previous lecture the method of characteristics played an important role in the
design of the propagation algorithm for contact discontinuity motion.  This is by
no means the only application of this important theory.  The method of
characteristics also is central to the design of the higher order Godunov methods.
It is basically through these ideas that the higher order corrections are added to the
basic Godunov method.  Perhaps the key feature that makes the method of
characteristics useful in analysis and computation is that it reduces the
relationships between flow variables from partial differential equation relations to
ordinary differential equation relations along the (generally unknown)
characteristic curves.  Although the characteristics are unknown in the sense that
they can not be determined without knowledge of the solution,  they are generally
easy to approximate for a single time step,  and the characteristic equations for the
flow variables can be easily approximated by discrete equations that yield second
order accurate equations for the updated flow variables.
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In contrast characteristics in higher space dimensions correspond to space-time
hypersurfaces (e.g. moving curves in two space dimensions) and the flow
variables along the hypersurfaces are related by partial differential equation
relations.  For concreteness let us give the formal definition of a characteristic
surface for a multi-dimensional flow.  Suppose we have a system of quasi-linear
partial differential equations:

∂
∂

+
∂
∂

=i
ij
k j

k
i .

Then a characteristic surface is a space-time hypersurface that is locally of the
from φ(x,t) = 0,  where φ is a solution to the highly nonlinear partial differential
equation:
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If we let n = (nk) denote the spatial normal to the characteristic surface for fixed t,
and let  denote the instantaneous speed of the moving surface in the direction n
then:

k
k=

∂
∂
∇

= −

∂
∂
∇x x

, ,

and the characteristic equation becomes:

det ,ij k ij
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That is  is an eigenvector of the matrix:

( ) .= k ij
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In contrast to one space dimensional flows where characteristics are spawned by a
single point,  characteristics in multi-space dimensional flows are generated by
codimension two space-time surfaces,  most commonly codimension 1 surfaces at
a fixed time level (in 2D these are curves).  Given such a initial object we form the
characteristic surface through that object by solving for the bicharacteristic rays
through each point on the generating object.  We get one such ray for each
characteristic family of the partial differential equation.  Suppose k(u(x,t),ξξξξ) is
the kth eigenvector of the matrix:

k ij
k

Then the bicharacteristic ray through a point x0 on a surface with spatial normal n0
is given by the solution to the system of ordinary differential equations:
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For the Euler equations the characteristic speeds are:
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and the corresponding bicharacteristic rays:
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We can write a bicharacteristic form for the Euler equations:
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We see that these equations have a form similar to the one dimensional equations,
but that in each case the flow along a characteristic is driven by terms involving
derivatives orthogonal to the direction n.  It is this additional coupling between
directional derivatives that complicates the analysis of a multidimensional flow.
For more information on bicharacteristics and their role in solving partial
differential equations see Courant and Hilbert Volume II.
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The diagram on the right shows a
schematic picture of the representation of
the flow in the vicinity of a tracked
interface.  The representation consists of a
set of lattice points that are associated with
the flow states at the center of a spatial
grid.  For simplicity we assume this grid is
rectangular.  The tracked interface is
shown as a piecewise linear curve.  The
linear segments are called bonds.  The
flow near the front is described by two
states associated with the points on the
curve.  These states can be regarded as the
limit of the flow variables as the
discontinuity front is approached through a
given side of the interface.  Note that we
assume the curve is oriented.

Grid State
Tracked Points (left,right) States
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An important aspect of the front tracking method in two or more space dimensions
is the description of the geometry of the discontinuity fronts.  The following set of
definitions describe the most common set of objects used in describing the
collection of tracked objects.  Each definition corresponds to a data class in the
front tracking implementation used in FronTier.
•POINT:  Describes a geometric location in space.  When associated with a

tracked interface,  POINTs are extended by inheritance to a data class that
contains state data associated with the limiting values of the state data at either
side of the interface.  These states are referred to as the left and right states at the
POINT.

•BOND: BONDs are directed connectors between pairs of POINTs.  Each
BOND structure contains pointers to a start and end POINT as well as pointers
to a previous and next BOND.  This linked list allows BONDs to be connected
into piecewise linear curve segments.

•TRI: A TRI corresponds to a geometric triangle.  Each TRI contains pointers to
three POINTs that form the vertices of the triangle. A TRI contains pointers to
three adjacent TRIs called its neighbors so that TRIs can be linked together to
form piecewise linear surfaces. This structure is only used for three space
dimensional flows, but is included here for completeness.
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•CURVE: A CURVE is a piecewise linear curve.  Since  BONDs can be linked
together to from lists,  it suffices for a CURVE structure to contain pointers to
the first and last BOND on the CURVE.  The set of POINTs on the curve can
be accessed by looping through the BONDs on the curve,  starting at the first
and ending at the last.  The previous and last pointers of the first and last
BONDS of a CURVE respectively are null.

•NODE: Interaction points between CURVEs are called NODEs.   Each
CURVE is associated with two (possible the same) NODEs that mark the start
and end of that CURVE.  Each NODE has an associated POINT that gives its
position.  NODEs are the only allowed locations where two or more CURVEs
can meet.  NODEs contain lists of pointers to the CURVEs that meet at that
NODE.

• SURFACE: SURFACEs are three dimensional structures that correspond to a
piecewise linear surface.  They consist of a collection of connected TRIs and a
set of CURVEs that form the topological boundary of the SURFACE.
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The previous set of data structures are used to describe the geometric and
connecting  properties of the tracked objects.  In many cases the physical meaning
of a geometric object is more naturally associated with the topological properties
of the object,  such as whether it locally separates space.  The following set of data
structures are designed to describe the embedding properties of the tracked objects
in the relevant Euclidean space for the flow.  Within the dimensional context of a
flow each geometric object (point, curve, surface, etc.) has a pointer to a
corresponding (possible empty) topological object and vice versa.  So it is
common when the flow dimension is understood to speak casually as if the
geometric and topological object were the same.  Thus one may speak of a surface
in a three dimensional flow as being the same as a hypersurface.  But one must be
careful in the terminology since for a two dimensional flow a hypersurface
corresponds to a curve.
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•HYPERSURFACE: A HYPERSURFACE is associated with every co-
dimension one collective geometric object.  For one dimensional flows these are
POINTs,  for two dimensional flows CURVEs,  and for three dimensional
flows SURFACEs.  A HYPERSURFACE is generally regarded as a locally
space separating oriented manifold with boundary.  Each HYPERSURFACE
contains two integer labels for the two spatial regions that bound it.  It is
required that these labels be consistent so that HYPERSURFACEs  bounding
the same region have the same label on their appropriate sides. These structures
describe the main wave fronts in a flow.  Lower dimensional objects are
generally associated with interactions between waves.

•HYPERSURFACE ELEMENT : HYPERSURFACEs  are composed of
collections of HYPERSURFACE ELEMENTs.  Depending on the flow
dimension there are either empty, BONDs or TRIs for respectively one, two, or
three space dimensional flows.  Currently there are no topological properties
associated with HYPERSURFACE ELEMENTs,   this label just gives a
convenient way of accessing the geometric information associated with surface
element without having to reference the specific dimension of the flow.
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•HYPERSURFACE BOUNDARY: These are the boundary objects associated
with a HYPERSURFACE. In two dimensional flows these are NODEs,  while
for three dimensional flows they are CURVEs.  This object is undefined for a
one dimensional flow.

There are several other miscellaneous structures that are used in various special
cases.  Furthermore each of the above objects constitutes an inherited class which
means that the objects have associated operators for their allocation and
manipulation.  These objects may also be extended to incorporate new properties
by higher level libraries.
One further data structure is an INTERFACE  which is a collective object
containing pointers to all geometric and topological objects that constitute the set
of tracked features in the computation.
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Hypersurfaces correspond to wave fronts and are classified according to the
type of wave they model.  We generalize the notion of waves to include
boundaries,  both physical and computational.

•Boundary Hypersurfaces:
• SUBDOMAIN - A boundary hypersurface between parallel subdomains,  includes

periodic boundaries.
• REFLECTION - A artificial boundary indicating reflection boundary conditions.

These are implemented like a subdomain boundary except that the velocity data is
reflected.

• DIRICHLET - A boundary where a specific flow state is imposed.
• NEUMANN - A alternative form of a reflecting boundary that is suitable for

hypersurfaces not aligned with the computational grid.  Reflecting walls.
• PASSIVE - An inactive boundary.
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•Wave Front Hypersurfaces:
• CONTACT: A contact discontinuity,  slip surface,  or material interface.
• Forward Wave Family

• FORWARD SHOCK WAVE
• FORWARD SOUND WAVE LEADING EDGE - The leading edge of a forward

rarefaction wave.
• FORWARD SOUND WAVE TRAILING EDGE - The trailing  edge of a forward

rarefaction wave.
• Backward Wave Family

• BACKWARD SHOCK WAVE
• BACKWARD SOUND WAVE LEADING EDGE - The leading edge of a backward

rarefaction wave. _
• BACKWARD SOUND WAVE TRAILING EDGE - The trailing  edge of a backward

rarefaction wave.

When the dimension of a flow is understood we will often speak of the type of a
point, curve, or surface as being the type of the corresponding hypersurface.  Thus
we may say a curve is a CONTACT in a two dimensional flow.
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Hypersurface boundaries are associated with wave front interactions.  They
are also described by a type identifier.  As with hypersurfaces, if the flow
dimension is clear, we might speak of a node type in two dimensions as being
the type of the corresponding hypersurface boundary.

•Boundary Hypersurface Boundaries:
• PASSIVE -  A hypersurface boundary for a pair of PASSIVE hypersurfaces
• FIXED - A hypersurface boundary that is in a fixed position,  such a corner of the

computational domain.
• CLOSED - An artificial hypersurface boundary formed by a closed loop.
• NEUMANN - Intersection of a CONTACT with a NEUMANN boundary.
• DIRICHLET - Intersection of a wave front with a DIRICHLET BOUNDARY
• SUBDOMAIN - Intersection of a wave front with a SUBDOMAIN BOUNDARY
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•Wave interactions:
• REGULAR REFLECTION - Hypersurface boundary associated with the regular

reflection of a shock with a NEUMANN boundary.
• ATTACHED SHOCK - A shock wave attached to a wall corner.
• MACH - A Mach triple point.
• CROSS - A crossing of two shocks of different families.
• OVERTAKE - An overtake of one shock by another of the same family.
• REFRACTION - The refraction of a shock through a material interface.
• TRANSMISSION - A refraction with a subsonic state behind the incident shock.
• CONTACT-CONTACT - A triple point junction of three material interfaces.
• WAVE END - A breaking point of a shock,  the wave terminates at zero strength.
• TOTAL INTERNAL REFLECTION - A refraction with no transmitted wave.
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FronTier has been developed using an objected oriented approach so that
manipulations and inspection of interface properties is done through a set of
operators.  It is beyond the scope of this course to go into detail,  but some of the
more important operations are listed below.

•Interface manipulation
• create
• copy
• delete
• add point
• delete point
• redistribute points
• join/merge
• split/divide
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•Interface inspection
• coordinates of a point
• states at a point
• compute normal at a point on a hypersurface
• get neighboring object (such as from one bond to the next)
• find the topological component of a location

•Interface propagation
• Propagate (time advance) a point on a hypersurface
• Propagate a wave interaction (for example a tracked shock wave refracting through

a material interface
•Solution evaluation

• evaluate the solution at an arbitrary location by use of an interpolant that preserves
the discontinuous nature of the solution across a tracked interface.
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The figure on the right shows the
geometry for the normal point
propagation operator.  The normal at the
give point is computed by forming the
secant vector between the two adjacent
points and rotating by 90 degrees. The
solution function is evaluated to obtain
two states located at a distance of ∆n on
either side of the front.  Using these states
together with the states on the front,  the
1D propagate operator the normal
direction is used to compute the new point
position and a pair of normally propagated
states.

We will complete this lecture with a description of the two dimensional point
propagate operator that advances the location and states of a point on a tracked
front.  This operation uses operator splitting by dividing the propagation step into
two phases,  a normal propagate and and tangential propagate.
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Operator splitting requires that after the propagation in the direction normal to the
interface is accomplished a second update in the tangential direction must be
performed.  The figure below shows the geometry for this update.  The update is
done in two steps, one on either side of the interface.  Starting at the point to be
updated we move along the tangent line in
increments of ∆T, and obtain left and right
states along this line by projection and
interpolation along the interface. Note that
we are assuming all points on the
interface have already been propagated by
the normal update operator.  For
simplicity the diagram shows a three point
stencil.  The resulting states are then
passed to a one dimensional finite
difference solver that returns a pair of
updated states.  The position of the
interface points are not changed by the
tangential update operator.
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1. Show that if a bicharacteristic ray intersects a characteristic surface of the same family,
then that ray lies entirely inside the characteristic surface.

2. A shock wave is said to belong to the kth characteristic family and to be stable in the sense
of Lax if the shock speed satisfies the inequality:

   Show that for a perfect gas, forward shocks are stable in the sense of Lax if the pressure
increases across the shock from right to left.

k
r

k
l
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Before proceeding with a discussion of examples of interface interaction
algorithms,  we need to discuss some basic utilities a bit more in detail since these
are basic tools used in implementing the interaction resolution methods.  The basic
operations are:
•Component lookup: given a position in space, identify the connected

component formed by the tracked fronts that contains that position.
•Nearest interface point: given a position in space, find the nearest interface

element to that point.  This information includes the hypersurface element (point
for 1D, bond for 2D,  tri for 3D),  the side on which the position lies with respect
to the element,  and the coordinates of the projection of that point onto the
hypersurface element.  If the orthogonal projection does not lie on the element,
this projection is the nearest point on the element to the given position.

• Intersections check:  tests all surface elements for non-trivial intersections. The
intersections operation returns a possibly empty list of all intersections found.
This test is performed every time step to check for wave interactions.

• Interface redistribution:  as the interface expands and contracts in different
locations,  the distributions of the sizes (and shapes in 3D) of the hypersurface
elements can become distorted.  Redistribution regenerates the interface
hypersurface elements into a more even distribution of sizes.
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• Solution function: given a position and a component find an interpolated state
value.  If the given component does not match the component of the position,
then that position is projected onto the nearest point with the correct component
and interpolation is performed at the projected location.  Optionally this function
can specify a hypersurface,  in which case the position is projected onto the
hypersurface prior to interpolation.  In this case the given component must
belong to the hypersurface or else an error condition is flagged.

• Interpolation functions:  Encapsulated functions to perform linear or bilinear
interpolation on sets of state values.  Input consists of the states to be
interpolated together with the interpolation weights.

•Equation of state encapsulation:  computes thermodynamic functions of a
state. Such functions include pressure, specific internal energy, and temperature.
This class hides specific information about the equation of state from most areas
of the code.

• Interface surgery utilities:  Functions to add/delete points from interface
elements.  Functions to split or join interface objects along specific objects (for
example split a curve into two curves at an interior point thus creating a new
node,  or join two curves at a common node).  Functions to trim sections from
interface objects such as cutting off bond sections from the end of a curve.
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•Point propagate: Normal propagation and tangential propagation operators for
points on hypersurfaces.

•Node propagation encapsulation:  wrappers for physics dependent node
propagation routines.

•Encapsulated finite difference solvers:  this encapsulation allows the
implementation of multiple solver options in the code.

• I/O and diagnostic utilities:  print vector and scalar fields,  restart dumps, and
perform data analysis.

• Initialization and restart: Set up the Cauchy data for a simulation.
•Parallel Communication utilities:

• Send and receive arrays of states data
• Send and receive interface structures,  include reconstruction of addresses
• Clip interface to a rectangular region.  This operation is used to send a copy of an

interface in a buffer zone near a parallel boundary to a neighboring processor
• Merge two interfaces along a common boundary.  Used to merge the

communicated interface into the main interface on a processor.
• General parallel support provided by the Message Passing Interface Package.
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This a partial list of some of the more important utilities used in FronTier.  We
will not go into a detailed discussion of most of these operations,  but it is
important to understand a few of the basic operations,  in particular the
computation of components,  nearest interface points,  and intersections, since
these operations are central to methods used to propagate points and resolve
wave interactions.
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A valid interface is by definition one that is non-self intersecting except at nodes
(or in three space dimensions hypersurface boundaries, i.e. curves).
This fact means that a valid interface
divides the computational domain into a
set of connected components and that the
component value at a given location can
be computed by projecting that point onto
the nearest interface and using as the
component value an integer label
associated with the corresponding curves.
More precisely each hypersurface has two
associated component labels,  one for each
side.  The consistency condition requires
that hypersurfaces bounding a common
region have the same component label on
their sides that bound that region.  Any
inconsistency in the component labels is a sign that the interface is tangled.  The
figure shows a schematic of the mapping between interface component labels and
the component assignment to a region.
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The operations of computing the component of a position,  finding the nearest
interface point,  and determining intersections all have a common feature.  They
each involve looping over all interface hypersurface elements and performing an
algebraic computation.  Indeed the basic operation of finding a component
essentially computes the nearest interface point and uses the component on the
appropriate side from the hypersurface nearest the point to specify the component.
Intersections on the other hand must loop through all pairs of hypersurface
elements and compute the intersection,  if it exists, of the two elements. In all
three cases the algebraic operations are nontrivial and put a large load on the
computation.   Fortunately the basic operations in each case are also essentially
local in the sense that if the two elements (point and hypersurface element or pair
of hypersurface elements) are spatially distant from one another,  then it is not
necessary to actually compute the corresponding quantity (distance or
intersection).  This means we can considerable speed up the evaluation of a given
operation by precomputing a hashed list of the interface elements associated with
a geometric decomposition of the computational domain.  In practice this
decomposition is based on a rectangular lattice called the topological grid.
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The topological grid has a mesh size that is independent of the computational
mesh used as the spatial discretization of the conservation system.  Furthermore
this grid is always required to be square. This grid is used as a hashing bin for the
interface elements.  In practice we usually use a grid size for the topological grid
that is about three to six times that of the computational grid.  Associated with the
topological grid are lists of interface elements that lie close to each topological
gird cell.  For example in two space dimensions,  associated with each cell(i,j) of
the topological grid are integers
                N(i,j) = number of bonds close to cell(i,j)
               M (i,j) = number of separate components close to cell(i,j)
               bond(i,j,k), k = 1,..,N(i,j)
               curve(i,j,k), k = 1,..,N(i,j)
               comp(i,j,k), k = 1,..,M(i,j)
that gives the addresses of the N(i,j) bonds that lie close to that block, the address
of the curve that contains each bond, and a list of the components associated with
that cell.  The notion of close can be taken to mean intersects for practical
purposes.  If no bonds lies in the vicinity of a given cell,  then the corresponding
list of bonds and curves for that cell is empty. In addition we have an array,
compon(i,j), that contains either the unique component number of that cell or the
identifier ONFRONT.
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The topology lists are formed by looping over all hypersurface elements on the
tracked interface and for each element computing the blocks that intersect the
element.  This in turn is done by decomposing the element into pieces that are
sufficiently small so that their endpoints lie in adjacent topological cells.  The
component numbers for the topological mesh cells are set by continuation.  Once
the component number of one cell is determined (say by projection onto a
hypersurface element in an adjoining cell) this component number is assigned to
all adjacent cells recursively in all directions until an ONFRONT cell is reached.

Utilization of Topology Lists
The topology lists are used in the obvious ways.  To find the nearest interface
point to a location,  identify the grid element containing that location.  If that cell
is ONFRONT then we need only check elements in that and the immediately
adjacent cells for the nearest element (it is here that the requirement that the
topological grid be square is imposed).   If the cell is not ONFRONT we resort to
looping over all hypersurface elements on the interface.  Fortunately this is a rare
case since in practice we only require the nearest interface points for locations that
are close to the interface. For intersections we only need to check for intersections
between elements with a common cell.
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The intersections operator returns a list of the interface crossings.  In two space
dimensions each crossing structure contains the addresses of a pair of crossing
bonds,  the curves containing the crossing bonds,  and a point marking the position
of the intersection.  Cross structures are maintained as a doubly linked list,  which
aids in the processing of the intersection list as described in the lecture on
resolving tracked wave interactions.  In three space dimensional flows the cross
structure contains the assembled information describing the intersection of two
surfaces.  This consists of a curve like structure (called a c_curve)  whose “bonds”
correspond to the intersections of triangle elements.  The data structure that
describes a linear segment of a c_curve is called a c_bond and contains pointers to
a pair of intersecting triangles,  the surfaces containing the triangles,  and the
geometric information describing the intersection segment.   This information will
be used in the interface surgery functions that slice a pair of surfaces along their
intersection forming a set of new surfaces that only intersect along the newly
formed curve.  This information is then passed along to other functions that
determine which of the new surfaces are physical and should be retained and
which should be removed from the computation.
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The two diagrams show examples of two and three dimensional crossings.  Note
that in two space dimensions crosses are discrete and thus it is necessary to
process the cross list to identify corresponding crosses.  Any formation of
interface crossing indicates a wave interaction that must be resolved.
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Front tracking can be described as a semi-Lagrangian numerical method for the
interface points.  The points are propagated using the dynamics of the flow field in
neighborhood of the points,  and the hypersurface elements that join the points
will stretch and contract as the points converge and diverge from each other.
Eventually this can lead to a very high variance in the size and shape of the
interface  elements.  Such a distribution will also lead to the formation of
numerical instabilities in the interface.  To avoid this problem the tracked interface
is periodically re-interpolated to form new elements that have a more uniform
distribution in the size and shape of the hypersurface elements.  In two space
dimensions this is done by moving from a physical node along a curve, inserting
new points at a constant distance with respect to the arclength along the curve and
removing the intervening points.  The algorithm in three dimensions is more
complicated.  It requires examining the triangles on the interface according to their
size and aspect ratio.  Large triangles are subdivided into small ones,  and small
triangles are combined with adjacent triangles.  Poor aspect ratio triangles can be
treated in a variety of ways  including deletion by merging two adjacent points and
diagonal flipping between two adjacent triangles.  A recent algorithm by X. L. Li
uses a combination of this technique and an interface reconstruction technique
based on level set ideas to provide a robust 3D algorithm that also automatically
resolves 3D tangles.
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Split Triangle

Flip Diagonals

Merge Edge Delete Small Triangle
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The need for interface redistribution is a necessary evil in the front tracking
method and must be treated with care.  Redistribution introduces an artificial
surface force that has a stabilizing effect similar to surface tension.  It is important
that this operation be applied with the minimum frequency necessary to damp
numerical oscillation but not to over suppress the physical growth of
perturbations on the interface.  It also has different affects for tracked shock wave
verses contact discontinuities.  In the case of shocks,  which are generally fast
moving waves that are asymptotically plane wave stable, a large amount of
redistribution is generally desirable since it reinforces the natural tendency for
shocks to approach a plane wave steady state.  On the other hand contacts are
unstable with respect to perturbations and a much lower frequency of
redistribution is desired to avoid over damping the physical growth of
perturbations.  In practice we have found that for two dimensional flows a
redistribution frequency of every four time steps for shocks and every twenty time
steps for contacts are reasonable compromise values.  However the true
frequencies are problem dependent and are specified by the user.
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As we have already seen, an important operation in the interface propagation
algorithm is the evaluation of flow states at positions located at specific distances
off the front in the direction normal to the front.  This operation is supported by
the hyperbolic solution function.  The input for this operation is a spatial position
and a component number for the region in which the evaluation should take place.
If the component of the given position does not agree with the requested
component,  then that position will be projected onto the nearest position in the
desired component.
In two space dimensions we construct a triangulation of the computational domain
using the centers of the computational cells and the positions of the tracked points
as vertices.  This is a constrained triangulation with the requirement that no
triangle cross the interface, or in other words,  no triangles have vertices with
different components.   The solution function looks up the triangle that contains
the given location and uses linear interpolation on the state data associated with
the triangles vertices to evaluate the flow at the given location.  In practice we
only triangulate a region near the front.  If the rectangle formed by four adjacent
computational cell centers contains no interface point,  we use bilinear
interpolation on this region instead of linear interpolation.
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In three space dimensions we do not construct a global interpolation grid due to
cost and complexity of constructing a full 3d tetrahedrazation which would be the
generalization of the 2D triangulation.  Instead we first locate the rectangle formed
by eight adjacent cell centers (a cell on what is referred to as the dual lattice to the
computational grid) and using only those vertices inside this dual lattice cell
whose component number agrees with the input component number we find the
four closest vertices whose convex hull contains the given location,  and then use
linear interpolation on the states at these four vertices.  If no such set of points is
found then we obtain the state information by projection onto the nearest tracked
hypersurface element with the correct component.
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FronTier uses a distributed memory model for its parallel implementation and
will work on any machine that supports the Message Passing Interface (MPI)
standard.  Parallelism is achieved through a fixed grid domain decomposition.
This method,  which is commonly used for hyperbolic problems,  decomposes the
computational domain into a set of disjoint rectangular subdomains that are
assigned to separate processors.  Adjoined to the boundary of each subdomain is a
buffer zone of width four or more computational grid blocks.  The buffer zone is
sufficiently wide so that every cell in the subdomain has it domain of dependence
within the union of the subdomain and its buffer zone.  This allows an explicit
numerical method to make a full time step without communicating with its
neighboring processors.  At the end of the time step the buffer zone information is
discarded and replace by communicated data from the neighbor.  The main extra
step in front tracking is the need to clip the interface to the subdomain,
communicate the interface information from the edges of the subdomain to its
neighbor, and then then reassemble the interface.   This method has the advantage
that it minimizes parallel communication,  which is a dominate cost in runs with
large numbers of processors.
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Consider the inviscid Burger’s equation:

Write a one dimensional front tracking code to solve this problem.  Use the Lax-Wendroff
method for the interior solver.  Develop a version of the method of characteristics suitable to
use to track a discontinuity for this equation.  Compare the results you obtain using front
tracking with the results of a straightforward captured shock for the initial value problem:

Note that the exact solution to this problem consists of a shock moving with speed one half.
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• J. W. Grove, The Interaction of Shock Waves with Fluid Interfaces, Adv. Appl. Math. 10,
pp. 201-227, 1989.

• J. Glimm and O. McBryan, A Computational Model for Interfaces, Adv. Appl. Math., 6,
pp. 422--435, 1985.

• The Front Tracking Home Page, http://www.ams.sunysb.edu/~shock/FTdoc/FTmain.html
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One major simplifying feature of one dimensional flows is that for many purposes
wave interactions can be interpreted as local binary interactions between nearly
constant flow regions.  This is to say the local structure of a flow is characterized
by Riemann problems and their solutions.  This was one of the key properties
exploited by Glimm in his proof of the convergence of the random choice method.
The situation in higher space dimensions is considerably more complicated.
Waves can exhibit complex behaviors in both space and time.  A simple example
is the steady state refraction of a shock wave through a material interface.  In one
dimension this is easily described by a Riemann problem and yields a solution that
consists of a transmitted shock and a reflection shock or rarefaction wave.
Momentum is transferred from the shock to the material interface,  which causes
the velocity of the interface to change after the refraction.  In contrast the two
dimensional refraction of a plane shock with a planar material interface exhibits a
variety of behaviors depending upon the orientation of the two interfaces with
respect to each other.  This can range from simple one dimensional behavior if the
fronts are parallel,  through a series of steady state configurations if the angle of
interaction is small,  to extremely complex unsteady interactions for other
configurations.
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The straightforward generalization of the Riemann problem to higher dimensional
flows exploits the scale invariance of the equations in the absence of source terms.
More precisely the Riemann problem is defined as an initial value problem with
scale invariant initial data,  that is data that is constant on rays centered at the
origin.  Then exactly as in the one dimensional case we can show that if the
solution to:

∂
∂

+∇• = = = ∀ >u f u u x u x u x u x
t

0 0 00 0 0, , , , ,where

is unique, then the solution satisfies:

u x w x w, ,t t= = ξξξξ
and that w is a solution to the conservation law:

∇ • − ⊗ + =ξξξξ ξξξξf w w wd 0,

where d is the spatial dimension of the flow.  It is immediately obvious that in one
space dimension,  this reduction reduces to the solution of a Riemann problem,
and that the above equation is just the formalized statement of this Riemann
problem.  In more that one space dimension the resulting equation is a
conservation law itself and will exhibit a complex behavior.
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For the Euler equations the self-similar flow equations can be simplified by
introducing the self-similar velocity w = u − x/t = u − ξξξξ.  It is left as an exercise to
show that the conservative scale invariant form of the Euler equations is:

∇ • + =

∇ • ⊗ +∇ + + =

∇ • • + + • + + • = = +

ξξξξ

ξξξξ ξξξξ

ξξξξ

0

1 0

01
2

1
2 , .

A major difficulty in analyzing 2 or 3 dimensional flows is the complex behavior
of scale invariant solutions.  This complex behavior makes it unlikely that a
generalization of the random choice method to higher dimensional flows is
possible.  Furthermore in many situations self-similar flows are unstable with
respect to non-scale invariant perturbations.  A classic example is Kelvin-
Helmholtz instability in which a planar shear wave is unstable with respect to
perturbations in the wave amplitude.  This fact has profound implications for
numerical solutions since the discretization will generally impose such a
perturbation with length scales given by the grid. Nevertheless,  scale invariant
solutions are extremely useful in understanding the structure of complex flows.
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The complexity of solutions to the scale invariant equations in higher space
dimensions greatly reduces their utility in the interpretation of flow behavior.
What we tend to see in such flows are sets of coherent  features that retain their
shapes for significant time intervals and move with recognizable velocities.  This
suggests the notion of an elementary wave,  which is a solution to the conservation
system that is both scale invariant and steady state in the sense that there is some
velocity v (unknown a priori) so that under the Galilean transformation y = x - vt,
the flow becomes steady.  For a scale invariant function u(x,t) = w(x/t), this means
that for some velocity v, w(ξξξξ) = g(ξξξξ====−−−−====v) and=

==

=g(ηηηη) is homogeneous of degree 0,
g( ηηηη) = g(ηηηη), ∀ =>=0.  The effect is to further reduce the differential system for
the solution to that of solving a conservation law on the unit sphere Sd-1. We will
not pursue this further in generality,  but will now specialize to the case of the
Euler equations.  A key property of the Euler equations is Galilean invariance.
Thus we see that all elementary wave solutions of the Euler equation are Galilean
transformations of scale invariant solutions to the steady state Euler equations. For
simplicity we restrict the discussion to two dimensional flows.
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In two space dimensions the steady state Euler equations are:
u v

u P uv

uv v P

u v h u u v h v

x y

x y

x y

x y

+ =

+ + =

+ + =

+ + + + + =

0

0

0

0

2

2

2 2 2 21
2

1
2

.

If we write u = qcos( ), v = qsin( ), x = rcos( ), y = rsin( ), we can rewrite the
system as:

r q q

r q rP q P q

r q q P q
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If a discontinuous wave front makes the angle  with respect to a flow,  then we
can show that the Hugoniot conditions for the wave are:

0 0 0 1 1 1

0 0 0 1 1 1

0 0 1 1

0
2

0 1
2

1
1
2

1
2

q q m
mq P mq P
mq mq

m q h m q h

sin sin
sin sin
cos cos

.

= =
+ = +
=

+ = +

If m = 0 we have a contact discontinuity where the pressure and normal
component of velocity are continuous across the wave.  If m ≠ 0 we introduce the
turning angle  through the wave so that β1 = β0 - , and we get the relations:

tan cot

, .

=
−

+ = + − = + −

∆
∆

P
q P

q h q h h h V V P P

0 0
2 0

0
2
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2
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The variable m is the mass flux across the front as described previously.  If the
shock is stable in the sense of Lax,  and 0 denotes thermodynamically ahead state
of the shock, then 0c0 < m < 1c1 so that:

M m
c

M m
c0 0

0 0
1 1

1 1

1 1sin , sin ,= > = <and

where Mi = qi/ci is the shock Mach number.  It follows that Lax stability requires
that the flow ahead of the shock be supersonic,  while the flow behind the shock
may be either supersonic or subsonic.  Note that as the shock approaches a normal
shock,  the Mach number behind the shock must eventually be less than one.
For a perfect gas we can write the turning angle explicitly in terms of the flow
states:

tan = ±
−

+ − −
+ +

− = − − +
+

∆
∆

∆
∆

∆

P P
M P P
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P
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For self-similar shocks the
Hugoniot conditions derived on
the previous slides suffice to
describe the flow state about  the
shock.  The relation between the
pressure and turning angle is
particularly useful.  This function
is called a shock polar.  For a fixed
ahead state it gives the flow angle
of the streamline behind the shock
as a function of the pressure jump
across the shock.  The plot to the
right shows a representative plot of
a shock polar for a perfect gas
equation of state.  The following
observations are important
properties of the shock polar.
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•The shock polar forms a bounded loop with the maximum pressure behind the
shock corresponding to a normal shock advancing into the ahead state region.

•The shock polar is divided into two symmetric branches depending on whether
the flow through the shock is turned in the counterclockwise (forward or positive
branch) or clockwise (backward or negative branch).

•Each branch is divided into two sub-branches according to whether the flow
behind the shock is supersonic (supersonic shock) or subsonic (transsonic
shock). Recall that the ahead state is always supersonic.

•The division points where the flow changes from supersonic to transonic are
called the sonic points.  A sonic transition occurs only once for a perfect gas
equation of state.

•The shock polars possess local extrema in the turning angle.  Again these occur
at a single pressure for a perfect gas equation of state.

• For a perfect gas equation of state,  the flow at the maximum turning angle is
always transsonic,  but this occurs at a pressure that is often close to the sonic
point pressure.
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In order to complete the discussion of steady-state self-similar flows we need to
examine possible smooth solutions to the self-similar flow equations.  Returning
to the polar version of the Euler equations in two space dimensions,  we can write
this system in smooth flow as:
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It is easy to check that the two differential operators in the above system of
equations correspond to derivatives in the direction of the flow and the direction
orthogonal to the flow:
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You can show that this steady flow system written in the form on the previous
slide is hyperbolic if and only if the flow is supersonic q > c. In this case we can
write the equations in a simplified characteristic form by introducing the Mach
angle A defined by sin(A) = c/q.  In this case the system can be written:

cos
sin

tan cos
sin
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The differential operators in the first two equations are just the derivatives in the
directions that make an angle A with the flow direction.
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Suppose now that we have a scale invariant flow, i.e. the flow variables are
independent of r.  Then we obtain the system:

We see immediately that the entropy and the quantity q2/2+h are constant in a self-
similar flow region.  If  and P are not constant,  them we can divide the first two
equations to obtain the relation: c2/q2 = sin2ϕ.  This shows both that the flow in
self-similar region must be supersonic,  and that in such a region,  the flow angle

, the direction angle , and the Mach angle A are related by the formula:
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Since a non-constant self similar flow must be supersonic we can rewrite the
equations in characteristic form:

∂
∂

= ± ∂
∂

cot .A
q

P
2

If we eliminate  we get a formula analogous to that obtained for the relation
between flow velocity and pressure in a one dimensional rarefaction wave:

− = ±
+
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0 21
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A
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dP
P

P
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For a perfect gas equation of state we can compute the integral on the right to
obtain:
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Finally given a single point in a self-similar flow region we can solve for the flow
in the entire region using the formulas:
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By solving this system in terms of the position angle φ we obtain the formula for
the flow in a fan region emanating from the origin.  Such a wave is called a
Prandtl-Meyer wave.  These waves play the same role in the solution of a
supersonic steady state Riemann problem (to be discussed next) as one
dimensional rarefaction waves.  Just as in one dimensional flow they can be joined
with the shock polars to produce a twice continuously differentiable wave curve
that describes the full set of states that can be connected to a given state by either a
steady state shock or a Prandtl-Meyer wave.
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The plot on the right show the full
wave curve combining both the shock
and rarefaction portions.
Intersections of these wave curves
will be used to compute the solutions
to wave interactions,  shock
refractions in particular.
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Consider a shock wave incident on an interface between two different materials as
indicated in the figure below.  This figure shows a Mach 10 shock in air incident
on a material interface with sulfur-
hexaflouride.  The shock is refracted by
the material interface into reflected and
transmitted shocks.  The material
interface is also deflected by the shock
wave.  The black arrows at the shock
fronts show the direction of propagation
of the shocks,  while the colored arrows
show the flow velocity relative to the
point of refraction.  The flow state
behind the incident shock together with
the unshocked flow in the SF6 serve as
initial data for a supersonic steady state
Riemann problem,  the solution of
which gives the reflected and
transmitted shock data.
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The shock polar diagram for the refraction shown on the previous slide is given
below.  Using the state on the opposite side of the material interface from the
incident shock and the state behind the
incident shock as Riemann problem
data,  the downstream flow states are
completely determined by the
intersection (provided it exists) of the
two corresponding shock polars.
Actually this diagram indicates that the
solution lies above the mechanical
equilibrium point (where all three shock
polars would intersect) so that we
would expect this wave configuration to
be unstable with respect to a
sufficiently large perturbation and the
single point refraction would bifurcate
into a more complex configuration.
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As we have just seen,  one type of elementary wave is given by the refraction of a
shock through a material interface.  Basically all elementary waves in gas
dynamics can be divided into two types,  so called supersonic elementary waves
that corresponding to a binary interaction between two wave fronts, either shock
on shock or shock on material interface,  or transonic elementary waves that
correspond to a dynamic splitting of a wave.  The best know example of the latter
type is regular Mach reflection in which a shock incident on a wall must bifurcate
into a pair of shocks and a contact discontinuity so that the flow near the shock
can satisfy the wall boundary condition that the flow must be parallel to the wall.
It should be emphasized that elementary waves are only the building blocks out of
which more complex configurations are composed.   Furthermore exact
elementary waves will generally only occur as asymptotic flow states near a point
of interaction.  Also the occurrence of  subsonic flow regions near an interaction
can lead to a loss of local self-similarity,  and the flow becomes fully
multidimensional.  Nevertheless an understanding of such waves is extremely
useful in interpreting flow phenomena and are also useful in numerical algorithms
for tracking the interaction of wave fronts.



Los Alamos National Laboratory
Hydrodynamic Methods Wave Interactions in Two Space Dimensions 19LA-UR 99-3985

1. Derive the conservation form of the scale invariant Euler equations.

2.  Show that for a perfect gas,  the steady state Riemann function for a Prandtl-Meyer wave
is:

3.  Show that for a given ahead state and a perfect gas equation of state the sonic point
pressure is unique.
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Front tracking provides a method of achieving enhanced resolution of selected
strong waves.  It eliminates numerical diffusion and provides a mechanism for
applying wave propagation algorithms in coordinate systems that are naturally
aligned with the fronts,  and has the ability to apply special physics to the fronts.
One of the prices for this ability is the need to detect, diagnose, and resolve
interactions between tracked fronts.  This lecture will discuss some of the
structural aspects of the front tracking method as implemented in the FronTier for
the resolution of wave interactions.  The figures on the next few slides illustrates
the type of complex wave bifurcations that are handled by FronTier.
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Rayleigh-Taylor Instability
Richtmyer-Meshkov Instability

(reflected shock case)
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Supernova Explosion Supersonic Missile Above Water
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The way FronTier handles wave interactions depends on the nature of the waves
involved in the interaction.  We define as a vector wave,  any wave belonging to a
characteristic family with a nontrivial light cone.  For gas dynamics such waves
are shock fronts and acoustic waves.  The latter most often are the tracked edges
of rarefaction regions.  A scalar wave is a wave belonging to a characteristic
family with a degenerate light cone.  Such waves are also said to be linearly
degenerate,  and in gas dynamics are slip lines, contact discontinuities,  material
interfaces, or in general a combination of all three.   Each scalar wave moves with
the local fluid velocity.   In addition we distinguish interactions between those that
produce a change in the tracked front topology and those that do not.   The latter
case corresponds to the pointwise interaction of wave fronts and is implemented in
terms of the node propagation algorithm for the node that represents the point of
interaction.   This class is subdivided into individual cases depending on whether
the wave interaction at the node is due to two shocks crossing,  one shock
overtaking another,  a shock refracting through a material interface,  a triple point
junction of contact discontinuities,  or a Mach triple point.  We will discuss the
shock refraction node propagation algorithm.  The other nodes are similar except
for the contact triple point,  which has a complex structure.  The waves that
change the interface topology are due to collisions of separate wave fronts,  and
are handled by special code that identifies the wave structure and reconstructs a
new interface topology to reflect the resolution of the wave interaction.
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The figure on the right shows the separate
steps in the propagation algorithm for a
regular shock refraction node.  Figure (a)
shows the configuration at the start of the
time step.  The first step is to propagate each
wave front separately,  ignoring the
interaction at the node.  For this purpose the
node is treated as six separate interior points,
one for each curve entering the node.  The
point propagation algorithm, using one sided
information at the node, determines separate
states and positions for hypothetical points
that lay in the interior of each curve and
resided at the node position.  This step leads
to the configuration in (b) in which the wave
fronts have become logically detached from
each other.
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Once we have propagated the individual
wave fronts at the node separately leading to
the configuration in (b),  we use the fact that
a regular refraction node is locally a
supersonic elementary wave  where
information flows from the upstream side
into the downstream region.  We identify the
upstream incident shock and material
interface through the use of integer labels
attached to the curves at the node indicating
whether that curve is an incident shock,  a
reflected shock or rarefaction edge,  a
transmitted shock,  an upstream contact,  or a
downstream contact.  Once the two upstream
curves are identified we compute the
intersection between their propagated
sections and use the displacement between
this point and the old node position to
approximate the node velocity.
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The node velocity gives the velocity
transformation between the unsteady frame
of the computation and the local steady
frame of the node.  We determine the
upstream states at the new node by linear
interpolation along the upstream propagated
segments.  This data when transformed into
the steady from of the node is used as data
for a steady state Riemann problem as
described in the previous lecture.  The
solution from this Riemann problem gives
the angles of the reflected and transmitted
waves,  the angle of the deflected contact,
and the state values at the node on either side
of these waves.  We next trim off the
sections of the upstream waves behind their
point of intersection and install wave
fragments corresponding to the scattered
wave information as given by the Riemann
problem solution.
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The lengths of the scattered wave segments
is determined by the velocity of a sound
wave in each section.  This sets an upper
bound on the distance that a wave can
propagate out from the node in a single time
step.  The result is a configuration like that
shown in figure (c).  Finally the inserted
sections are joined with their counterparts
behind the node and the propagation is
complete.
Note that this algorithm uses a local steady
state approximation,  but is repeated each
time step with new data.  This allows
upstream effects such as changing geometry
of the interacting waves to be propagated
downstream.  The effect is a fully dynamic
algorithm for the propagation of the node.
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The existence of a regular refraction node depends upon the existence of a solution
to the supersonic steady state Riemann problem corresponding to the local state of
the flow around the node.  In the event that this Riemann problem has no solution,
the flow state at the node can not stay self-similar and the node breaks up into a
complex configuration.  The two figures below show just two of the possible
irregular configurations that can be produced.
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Wave interactions that change the topology of the interface are divided into two
broad classes,  interactions between nodes, i.e. interactions that occur when two or
more nodes with a common curve collide,  and tangles,  where the discrete motion
of two curves leads to the production of intersection points in the interior of the
curves.  Tangles are further classified by whether they are scalar-scalar, scalar-
vector,  or vector-vector interactions,  according to whether two contacts become
tangled,  a contact tangles with a shock front,  or two shocks become tangled. Both
the node-node and curve-curve interactions use similar theory for their resolution,
they primarily differ in how they are detected.  In both cases the procedure follows
the same basic pattern:
•Detect that an interaction has occurred
•Apply a sorting routine to identify the type of interaction based on the number
and types of the waves involved.
•Use an interaction specific algorithm to compute the scattered waves from the
interaction and install a representation of the solution into the tracked data
structures.
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One method that can be used to treat an interaction is to turn off tracking of the
involved waves and use shock capturing to resolve the interaction.  This
necessarily results in the loss of resolution in the solution since the waves will
spread out over regions that are on the order of three to five mesh blocks wide.
However this provides a robust alternative for situations where the algorithm for a
specific interaction is not implemented or the geometry of the waves is too
complex for practical tracking.   There is one situation where we do not allow
tracking to be turned off.  This is for interfaces across which there is a change in
the material equation of state.  In the current implementation FronTier assumes
that no microscopic mixing occurs between separate fluid species, and each region
of pure material is surrounded by a tracked material interface.  This means that in
any attempt to resolve an interaction by turning off tracking,  we are free to
remove any vector (shock) waves,  but not to remove material interfaces.  This has
proven to be adequate for most purposes.  We are currently developing a coupling
of the tracking method with multi-material models of the flow field that will allow
us to replace a tracked material interface by a diffusion layer,  at the cost of
spreading the mixing zone five to seven mesh blocks or more.
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The figure below shows an example of a node-node interaction that occurs in the
simulation of Richtmyer-Meshkov instability.  A shock is refracting through a
material interface producing a pair of regular refraction nodes.  In this case the
scattered wave pattern at the nodes consist of a transmitted shock and a reflected
Prandtl-Meyer wave.  Near the time when the shock reaches the opposite end of
the material interface,  the velocities of the two nodes are directed towards each
other,  and are of sufficient magnitude to that in a single time step the nodes
propagate past each other.
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This interaction is detected during the node propagation phase for the two nodes.
The propagated segments of the upstream curves do not intersect as shown in the
middle picture below.  This failure signals a wave interaction.   By examining the
incoming waves we determine that they correspond to a pair of regular refraction
nodes and that the interaction consists of a collision of the two nodes followed by
a scattering of the interacting waves.   The model for the resolution of this
interaction is to connect the sets of reflected and transmitted waves,  and to
reconnect the material interface into a single curve. The actual physical interaction
would produce additional waves directed towards the material interface.  These
waves are captured on the interior grid.
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The figure on the left shows the sort of captured waves that can be produced by
the refraction node interaction. In this case the node-node interaction has occurred
across the periodic boundaries at the top
and bottom of the computational domain.
This interaction produces a shock front
that propagates towards the middle of the
computational domain. Where this wave
overtakes the reflected shock we would
have an overtake node if the
configuration were tracked.  Since the
only the leading edges of the reflected
and transmitted shocks are tracked,  this
overtake node is not an explicit tracked
feature,  but is instead a captured wave.
This mixing of tracked and captured
features is an important aspect of the
front tracking method.
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The simulation shown on the previous slide came from a FronTier simulation of
Richtmyer-Meshkov instability.  This is a fluid interface instability caused by the
acceleration of a material interface by a shock wave.  The initialization of such a
simulation consists of the installation of a shock at a positive distance from the
material interface.  During the first few time steps the two waves are separate and
do not interact.  At some point the shock reaches the material interface,  becomes
tangled with it, and leads to a scalar-vector untangle problem. The figure below
shows a schematic representation of the resolution of the untangle.
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The first step in resolving the scalar-vector
interaction is to identify the pair of interacting
crosses.  Recall that in two space dimensions the
intersections function returns a list of discrete
interface crossing.  A pair of crosses that
correspond to a wave interaction (called
companions) must be formed by the same two
waves.  Once we have identified an intersection
we sort through the set of crosses on the same
two curves and take as the potential companion
the cross that is closest.  In practice this has
proven to be sufficient to determine the
companion.  In cases of ambiguities the time step
will be repeated with a smaller ∆t  so that pairs of
separate interactions do not become confused.  It
is also required that the distance between the
companions be on the order of spatial grid
spacing.  If the companions are too far apart the
time step is repeated with a smaller ∆t.
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0 0 sin =

The next set in the resolution of the scalar-
vector tangle is to estimate the velocities of the
new nodes,  transform the upstream states to the
steady frames of the nodes,  and perform the
shock polar analysis to determined the scattered
wave configuration.  Since these are new nodes
we can not compute their velocities as in the
node propagate algorithm.  Instead we use the
relation between the incoming flow states and
the incident angle:

where q0 is the incoming flow speed in the
frame of the node, m is the mass flux across the
incident shock, and  is the incident angle. This
data is all available from the upstream geometry
and flow states.  The direction of the node
velocity is taken to be tangent to the contact.
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The shock polar analysis provides the angles
that the scattered waves make with respect to the
incoming waves together with the states at the
node.  We install curve fragments corresponding
to each of the scattered waves at each of two
nodes.  Note that unless the interaction is totally
symmetric with respect to the two nodes the
node velocities and incoming states at each node
will be different and thus the scattered wave
pattern will not be identical at the two nodes.
However we assume that the time step is
sufficiently small so that the scattered patterns
are similar.  In particular both waves must
produce the same reflected wave type (either
both shocks or both Prandtl-Meyer waves).
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The final step in the algorithm is to connect the
new curve segments and interpolate intermediate
states in the middle of the sections.  There are
two cases depending on whether the new
segments intersect or not.  In the former case a
point is inserted at the intersection point and the
curves are clipped to this point.  In the latter
case the two endpoints are joined.  The states at
the intermediate points are interpolated from the
states at the nodes.  The resulting configuration
is initially rather coarse,  but the scattering is
done on a length scale of about one spatial mesh
block.  After a few time steps the configuration
is smoothed out by the point and node
propagation algorithm and yields a resolved
wave pattern that is generally quite smooth and
well behaved.
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Show that to first order the turning angle  across a shock  is related to the incident angle 
by the formula:

where ∆u is the change in the normal component of velocity, 0 is the density ahead of the
shock and m is the mass flux across the shock.

= +0
2∆u

m
O
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The scalar-vector wave interaction described in the previous lesson is a good
example of how the front tracking method allows the inclusion of analytic theory
in the computational method.  However by far the most important class of waves
that require tracking are contacts and material interfaces,  and it is their
interactions that must be dealt with if we are going to provide a viable
computational tool for numerical simulations.   In a strict mathematical sense one
might say that contacts never truly interact in an inviscid flow.  As long as the
flow map remains continuous separate regions of the flow never break and remain
connected.  Separate contacts can come arbitrarily close and wind around each
other is very complicated ways.   Numerically however we have a finite length
scale and at some point a topological change in the interface will occur.  More
importantly,  all physical flows are viscous at some level and fluids will eventually
mix at a molecular level once the interfaces become sufficiently entrained.  From
the modeling point of view we seek an algorithm that preserves the inviscid
behavior of the flow while modeling the break off of droplets once a fluid filament
becomes sufficiently thin. The finite resolution of the computation provides a
natural means of implementing this feature through the resolution of interface
tangles.  Simply remove the sections of interfaces that have crossed during the
time step.
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The figure below illustrates the type of interaction produced by scalar waves.
This simulation shows the later time behavior of a Rayleigh-Taylor unstable
interface.  Initially the interface consisted of a randomly perturbed contact
separating two connected regions.  At later time we see the formation of
islands of one material embedded in the other.  This was the result of the
pinch off of thin filaments that originally connected the islands to the main
body of that fluid.  Physically,  forces due to surface tension and viscosity
would produce such a behavior.  Here we model the process by a simple
topological cutoff.
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The algorithm for the resolution of scalar wave tangles is based on the
identification of regions to be removed by deleting the curves that bound them.
We define a local region around a cross point to be physical if one or both of the
two bounding curves is to be retained,  unphysical if both bounding curves are to
be removed.  For example,  in the pinch off case the local configuration looks like:
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•Detect and resolve all vector-vector and vector-scalar tangles.
•Eliminate degenerate cases by searching for extremely close crosses (within say

0.01 ∆x of each other) and then deleting a point on one of the crossing bonds to
remove the tangle.  Recompute the cross list if necessary.

• Split the crossing curves at the cross points.  This replaces the cross points with
nodes connecting four curve sections. It is at this point that the states are
determined at the new points created by the crossings.  These states are obtained
by linear interpolation along the crossing bonds.

•Remove any redundant closed nodes from the split curves. A closed node has no
physical meaning other than as a point.  It is simply an entry point into the
linked list representation of a closed curve.

•Create a node list containing the following data:
• The node m formed by the crossing point.
• Curves nc[i], i=0,…3 for the four curves connecting the new node m.
• Nodes nn[i], i=0,…3 that are the opposite node on the curve nc[i] from the node m.

(Note: it is quite possible nc[i] = m for some i.)
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• Perform a first pass loop over all of the new nodes in the node list.  During this
pass we identify physical regions by the criteria (all arithmetic is mod 4):
• If nn[i] ≠ nn[i+1] then region i is physical.
• If a region forms a closed loop with node m,  then label the two neighboring regions

as physical, i.e. if nn[i] = m and nc[i] = nc[i+1], then regions i−1 and i+1 are
physical.

•Loop over node list and delete curves by the criteria:
• If three out of the four regions about a node have been identified as physical,  delete

the curves bounding the single unphysical region.
• If less than four curves remain at a node,  then remove that node from the

processing list (it was resolved based on the deletion of curves from a neighbor).
• Continuing looping over the node list until no nodes fitting one of the two above

conditions remain.
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The processing of the remaining tangles will require more topological and
geometric information about the tangles. Most often these tangles are associated
with closed curve tangles. Loop over the remaining tangles in the following way
until all are resolved.

•Remove any nodes that contain only two curves.
•Compute the area of each of the remaining unidentified regions.
• For a cross point with exactly two regions identified as physical:

• Delete the smaller area unidentified region if its area is very small with respect to
the other unidentified region.

• If one of the unidentified regions has the property that both bounding curves
terminate at the same node (i.e. nn[i] = nn[i+1] = n) and n is not in the processing
list,  and the components are consistent at n,  then label this region as physical and
delete the curves bounding the other unphysical region at m.

• If the component numbers in an unidentified loop are inconsistent then delete that
loop.

• Determine the component number exterior to the tangle.  Delete the unidentified
sector with this component number.  This occurs in the split case.

• Remove the loop with minimum area.
• If tangles remain repeat.
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The final step in the scalar untangle algorithm is to loop through the new nodes at
the now untangled positions.  Each such node will have have a single incoming
and a single outgoing curve.  Recursively we process this node list as follows.
• If one of the two curves at the node has a node other than the new node,  join the

two curves at the new node, replacing the node by a simple point.
• If the incoming and outgoing curves at the new node are the same curve, i.e.

there is a closed loop at the node,  then declared that node to be a closed node
and remove it from the processing list

•Continue from the beginning of the list until all nodes are either eliminated by
joining the curves or are declared closed.
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•The scalar untangle algorithm proceeds recursively through the node list.  Once
a region is identified  as unphysical and to be deleted,  this deletes sections at
other nodes,  thus resolving them as well.

• In the event this algorithm is unable to resolve all tangles,  the time step is
repeated with a smaller ∆t.  Most often problems that occur are due to multiple
wave crossing (for example one contact crosses through two others).  Reducing
the time step resolves this tertiary interaction into separate binary interactions
spread over a couple of time steps.

•The current algorithm does not try to conserve the mass of the deleted sections.
This would clearly be a desirable upgrade of the algorithm.  In the current
algorithm time step control is used to ensure that the loops removed have area
that are small relative to a grid block size.  This helps keep the mass loss within
the order of accuracy of the method,  in this case first order at the front.

• In practice this algorithm is remarkably successful in two space dimensions.  It
has allowed us to compute flow patterns that become extremely broken up, and
mass loss has been kept to a reasonable level.
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The generalization of the scalar untangle algorithm to three space dimensional
flow proceeds along similar lines as the two dimensional scalar untangle.
Intersecting surfaces are split along crossing curves,  and the local topology is
examined to select the surface sections to be removed.  This method is used in
conjunction with an alternative algorithm developed and implemented by X. L. Li
that, at the expense of some loss of information on the surface, gives a robust
method for both redistributing the interface and untangling the interface
simultaneously.  This new algorithm is based on ideas taken from the level set
method of Sethian and Osher and is currently limited to flows with only two
materials, although it should be possible to generalize it to more complicated
regimes.  The basic idea is to replace the surface information by a labeling of cell
centers by their component numbers, and the interface grid crossings.  This is
accomplished as illustrated in the next series of slides.  For simplicity the example
is shown in two space dimensions.  The procedure for three space dimensions is
identical except for the last step where the grid crossings are rejoined into surface
segments.  We will discuss that procedure presently.
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This figure shows a pair of tangled interfaces.  The black circles show the
interface points, and the grid is the dual lattice obtained by joining the
computational grid cell centers.
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The first step in the algorithm is to compute the crossings of the interfaces with the
dual lattice cell edges.  We mark each crossing with the change of component
direction.
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We now loop through the lattice points identifying places that have not been
crossed by an interface during the time step.  At such points we have reliable
component information from the last
time step.  Marking the components at
such points we then remove all
interface elements leaving only the
lattices points and the grid crossings.
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Using a depth first transversal from each lattice point where the component is
known,  we identify the components of the remaining points on the lattice.
Then moving from the lattice points
to the grid crossings we identify
those crossings that are inconsistent,
i.e. the component changes in the
reverse direction from adjoining
lattice points.  We also schedule for
removal two consistent crosses that
do not produce a net component
change across the cell edge.
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After removal of the inconsistent or redundant grid crossing we have a skeleton
upon which we can rebuild the interface.
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The Scalar Untangle Algorithm, Three dimensional Flows
The interface is rebuilt by adding surface elements in each dual lattice cell, and
then connecting these elements into curves or surfaces. In two space dimensions
This just means joining a pair of
crossing points by a bond.  The
algorithm in three space dimensions
requires identifying an appropriate
surface fragment to join the crossing
points.  Fortunately it turns out that
only thirteen basic cases need to be
considered.
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The untangled interface formed by the grid based untangle is shown on the right.
The left figure shows the result of interface based untangle.  Both methods give
similar results.  The grid based method has considerably smoothed the interface
and has produced a somewhat poorer point distribution in places.  However the
algorithm is very robust and does not require a detailed examination of the
interface topology.
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• At most two components intersect a cell.
• Each cell edge has at most one interface crossing.
• The cell corners and edges that lie on the same side of a rebuilt interface

segment form a connected set.

The surface rebuild algorithm is based on the following assumptions.

Under these assumptions it can be shown that there are a total of thirteen
geometrically distinct cases in the sense that under the operations of rotation,
reflection,  or interchange of component number any of the total of 256
possible colorings of the vertices of a cube can be brought to either the empty
case of all vertices the same color,  or into one of the thirteen cases shown on
the next slide.
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Show that with respect to the equivalence relation of rotations, reflections,
component inversion,  and sliding of an interface edge crossing along an edge, the
thirteen cases shown on the previous slides form a complete list of interface
reconstructs subject to the requirements that:

• At most two components intersect a cell.
• Each cell edge has at most one interface crossing.
• The cell corners and edges that lie on the same side of a rebuilt interface

segment form a connected set.
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Rayleigh-Taylor instability is generated when a heavy fluid sits above a
lighter fluid in a gravitational field.  The flow behavior is described in terms
of bubbles of light fluid rising into the heavier medium and spikes of heavy
fluid dropping into the lighter. More generally a material interface is said to
be Rayleigh-Taylor unstable whenever the fluid acceleration has an opposite
direction to the density gradient.   Rayleigh-Taylor instability occurs in a
variety of applications ranging from thermal down drafts caused by the
suspension of a cold body of air above a warm region,  to instability in
inertial confinement laser fusion.  The classical study of Rayleigh-Taylor
instability was for incompressible flows,  but much recent work has been
devoted to understanding the more complex compressible regime.   A major
component of this research is devoted to understanding the behavior and
growth of the mixing region between the two fluids.   Various models have
been proposed to predict the rate of growth of the mixing region,  and direct
numerical simulation plays an important role both in validating the models as
well as providing a computational laboratory to gain insight and
understanding of the flow.
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A Kelvin-Hemholtz like shear flow is developed in the wakes of the bubble
and spike generating a vortex around the side of both the bubbles and the
spikes. The computation is performed in a 40×40×240 regular grid and the
grid-based tracking algorithm is used. From left to right t = 4,  t = 8 ,  t = 12
and t = 16.
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The computation is performed in a 40×40×240 regular grid. The figures show
views of the bubble and spike.  The surface grid is show on the right.
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In this simulation there are four bubbles of different radii.  The largest bubble
moves ahead of the others and eventually pinches off from the main interface.
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Richtmyer-Meshkov instability is a material surface instability generated by
the refraction of shock wave through a material interface.  It occurs in such
applications as inertial confinement fusion and such natural phenomena as a
supernova explosion.  The schematic diagram below illustrates the process.
A shock refracts through a material surface imparting differential vorticity
along the interface.  This velocity shear in turn drives the penetration of the
heavy fluid into the light fluid.
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Benjamin Experiment

SF6
 = 4.85 g/l

P = 0.8 Bar
 = 1.09

3.75 cm

Air
 = 0.95 g/l, P = 0.8 Bar,  = 1.09

Shocked Air
 = 1.27 g/l,  P = 1.2 Bar

0.
48

 c
m

Mach 1.2 Shock

Meshkov Experiment

He
 = 0.167 g/l

P = 1.013 Bar
 = 1.63

Air
 = 1.2 g/l, P = 1.013 Bar,  = 1.4

Shocked Air
 = 2.3 g/l,  P = 2.56 Bar

0.
2 

cm

Mach 1.52 Shock

4.0 cm



Los Alamos National Laboratory
Hydrodynamic Methods Applications and Research 7LA-UR 99-3985

Pressure plots at a series of times for the
nonlinear air-SF6 solution.  A cascade
of shock waves generated by the self-
interaction of the transmitted and
reflected waves propagate back toward
the interface and affect the perturbation
growth rate at early and intermediate
times. For reference we have labeled in
the first frame the transmitted shock
(T), the interface (I) and the reflected
shock (R).  Note that the color map has
been adjusted so that the full range of
color occurs within the region of
interest (between the transmitted and
reflected shocks).  The blue regions at
the left and right have pressures of 0.8
bars and 1.1 bars, respectively.
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A series of calculations were carried out for a set of three initial amplitudes of decreasing size.
The figures show results for shocked air-SF6 and air-He interfaces, respectively. Amplitude
convergence is measured in terms of the relative difference between the nonlinear and linear
solutions, |(a(t) =− alin (t))|/|(alin(t)| + |a(0−))| where a(0−) is the initial amplitude of the
perturbation. The horizontal axis is in dimensionless time units kc0M0t, where k is the wave
number of the perturbation, c0 is the sound speed in the air ahead of the incident shock and M0
is the incident shock Mach number.  One dimensionless time unit is equivalent to
approximately 14 s for air-SF6 case and 12.2 s for air helium.
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This graph compares the results of experimental averages, front tracking
simulation, linear theory and Richtmyer's impulsive model.  Also shown are
results of a least squares fit to the front tracking amplitude data over the
period of experimental observation.   Note that the front tracking average
growth rate is indistinguishable from the experimental value in figure (b).
The plus marks (+) show the results of one particular experiment.
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The full amplitude growth rate is defined as
da/dt(t) = (vspike − vbubble)/2. Note how certain
events in the amplitude growth rate occur at
either the spike or the bubble, but not both.
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The figures show comparisons of simulations of the Benjamin air-SF6
experiment and the Meshkov air-He experiments with the solution to the
linearized equations.  The comparisons are at t = 195 µs on the left and 65 µs
on the right.  A key feature is that the linearized solutions fail to capture the
sharp shock fronts seen in the full Euler solutions.
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• Compare three independent codes
– RAGE: AMR, 2nd order Godunov hydro
– PROMETHEUS: Uniform grid, PPM hydro
– FronTier: Front tracking coupled with 2nd order Godunov hydro

• Validate codes against experimental data in a particularly interesting regime
– Improved confidence in predictive capabilities of simulations

• Study of validity and behavior of simulations and theories over a wide range of
conditions

– Seven combinations of initial shock strength and initial perturbation amplitude
• Improve understanding of relationship between experiment, simulation and theory
• Variety of researchers involved helped
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• Beryllium mated to foam with a perturbed
interface between them
– Plasmas at time of data acquisition
– Materials modeled as perfect gases

• Incident shock generated by ablation at rear
surface of beryllium

• Perturbations: single-mode sinusoidal

–  wavelength 100 µm, amplitude 10 µm
• Strong incident shock

– Mach 15.3

Shock
Direction
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Experimental
Radiograph

RAGE FronTier PROMETHEUS
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Experimental
Radiograph

RAGE FronTier PROMETHEUS
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RAGE FronTier PROMETHEUS
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RAGE FronTier PROMETHEUS

0.
1

0.
4

0.
7

Pr
es

su
re

 (M
ba

r)



Los Alamos National Laboratory
Hydrodynamic Methods Applications and Research 19LA-UR 99-3985

  

0
2
4
6
8

10
12

0 2 4 6 8 10 12 14Am
pl

itu
de

 (µ
m

)

Time (ns)

FronTier

RAGE

PROMETHEUS

Impulsive Model

Linear Theory

Zhang/Sohn

Experimental Growth Rate

Experiment/Face-on Ampl.

Experiment/Side-on Ampl.

0

10

20

30

40

50

60

-2 0 2 4 6 8 10 12 14

Am
pl

itu
de

 (µ
m

)
Time (ns)

0

2

4

6

8

10

-2 0 2 4 6 8 10 12 14

G
ro

w
th

 ra
te

 (µ
m

/n
s)

Time (ns)



Los Alamos National Laboratory
Hydrodynamic Methods Applications and Research 20LA-UR 99-3985

Foam
correlation lengthρ= = =

=
=
=

0 12 0 06 20
0 1

0
1

. / , . / ,
.

.45

g cc g cc m
P Mbar

v

Unshocked Beryllium
correlation lengthρ= = =

=
=
=

1 7 0 85 20
0 1

0
1 8

. / , . / ,
.

.

g cc g cc m
P Mbar

v

Mach 30 Expanding Shock
r =0 10

80
0 
µm

, 4
00

 ∆
y

800 µm, 400 ∆x

Material Interface
r = 25cos 8



Los Alamos National Laboratory
Hydrodynamic Methods Applications and Research 21LA-UR 99-3985



Los Alamos National Laboratory
Hydrodynamic Methods Applications and Research 22LA-UR 99-3985



Los Alamos National Laboratory
Hydrodynamic Methods Applications and Research 23LA-UR 99-3985



Los Alamos National Laboratory
Hydrodynamic Methods Applications and Research 24LA-UR 99-3985



Los Alamos National Laboratory
Hydrodynamic Methods Applications and Research 25LA-UR 99-3985

The next computation is a simulation of the supersonic injection of a gas into
a closed box.  The initial flow parameters are:

Region Outside of Jet
Air

= 1g / l
bar

, .4

x y

=

=
= =

1

1
0

Inlet,  width = 2.5 cm
Air

= 10 g / l
bar

cm / sec

 =  6.3 cm / sec
 cm / sec

 =  6.3 cm / sec

correlation length =  0.25 cm
correlation time =  7.9 sec

, .4

.

=

=
=

=

1

10
0

31 6

x

x

y

y

µ
µ

µ

µ

Computational Region:
width 25 cm,  400 x
height 50 cm,  800 y

∆
∆



Los Alamos National Laboratory
Hydrodynamic Methods Applications and Research 26LA-UR 99-3985

t = 380 µsec t = 760 µsec
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t = 1.140 msec t = 1.52 msec
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These calculations are intended to study the behavior of the refraction of a
bow wave generated by a supersonic projectile through the surface of the
ocean.  The calculations show a projectile with the shape of an ellipse of
diameters 3 by 0.5 meters,   traveling at 500 meters per second at an altitude
of 5 meters above a flat body of water.  The projectile is traveling in air,
which is modeled as a perfect gas with γ = 1.4 and density of 1 gram/liter and
ambient pressure of 1 bar.  The water is modeled as a stiffened polytropic
gas,  which has an equation of state of the form:

and ρ = 1 gram/liter.

e P E E P P= + = +
∞ ∞ ∞ ∞Γ

Γ
Γ

Γ, 1 ,   =  6,  and,  = 3040 bar  
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.
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•  Conservation and Front Tracking
• Algorithm makes conservation error on the order of the truncation

error near the front.  These are generally first order.
• Exact conservation requires the construction of adaptive space-time

grids near the front.  Conservation means that only waves that satisfy
the Rankine-Hugoniot conditions can support discontinuities.  Sharp
fronts require that volume cells must not cross fronts.  Thus the finite
volume cells must be aligned in space and time with the discrete fronts
if exact conservation of all quantities is to be imposed.

• Adaptive mesh algorithms and front tracking.  Much of the
infrastructure of FronTier assumes a regular rectangular grid.  Current
development efforts are being directed towards replacing the rectangular
grid with a binary by dimension tree structured grid.

• Improved Three Dimensional Capabilities:  continue to improve the
robustness and performance of the three dimensional front tracking code to
provide a computational tool for studying complex flows.
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•  More General Physics:
• Elasto-plasticity: FronTier now supports an elasto-plasticity library.

Development is proceeding to implement improved solvers and
interface propagation algorithms in this module.

• Multiphase flow models:  many new theoretical models are being
invented to describe meso-scale mixing in which the fluids are
separate at a molecular level,  but are entrained at length scales that are
very small with respect to the computational grid spacing.  Designing
and implementing these methods is a major thrust in our development
effort.

• Improved Performance on Parallel Computers:  These are the machines
we have,  we want to use them as effectively as possible. FronTier already
supports domain decomposition parallelism,  continuing work will be
devoted to scaling the code from the current 10-100 processor mode to as
many as 1000 processors.
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•  Improved usability of the code:
• Add a graphical user interface for problem setup.
• Enhance and add to the diagnostic capabilities of the code.

• Incorporation of new advances in finite different and finite element
technology.

• Modular structure of the code can be improved to allow easier
insertion of new finite difference methods.

• Implement unsplit solvers.
• Theoretical and Numerical Investigations

• Study the behavior of fluid mixing zones generated by Rayleigh-
Taylor and Richtmyer-Meshkov instability.

• Study the role of vorticity in the growth of unstable features on an
interface.
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