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Perturbation Theory 

Perturbation theory 
methods used to obtain 

is a vast collection of mathematical 
approximate solutions to problems that 

have no closed-form analytical solutions. The methods work 
by reducing a hard problem to an infinite sequence of relatively 
easy problems that can be solved analytically. Often, solving 
the first few of these provides an accurate approximation to the 
solution of the original hard problem. 

A simple example illustrates the idea of perturbation 
theory. Consider the quintic polynomial 

By drawing a graph of this equation and showing that its slope 
is always positive, we see that Eq. (1) has just one positive 
root. We cannot determine its numerical value analytically 
because there is no algebraic formula for the roots of a quintic 
polynomial. However, a perturbative approach reduces the 
problem to a sequence of almost trivial problems. 

First, we introduce a perturbation parameter 8, which we 
specify to be small. 

With e small, we assume that the roots x(e) have a Taylor 
expansion in powers of c. 

and 

a5 - 1 = 0 + a = 1 (here we take the real root), 
5a4b + a = 0 +- b = - 115, 
5ca4 + 10a3b2 + b = 0 + c = - 1/25, 
5a4d + 20a3bc + 10a2b3 + c = O +  d = - 11125, 

so on. We thus have determined that 

The perturbation parameter e plays a crucial role because it 
organizes the hard problem in Eq. (1) into a sequence of much 
easier problems, which in this case involve finding the coeffi- 
cients a, b, c, d, ... . 

If we set e = 1, we recover the original Eq. (1) from Eq. (2) 
and obtain a rapidly convergent series representation for its 
perturbative solution. 

The exact value for x(1) found by solving Eq. (1) numerically 
on a computer is 0.754878 ... . Thus, our perturbation solution 
is impressively accurate. We could have found perturbation 
series for the other four (complex) roots by starting with any of 
the other four solutions to a5 - 1 = 0. 

Singular Perturbation Problems 

The problem just considered is a regular perturbation 
problem; that is, its solutions vary smoothly as the per- 
turbation parameter e approaches zero. The problems of 
interest here are singular perturbation problems; their solu- 
tions change abruptly in some way as e reaches zero. Some or 
all solutions either might cease to exist or might become 
infinite or degenerate. To illustrate, we can make Eq. (1) into a 
singular perturbation problem by introducing e in a different 
way, for example, 

Using this expansion we represent the terms in Eq. (2) as 
expansions : 

and 

Substituting these expansions 
coefficients of like powers of e, 
gives a sequence of equations 
coefficients of Eq. (3). 

into Eq. (2), collecting the 
and setting them equal to zero 
that are easily solved for the 

This problem is singular because e multiplies the highest power 
of x in the equation. As a result, when e -+ 0, the degree of the 
polynomial suddenly changes from 5 to 1. Moreover, a 
fifth-degree polynomial has five roots and a first-degree 
polynomial has one root, so in the limit e Ã‘ 0 four roots 
disappear entirely. As e -+ 0, the roots move off to infinity in 
the complex plane according to 1 x 1 - e l f 4  . (See Fig. 1.) The 
fact that the character of this problem changes abruptly as 
e -+ 0 identifies it as a singular perturbation problem. 

The series expansions for singular perturbation problems are 
more complicated than the Taylor series in Eq. (3). Often they 
are not in Taylor form (a series in integer powers of E), and 
usually they are divergent series. These problems sound so 
formidable that one might be tempted to avoid them complete- 
ly. However, avoiding them is often not possible or even 
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Fig. 1. The dots indicate the position of the five roots x(e) of 
sx5 + x - 1 = 0 as E Ã‘ 0. One root approaches 1 while the 
other four move out to infinity according to \x\ - e114. 

desirable. In many physical problems, a natural small parame- 
ter E occurs in such a way that the problem is automatically 
singular. For example, the time-independent Schrodinger equa- 
tion, 

contains the natural small parameter h2/(2m). In the classical 
limit of the quantum system defined by h w m  + 0, this 
equation becomes a singular perturbation problem because its 
character changes abruptly from a differential equation to an 
algebraic equation. 

Even when physics doesn't dictate that a perturbation 
problem be singular, we may want to introduce a perturbation 
parameter E to make the problem singular. Although the 
resulting perturbation series may be divergent, it is usually 
asymptotic. (Roughly speaking, an asymptotic series E anen is 
one that diverges but also has the remarkable property that the 
first few terms provide an accurate approximation to the sum 
for sufficiently small E.) Moreover, using modern summation 
techniques that have come into wider use over the last 20 years 
(Pade approximants and the Bore1 summation), we may obtain 
a more accurate numerical result from 3 or 4 terms of the 
divergent series than from 10 or 20 terms of a convergent 
series even when the perturbation parameter E is large. 

Boundary-Layer Theory 

Boundary-layer problems, a special class of singular per- 
turbation problems, provide the simplest context for introduc- 

BOUNDARY 

Fig. 2. A plot of the solution to the boundary-value problem 
ey" + y' = 0, fl) = 0, y(1) = 1. This is a singular 
perturbation problem because the curve in the boundary-layer 
region becomes steeper as E approaches zero and becomes 
discontinuous when e reaches zero. The boundary-layer region 
extends from x = 0 to x E e. 

ing our new perturbative techniques. Nearly all boundary- 
layer problems are differential equation problems in which the 
highest derivative term is multiplied by a small parameter. A 
simple mathematical example will explain the appearance of a 
boundary layer. 

Consider the boundary-value problem 

The exact solution to this problem is 

its graph for various values of e is shown in Fig. 2. As 6 

decreases the curve becomes steeper in the region from x = 0 
to x z E. This region, in which y(x) exhibits transient behavior 
or rapid variation, is called a boundary layer. In fact, y(x) 
becomes discontinuous as E decreases to zero. Equation (5) is 
a singular perturbation problem because the order of the 
differential equation changes abruptly from 2 to 1 as e + 0. 
Since a first-order differential equation cannot satisfy two 
independent boundary conditions, the solution ceases to exist 
when E = 0 and a discontinuity appears in y(x). 
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Conventional Solutions 

A review of the well-known conventional methods for 
obtaining the first approximation (the first term in the per- 
turbation series) to the solution of a very general boundary- 
layer problem provides a contrast to our radically new 
approach. 

We consider a boundary-value problem of the form 

where E is a small positive parameter. This equation is a 
generalization of Eq. (5). A and B are arbitrary numbers, and 
a(x) and b(x) are completely arbitrary continuous functions of 
x. From boundary-layer theory, we know that if a(x) is 
nonzero, the term a(x) [dy(x)/dx] acts as a "friction" force, 
which results in a boundary layer. If a(x) > 0 for 0 < x 5 1 
(positive damping), the boundary-layer occurs immediately at 
x = 0. If a(x) < 0, the boundary layer occurs at x = 1. In 
general, the thickness of a boundary layer is determined by a 
scaling transformation on the differential equation. For Eq. (6) 
with a(x) positive, the boundary layer has thickness E and lies 
in the region x = 0 to x E. (See Fig. 3.) Although Eq. (5) [a 
special case of Eq. (6)] is simply solvable, in general Eq. (6) 
has no closed-form analytic solution. As with the quintic 
polynomial in Eq. (I), we must use perturbation methods to 
obtain an approximate solution. 

To solve the boundary-value problem in Eq. (6) approx- 
imately for small E, we make several inspired observations, 
which allow us to approximate the solutions inside and outside 
the boundary-layer region and to match these solutions. First, 
we consider the boundary-layer region where the solution y(x) 
varies rapidly and is very steep. To be precise, scaling 

. arguments-referred to above tell us that a(x) [dy(x)/dx] is much 
larger than b(x)y(x) in the boundary-layer region (order I/& 
compared with order 1). (See Fig. 2.) Moreover, since the 
boundary layer from x = 0 to x z e is very narrow, we can 
approximate the function a(x) by a(0). Hence, inside the 
boundary-layer region, we may replace Eq. (6) by the much 
simpler equation 

Equation (7) is easy to solve because it is a constant-coefficient 
equation. The solution that passes through A at x = 0 is 

where C is an arbitrary constant. 
Second, we consider the region outside the boundary layer, 

where y(x) varies very slowly. Thus, edyx)/dx2 is small 
compared with a(x) dy(x)/dx + b(x)y(x), and we may replace 
Eq. (6) by the first-order equation 

The solution that passes through B at x = 1 is 

To determine C in Eq. (8) we use the sophisticated 
perturbative method called asymptotic matching. Roughly 
speaking, we demand that Eqs. (8) and (10) agree in the region 
just to the right of the boundary layer, say at x = \/K. This 
gives 

A simple and elegant expression combines the results in 
Eqs. (8) and (10) to give a good uniform approximation to y(x) 
over the entire region 0 < x < 1. 

The expression in Eq. (11) differs from the exact solution to 
Eq. (6) by terms of order E. (See Fig. 3.) 

This conventional approach to the solution of boundary- 
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BOUNDARY 
LAYER 

Fig. 3. A schematic comparison between the exact solution of Eq. (11). The approximate solution dvers from the exact 
the general linear boundary-layer problem in Eq. (6) and the solution by terms of order E. The boundary-layer region 
leading-order uniform approximation to the exact solution in extending from x = 0 to x zz E is shown. 

layer problems is widely known and well used. However, even 
the approximate equations that must be solved inside or 
outside the boundary layer cannot be solved analytically in 
some cases. Differential equations that are nonlinear or higher 
than second order present such d~cul t ies ;  ordinarily they are 
solved numerically on a computer. With our new methods, 
these problems can be solved without recourse to large 
computer codes. 

And Now For Something Completely Different 

Our approach to boundary-layer problems is quite different; 
we will actually solve a singular boundary-layer problem as a 
regular perturbation problem. The approach has two parts. 
First, we replace the differential equation by a difference 
equation on a lattice. The replacement allows us to express the 

solution as a regular perturbation series in powers of e as long 
as the lattice spacing a is held fixed and finite. Second, we take 
the lattice spacing a to zero to recover the answer to the 
original problem in the continuum. However, this limit is very 
peculiar because, as the lattice spacing goes to zero, the 
perturbation parameter e goes to infinity. The perturbation 
series originally obtained in the limit of small E is now infinite 
term by term. We use clever summation techniques to 
determine a finite answer-an answer that approximates the 
behavior in the boundary layer to surprisingly good accuracy. 

We present the new perturbative methods in an application 
to the nonlinear two-dimensional wave equation for the 
function u(x,t). 
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The equation has a static solution, called a kink, whose 
analytical form is 

x 
u(x) = tanh - . 

V 2  

The kink solution solves the boundary-value problem 

We know that Eq. (13) is a singular perturbation problem 
because the highest derivative in the equation is multiplied by E 

[as are the highest derivatives in Eqs. (5) and (6)]. Also, the 
kink solution Eq. (12) exhibits typical boundary-layer struc- 
ture; u(x) varies slowly except in the boundary-layer region 
-E 5 x < e, where it rapidly goes from -1 to 1. (See Fig. 4.) 

To find u(x) we begin by changing the differential equation 
to a difference equation. That is, we consider space to be made 
up of a lattice of distinct points with the spacing a between 
them held fixed. The points x are denoted by na (n = 0,1,2, ...) 
and u(x) becomes u(na) = un. The derivatives of u on the 
lattice become finite differences; in particular, 

The difference equation for Eq. (13) is thus 

In the first part of our approach, we hold the lattice spacing 
a fixed while we solve Eq. (14) perturbatively for small e. With 
a held fixed and E small, the natural expansion parameter for 
the problem is 

We therefore expand un for each value of n as a power series in 
5, 

Fig. 4. The so-called kink solution to the equation s2un + u - 
u3 = 0, u(0) = 0, = I .  Observe that u(x) rapidly goes 
from -1 to I in the boundary-layer region when E is small. 

just as we did in Eq. (3) for the regular perturbation problem in 

Eq. (2)- 
We impose the initial conditions by taking 

Note that these conditions solve the unperturbed problem 
(5 = 0) and thus follow the usual approach in regular 
perturbation problems. Substituting Eq. (15) into Eq. (14) and 
comparing powers of 6, just as we did in solving Eq. (2), 
routinely gives the perturbation coefficients. The un at the first 
few points on the lattice near x = 0 are 

where we have calculated un to the fourth order in 6 and have 
lined up the contributions according to the order of the 
perturbation expansion in which the terms appear. (If k is the 
order of the expansion, the matrix uAk) is triangular for k >. 1.) 
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ZERO ORDER E D  

LATTICE a -1 
SPACING 

(a Ã‘> 0). Since all the points u,, shrink to the origin as a -+ 0, 
we cannot determine the value of u(x) in the boundary layer by 
taking the continuum limit of Eq. (15) directly. However, the 
derivatives of u(x) at the origin are defined in this limit and can 
be determined from the usual definitions, 

Ul  - uo 
uf(0) = lim - , 

a+-0 a 

U, + U_, - 2u0 
u"(0) = lim 

a2 
9 

a+-0 

and so on. In many cases, the derivatives themselves are of 
physical interest, and further, we can reconstruct the function 
in the boundary layer from its Taylor series, 

How well can we determine the first derivative at the origin 
uf(0) from Eq. (14)? From the exact solution given by Eq. (12) 
we know that 

Using the expansions in Eq. (1 6), we have the following result 
for the first derivative at the origin. 

The boundary structure develops as we go to higher orders 
of the perturbation expansion (higher powers of 6). We 
determine one point in the boundary layer in the first order, 
two points in the second order, three points in the third order, In the limit as a + 0, 6 is no longer small; in fact, 6 = &'/a2 

and so on. (See Fig. 5.) goes to infinity and 

It is a peculiarity of our method that the thickness of the 
boundary layer is na in nth-order perturbation theory, and the 1 6 6' 11 uf(0) = - lim i/6 (1 - - + - + - ti4 + ...) . 
boundary layer vanishes in the limit of zero-lattice spacing E &OO 2 8 128 (18) 
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The factor 1/e in Eq. (18) agrees with the I/& in the exact result We have developed a general procedure for summing a 
in Eq. (17). But does the limit of the series in Eq. (18) give series with N + 1 terms. Suppose we calculate a quantity Q(e) 
1 / 4 2 ?  This limit should be understood as follows: our as a series in powers of E. 

perturbation series has been derived by assuming that a is 
fixed and that e and therefore 6 are small. Now we must return 00 

to the continuum problem in Eq. (13) by taking a Ã‘Ã 0 and Q(E) = 6" a, en , 
n=0 

keeping e fixed; therefore we must take the limit 6 -+ w. 
Apparently we have a disaster-all terms in Eq. (18) diverge, 
and what is more, each new term approaches infinity faster where a is an arbitrary nonnegative exponent. Here we have 
than the preceding term because it has two additional powers generalized the notion of a Taylor series slightly to include the 
of a in its denominator. possibility of an overall multiplicative fractional power of e. 

Everything has been routine until now; why do such This series is just like the series in Eq. (18) if we set 6 = 6 and 
unpleasant dificulties arise? The answer is that we have been a = 112. Now we can calculate Q(m) knowing only N + 1 
treating what is fundamentally a singular perturbation problem terms in the series, if we know that Q(m) is finite. 
as a regular perturbation problem by seeking perturbation We proceed to manipulate the series in Eq. (20) until we 
series in the form of Taylor series [Eq. (5 ) ] ,  and the create a structure that has a finite limit as e -+ oo. First, we 
mathematics is trying to make us pay for our naivety. We will raise both sides of Eq. (20) to the power l/a. 
return to Eq. (18) after we have resolved this dificulty. 

How To Sum The Series QO + oo + oo + QO + ... And 
Get a Finite Answer 

An elementary example will explain how the series in Eq. Using the usual rules for exponentiating a Taylor series, we 
(18) can have a finite sum in the limit a + 0. Suppose we are can rewrite Q"" in the following form. 
asked to expand \/x in a Taylor series about x = 0. The 
request seems unreasonable because this function does not 
have such a series (all derivatives of \/x are singular at x = 0). 

Q(&)l/' = & y bn en 

Nevertheless, we have an idea. We introduce a lattice spacing 
& 

a and consider the function (x + a)ll2, which does have a -- - 

Taylor series about x = 0. ZCIF" 

(19) Finally, we raise this equation to the integer power N. 

eN 
Q(&lN" = 

In the limit a Ã‘> 0 every term after the first becomes infinite, y ckN) en 
just as in Eq. (18), but the sum of the series is not necessarily n=0 
infinite. Indeed, if we sum the series first, we obtain (x + a)^; 
then we can take the limit a -+ 0 and obtain the finite answer 

Vs. For all these Taylor series manipulations, we assume e is 
Thus we would like to sum the series in Eq. (18) before we small. 

take the limit a + 0 or 6 -+ a. Although we know all the Since we know only N + 1 terms in the series in Eq. (20), we 
terms in the series in Eq. (19), we know only a finite number, must work consistently and truncate the series in Eq. (21) at 
say N + 1, of terms in Eq. (18). If we know only N + 1 terms, n = N. Now we have a structure that is well-defined in the limit 
how can we trick the series in Eq. (18) into revealing its 8 + m ; in fact, as 6 + W, the only term that survives is 
approximate finite sum? l/c,?. 
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eN 
- 

1 
lim Q(E)~" - lim -- cg" " 
â‚¬+' E-Ãˆ cTO E" 

Thus we have obtained an approximate value for Q(oo), which 
we call QN. 

We refer to QN as the Nth approximant to Q(oo); in many 
problems QN tends to Q(w) as N Ã‘ a. More importantly, in 
most problems Qw rapidly gets very close to Q(w) when N 
is still quite small. Through a sequence of simple series 
manipulations we have converted the series in Eq. (20), which 
is meaningless as e Ã‘> w ,  into a series of well-defined 
extrapolants QN. 

An Example 

The convergent properties of the extrapolants QN are so 
surprising that we must demonstrate them with a specific 
example. The transcendental equation 

has one root between 0 and 1: 

Let us see if we can obtain this root perturbatively. We begin 
by introducing a perturbation parameter e in a most unusual 
way. 

We have chosen to introduce e this way for two reasons. First, 
the original equation in (23) is recovered in the limit e Ã‘> w .  
Second, the unperturbed problem [Eq. (24) with e = 01 is 
easy to solve: ln x + 1 = 0 + x = 1/e. With this solution for 
the unperturbed problem we proceed to find the rest of the 
perturbation series for e + 0 by the iterative methods discussed 

earlier for regular perturbation problems. The series for the 
root x(e) to Eq. (24) is - 

- .  - A, - -  :.2 
- b 

We would like to sum this series as e Ã‘Ã w using the general 
formula in Eq. (22), which requires that a # 0. To convert the 
series to a form in which a = 1, we multiply Eq. (25) by e, take 
the natural logarithm, and multiply by -1. 

The extrapolants for Eq. (26) defined by Eq. (22) yield a very 
rapidly convergent sequence for the roots of the transcendental 
equation in Eq. (23). 

x, = 0.271713639 , 
x, = 0.255 1457 10 , 
x3 = 0.260300667 , 
x4 = 0.258935592 , 
x, = 0.259336423 , 
xg = 0.259219343 , 
x, = 0.259254556 , 
xo = 0.259243826 , 
xn = 0.259247147 , 
xlo = 0.259246 107 , 
x,, = 0.259246436 , 
xI2 = 0.25924633 1 , 
x13 = 0.259246365 , and 

x14 = 0.259246353 , 

which is now correct to one part in lo8. 
Note that the extrapolants QN, which are all positive, are 

derived from a perturbation expansion that has both positive 
and negative terms. The remarkable fact that the first N 
coefficients in the series raised to the Nth power are all positive 
ensures that the extrapolants QN are always real. 
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a spin-off from
PARTICLE
PHYSICS
RESEARCH
o ur new techniques for singular perturbation prob-

lems were developed to solve mathematical prob-
lems that arise in a field-theoretic treatment of

strongly interacting particles. Strong forces mean that the
parameter describing the interactions between particles is
very large compared to other parameters in the problem.
This problem is very different from the weak-coupling
problems usually studied (such as those arising in quan-
tized electromagnetic interactions), in which the interac-
tion force is small (weak) and thus can be treated as a
perturbation on a system of freely moving, noninteracting
particles. The answers to weak-coupling problems are
expressed as power series in the strength of the small
interaction force.

In the strong-coupling case, we cannot treat the interac-
tion term as a perturbation since it dominates the
dynamics. Instead, we treat the kinetic energy term that
determines the motion of free particles as the perturbation.
The unperturbed system now consists of particles that
interact through strong forces but are motionless or frozen
in space time.

The strong-coupling or kinetic energy expansion is
singular because the kinetic energy can become arbitrarily
large. As a result, the terms in the perturbation expansion
in inverse powers of the coupling strength are not well
defined. To proceed we use an artifice: we model
space-time as a lattice of discrete points rather than as a
continuum. This trick, commonly used in particle physics,
prevents the momentum or kinetic energy from becoming

arbitrarily
but rather

large. Particle motion is no longer continuous
consists of hopping from site to site. Although

the dynamics on the lattice is unfamiliar, the
strong-coupling expansion of physical quantities becomes
well defined and very easy to compute, so easy that the
computations are purely algebraic and we can program
computers to do the manipulations to a very high order in
the perturbation expansion. However, the introduction of
a space-time lattice has a major drawback; it introduces
into the problem an artificial length, namely, the lattice
spacing a between lattice sites. To obtain physically
meaningful results, we must return to the continuum by
taking the lattice spacing a to zero. Performing this
singular and difficult limit was a central problem we solved
in our research.

We now realize that the introduction of a lattice and the

mathematical tool that can be applied to many singular
perturbation problems outside the realm of quantum field
theory. In general, it has the advantage of converting
singular perturbation problems that require a great deal of
mathematical subtlety and ingenuity into regular per-
turbation problems whose iterative solutions are straight-
forward and routine. We have used these methods to solve
a variety of singular perturbation problems such as
boundary-layer problems, and we have even used them to
elucidate the statistical mechanics of randomly driven
nonlinear oscillators ■
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Why Equation (22) Works

We can develop some intuition for why Eq. (22) defines a
convergent series of approximants by doing a saddle-point
evaluation of a complex integral. For those not interested in
this argument, skipping to the next subheading will not break
the continuity of our presentation.

If f(z) is an analytic function in a region of the complex-z
plane containing the origin, the nth term in the Taylor series
for

is given by a contour integral,

where the contour C encircles the origin. Hence, after making
some reasonable analyticity assumptions, we may use this

(27)

to see if the sequence of approximants converges. To do so, we
rewrite the integrand as

For large N, we apply the saddle-point method. A saddle point
&O is defined by the condition

(28)

We shift the contour C in Eq. (27) until it passes through the

for the sake of simplicity we ignore any contributions that
might come from passing the contour through a singularity in

the complex-s plane. The saddle-point method tells us that the
most important contribution to the integral in Eq. (27) is found

ignore any terms that depend on N algebraically because, as
we will see, we are going to take the Nth root of the result and
let N tend to infinity; in this limit all algebraic terms approach
1.) Evaluating the integral at the saddle point gives

Using the definition of the extrapolants QN in Eq. (21), we
have

This result may seem very disappointing at first because we
were hoping that

However, we assumed at the start that Q(m) was finite. This is

and thus satisfies the saddle-point condition Eq. (28) at

a saddle point. Now we understand why the formula Eq. (22)
can produce a series of approximants that actually approach
Q(a)).

This argument also explains why Eq. (22) sometimes fails; it
can fail if there is another saddle point in the complex-c plane
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Here is the surprising part: although there are many 
problems for which the sequence of approximants QN doesn't 
converge to Q(oo), in all 25 or so problems that we have 
investigated, both in quantum-field theory and in boundary- 
layer theory, the QN sequence still gives a remarkably accurate 
approximation to the exact answer. Sometimes the approxi- 
mants QN come very close to the exact answer and then veer 
away, just like the partial sums of an asymptotic series. We do 
not really understand yet why our method works so well. 

Back To The Kink ... 
Now that we have described a general method for ex- 

trapolating series like the one in Eq. (18) to the continuum, we 
will return to the kink problem and see how well our method 
works. The exact answer for the series in Eq. (18) is l/(ed2), 
given by Eq. (17). Thus, we would like the series in powers of 6 
to approach 1/\/2 as S -+ oo. We use the general formula in 
Eq. (22) with a = 1/2 to obtain the following sequence of 
approximants. 

Ql = 1.0 , 
Q, = 0.84090 , 
Q3 = 0.78193 , 
Q4 = 0.75724 , 
Qs = 0.74076 , 
Qg = 0.73121 , 
Q, = 0.72393 , 
Qo = 0.7 1905 , 
Q, = 0.71515 , and 
Qlo = 0.7123 1 . 

The extrapolants are already very close to the exact answer 
0.70711. The higher extrapolants continue to decrease 
monotonically until a surprising thing happens; they under- 
shoot the exact answer and continue decreasing until they 
reach a minimum in 24th order. 

The relative error between this value and the exact answer is 
less than 1 %. The extrapolants gradually rise monotonically 
until they recross the exact answer in 41st order; we believe 
that the extrapolants will continue to rise from here on. 

Unlike the example in Eq. (23), the sequence of approxi- 
mants is not convergent, probably because of the effect of a 
saddle point. Nevertheless, the sequence is asymptotic in 
nature; like Stirling's series for the gamma function and other 
asymptotic series, early terms in the series comprise a good 
approximation to the answer until some optimal order is 
reached. Afterwards, the direct approximants from these series 
diverge. * 

In the same way that we determined u'(O), we can determine 
all the derivatives ~ ( ~ ~ ( 0 )  for Eq. (18) by extrapolating sate 
expansions of the form 

Then, we can use the Taylor series for u(x) for x < x0 where 
u(xo) = 1, and we can set u(x) = 1 for x 2 x0 to get a 
reasonable global reconstruction of u(x). However, we need to 
know at least 10 terms in the Taylor series to perform this 
reconstruction. 

The method we have described to determine u(x) relies on 
obtaining local information for the differential or classical field 
equation at the origin. In his paper, "Singular Per- 
turbation-Strong Coupling Field Theory," Carlos R. Handy, a 
Postdoctoral Fellow at Los Alamos, developed an alternative 
approach, which allows for global reconstruction of the field 
solution. The method combines two mathematical tools. The 
first is the lattice expansion for the given field equation; an 
example is Eq. (15), from which the power moments are 
determined as an expansion in inverse powers of the lattice 
spacing. Handy uses pad; approximant techniques to obtain 
approximate continuum limit power moments. The second 
relates to the traditional, mathematical "moments problem." 
After obtaining a sufficient number of the approximate 
continuum moments, he reconstructs the corresponding ap- 
proximate global field solution. This procedure gave excellent 
results for both the +"-classical field theory kink and the 
Sine-Gordon equation kink solutions. It is equivalent to a 
momentum space formulation of the problem in which the 
long-range, large-scale behavior of the fields is determined by 
the small-momentum infrared domain. 

*The perturbation series derived from conventional boundary-layer methods 
are also asymptotic divergent series. 
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Other Boundary-Layer Problems 2. Damped Linear Oscillator 

Boundary layers or transient phenomena arise in many An initially quiescent spring-mass system subject to an 
diverse physical settings. Here we apply the new solution impulse In at t = 0 satisfies the equation 
techniques to three problems. 

1. Blasius Equation 

The Blasius equation describes the boundary-layer structure 
of fluid flow across a flat plate. 

A quantity of physical interest is yl'(0), which determines the 
stress on the plate apart from dimensional parameters. 

To solve for yf'(0) perturbatively, we rewrite the Blasius 
equation on a lattice. 

where 3 is the damping coefficient, m is the mass, and k is the 
spring constant. For small m, the solution y(t) exhibits a 
boundary layer of thickness m/p situated at t = 0. The exact 
solution satisfies y'(04") = Idm. 

The lattice version of the differential equation is 

where y(an) = yn and E = n/(3a). On the lattice the 
perturbation series for the damping term at t = 0, yW), is very 
simple. 

where fn = y(na)/a, 6 = &/a2, and a is the lattice spacing. As I0 
usual, we solve for f as a series in powers of 6 and obtain from yl(0) = lim E -(I - E + e2 - c3 ...). 

&-KO m 
the solution a sequence of extrapolants for ~"(0). The exact 
value for ~ " ( 0 )  obtained r ~ m e r i c d y  is (0.33206...) /̂s. The Using Eq. (22), the formula for the Nth approximant QN, we 
first few extrapolants obtained by our new techniques are obtain for all N 

Ql = 0 . 5 / i / ~ ,  
Q2 = 0.42041d~ , 
Q3 = 0.3948/1/~, 
Q4 = 0.3819/i/c , and 
Q5 = 0.3742/i/~ . 

As N increases, QN becomes very flat. 

Q2,j = 03502/v/~ , 
Q2( = o . ~ ~ o o / ~ / E  , 
Q3, = 0.3485/i/s, and 
Q38 = 0.34841y'~. 

Thus, our perturbative approach gives the exact answer to all 
orders. 

3. Green's Function for the Diffusion Equation 

Our lattice techniques work for partial as well as for 
ordinary differential equations. To illustrate, we consider a 
heat diffusion equation with a point source in the space and 
time variables. 

The relative error between the exact answer and Q38 is about 
5%. At present, we do not know whether the sequence QN 
approaches the exact answer as N + oo. In fact, there are where u is the thermal diffusivity. The solution to this equation 
many ways to extrapolate Qw to its limiting value Qa,  but we u(x,t) describes the temperature distribution in a one- 
will not discuss them here. dimensional system like a wire or rod. 
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The exact solution is the Green's function, 

where 

Note that for small u and fixed t, the temperature distribution 
u(x,t) has a boundary layer of thickness (ut)'I2 at x = 0. We 
wish to calculate the temperature at x = 0 and time t. The 
exact result from Eq. (29) is 

To apply our solution methods, we introduce a discrete 
lattice in the spatial variable to obtain the differential- 
difference equation 

where s = u/a2. The perturbation series solution for un, the 
temperature at x = 0, is 

O(t) lim ( q I 2  -- - 
(ut) 

k=0 

This series can be summed exactly to give 

where In is an associated Bessel function. Using the asymptotic 
relation Io(x) - e"/(21ix)~I~ (x + +a), we can take the limit e 
+ m to obtain the exact answer in Eq. (29). 

However, we are more interested in finding out what 
happens when we extrapolate the perturbation series 
term-by-term to the limit using Eq. (22). We obtain a sequence 
of extrapolants, which appear to converge rather slowly after 
they have been divided by 0(t)/(ut)172. 

Ql = 0.5 , 
Q2 = 0.435 , 
Q3 = 0.408 , 
Q4 = 0.393 , and 
Qs = 0.384 . 

The sequence continues to approach the exact answer but 
becomes very flat as N increases. 

Qlo = 0.362 , 
QIS = 0.354 , 
QzO = 0.349 , 
Qz = 0.346 , 
QsO = 0.344 
Q = 0.343 , and 
Q.0 = 0.342 . 

The last approximant differs from the exact answer by about 
18%. This example gives the poorest results we have found so 
far; in most problems we have studied, we can predict the 
answer to within a few percent. 

Conclusions 

Our new way of doing perturbation theory, in which the 
perturbation parameter e initially is assumed to be small and 
eventually is extrapolated to infinity, appears to be a powerful 
tool in boundary-layer theory and in many other areas. 
Although the method involves taking unusual limits, the 
computations are purely algebraic and therefore relatively 
simple. There is much work to be done in determining the 
method's full range of applicability. We have returned to its 
application in field theory and hope that investigators in other 
areas will find ways to exploit the methods in new physical 
contexts I 
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