Title: Muon Tomography Passive Scanning of Occupied Passenger Vehicles

Author(s): Morris, Christopher B., Alexander, C., Bacon, C., et al.

intended for: 2006 Nuclear Science Symposium
San Diego, CA
October 29, 2006- November 4, 2006
Muon Tomography Passive Scanning of Occupied Passenger Vehicles

Los Alamos National Laboratory and the tUniversity of South Carolina

Abstract The threat of the detonation of a nuclear device in a major US city has prompted research aimed at providing more robust border surveillance for contraband nuclear material. The small amount of material needed to construct a nuclear device and the ease with which neutron and gamma ray signatures can be obscured with shielding makes this job difficult. We demonstrate a new technique which uses multiple scattering of cosmic ray muons to selectively detect high-z material in a background of normal clutter. The advantages of this technique are that it is passive, does not deliver any radiation dose above background, and is selective to high-z dense materials. The research that has lead to the development of this new radiography will be reviewed, and future extensions will be summarized.

tHomeland Security Review by A. Saunders 5/12/15.
Conventional Technologies: High resolution γ-ray counting

Nuclear material is radioactive:
Weapon grade uranium (WGU): 10% ^{238}U 90% ^{235}U

300 gm ^{238}U - 1 meter from detector

- no u
- no shield
- 5 cm lead
- 2.5 cm lead

Unshielded Kg quantities of highly enriched uranium can be detected with high reliability with 1 minute counting times by detecting γ's from the ^{238}U impurity.

Shielding threat object requires ~5 cm of lead, gold, tungsten, or other high-z material

Small well shielded package
L. W. Alvarez, et al. used Range Radiography to look at a pyramid—this is not what we are doing.

"Search for Hidden Chambers in the Pyramids"

Luis W. Alvarez *et al.*
Charged particle radiography is a new LANL invention (1995) and is much more sensitive than range radiography.

How well can a 1000 cm3 volume of uranium be measured in 1 minute?

\[\Delta l = \frac{\lambda}{\sqrt{N}} \]

\[\lambda \approx 120 \text{ cm} \]

\[\frac{\Delta l}{l} \approx 1.2 \]

\[\Delta l = \frac{2}{\sqrt{2N}} \]

\[l = 10 \text{ cm} \]

\[\frac{\Delta l}{l} = 0.14 \]
Tomography with cosmic ray muons has been shown to work

Experiment

Simulation

Cosmic ray muon generator / multiple scattering simulation.

Good agreement with experiment.

Allows for extrapolation to larger, more complex scenes.
Cosmic ray muons can provide information with no radiation dose above background and is especially sensitive to good shielding materials.

Use tomography to localize scattering:

\[\Delta x = \theta_{\mu, L} \]
\[= 0.02 \times 200 \text{cm} \]
\[= 4 \text{cm} \]

Poisson statistics determine the sensitivity:

\[\frac{\Delta \theta}{\theta} = \frac{1}{\sqrt{2N}} \]
\[N = 100 / \text{min} \]
\[\Delta \theta = 0.07 \theta \text{ after 1 minute of counting} \]

One minute of counting distinguishes a 10 cm cube of iron from a 10 cm cube of lead at 6 std deviations.

<table>
<thead>
<tr>
<th>Material</th>
<th>dE/dx</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeV-cm²/gm</td>
<td>cm</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>2.06</td>
<td>36</td>
</tr>
<tr>
<td>Fe</td>
<td>1.87</td>
<td>1.76</td>
</tr>
<tr>
<td>Pb</td>
<td>1.54</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Multifunction Occupied Passenger Vehicle Scanner

Three layers of drift chambers for robust cosmic ray tracking and tomographic reconstruction

Use track residuals to estimate momentum and reduce residuals

Measure gamma and neutron radiation with same detector

Cosmic ray muon tomography
Time evolution of signal

15 sec
No threat

30 sec
No threat

60 sec
No threat

Threat object

Threat
1000 cc tungsten

1 hour exposure

Los Alamos National Laboratory

Homeland Security
Receiver Operator Characteristic

Object over the differential

Object under the engine

Single Voxel threshold
125 cc

Time
0
15
30
60

8 voxel threshold
1000 cc

Direction of increasing threshold

P_{detection}

P_{false}

Los Alamos National Laboratory
Cluttered scenes

Boreated plywood stack

Plywood 4200 lbs

Welder with shielding

Welder 800 lbs
Plates 1000 lbs each
Total 2800 lbs

Cluttered cargo with steel aluminum, glass, AlBeMet

Total weight 7400 lbs

4" thick wall steel box
Filled with polyethylene

Steel 4300 lbs
Polyethylene 475 lbs

Los Alamos
NATIONAL LABORATORY
One Minute reconstructions
Large Muon Tracker at LANL

896 channels
Drift gas: 60% Ar/40% Isobutane
~100 Hz trigger rate at current geometry
1.5 m tall sample area
Objects on the LMT table
The same objects hidden in an 800 lb 40 gallon barrel of sand
Conclusions

Simulations show muon tomography can provide sub-one minute threat object detection on occupied personal vehicles.

Experiments are being used to refine the technique and discover problems.

Cosmic ray tracking detectors can also be used for neutron and gamma ray counting.