Status of Fukushima Muon Tomography Project

LANL/TEPCO Meeting
Los Alamos, NM USA

Cas Milner
Reactor Imaging Team: Jeff Bacon, Konstantin Borozdin, Haruo Miyadera, Chris Morris, John Perry

Los Alamos National Laboratory
P-25, Sub-Atomic Physics Group
Outline

- **Previous developments**
 - Concept demonstration
 - Simulation
 - TEPCO-LANL Fukushima radiation measurements

- **Recent developments**
 - Material identification analysis
 - 3-d visualization
 - LANL-CC2 agreement
 - Simulation

- **Future developments**
 - Imaging small reactor
 - Site engineering and operations (“small fuku”)
 - New FPGA code to purify data read-out
LANL has been working on reactor muon imaging since April, 2011.

- **April, 2011**
 - First version of reactor muon imaging proposal
 - Communications with Japanese scientists and government officials

- **August, 2011**
 - Demonstration experiment shows muon tomography imaging of reactors possible
 - Confirmed by simulation models

- **February, 2012**
 - Washington, DC muon imaging workshop

- **May, 2012**
 - Tsukuba, Japan muon imaging workshop
 - TEPCO-LANL measurements at reactor site

- **August, 2012**
 - Los Alamos, NM, TEPCO-LANL workshop
Recent LANL work has answered critical questions.

- **Combining muon scattering and transmission analysis improves material identification**
 - Analyzing LANL data for both muon transmission and scattering shows amount and location of each kind of material: fuel, concrete, steel, water, etc.
 - Demonstration measurement completed
 - Paper submitted to physics journal.
 - Muon analysis could provide guidance for fuel extraction.

- **GEANT4 simulation shows images of melted fuel**
 - Simulations performed for fuel-condition scenarios suggested by Sugawara, *et al.*
 - Muon tomography analysis shows good detail of fuel location.
LANL demonstration apparatus approximated the Fukushima Daiichi reactor configuration.

- **Shielding**
 - Concrete blocks (~2.7 m) similar to 3-m reactor containment shielding

- **Targets**
 - 70-cm of Pb (~126 L_{rad}) equivalent to ~2.8-m thick reactor fuel (~124 L_{rad})
 - Several tons of Pb bricks in various shapes
 - Approximation to melted masses of uranium in reactor

- **Detectors (5-cm-diameter aluminum drift tubes, sealed, filled with gas)**
 - Placement and size approximated possible Fukushima deployment:
 - Demonstration: ~7-m separation, 1.2-m x 1.2-m detector (~1.4-m²)
 - Fukushima: ~50-m separation, 8.4-m x 8.4-m detector (~70.6-m²)
 - Angular acceptance: between 11° and 26° above horizon
 - Decision Sciences Corporation can manufacture complete system
 - Drift tubes (can make ~300 per day per shift)
 - Electronics
 - Software (data acquisition, online processing, real time reconstruction)
The experiment used previously constructed detectors.

- Two sets of trackers (MMT – Muon Mini-Tracker)
- Each tracker set has 3 x-y pairs planes, for a 6-fold tracking coincidence, in and out.
- Tracker sets moved to “mock reactor”.
- One set placed high on shielding, to track incoming muons.
- Other set placed low on the “exit” side of the shielding.
Concrete shielding thickness was similar to reactor containment shielding.
The demonstration apparatus approximated the cross section of a reactor.

Concrete
Muon mini-tracker (MMT) set
Target region

All distances in meters (m)
Angles are in degrees, and are with respect to horizon.
The multiple scattering distribution is wider for high-Z objects; muon scattering distribution shows material composition.
A target of 80-, 40-, and 20-cm of lead (Pb) was imaged.

- 210 hours of data
An 80-cm-thick Pb target, with “conical void” was imaged – an attempt to approximate TMI core.

- 4.5 tons of Pb
- 500 hours data (20 days)
LANL continues working on critical issues.

- **Muon mini-tracker (MMT) will be used to image small reactor**
 - Collaboration with University of New Mexico (Albuquerque) Dept. of Nuclear Engineering. Will measure image of reactor structure.
 - Uranium powder core, low power
 - Radiation environment similar to Fukushima Daiichi – good test of system.

- **Proposing engineering and operations systems test at Fukushima site**
 - Determine detector shielding requirements.
 - Operate at site – electronics, data acquisition, experiment control.
 - Demonstration system operations at Fukushima site

- **Test efficiency of FPGA firmware signal coincidence**
 - New FPGA code – standard technique for high-rate experiments
 - Track coincidence to lower single-hit radiation background rate and data read-out
 - Test at LANL
Muon tomography is a mature technology deployed in shipping ports
- Robust system – operates outdoors.
- Fukushima Daiichi site is harsher – radiation and clean-up site
- Demonstrating solutions to operating in harsh conditions will lowering risk.

Engineering test components and assumptions:
- Detector system components will be purchased from vendors
- System will be assembled and tested at LANL
- TEPCO personnel will be trained on system installation and operation at LANL
- Complete apparatus will be shipped from US to J-Village (site of final preparations)
- System will be installed and operated at FD by TEPCO with LANL assistance
- Data collection and remote operations via wireless connection, and transmission of data to LANL computers in US. LANL scientists do not have to be at FD during measurement
- Data analysis performed in US by LANL team
- Decontamination and removal of system from FD will be done by TEPCO
Test can be deployed quickly in container.

- **Radiation**
 - Shield thickness
 - Radiation safety
 - Detectors (singles rate)
 - Electronics

- **Demonstrate Solution**
 - Remote operation
 - Remote Data Collection
 - Tracking efficiency as function of shield thickness

Los Alamos National Laboratory
EST. 1943

Operated by Los Alamos National Security, LLC for NNSA
Specific risk reductions can be anticipated.

- **Risks**: $, ￥, delays, operations, impaired measurement
 - Unanticipated problems ALWAYS arise

- **Shielding study**
 - Optimize shielding design for the full imaging measurement

- **Wireless data collection**
 - Show wireless and GPS systems can operate in FD site environment.

- **Electric power**
 - Operational data and experience guiding robust system design

- **Redundancy for avoiding system failure**
 - Select redundancy features
 - Exercise recovery mode

- **System installation and operations**
 - Designs and procedures minimize personnel radiation exposure associated with installation and operations.
Test occupies smaller space than full deployment – on both sides.
Muon scattering can provide best images of reactor fuel.

- **Thick targets imaged inside very thick concrete shield**
 - 2.7-m of concrete – similar to Boiling Water Reactor (BWR)
 - 80-cm of Pb – similar to areal-density thickness of reactor fuel
 - ~ months to image each target

- **Scale-up to reactor**
 - Detectors would be at building exterior, ~50 m apart
 - Maintain ~ same solid angle with detectors 5-m x 10-m (commercially available)
 - Measure image showing location of fuel
 - Reactor “view” depends on location of detectors
 - Similar to LANL demonstration – view of reactor pressure vessel (RPV)
 - Installed below ground – view of lower reactor containment
LANL, US DOE, and CC2 funds have supported our work.

- **LANL funding**
 - Demonstration measurement – completed (September, 2011)
 - TEPCO-LANL workshop
 - Small reactor imaging

- **DOE funding for**

- **CC2 Investor funds**
 - TEPCO-LANL workshop
 - Proposal preparation

- **Need TEPCO/METI funding for:**
 - Engineering and operations tests at Fukushima reactor
 - Engineering studies of shielding, support, installation, operations, etc.
 - Image cores of Fukushima reactors