Title: Direct Detection of Dark Matter with MiniCLEAN

Author(s): Raul Hennings-Yeomans

Intended for: Talk at the 6th International Workshop on the Dark Side of the Universe.
Abstract

VI International Workshop on the Dark Side of the Universe

Direct Detection of Dark Matter with MiniCLEAN

RAUL HENNINGS-YEOMANS — Overwhelming astrophysical evidence indicates that non-baryonic Dark Matter constitutes most of the mass of the Universe. Nevertheless, the particle nature of Dark Matter remains a long standing mystery. The use of noble liquids as scintillators in single and dual-phase detectors are some of the most promising scalable WIMP detectors currently planned and under construction. The MiniCLEAN experiment will have 92 PMTs looking at a liquid Argon detector mass of over 500 kg in a single-phase configuration. It will use Pulse Shape Discrimination (PSD) techniques to search for low-energy WIMP nuclear recoils inside a fiducial volume. Liquid Argon would be interchangeable with liquid Neon to study A^2 dependence of a potential signal and examine backgrounds external to the cryogenic liquid. For the Argon run, MiniCLEAN projects a sensitivity in terms of spin-independent WIMP-nucleon cross-section of $2 \times 10^{-45} \text{cm}^2$ for a mass of 100 GeV/c^2. A status report of MiniCLEAN will be presented as well as plans to deploy the experiment at SNOLAB.

Raul Hennings-Yeomans
hennings@lanl.gov
Los Alamos National Laboratory
APPENDIX FOR DSU2010 — Overwhelming astrophysical evidence indicates that non-baryonic Dark Matter constitutes most of the mass of the Universe. Nevertheless, the particle nature of Dark Matter remains a long standing mystery. The MiniCLEAN experiment will have 92 PMTs looking at a liquid Argon detector mass of over 500 kg in a single-phase configuration. It will use Pulse Shape Discrimination (PSD) techniques to search for low-energy WIMP nuclear recoils inside a fiducial volume. MiniCLEAN projects a sensitivity in terms of spin-independent WIMP-nucleon cross-section of $2 \times 10^{-45} \text{cm}^2$ for a mass of 100 GeV/c2. A status report of MiniCLEAN will be presented as well as plans to deploy the experiment at SNOLAB.

Raul Hennings-Yeomans
hennings@lanl.gov
Los Alamos National Laboratory