Title: Precision Measurement of Neutron Decay Correlations

Author(s): W.S. Wilburn, L.J. Broussard, A. Danagoulian, and A. Klein

Intended for: LDRD Annual Review Poster Session
Project Goals

- Develop new experiments to measure neutron decay parameters with 10^{-4} precision
- Analyze and understand important systematic effects
- Develop precision neutron polarimetry techniques required for these experiments
- Develop a new detector technology based on large-area ion-implanted silicon detectors

Background & Significance

- The neutron is an ideal laboratory to search for physics beyond the Standard Model
- Neutron decay can be calculated very accurately in the SM
- Precision measurements of neutron decay parameters are possible
- Sensitive to undiscovered particles and couplings
- New facilities provide intense sources of neutrons
- New techniques are needed to reduce systematics to match the expected statistics
- Previous experiments limited by key systematic uncertainties
- Knowledge of neutron polarization
- Backgrounds in detectors
- Limitations of available detector technologies
- This project aims to improve these limiting systematics
- Develop a new method for precision neutron polarimetry
- Develop new detectors
- Develop techniques to detect decay particles in coincidence

Results & Discussion

- Prototype detector testing
 - Basic operation of detector has been verified using alpha and beta sources
 - Preliminary measurement of entrance window Picosness is consistent with specifications
 - Cryogenics for cryogenic operation has been designed and is being procured
- Precision neutron polarimetry method demonstration
 - First measurement with LANSE beam yielded 0.7% precision, limited by statistics and systematics
 - Second measurement with improved apparatus completed in June
- Data analysis in progress
- Third measurement planned for next FY
- Analysis of systematic uncertainties
 - 20 systematic uncertainties identified and estimated
 - Three results in correlation > 10^{-1}, require careful control
 - Neutron pulse width (2x10^{-1})
 - Magnetic field inhomogeneity (3x10^{-3})
 - Neutron polarization (4x10^{-1})
 - Four identified as requiring further simulation for accurate estimate
 - Misalignment effects
 - Electron backscatter from detectors
 - Proton time-of-flight effects
 - Detector timing resolution
 - Proton scattering from residual gas
- Results presented in proposal to Spallation Neutron Source (SNS) Fundamental Neutron Beam (FnPB)

Conclusion & Future Plans

- Finish characterization of prototype detector properties
- Complete third precision neutron polarimetry experiment
- Complete analysis of systematic effects
- Propose full experiment (the abBAe experiment) for SNS FnPB