Title: Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation

Author(s): Timothy Hayes, Los Alamos National Laboratory
Roger Nelson, Department Of Energy

Intended for: WM2012 Conference, February 26 – March 1, 2012, Phoenix, Arizona, USA
Terminating Safeguards on Excess Special Nuclear Material: Defense TRU waste Clean-up and Nonproliferation

Tim Hayes, Los Alamos National Laboratory, Carlsbad Operations
Roger Nelson, Department Of Energy, Carlsbad Operations Office
U. S. Nuclear Weapons Stockpile, 1945-2009

From DOE Fact Sheet: Increasing Transparency in the U.S. Nuclear Weapons Stockpile, May 3, 2010
NNSA Weapons Complex Transformation

PRESENT FACILITIES

FUTURE CONSOLIDATED AND MODERNIZED FACILITIES

FOOTPRINT: > 35 MILLION SQUARE FEET FOR WEAPONS WORK

FOOTPRINT: < 26 MILLION SQUARE FEET FOR WEAPONS WORK

DENOTES SITE WITH SPECIAL NUCLEAR MATERIALS REQUIRING HIGHEST LEVELS OF SECURITY

KEY

- Nuclear Design & Engineering
- Non-Nuclear Design & Engineering
- Supercomputing Platform Host
- Major Environmental Testing
- High Hazard Testing
- Tritium Operations
- Uranium
- Plutonium
- Weapons Assembly & Disassembly
- Non-Nuclear Production

* Does not include production of detonators at LANL or neutron generators and microelectronics at SNL

What is excess SNM?

• SNM = Special Nuclear Material
 – Plutonium
 – Uranium-233
 – Enriched uranium

 Fissionable materials that could be used to manufacture nuclear weapons

• Excess
 – Fissile materials declared permanently withdrawn from:
 • use in nuclear weapons
 • use in national security weapons-related activities.
 – Nuclear materials that are no longer needed to support current or future national security requirements.

• Excess ≠ Waste
What is surplus SNM?

• Surplus SNM is Excess plus no DOE programmatic use

• Disposition - make “non-weapons-usable”
 – Consumption in DOE or non-DOE programs
 – Storage in a non-weapons usable form
 – Disposal as waste

• Disposal as waste
 – Assures isolation from the biosphere
 – Little or no maintenance
 – Little or no intent of retrieval
 – Requires deliberate and detectable action to gain access after emplacement
Disposal of Excess-No Programmatic SNM

- WIPP Mission – Defense TRU waste disposal
 - Usually contains Pu
 - Does not require SNM safeguards
 - Final waste form must have safeguards terminated at the generating site
Understanding Safeguards Termination

• Basis of Graded Safeguards of SNM
 - Attractiveness
 • Reflects the relative ease of processing and handling required to convert that material to a nuclear explosive device
 • Not affected by how the material is stored or packaged
 - Category
 • A designation that is based on the attractiveness and amount of material

• Category is used to identify the level of protection at the site

• All materials coming to WIPP have safeguards terminated
Graded Safeguards

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>WEAPONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembled weapons and test devices</td>
<td>A</td>
<td>All</td>
<td>N/A</td>
</tr>
<tr>
<td>PURE PRODUCTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pits, major components, button ingots, recastable metal, directly convertible materials</td>
<td>B</td>
<td>≥2</td>
<td>≥0.4<2</td>
</tr>
<tr>
<td>HIGH-GRADE MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbides, oxides, nitrates, solutions (≥25g/L) etc.; fuel elements and assemblies; alloys and mixtures; UF₄ or UF₆ (≥50% enriched)</td>
<td>C</td>
<td>≥6</td>
<td>≥2<6</td>
</tr>
<tr>
<td>LOW-GRADE MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solutions (1 to 25 g/L), process residues requiring extensive reprocessing; Pu-238 (except waste); UF₄ or UF₆ (≥20% < 50% enriched)</td>
<td>D</td>
<td>N/A</td>
<td>≥16</td>
</tr>
<tr>
<td>ALL OTHER MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly irradiated² forms, solutions (<1g/L), compounds; uranium containing <20% U-235 or <10% U-23³³^(any form, any quantity)</td>
<td>E</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹The lower limit for Category IV is equal to reportable quantities in this Order.

²The total quantity of U-233 = (Contained U-233 - Contained U-235). The category is determined by using the Pu/U-233 side of this table.

³In this Order "highly irradiated is defined in Attachment 4(Definitions).
Graded Safeguards

<table>
<thead>
<tr>
<th>Material Types</th>
<th>Pu/U-233 Category (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-GRADE MATERIALS</td>
<td></td>
</tr>
<tr>
<td>Carbides, oxides, nitrates, solutions (≥25 g/L) etc.; fuel elements and assemblies; alloys and mixtures; UF₄ or UF₆ (≥50% enriched)</td>
<td>C ≥6 ≥2<6 ≥0.4<2 <0.4</td>
</tr>
<tr>
<td>LOW-GRADE MATERIALS</td>
<td></td>
</tr>
<tr>
<td>Solutions (1 to 25 g/L), process residues requiring extensive reprocessing; Pu-238 (except waste); UF₄ or UF₆ (≥20% < 50% enriched)</td>
<td>D N/A ≥16 ≥3<16 <3</td>
</tr>
<tr>
<td>ALL OTHER MATERIALS</td>
<td></td>
</tr>
</tbody>
</table>
Graded Safeguards

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WEAPONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembled weapons and test devices</td>
<td>A</td>
<td>All</td>
<td>N/A</td>
</tr>
<tr>
<td>PURE PRODUCTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pits, major components, button ingots, recastable metal, directly convertible materials</td>
<td>B</td>
<td>≥2</td>
<td>≥0.4<2</td>
</tr>
<tr>
<td>HIGH-GRADE MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbides, oxides, nitrates, solutions (≥25g/L) etc.; fuel elements and assemblies; alloys and mixtures; UF₄ or UF₆ (≥50% enriched)</td>
<td>C</td>
<td>≥6</td>
<td>≥2<6</td>
</tr>
<tr>
<td>LOW-GRADE MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solutions (1 to 25 g/L), process residues requiring extensive reprocessing; Pu-238 (except waste); UF₄ or UF₆ (≥20% < 50% enriched)</td>
<td>D</td>
<td>N/A</td>
<td>≥16</td>
</tr>
<tr>
<td>ALL OTHER MATERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly irradiated³ forms, solutions (<1g/L), compounds; uranium containing <20% U-235 or <10% U-233²(any form, any quantity)</td>
<td>E</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹The lower limit for Category IV is equal to reportable quantities in this Order.

²The total quantity of U-233 = (Contained U-233 - Contained U-235). The category is determined by using the Pu/U-233 side of this table.

³In this Order "highly irradiated is defined in Attachment 4(Definitions).
Figure 1-1. Decision tree for determination of material attractiveness level for special nuclear material.
Four conditions for Termination of Safeguards

1. Excess and of no programmatic value
2. Meets attractiveness level E or has obtained approval to terminate safeguards
3. Transferred to a waste management reporting identification symbol
4. Not collocated with materials which are still in the accountability system for safeguarded materials

Reminder: Attractiveness Level is associated with the properties of the material not how it is stored or packaged.
Termination of Safeguards

Attractiveness Level D material

- Attractiveness Level D: Low Grade Materials
 - Residues requiring extensive reprocessing
 - Pu-238 that is not waste

- Blend or Process to Attractiveness Level E
 - Expensive
 - Large increase in volume

- Perform a Security Analysis to assess risk
 - Most sites have done this successfully
 - Uniform waste acceptance for WIPP
 - Waste acceptance not Attractiveness dependant
 - Does not significantly increase of adversarial actions
 - Theft of a Category II quantity
 - Radiological Sabotage
Termination of Safeguards
Attractiveness Level C material

• Attractiveness Level C: High Grade Materials
 – Carbides, oxides, nitrates, fuel elements, alloys, mixtures

• Blend with chemical compounds to reduce the attractiveness to Level D
 – Reduce plutonium solubility
 – Decrease recovery efficiency
 – Increase processing complexity
Blending materials

- Concept developed and tested at RFP called "Stardust"
- Chemical additives by property
 - Cementing agents
 - Gelling agents
 - Thickening agents
 - Foaming agents
 - General additives
- Can be tailored to match the physical properties of the attractiveness C material
- Usually blend down to less than 10% Pu in the final form.
Termination of Safeguards
Attractiveness Level B material

• Attractiveness Level B: Pure Materials
 – Pits, button ingots, re-castable metal, directly convertible materials

• Most likely disposition is not discard
 – MOX (to be consumed)

• Discard
 – Oxidize (making it attractiveness level B)
 – Blend with chemical compounds to reduce the attractiveness to Level D
Packaging for WIPP - POC

- Currently limited to 200 Pu-239 Fissile Gram Equivalents
 - Typical weapons grade Pu (MT 52) is 0.94 Pu-239 FGE/g Pu
 - Add 2 times the measurement uncertainty
 - 150 - 175 g Pu per container
 - 35 in a shipment
Criticality Control Overpack

- ~380 Pu-239 FGE
 - 2 times the uncertainty
- 70% cost of POC
- 42 per shipment
- Only in 6 inch