Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Spin Physics with PHENIX Experiment’s MPC-EX Calorimeter Upgrade.

Xiaodong Jiang, Los Alamos National Laboratory (for the PHENIX Collaboration).

Abstract:
The PHENIX forward EM calorimeter upgrade, the MPC-EX detector, is a Si-W preshower extension to the existing PHENIX Muon Piston Calorimeters (MPC). The MPC-EX will consist of eight layers of alternating W absorber and Si mini-pad sensors and will be installed for RHIC Run-15 p+p and p+A collisions. Covering a large pseudorapidity range, 3.1 < \eta < 3.8, the MPC-EX and MPC access high-x partons in the projectile nucleon (and low-x partons in the target nucleon) in p+A and transversely polarized proton-proton collisions at 200 GeV. With the addition of the MPC-EX, the neutral pion reconstruction range extends to energies > 80 GeV, a factor of four improvement over current capabilities. The MPC-EX will strengthen PHENIX’s existing forward neutral pion and jet-like events measurements, it will also provides the necessary neutral pion rejection to make a prompt photon measurement feasible in both p+A and p+p collisions. With this neutral pion rejection, prompt (direct + fragmentation) photon yields at high p_T, p_T > 3 GeV, can be statistically extracted. In p+A collisions direct photons at forward rapidities are optimally sensitive to the gluon distribution. A measurement of the forward prompt photon R_pA and A_N will cleanly access the gluon nuclear distribution functions and the scale of saturation, and provide important information about the initial state in heavy ion collisions. In transverse p+p collisions the MPC-EX will make possible a measurement of the prompt photon single spin asymmetry A_N, to address the process dependency of valence quark Sivers distribution.