Title: Neutron beam effects on spin-exchange-polarized 3He

Intended for: Physical Review Letters
Neutron Beam Effects on Spin-Exchange-Polarized ^3He

M. Sharma,1 E. Babcock,2 K. H. Andersen,2 L. Barrón-Palos,3,4 M. Becker,2,5 S. Boag,6 W. C. Chen,7 T. E. Chupp,1 A. Danagoulian,8 T. R. Gentile,7 A. Klein,8 S. Penttila,9 A. Petoukhov,2 T. Soldner,2 E. R. Tardiff,1 T. G. Walker,10 and W. S. Wilburn8

1FOCUS Center and Physics Department, University of Michigan, Ann Arbor, Michigan 48104, USA
2Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, France
3Arizona State University, Tempe, Arizona 85287, USA
4Universidad Nacional Autónoma de México, México, D.F. 04510, México
5Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany
6ISIS, Rutherford Appleton Labs, Chilton, Didcot OX11 0QX, United Kingdom
7National Institute of Standard and Technology, Gaithersburg, Maryland 20899-8461, USA
8Los Alamos National Lab, Los Alamos, New Mexico 87545, USA
9Oak Ridge National Lab, Oak Ridge, Tennessee 37831, USA
10University of Wisconsin, Madison, Wisconsin 53706, USA

(Received 19 February 2008; published 20 August 2008)

We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized ^3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable ^3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as $\sqrt{\phi_n}$, where ϕ_n is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron pairs but is much larger than expected from earlier work.

DOI: 10.1103/PhysRevLett.101.083002

PACS numbers: 32.80.Xx, 03.75.Be, 24.70.+s, 61.80.Hg

Polarized gaseous ^3He has wide application including targets and beams for nuclear physics measurements, for electron scattering studies of the structure of the neutron [1], for biomedical imaging of the airspace in the lungs [2], and as a neutron polarizer [3–5]. Each of these applications has a different set of requirements and acceptable trade-offs of polarization, density, size, and polarization stability. There are two techniques used to produce polarized ^3He gas: metastability exchange optical pumping (MEOP) and spin-exchange optical pumping (SEOP). MEOP polarizes pure ^3He at low pressure, typically 1 mbar, at rates of about 1 bar-I/h with ^3He polarizations of 70% or more [5]. MEOP polarizer stations compress the ^3He into cells that are transported to the point of use, where the ^3He polarization decays very slowly, with a time constant that can be a week or longer [6]. For SEOP, the ^3He is polarized by the hyperfine interaction during collisions of the ^3He nuclei with polarized valence electrons of optically pumped alkali metals. Production rates with SEOP are about an order of magnitude lower than the highest MEOP rates, but similarly high ^3He polarizations have been achieved [7]. For applications that require several days or weeks of stable high polarization operation, such as targets for electron scattering, neutron scattering instruments with limited access, and long-running fundamental neutron physics experiments, it is practical to have a SEOP system pumping continuously, with stable polarization, for weeks or months [4,8].

Gaseous polarized ^3He is used for polarized neutron measurements because of the nearly complete spin dependence of the absorption cross section for the process $^3\text{He}(n, p)^4\text{H}$. This proceeds through an unbound 0° resonance in ^4He, so that only neutrons with spin opposite to the ^3He spin are absorbed [9]. For neutrons incident on a cell with ^3He polarization P_3, the effective absorption cross section is proportional to the wavelength λ and proportional to $(1 - P_3)$ for neutron spin parallel and to $(1 + P_3)$ for neutron spin antiparallel to the ^3He spin. In a spin-filter polarizer, the ^3He polarization is not complete, and neutrons of both spin states are absorbed, though with different absorption lengths. The resulting neutron polarization is $P_n(\lambda) = \tanh(P_3\sigma_0 t_3)$, where $\sigma_0 = 5333 \pm 7$ b is the absorption cross section for thermal neutrons ($\lambda_0 = 1.8$ Å) [10] and t_3 is the ^3He areal density. Transmission of polarized neutrons through polarized ^3He can also be used as a neutron polarization analyzer.

In a typical SEOP neutron spin filter, the ^3He cells are constructed from boron-free-alumino-silicate glass [11]. The alkali metal (rubidium [12] or a mixture of rubidium and potassium [13]) is distilled into the cell with about one bar of ^3He at room temperature and a small amount of N$_2$ added to suppress radiation trapping, the multiple scattering of optical-pumping photons that depolarize the alkali-metal atoms [14]. The cell is heated to maintain an optimum alkali-metal vapor pressure, held in a magnetic field of 1–3 mT, and illuminated by a high powered laser tuned
to the rubidium D1 resonance at 794.7 nm. The 3He polarization is governed by an exponential time dependence with rate constant and equilibrium polarization given, respectively, by

$$\Gamma = (1 + X_{\text{cell}})\gamma_{SE} + \Gamma_R,$$

and

$$P_3^{eq} = P_A \frac{\gamma_{SE}}{\Gamma}.$$ \hspace{1cm} (1)

where $\gamma_{SE} = (\sigma_{SE} \nu)[\text{Rb}]$, the velocity-averaged spin-exchange rate constant, is typically $1/(10-15 \text{ h})$. The 3He relaxation rate Γ_R is a sum of rates due to cell wall interactions, impurities, 3He dipole-dipole relaxation, magnetic field gradients, and ionization effects. The rate Γ_R is generally $10-50$ times smaller than γ_{SE}. The volume-averaged alkali-metal electron polarization is P_A, and the factor X_{cell} accounts for an observed reduction in 3He polarization that varies from cell to cell [15].

Neutron-beam effects on the 3He polarization were first observed during development of the NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) [4,16] and were further studied in dedicated runs at LANSCE and at the Institute Laue-Langevin (ILL) in Grenoble. The 3He polarization for a cell used at LANSCE over two months is shown in Fig. 1. The cells and setup are described in Ref. [4]. The top panel in Fig. 1 shows that, though the 3He polarization appears relatively constant over the long term (except for the period with the laser off), there is a slow downward drift. The long time constant decay of 3He polarization appears to be due to a milky white coating that builds up on the cell walls and reduces transmission of laser light into the cell [4]. This buildup is probably due to rubidium compounds, possibly due to reaction with the hydrogen (1H and 3H) produced by neutron absorption on 3He. A similar effect was observed for a pure rubidium cell at 170 $^\circ$C placed in the full flux PF1B beam at ILL for 1 h. Exposure for 1 h at PF1B is equivalent to about 4 days at LANSCE FP12. A Monte Carlo calculation based on the measured brightness of the LANSCE neutron source [17] predicts a maximum capture-flux density of $(1-3) \times 10^8 \text{ cm}^{-2} \text{ s}^{-1}$. (Capture flux, the integral of the $1/\nu$ weighted neutron intensity spectrum, is proportional to the total neutron capture or decay rate per unit length.) The PF1B capture-flux density at the cell position was measured with gold foil activation and found to be $1.4 \times 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$. The PF1B beam is described in Ref. [18].

Data for P_3 on shorter time scales are shown in the bottom panel of Fig. 1. When the beam is on, the 3He polarization decays, and with the beam off, the polarization recovers, at least partially. The short time-scale data of Fig. 1 show that the neutron beam causes the 3He polarization to decay to a lower value of P_3^{eq} at a rate of approximately $1/12 \text{ h}$, which is consistent with the measured Γ. The polarization was not measured with the neutron beam off, because we used the neutrons to measure P_3^{eq} [4]; however, the increase of 3He polarization is consistent with a similar rate constant. Subsequent measurements at ILL also showed a neutron-beam-induced drop in 3He polarization with similar magnitude and time dependence. Since Γ does not change appreciably, the most likely cause is a drop of P_A, possibly due to ionization effects induced by the neutron-beam. Ionization effects on both Γ and P_A were observed in work with a 180 particle-nA beam of 18 MeV α particles [19]. Those observations led to the development of the double cell now ubiquitous in SEOP-based polarized 3He targets for electron scattering [20]; however, we expected these effects to be negligible for 3He cells in neutron beams, where the ionization energy loss is 100–10000 times less at ILL and LANSCE, respectively. We therefore set out to measure the effects of the neutron beam on the alkali-metal polarization in high-flux neutron beams under a range of conditions.

The volume-averaged alkali-metal polarization was directly measured using electron-spin resonance (ESR) at both LANSCE and ILL. In the LANSCE setup, the transmission of optical-pumping light from a single 30 W broadband laser-diode array was monitored as rf at 14 MHz was applied and the magnetic field swept from 2.84 to 2.90 mT. The magnetic field was produced by the combination of a very uniform 1 mT field from a large set of coils and a pair of hand-wound rectangular coils that produced a less homogeneous field of about 2 mT. The consequence of the inhomogeneity is that the ESR lines are broadened, and the hyperfine lines are not all separately resolved. Data for 85Rb ($I = 5/2$) for two different
neutron-beam intensities and no beam are shown in Fig. 2. When the hyperfine levels are not resolved, the rubidium polarization is given by \(P_A = (7R - 3)/(7R + 3) \) for \(I = 5/2 \) and \(P_A = (2R - 1)/(2R + 1) \) for \(I = 3/2 \). Here \(R \) is the ratio of adjacent ESR peak areas extrapolated to zero rf power [21].

For the ILL setup, the ESR measurements used a hybrid Rb-K cell constructed at National Institute of Standard and Technology [7]. The cell was illuminated by light from two 100-W narrowed diode-laser-array bars [22]. A linearly polarized probe laser, tuned near the Rb \(D2 \) resonance and directed along the magnetic field, was used to measure the Faraday rotation signal, which is proportional to the alkali-metal polarization [23]. The magnetic field was set at 1 mT, and the frequency of the rf field was swept across the \(I = 3/2 \) resonances. The second-order Zeeman splitting of potassium is much larger than that of rubidium and allows the separate ESR lines in \(^{39}\text{K} \) to be resolved as shown in Fig. 3. Because of rapid spin exchange between the rubidium and potassium [24], the ESR of \(^{39}\text{K} \) measures the average electron polarization of all of the alkali-metal species. Signals from \(^{87}\text{Rb} \) and \(^{41}\text{K} \) [13] are also observed; however, the \(^{87}\text{Rb} \) transitions are not separately resolved at 1 mT.

The alkali-metal polarization at any position in the cell is given by [12]

\[
\frac{1}{P_A(\vec{r})} = 1 + \frac{\Gamma_{SD}}{\gamma_{opt}(\vec{r})},
\]

where \(\gamma_{opt}(\vec{r}) \) is the convolution of the laser spectral profile and the optical absorption cross section at the position \(\vec{r} \). The spin destruction rate \(\Gamma_{SD} \) is the rate of electron spin flips per alkali-metal atom and is most likely affected by the neutron beam more significantly than \(\gamma_{opt}(\vec{r}) \). In Fig. 4, we plot the change \(\Delta(1/P_A) \) relative to no beam as a function of neutron capture-flux density \(\phi_n \) for both the LANSCE and the ILL data. With the higher power narrowed lasers pumping the hybrid cell at ILL, \(\gamma_{opt} \) was much larger, and the neutron-beam effects are significantly less than observed at LANSCE for a given neutron-flux density.

Relaxation of the alkali-metal polarization was studied at ILL using the relaxation in the dark technique [25]. A small alkali-metal polarization was produced by a low power optical-pumping beam (less than 0.1 W/cm²), which was chopped at 1 Hz. The polarization \(P_A \) was measured by Faraday rotation with the same setup used for the data shown in Fig. 3. With the optical-pumping beam chopped off, the polarization decayed at a rate \(\Gamma_A = \Gamma_{SD}/S \), where the slowing factor \(S \geq 1 \) accounts for the angular momentum stored in the nuclear spins, which couple to the electron spin through the hyperfine interaction [26]. Because of electron spin exchange, the factor \(S \) is an average over isotopes and alkali-metal species. The slowing factor depends on the alkali-metal polarization; for low polarization, \(S = 10.8 \) for natural rubidium [26], and \(S = 6 \) for potassium [13]. Results for \(\Delta \Gamma_A \), the neutron-flux contribution to the relaxation rate, for five cells with different gas and alkali-metal compositions are shown in Fig. 5. With no beam, \(\Gamma_A \) varies from 20 to 30 s⁻¹ depending on gas and alkali-metal compositions and pressures. The solid line in Fig. 5 has the form \(\Delta \Gamma_A \propto \sqrt{\phi_n} \). As shown below, this would be consistent with relaxation due to a recombination-limited equilibrium electron or ion concentration.

The processes due to the 764 keV deposited by the \(^{3}\text{He}(n, p)^{3}\text{H} \) reaction are complex and involve ions, metastable \(^{3}\text{He} \) atoms, molecular ions, and radicals of helium and nitrogen. One or more of these species may be the cause of the observed effects. We consider the simplified

![FIG. 2 (color online). ESR spectra of \(^{85}\text{Rb} \) for full flux [(a): green] and 19% of full flux [(b): red] and no beam [(c): blue] at LANSCE. The polarizations are \(P_A = 0.78, 0.81, \) and 0.90, respectively. The relative uncertainties, estimated to be 1%–2%, are limited by the signal-to-noise ratio of the ESR measurements.](image1)

![FIG. 3 (color online). ESR spectra of \(^{39,41}\text{K} \) and \(^{87}\text{Rb} \) for full flux [(a): green] and 8.5% of full flux [(b): red] and no flux [(c): blue] at ILL. The polarizations are \(P_A = 0.83, 0.90, \) and 0.98, respectively.](image2)
case of spin destruction due to electrons or ions so that
\[\Delta \Gamma_\Lambda = k_e n_e + \sum_k k_i n_i, \]
where the k's are rate constants for relaxation due to each species, n_e is the electron density, and n_i = f_i n_e is the density of an ion species, which is a fraction f_i of the electron density. Each f_i is, in general, a function of n_e, and \(\sum_i f_i = 1 \) for singly ionized species. We expect that electron-ion pair s are produced at a rate proportional to the neutron capture-flux density \(\phi_n \), and the rate equation for the electron density is
\[\frac{dn_e}{dt} = \sum_i \gamma_i \phi_n - n_e \sum_i \alpha_i n_i, \]
where \(\gamma_i = (764 \text{ keV}/E_i)/L \) for a cell of length L, E_i is the energy required to form an ion pair for each species (e.g., E_i = 42.3 and 32.6 eV, respectively, for helium and N_2), and the \(\alpha_i \)'s are the recombination coefficients for each species. If there is a single dominant species, the equilibrium electron concentration becomes
\[n_e = \sqrt{\phi_n / \alpha}, \]
and \(\Delta \Gamma_\Lambda \propto \sqrt{\phi_n} \). The experimental results in Fig. 5 show that the neutron-beam-induced relaxation rate does scale closely with \(\sqrt{\phi_n} \), strongly suggesting that the observed spin relaxation is due to collisions with electrons or ions.

In summary, measurements with in situ SEOP \(^3\)He neutron spin filters at LANSCE and ILL have shown that the incident neutron beam induces an increase of the alkali-metal relaxation rate and a corresponding decrease of alkali-metal and \(^3\)He polarization. As shown in Fig. 1, the full neutron flux at LANSCE reduced \(P_A^{\text{SNL}} \) by about 5%-10%, and the subsequent measurement of \(P_A \) showed a similar reduction. With the full ILL PF1B flux, \(P_A \) was reduced by about 20% in a potassium-rubidium hybrid cell pumped by high-power narrowed diode laser arrays. The drop in \(^3\)He polarization for the hybrid cell was also observed to be consistent with the drop in \(P_A \). The magnitude of these effects is much larger than expected given earlier study of ionization effects produced by an \(\alpha \)-particle beam [19]. Measurements over several decades of neutron flux show that the increased spin-relaxation rate approximately scales with \(\sqrt{\phi_n} \), which would be consistent with the recombination-limited equilibrium concentration of electrons or ions. Further neutron-beam-related effects were observed in the ILL measurements including a combination of prompt and delayed changes in the alkali-metal relaxation rates, cell pressure-dependent effects, and performance of a double cell. These will be presented in a separate paper.

This work was supported by the U.S. National Science Foundation, the Department of Energy, the ILL Millennium Program, and the NMI3. We gratefully acknowledge the efforts of the entire NPDP gamma Collaboration in developing the apparatus used to provide the data shown in Fig. 1, and we gratefully acknowledge the technical assistance of the ILL \(^3\)He group.