Title: Downscattered neutron images from ICF Experiments at the National Ignition Facility

Author(s): Nevzat Guler & Others (Attached List)

Intended for: Inertial Fusion Sciences and Applications (IFSA) 2011
ANALYSIS OF DOWNSCATTERED NEUTRON IMAGES FROM THE NATIONAL IGNITION FACILITY

Nevzat Gulér¹, Gary P Grim¹, Frank E Merrill¹, George L Morgan¹, Douglas C. Wilson¹, Steven H Batha, Chris R Danly¹, Eric N Loomis¹, Petr L Volegov¹, Carl H Wilde¹, Mark D Wilke¹, David N Fittinghoff¹

¹Los Alamos National Laboratory, Los Alamos, NM, USA
²Lawrence Livermore National Laboratory, Livermore, CA, USA

Controlling fuel compression is one of the key elements for accomplishing ignition in inertial confinement fusion (ICF) experiments. Thus, cold fuel areal density measurements are one of the primary analysis topics in these experiments. By using two camera systems, gated with adjustable timings, the neutron imaging system at the National Ignition Facility (NIF), Lawrence Livermore National Laboratory, Livermore, CA, can image the primary neutrons and pre-selected fraction of the down-scattered neutrons from ICF implosions. We will present reconstructed intensity profiles of the hot fusion core and the cold fuel region surrounding it, as well as the inferred downscattered ratio of the neutron yields from these regions, and the status of studies to relate these ratios to the cold fuel areal density.

This work was performed for the U.S. Department of Energy, National Nuclear Security Administration and by the National Ignition Campaign partners; Lawrence Livermore National Laboratory (LLNL), University of Rochester -Laboratory for Laser Energetics (LLE), General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL). Other contributors include Lawrence Berkeley National Laboratory (LBNL), Massachusetts Institute of Technology (MIT), Atomic Weapons Establishment (AWE), England, and Commissariat à l’Énergie Atomique (CEA), France. Prepared by LANL under Contract DE-AC-52-06-NA25396. Prepared by LLNL under Contract DE-AC52-07NA27344
Neutron images are collected at NIF to measure the hot spot size and the cold fuel distribution.

Controlling the fuel compression is crucial for accomplishing ignition in inertial confinement fusion (ICF) experiments. The neutron imaging diagnostics provide the size and shape of the hot spot from primary neutrons and the cold fuel distribution from down-scattered neutrons by using two fast gated camera systems. The gates of the camera systems can be adjusted to observe any fraction of the down-scattered neutrons. The camera systems can observe any fraction of the down-scattered neutrons. The camera systems are composed of the scintillator array with different apertures. The contribution of the pinhole to the spatial resolution is determined by the range of the recoil protons. The detector contribution to spatial resolution is set by the range of the recoil protons in the scintillator material. This was determined by calculation of neutron transmission through the aperture by using MCNP simulations. These images are inverted using iterative maximum likelihood techniques to reconstruct the source distribution. The pictures below show the steps in the reconstruction of the source intensity profiles from the raw images. The first step is to determine the primacy of the hot spot with respect to the source position and produce appropriate pinhole function. The pinhole function was determined by obtaining the intensity variation in the pinhole array with the roll-off functions of intensity through the pinhole for different source positions. The PSF function was then obtained by calculation of neutron transmission through the aperture by using MCNP simulations. These are images inverted with iterative maximum likelihood techniques to obtain source intensity distribution.

System resolution

Direct contribution or resolution is set by the range of the recoil protons in the scintillator material. The system resolution is determined to be around 14 μm (camera 1) and 19 μm (camera 2) for pinhole apertures.

The contribution of the pinhole to the spatial resolution was determined by the effective pinhole size, which is ~10 μm. The total system resolution can be approximated by:

\[\sigma = \left(\sigma_1^2 + \sigma_2^2 \right)^{1/2} \]

Spatially averaged DSR vs. RCF/RHS

Calculated five perspectives images by obtaining the ratio of averaged neutron spectra. Currently we use spatially averaged DSR; 10% difference from other diagnostic calculations.

Data reconstruction and results

The current yields from ICF experiments enabled us to observe the down-scattered neutrons with the pinpherical aperture. The pictures below show the steps in the reconstruction of the source intensity profiles from the raw images. The first step is to determine the pinhole of the selected aperture with respect to the source position and produce appropriate pinhole function. The pinhole function was determined by obtaining the intensity variation in the pinhole array with the roll-off functions of intensity through the pinhole for different source positions. The PSF function was then obtained by calculation of neutron transmission through the aperture by using MCNP simulations. These are images inverted with iterative maximum likelihood techniques to obtain source intensity distribution.

Neutron images are used to diagnose NIF implosions. Temporal separation of neutrons after 28-ns delay results in ability to collect two neutron images. Primary (13-T MeV) & Down Scattered (15-12 MeV)

The current yields from ICF experiments enabled us to observe the down-scattered neutrons with the pinpherical aperture. The pictures below show the steps in the reconstruction of the source intensity profiles from the raw images. The first step is to determine the pinhole of the selected aperture with respect to the source position and produce appropriate pinhole function. The pinhole function was determined by obtaining the intensity variation in the pinhole array with the roll-off functions of intensity through the pinhole for different source positions. The PSF function was then obtained by calculation of neutron transmission through the aperture by using MCNP simulations. These are images inverted with iterative maximum likelihood techniques to obtain source intensity distribution.

Gated camera system

Flat field data were collected in calibration shots to study different pixels in the scintillator array. Before and after each shot, dark field data were collected to measure the background in the CCD camera outputs. The Image Is Signals. Those pixels are corrected by taking average of neighboring pixels. Downscattered image must be aligned corrected for these backgrounds. Occasionally, nuclear interactions with some pixels show themselves as saturated background was found from primaries. Direct drive (-0 cold fuel implosions data provides the correction. Residual light from primaries contributes to the cold fuel distribution. In addition, the inferred down scattered ratio of the neutron yields from primary and scattered neutrons is related to the spatially averaged and time integrated cold fuel areal density. This poster is mainly focused on the down scattered neutrons. For more information on the neutron imaging system at NIF and its diagnostic capabilities, please see the talk by Gary Grim and poster by David Fittinghoff.
Neutron images are collected at NIF to measure the hot spot size and the cold fuel distribution. Controlling the fuel compression is crucial for accomplishing ignition in inertial confinement fusion (ICF) experiments. The neutron imaging diagnostics provide the size and shape of the hot spot from primary neutrons and that of the cold fuel distribution from down scattered neutrons by using two fast gated camera systems. The gates on the camera systems can be adjusted to observe any fraction of the down scattered neutrons. The energy of the primary neutrons is 14.1 MeV while the selected down scattered neutrons come in 10-12 MeV range. This range was selected to minimize the background from interactions other than scattering and at the same time to maintain good statistics.

An array of 23 pinhole and mini-penumbral apertures were used to take a snapshot of the implosion and the images were inverted using iterative maximum likelihood techniques to reconstruct the source distribution. Then, the estimated distributions were fitted to Legendre modes to calculate the size and shape of the hot spot as well as the cold fuel. The reconstructed intensity profiles will be used to calculate time integrated density distribution of the cold fuel. In addition, the inferred down scattered ratio of the neutron yields from primary and scattered neutrons is related to the spatially averaged and time integrated cold fuel areal density. This poster is mainly focused on the down scattered neutrons. For more information on the neutron imaging system at NIF and its diagnostic capabilities, please see the talk by Gary Grim and poster by David Fittinghoff.
Use 14 MeV neutrons to measure the hot spot and the 10-12 MeV neutrons to measure the cold fuel distribution.
Neutron TOF Spectrum for 28 meter line of site

Need a time gated image system

Neutron images are used to diagnose NIF implosions. Temporal separation of neutrons after 28 m drift results in ability to collect two neutron images: Primary (13-17 MeV) & Down Scattered (10-12 MeV)
The imager is composed of 20 pinholes and 3 mini-penumbra, machined in 20 cm of layered gold and tungsten, with an apex at 32.5 cm from the source, to produce images in a scintillator array at 2800 cm. This geometry provides a magnification factor of ~85 for the pinholes and ~65 for the penumbra at the scintillator location, which is a coherent array of scintillating fibers, viewed from the two ends by two fast-gated image collection systems.
Gated Camera system
Flat field data were collected in calibration shots to study different pixels in the scintillator array. Before and after each shot, dark field data were collected to measure the background in the CCD camera outputs. The image is corrected for these backgrounds. Occasionally, nuclear interactions with some pixels show themselves as saturated signals. Those pixels are corrected by taking average of neighboring pixels. Downscattered image must be aligned to the primary image and intensity measurements for each pixel must be corrected for the residual light in the scintillator from primaries. Direct drive (≈ 0 cold fuel ρR) implosion data provides this correction. Residual light background was found to be ≈1%.
Detector contribution to resolution is set by the range of the recoil protons in the scintillator material. This was estimated to be around 14 (camera 1) and 12 (camera 2) μm.

The contribution of the pinhole to the resolution was determined by the effective pinhole size, which is ~19 μm. The total system resolution can be approximated by:

\[
\sigma_I = \sqrt{\left(\frac{r}{m}\right)^2 + a^2} \approx 23 \mu m
\]

\[
\sigma_p = \frac{a\left(\frac{L_1 + L_2}{L_1}\right)}{\left(\frac{L_2 - L_1}{L_1}\right)} \approx a\left(1 + \frac{L_1}{L_2}\right)
\]
Data reconstruction and results

The current yields from ICF implosions enabled us to observe the down scattered neutrons with the penumbral apertures. The pictures below show the steps in the reconstruction of the source intensity profiles from the raw images. The first step is to determine the pointing offset of the selected aperture with respect to the source position and produce appropriate point spread function. The pointing information was obtained by comparing the intensity variation in the pinhole array with the roll-off function of intensity through the pinhole for different source positions. The PSF function was also obtained by calculation of neutron transmission through the aperture by using MCNP simulations. Then the image is inverted with iterative maximum likelihood technique to obtain source intensity distribution.
N110615-Primary Neutrons C1 13-17 MeV

Background corrected
N110615-Downscattered Neutrons C2 10-12 MeV

Background corrected
Aligned to primary image
Corrected for residual light
N110608 - primary (top) and downscattered (bottom)

Residual: $\chi^2 = 2.20$ (101 iterations)

$P_0 = 28.47$
$P_2/P_0 = -7\%$

Residual: $\chi^2 = 1.64$ (51 iterations)

$P_0 = 54.56$
$P_2/P_0 = 7\%$

Preliminary
N110615 - primary (top) and downscattered (bottom)

Residual: $\chi^2 = 2.20$ (101 iterations)

Residual: $\chi^2 = 1.64$ (51 iterations)

$P_0 = 28.47$
$P_2/P_0 = -7\%$

$P_0 = 54.56$
$P_2/P_0 = 7\%$

Preliminary
We are in preparation to extract the number density distribution of scattering centers in the cold fuel, from which spatial distribution of the areal density of the cold fuel can be calculated. Understanding the areal density distribution of the cold fuel for each implosion experiment is important because the energy deposition of α particles that drive the ignition depends on it. High areal density will result in high energy deposition, which means a better chance of success to start ignition and burn the cold fuel with high efficiency. Currently, we are using a spatially averaged areal density to tune the ignition efforts. One of the important parameters for ignition is the ratio of the cold fuel shell radius to its thickness, which is referred as ‘in-flight aspect ratio’ (IFAR). With spatially averaged areal density, IFAR calculation will not account for the asymmetry of the cold fuel distribution. An asymmetry can cause non-uniform energy deposition from α particles and stop the propagation of burn throughout the cold fuel.
To calculate downscattered density distribution we define a new transport matrix, M_{jk} that directly relates the number density distribution of the cold fuel n_j to flux of downscattered image Ψ_k such that

$$\Psi_k = \sum_j M_{jk} n_j$$

The new transport matrix is given by

$$M_{jk} = A_{jk} \sum_i \frac{Q_i}{l_{ij}^2} S_{ijk}$$

where A_{jk} is the aperture PSF, Q_i is the hot spot source distribution (reconstructed from primary neutron image), l_{ij} is the distance between primary neutron sources in the hot spot and the scattering centers in the cold fuel and S_{ijk} is the angular scattering distribution of the scattering centers in the cold fuel. At the moment, this calculation assumes a cylindrical symmetry in the hot spot and cold fuel distributions since we can only get two dimensional flux distribution of three dimensional source.
R_cf / R_hs for various shots

N110603-001 N110608-002 N110615-003 N110826-001

1.55 1.45 1.47 1.78
Spatially averaged DSR vs. RCF/RHS

Calculated from penumbra signals by taking the ratio of average intensities. Currently our spatially calculated DSR values are ~20% different than other diagnostics calculate.
Acknowledgements

This work was performed for the U.S. Department of Energy, National Nuclear Security Administration and by the National Ignition Campaign partners; Lawrence Livermore National Laboratory (LLNL), University of Rochester -Laboratory for Laser Energetics (LLE), General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL). Other contributors include Lawrence Berkeley National Laboratory (LBNL), Massachusetts Institute of Technology (MIT), Atomic Weapons Establishment (AWE), England, and Commissariat à l’Énergie Atomique (CEA), France. Prepared by LLNL under Contract DE-AC52-07NA27344