Title: An in-situ ZnS(Ag) UCN detector: conceptual studies

Author(s): Wang, Zhehui
Morris, Christopher
UCNTau, collaboration

Intended for: discussion with potential external collaborators
Web

Issued: 2014-03-27
An in-situ ZnS (Ag) UCN detector

Z. Wang, C. L. Morris for the Lifetime Experiment

Los Alamos National Laboratory

Updated: Mar 21, 2014
Proposed measurement

- No material barriers in-between UCN’s and detector
- Real time
- UCN Spectroscopy (Adjustable in height)
Detection principle ($n \gg \alpha$, $^7\text{Li} \gg h\nu \gg e^-$)

$10^B + n \rightarrow ^7\text{Li} (0.84 \text{ MeV}) + \alpha (1.47 \text{ MeV}) + \gamma (0.48 \text{ MeV}), \quad (94\%)

$^7\text{Li} (1.02 \text{ MeV}) + \alpha (1.78 \text{ MeV}), \quad (6\%)$
Charge propagation

![Graph showing charge propagation in ZnS (Micron) vs. energy (keV), with distinct lines for different particles such as ^4He and ^{241}Am]
ZnS (Ag) / Light yield

- Proven use for MeV charge particle detection
- Inorganic scintillator
- Eljen
 - 120 um thick substrate
 - 16 um average particle size
 - 4.09 g/cc
- Other suppliers
Component Testing
(for detector design)

- ZnS (Ag) Thickness
- Sensitivity to alpha’s w/different energies;
- Noise/background
- $h\nu \rightarrow e$ detector selection
Testing setup
α-response (on-contact)

/home/ucnbdaq/FADC/Data/Test/Processed/run235D.root

<table>
<thead>
<tr>
<th></th>
<th>g0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>85879</td>
</tr>
<tr>
<td>Mean</td>
<td>490.8</td>
</tr>
<tr>
<td>RMS</td>
<td>417.7</td>
</tr>
</tbody>
</table>

![Graph showing α-response for Am-241, Gd-148, and background (bkg).]
PSD interpretation/Thin-Slab model

ZnS

Straggling \rightarrow broadening (convolution function)
ZnS thickness scan (Thick slab)

1x = 3.25 mg/cm² (7.9 um)

(< 4 um thickness)
Alpha energy scan (II)

/home/ucnbdaq/FADC/Data/Test/Processed/run254D.root

<table>
<thead>
<tr>
<th>g0</th>
<th>Entries</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>843451</td>
<td>352.5</td>
<td>576.9</td>
</tr>
</tbody>
</table>

300 s

0x, 2x, 4x, 6x, 8x, 10x, 12x, 14x thickness (1.473 mm)
PSD interpretation

ZnS

ZnS
Summary

• ZnS(Ag) substrates characterized through alpha-particle measurements
 – Am-241, Gd-148 sources;
 – 3” PMT
 – ZnS different thickness, manufacturers

• PSD can be explained by charge particle stopping + straggling

• Prototype fabrication underway
 – Detector design (3” diameter)
 – B-10 coating (~ 100 nm thick)