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- FROM AV/MALS TO QUAKKS ! 



"I have multiplied visions and used similitudes." - Hosea 7:10 

In his marvelous book Dialogues Concerning 
Two New Sciences there is a remarkably clear 
discussion on the effects of scaling up the 
dimensions of a physical object. Galileo re- 
alized that if one simply scaled up its size, the 
weight of an animal would increase signifi- 
cantly faster than its strength, causing it ul- 
timately to collapse. As Galileo says (in the 
words of Salviati during the discorso of the 
second day), ". . . you can plainly see the 
impossibility of increasing the size of struc- 
tures to vast dimensions . . . if his height be 
increased inordinately, he will fall and be 
crushed under his own weight." The simple 

scaling up of an insect to some monstrous 
size is thus a physical impossibility, and we 
can rest assured that these old sci-fi images 
are no more than fiction! Clearly, to create a 
giant one "must either find a harder and 
stronger material . . . or admit a diminution 
of strength," a fact long known to architects. 

It is remarkable that so many years before 
its deep significance could be appreciated, 
Galileo had investigated one of the most 
fundamental questions of nature: namely, 
what happens to a physical system when one 
changes scale? Nowadays this is the seminal 
question for quantum field theory, phase 

transition theory, the dynamics of complex 
systems, and attempts to unify all forces in 
nature. Tremendous progress has been made 
in these areas during the past fifteen years 
based upon answers to this question, and I 
shall try in the latter part of this article to give 
some flavor of what has been accomplished. 
However. I want first to remind the reader of 
the power of dimensional analysis in 
classical physics. Although this is stock-in- 
trade to all physicists, it is useful (and, more 
pertinently, fun) to go through several exam- 
ples that explicate the basic ideas. Be warned, 
there are some surprises. 

Classical Scaling 

Let us first re-examine Galileo's original 
analysis. For similar structures* (that is, 
structures having the same physical 
characteristics such as shape, density, or 
chemical composition) Galileo perceived 
that weight W increases linearly with volume 
V,  whereas strength increases only like a 
cross-sectional area A. Since for similar 
structures V a l3 and A = 12, where 1 is some 
characteristic length (such as the height of the 
structure), we conclude that 

Strength A 1 1 
a-oc-oc - 

Weight V I wl/3 ' 

Thus, as Galileo noted, smaller animals "ap- 
pear" stronger than larger ones. (It is amus- 
ing that Jerome Siege1 and Joe Shuster, the 
creators of Superman, implicitly appealed to 
such an argument in one of the first issues of 
their comic.+ They rationalized his super 
strength by drawing a rather dubious analogy 
with "the lowly ant who can support weights 
hundreds of times its own" (sic!).) Inciden- 
tally, the above discussion can be used to 
understand why the bones and limbs of 
larger animals must be proportionately 
stouter than those of smaller ones, a nice 
example of which can be seen in Fig. 1. 

Arguments of this sort were used ex- 
tensively during the late 19th century to un- 
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Scale and Dimension 

Fig. Id Two d n c f  mammak: (a) Neohipparion, a small American Horse and (8) 
Mastodon, a large, elephant-like animal, illustrating that the hones of heavier 
animals are propo ftionately stouter and thus proportionately stronger. 

^erstand the gross features of the biological 
world; indeed, the general size and shape of 
animals and plants can be viewed as nature% 
way of responding to the constraints of grav- 
ity, surface phenomena, viscous flow, and 
the like. For example, one a n  understand 
why man cannot fly under his own muscular 
power9 why small animals leap as high as 
larger ones, and so on. 

A classic example i s  the way metabolic 
rate varies from animal to animal. A 
measure B of metabolic rate is simply the 
heat lost by a body in a steady inactive state, 
which can be expected to be dominated by 
the surface efifects of sweating and radiation. 
Symbolically, therefore, one expects 
B a Wq3. The data (plotted logarithmically 
in Fig. 2) show that metabolic rate does 

*The concept of similitude is usually attributed to 
Newtan, who firsf spew if out in the Principia 
when M a g  with grawYationa1 attraction. On 
reading the appropriate section if is ctear that this 
was introduced only as a passing remark awl does 
not haw the same pwfo~fid twntent as the remarks 
of Galflw, 

f ~ h ~  amwshg observation was brought to my atten- 
tufa Ky ChrisLteweUyn Smith. 

indeed scale, that is, all animals lie ~n a 
single curve in spite of the fact that an 
elephant is neither a blown-up mouse nor a 
blown-up chimpanzee. However, the slope of 
the best-fit curve (the solid line) is closer to 
3/4 than to 2/3, indicating that effects other 
than the pur~ geometry of surface de- 
pendence are at work? 

It is not my purpose here to discuss why 
this is so but rather to emphasize the im- 
portance of a seating curve not only for estab- 
lishing the scaling phenomenon itself but for 
revealing deviations from naive 
prediction (such as the surface law shown as 
the dashed line in Fig. 2), Typically, devia- 
tions from a simple geometrical or 
kinematical analysis reflect the dynamics of 
the system and can only be understood by 
examining it i n  more detail. Put slightly dif- 
ferently, one can view deviations from naive 
scaling as a probe of the dynamics. 

The converse of this is also true: generally, 
one cannot draw conclusions CO~~em'iq 
dynamics from naive scaling. As an illustra- 
tion of this I now want to discuss some 
simple aspects of birds' eggs. I will focus on 
the question of breathing during incubation 
and how certain physical variables scale 
from bird to bird. Figure 3, adapted from a 
ScIenfific American article by Hermann 
Rahn, Amos AT, and Charles V, Paganelli 

entitled "How Bird Eigs Breathe" shows (he 
dependence of oxygen conductance K and 
pore length I (that is, shell thickness) on egg 
mass W. The author̂ , noting the smaller 
slope for 1% conclude that "pore length 
probably increases slower because the egg- 
shell must be thin enough for the embryo to 
hatch." This is clearly a dynamical con- 
elusion! However, is it warranted? 
From naive geometric scaling one expects 

that for similar eggs I ec ŵ , which is in 
reasonable agreement with the data: a best fit 
(the straight line in the figure) actually gives i 
w, e4. Since these data for pore length agree 
reasonably well with geometric scaling, no 
dynamical conclusion (such as the shell be- 
ing thin enough for the egg to hatch) taxi be 
drawn. Ironically, rather than showing an 
anomalously slow growth with isy mass, the 
data for / actually manifest an anomalously 
fast growth (0.4 versus 0.331, not so dis- 
similar from the example of the metabolic 
rate! 
What about the behavior of the eonduc- 

tan* for which K This relationship 
can also be understood on geometric 
grounds. Conductance is proportional to the 
fatal available pore area and inversely 
proportional to pore length. However, total 
pore area is made up of two factors: the total 
number of pores times the area of individual 
owes. If one assumes that the number of 
pores per unit area remains constant from 
bird to bird (a reasonable assumption consis= 
tent with other data), then w have two 
factom that ;scale like area and one that 
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Fig. 2. Metabolic rate, measured as heat produced by the body in a steady state, 
plotted logarithmically against body weight. An analysis based on a surface 
dependence for the rate predicts a scaling curve with slope equal to 2/3 (dashed 
line) whereas the actual scaling curve has a slope equal to 3/4. Such deviation from 
simple geometrical scaling is indicative of other effects at work. (Figure based on 

scales inversely as length. One thus expects one by Thomas McMahon, Science 179(1973):1201-1204 who, in turn, adapted it 
a ( ~ 2 / 3 ) 2 / ~ 1 / 3  = W, again in reasonable from M. Kleiber, Hilgardia 6(1932):315.) 

Dimensional Analysis. The physical con 
tent of scaling is very often formulated ii 
terms of the language of dimensional analy- 
sis. The seminal idea seems to be due to 
Fourier. He is, of course, most famous for the 
invention of "Fourier analysis," introduced 
in his great treatise Theorie Analytique de la 
Chaleur, first published in Paris in 1822. 
However, it is generally not appreciated that 
this same book contains another great con' 
tribution, namely, the use of dimensions foi 
physical quantities. It is the ghost of Fouriei 
that is the scourge of all freshman physic; 
majors, for it was he who first realized thai 
every physical quantity "has one dimension 
proper to itself, and that the terms of one and 
the same equation could not be compared, if 
they had not the same exponent * 

dimension." He goes on: "We have in- 
troduced this consideration . . . to verify the 
analysis . . . it is the equivalent of the funda- 
mental lemmas which the Greeks have left us 
without proof." Indeed it is! Check the 
dimensions!-the rallying call of all 
physicists (and, hopefully, all engineers). Fig. 3. Logarithmic plot of two parameters relevant to the breathing of birds' e a s  

However, it was only much later that during incubation: the conductance of oxygen through the shell and the pore length 
= physicists began to use the "method of (or shell thickness) as afunction of egg mass. Both plots have slopes close to those 

' dimensions" to solve physical problems. In a predicted by simple geometrical scaling analyses. (Figure adapted from B. Rahn, 
famous paper on the subject published in A. Ar, and C. V. Paganelli, Scientific American 240(Febmaiy 1979):46-55.) 
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Nature in 19 15, Rayleigh indignantly begins: 
"I have often been impressed by the scanty 
attention paid even by original workers in 
the field to the great principle of similitude. 
It happens not infrequently that results in the 
form of 'laws' are put forward as novelties on 
the basis of elaborate experiments, which 
might have been predicted a priori after a few 
minutes consideration!" He then proceeds to 
set things right by giving several examples of 
the power of dimensional analysis. It seems 
to have been from about this time that the 
method became standard fare for the 
physicist. I shall illustrate it with an amusing 
example. 

Most of us are familiar with the traditional 
Christmas or Thanksgiving problem of how 
much time to allow for cooking the turkey or 
goose. Many (inferior) cookbooks simply say 
something like "20 minutes per pound," im- 
plying a linear relationship with weight. 
However, there exist superior cookbooks, 
such as the Better Homes and Gardens 
Cookbook, that recognize the nonlinear 
nature of this relationship. 

Figure 4 is based on a chart from this 
cookbook showing how cooking time t varies 
with the weight of the bird W. Let us see how 

Fig. 4. The cooking time for a turkey or 
goose as a logarithmic function of its 
weight. (Based on a table in Better 
Homes and Gardens Cookbook, Des 
MoinesNeridith Corp., Better Homes 
and Gardens Books, 1962, p. 272.) 

one can understand this variation using "the 
great principle of similitude." Let T be the 
temperature distribution inside the turkey 
and To the oven temperature (both measured 
relative to the outside air temperature). T 
satisfies Fourier's heat diffusion equation: 
8T/dt = KV~T,  where K is the diffusion coeffi- 
cient. Now, in general, for the dimensional 
quantities in this problem, there will be a 
functional relationship of the form 

where p is the bird's density. However, 
Fourier's basic observation that the physics 
be independent of the choice of units, imposes 
a constraint on the form of the solution, 
which can be discerned by writing it in terms 
of dimensionless quantities. Only two inde- 
pendent dimensionless quantities can be 
constructed: T/To and p(~t)312/ W. If we use 
the first of these as the dependent variable, 
the solution, whatever its form, must be 
expressible in terms of the other. The rela- 
tionship must therefore have the structure 

The important point is that, since the left- 
hand side is dimensionless, the "arbitrary" 
function f must be a dimensionless function 
of a dimensionless variable. Equation 3, un- 
like the previous one, does not depend upon 

the choice of units since dimensionless quan- 
tities remain invariant to changes in scale. 

Let us now consider different but 
geometrically similar birds cooked to the 
same temperature distribution at the same 
oven temperature. Clearly, for all such birds 
there will be a scaling law 

P(K?)~ /~  
ry = constant. 

If the birds have the same physical 
characteristics (that is, the same p and K), Eq. 
4 reduces to 

t = constant x w2I3 , 

reflecting, not surprisingly, an area law. As 
can be seen from Fig. 4, this agrees rather 
well with the "data." 

This formal type of analysis could also, of 
course, have been carried out for the 
metabolic rate and birds' eggs problems. The 
advantage of such an analysis is that it de- 
lineates the assumptions made in reaching 
conclusions like B a w2I3 since, in principle, 
it focuses upon all the relevant variables. 
Naturally this is crucial in the discussion of 
any physics problem. For complicated sys- 
tems, such as birds' eggs, with a very large 
number of variables, some prior insight or 
intuition must be used to decide what the 
important variables are. The dimensions of 
these variables are determined by the funda- 
mental laws that they obey (such as the dif- 
fusion equation). Once the dimensions are 
known, the structure of the relationship be- 
tween the variables is determined by 
Fourier's principle. There is therefore no 
magic in dimensional analysis, only the art of 
choosing the "right7' variables, ignoring the 
irrelevant, and knowing the physical laws 
they obey. 

As a simple example, consider the classic 
problem of the drag force F on a ship moving 
through a viscous fluid of density p. We shall 
choose F, p, the velocity v, the viscosity of the 
fluid p, some length parameter of the ship 1, 
and the acceleration due to gravity g as our 
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variables. Notice that we exclude other 
variables, such as the wind velocity and the 
amplitude of the sea waves because, under 
calm conditions, these are of secondary im- 
portance. Our conclusions may therefore not 
be valid for sailing ships! 

The physics of the problem is governed by 
the Navier-Stokes equation (which in- 
corporates Newton's law of viscous drag, 
telling us the dimensions of p) and the gravi- 
tational force law (telling us the dimensions 
of g). Using these dimensions automatically 
incorporates the appropriate physics. Since 
we have limited the variables to a set of six, 
which must be expressible in terms of three 
basic units (mass M, length L, and time T), 
there will only be three independent 

^- -t dimensionless combinations. These are 

chosen to be P == F / ~ $ / ~  (the pressure coeffi- 
cient), R = vlp/p (Reynold's number), and 
Nr = ̂ /lg (Froude's number). Although any 
three similar combinations could have been 
chosen, these three are special because they 
delineate the physics. For example, Rey- 
nold's number R relates to the viscous drag 
on a body moving through a fluid, whereas 
Froude's number Nc relates to the forces 
involved with waves and eddies generated on 
the surface of the fluid by the movement. 
Thus the rationale for the combinations R 
and Z?F is to separate the role of the viscous 
forces from that of the gravitational: R does 
not depend on g, and F does not depend on 
4. Furthermore, Pdoes not depend on either! 

Dimensional analysis now requires that 
the solution for the pressure coefficient, 

Fig. 5. The scaling curve for the motion of a sphere through a pressure or drag coefficent P versus Reynolds number R. 
fluid that results when data from a variety of experiments (Figure adapted from AIP Handbook of Physics, 2nd edi- 
are plotted in terms of two dimensionless variables: the tion (1963):section II,p. 253.) 
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whatever it is, must be expressible in the 
dimensionless form 

The actual drag force F can easily be ob- 
tained from this equation by re-expressing it 
in terms of the dimensional variables (see 
Eq. 8 below). 

First, however, consider a situation where 
surface waves generated by the moving ob- 
ject are unimportant (an extreme example is 
a submarine). In this case g will not enter the 
solution since it is manifested as the restor- 
ing force for surface waves. & can then be 
dropped from the solution, reducing Eq. 6 to 
the simple form 

In terms of the original dimensional 
variables, this is equivalent to 

Historically, these last equations have been 
well tested by measuring the speed of dif- 
ferent sizes and types of balls moving 
through different liquids. If the data are 
plotted using the dimensionless variables, 
that is, P versus R, then all the data should lie 
on just one curve regardless of the size of the 
ball or the nature of the liquid. Such a curve 
is called a scaling curve, a wonderful example 
of which is shown in Fig. 5 where one sees a 
scaling phenomenon that varies over seven 
orders of magnitude! It is important to recog- 
nize that if one had used dimensional 
variables and plotted F versus 1, for example, 
then, instead of a single curve, there would 
have been many different and apparently 
unrelated curves for the different liquids. 
Using carefully chosen dimensionless 
variables (such as Reynold's number) is not 
only physically more sound but usually 
greatly simplifies the task of representing the 
data. 

A remarkable consequence of this analysis 
is that, for similar bodies, the ratio of drag 

Fig. 6. The time needed for a rowing boat to complete a 2000-meter course in calm 
conditions as a function of the number of oarsmen. Data were taken from several 
international rowing championship events and illustrate the surprisingly slow 
dropoff predicted by modeling theory. (Adapted from T. A. McMahon, Science 
173(1971):349-351.) 

force to weight decreases as the size of the 
structure increases. From Archimedes' prin- 
ciple the volume of water displaced by a ship 
is proportional to its weight, that is, W a l3 
(this, incidentally, is why there is no need to 
include W as an independent variable in 
deriving these equations). Combined with 
Eq. 8 this leads to the conclusion that 

This scaling law was extremely important in 
the 19th century because it showed that it 
was cost effective to build bigger ships, . 

thereby justifying the use of large iron steam- 
boats! 

The great usefulness of scaling laws is also 
illustrated by the observation that the 
behavior of P for large ships (I + =) can be 
derived from the behavior of small ships 
moving very fast (v - m). This is so because 
both limits are controlled by the same 
asymptotic behavior of/fR) =./(v/p/p). Such 
observations form the basis of modeling the- 
ory so crucial in the design of aircraft, ships, 
buildings, and so forth. 

Thomas McMahon, in an article in Sci- 
ence, has pointed out another, somewhat 
more amusing, consequence to the drag force 
equation. He was interested in how the speed 
of a rowing boat scales with the number of 
oarsmen n and argued that, at a steady veloc- 
ity, the power expended by the oarsmen E t o  
overcome the drag force is given by Fv. Thus 
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Using Archimedes' principle again and the 
fact that both E and W should be directly 
proportional to n leads to the remarkable 
scaling law 

which shows a very slow growth with n. 
Figure 6 exhibits data collected by McMahon 
from various rowing events for the time / (a 
1/v) taken to cover a fixed 2000-meter course 
under calm conditions. One can see quite 
plainly the verification of his predicted 
law-a most satisfying result! 

There are many other fascinating and 
exotic examples of the power of dimensional 
analysis. However, rather than belaboring 
the point, I would like to mention a slightly 
different application of scaling before I turn 
to the mathematical formulation. All the ex- 
amples considered so far are of a quantitative 
nature based on well-known laws of physics. 
There are, however, situations where the 
qualitative observation of scaling can be 
used to scientific advantage to reveal phe- 
nomenological "laws." 

A nice example (Fig. 7), taken from an 
article by David Pilbeam and Stephen Jay 
Gould, shows how the endocranial volume V 
(loosely speaking, the brain size) scales with 
body weight W for various hominids and 
pongids. The behavior for modem pongids is 
typical of most species in that the exponent 
a, defined by the phenomenological rela- 
tionship V = W, is approximately 1/3 (for 
mammals a varies from 0.2 to 0.4). It is very 
satisfying that a similar behavior is exhibited 
by australopithecines, extinct cousins of our 
lineage that died out over a million years ago. 
However, as Pilbean and Gould point out, 

our homo sapiens lineage shows a strikingly 
different behavior, namely: a 513. Notice 
that neither this relationship nor the "stan- 
dard" behavior (a Ã 113) is close to the naive 
geometrical scaling prediction of a = 1. 

These data illustrate dramatically the 
qualitative evolutionary advance in the 
brain development of man. Even though the 
reasons for a 113 may not be understood, 
this value can serve as the "standard" for 
revealing deviations and provoking specula- 
tion concerning evolutionary progress: for 
example, what is the deep significance of a 
brain size that grows linearly with height 
versus a brain size that grows like its fifth 
power? I shall not enter into such questions 
here, tempting though they be. 

Such phenomenological scaling laws 
(whether for brain volume, tooth area, or 
some other measurable parameter of the fos- 

sil) can also be used as corroborative 
evidence for assigning a newly found fossil of 
some large primate to a particular lineage. 
The fossil's location on such curves can, in 
principle, be used to distinguish an australo- 
pithecine from a homo. Notice, however, 
that implicit in all this discussion is knowl- 
edge of body weight; presumably, 
anthropologists have developed verifiable 
techniques for estimating this quantity. Since 
they necessarily work with fragments only, 
some further scaling assumptions must be 
involved in their estimates! 

Relevant Variables. As already emphasized, 
the most important and artful aspect of the 
method of dimensions is the choice of 
variables relevant to the problem and their 
grouping into dimensionless combinations 
that delineate the physics. In spite of the 

Fig. 7. Scaling curves for endocranial volume (or brain size) as a function of body 
weight. The slope of the curve for our homo sapiens lineage (dashed line) is 
markedly different from those for australopithecines, extinct cousins of the homo 
lineage, and for modem pongids, which include the chimpanzee, gorilla and 
orangutan. (Adapted from D. Pilbearn and S. J. Gould, Science 
186(1974):892-90L) 
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relative simplicity of the method there are Scale Invariance 
inevitably paradoxes and pitfalls, a famous 
case of which occurs in Rayleigh's 1915 
paper mentioned earlier. His last example Let us now turn our attention to a slightly 
concerns the rate of heat lost H by a conduc- more abstract mathematical formulation 
tor immersed in a stream of inviscid fluid that clarifies the relationship of dimensional 
moving past it with velocity v ("Boussinesq's analysis to scale invariance. By scale in- 
problem"). Rayleigh showed that, if K is the variance we simply mean that the structure 
heat conductivity, C the specific heat of the of physical laws cannot depend on the choice 
fluid, 0 the temperature difference, and 1 of units. As already intimated, this is auto- 
some linear dimension of the conductor, matically accomplished simply by employ- 
then, in dimensionless form, ing dimensionless variables since these 

clearly do not change when the system of 

&= f (g) .  (12) units changes. However, it may not be im- 
mediately obvious that this is equivalent to 
the form invariance of physical equations. 

Approximately four months after Ray- Since physical laws are usually expressed in 
leigh's paper appeared, Nature published an terms of dimensional variables, this is an 
eight line comment (half column, yet!) by a important point to consider: namely, what 
D. Riabouchinsky pointing out that Ray- are the general constraints that follow from 
leigh's result assumed that temperature was a the requirement that the laws of physics look 
dimension independent from mass, length, the same regardless of the chosen units. The 

l 
and time. However, from the kinetic theory crucial observation here is that implicit in 
of gases we know that this is not so: tempera- any equation written in terms of dimensional straint will simply represent a generalization 
ture can be defined as the mean kinetic variables are the "hidden" fundamental of ordinary dimensional analysis; the only 
energy of the molecules and so is not an scales of mass M, length Ly time T, and so reason that it is different is that variables in 
independent unit! Thus, according to forth that are relevant to the problem. Of quantum field theory, such as fields, change 
Riabouchinsky, Rayleigh's expression must course, one never actually makes these scale in a much more complicated fashion with 
be replaced by an expression with an addi- parameters explicit precisely because of form scale than do their classical counterparts. 
tional dimensionless variable: invariance. Nevertheless, just as dimensional analysis 

Our motivation for investigating this allows one to learn much about the behavior 

lvC ) ( 13) question is to develop a language that can be of a system without actually solving the 
m=f(-K-cz3 , 

generalized in a natural way to include the dynamical equations, so the analogous con- 
subtleties of quantum field theory. Hopefully straints of the renormalization group lead to 

a much less restrictive result. classical dimensional analysis and scaling powerful conclusions about the behavior of a 
Two weeks later, Rayleigh responded to will be sufficiently familiar that its gen- quantum field theory without actually being 

Riabouchinsky saying that "it would indeed eralization to the more complicated case will able to solve it. It is for this reason that the 
be a paradox if the further knowledge of the be relatively smooth! This generalization has renormalization group has played such an 
nature of heat afforded by molecular theory been named the renormalization group since important part in the renaissance of quan- 
put us in a worse position than before in its origins lie in the renormalization program tum field theory during the past decade or so. 
dealing with a particular problem. . . . It used to make sense out of the infinities in- Before describing how this comes about, I 
would be well worthy of discussion." Indeed herent in quantum field theory. It turns out shall discuss the simpler and more familiar 
it would; its resolution, which no doubt the that renormalization requires the introduc- case of scale change in ordinary classical 
reader has already discerned, is left as an tion of a new arbitrary "hidden" scale that systems. 
exercise (for the time being)! Like all plays a role similar to the role of the scale To begin, consider some physical quantity 
paradoxes, this one cautions us that we oc- parameters implicit in any dimensional F that has dimensions; it will, of course, be a 
casionally make casual assumptions without equation. Thus any equation derived in function of various dimensional variables 
quite realizing that we have done so (see quantum field theory that represents a physi- xi: F ( x ~ , x ~ ,  . . .,xÃˆ) An explicit example is 
"Fundamental Constants and the Rayleigh- cal quantity must not depend upon this given by Eq. 2 describing the temperature 
Riabouchinsky Paradox"). choice of hidden scale. The resulting con- distribution in a cooked turkey or goose. 
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L et us examine Riabouchinsky's paradox a little more carefully 
and show how its resolution is related to choosing a system of 
units where the "fundamental constants" (such as Planck's 

constant h and the speed of light c )  can be set equal to unity. 
The paradox had to do with whether temperature could be used as 

an independent dimensional unit even though it can be defined as the 
mean kinetic energy of the molecular motion. Rayleigh had chosen 
five physical variables (length I, temperature difference 0, velocity v ,  
specific heat C, and heat conductivity K )  to describe Boussinesq's 
problem and had assumed that there were four independent 
dimensions (energy E,  length L,  time T ,  and temperature @). Thus 
the solution for ?"/To necessarily is an arbitrary function of one 
dimensionless combination. To see this explicitly, let us examine the 
dimensions of the five physical variables: 

Clearly the combination chosen by Rayleigh, IvC/K, is dimension- 
less. Although other dimensionless combinations can be formed, they 
are not independent of the two combinations ( / v C / K  and T/TA 
selected by Rayleigh. 

Now suppose, along with Riabouchinsky, we use our knowledge of 
the kinetic theory to define temperature "as the mean kinetic energy 
of the molecules" so that 63 is no longer an independent dimension. 
This means there are now only three independent dimensions and the 
solution will depend on an arbitrary function of two dimensionless 
combinations. With 6 a E,  the dimensions of the physical variables 
become: 

Each of these variables, including F itself, is 
always expressible in terms of some standard 
set of independent units, which can be 
chosen to be mass M, length L, and time T. 
These are the hidden scale parameters. Ob- 
viously, other combinations could be used. 
There could even be other independent 
units, such as temperature (but remember 
Riabouchinsky!), or more than one inde- 
pendent length (say, transverse and long- 
itudinal). In this discussion, we shall simply 
use the conventional M, L, and T. Any 
generalization is straightforward. 

In terms of this standard set of units, the 
magnitude of each xi is given by 

xi = Mai L& T'fi (15) 

The numbers a,, P I ,  and yi will be recognized 

12 

It  is clear that, in addition to Rayleigh's dimensionless variable, there 
is now a new independent combination, c / ~  for example, that is 
dimensionless. To reiterate Rayleigh: "it would indeed be a paradox 
if thefurther knowledge of the nature of heat . . . put us in a worse 
position than before . . . it would be well worthy of discussion." 

Like almost all paradoxes, there is a bogus aspect to the argument. 
It is certainly true that the kinetic theory allows one to express an 
energy as a temperature. However, this is only useful and appropriate 
for situations where the physics is dominated by molecular consider- 
ations. For macroscopic situations such as Boussinesq's problem, the 
molecular nature of the system is irrelevant: the microscopic 
variables have been replaced by macroscopic averages embodied in 
phenomenological properties such as the specific heat and conduc- 
tivity. To make Riabouchinsky's identification of energy with tem- 
perature is to introduce irrelevant physics into the problem. 

Exploring this further, we recall that such an energy-temperature 
identification implicitly involves the introduction of Boltzmann's 
factor k. By its very nature, k will only play an explicit role in a 
physical problem that directly involves the molecular nature of the 
system: otherwise it will not enter. Thus one could describe the 
system from the molecular viewpoint (so that k is involved) and then 
take a macroscopic limit. Taking the limit is equivalent to setting 
k == 0: the presence of a finite k indicates that explicit effects due to 
the kinetic theory are important. 

With this in mind, we can return to Boussinesq's problem and 
derive Riabouchinsky's result in a somewhat more illuminating 
fashion. Let us follow Rayleigh and keep E,  L ,  T ,  and 43 as the 

as "the dimensions" of xi. Now suppose we and 'k is shorthand for b, AL, and IT.  Since 
change the system of units by some scale F is itself a dimensional physical quantity, it 
transformation of the form transforms in an identical fashion under this 

scale change: 

and 

T+Tf=\rT 

Each variable then responds as follows: 

where 

z,w=^i>.to, 

where 

( 1  7) 
Here a, P, and y are the dimensions of F. 

There is, however, an alternate but equiva- 
lent way to transform from F to F', namely, 
by transforming each of the variables xi 

( 18) separately. Explicitly we therefore also have 
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Scale and Dimension 

Rayleigh-Riabouchhsky Par~23x 

independent dimensions but add k (with dimensions ~ 0 ' )  as a new 
physical variable. The solution will now be an arbitrary function of 
two independent dimensionless variables: hC/K and kc13. When 
Riabouchinsky chose to make el3  his other dimensionless variable, 
he, in effect, chose a system of units where k = 1. But that was a 
terrible thing to do here since the physics dictates that k== O! Indeed, 
if k == 0 we regain Rayleigh's original result, that is, we have only w e  
dimensionless variable. It is somewhat ironic that Rayleigh's remarks 
miss the point: "further knowledge of the nature of heat afforded by 
molecular theory" does not put one in a better position for solving 
the problem-rather, it leads to a microscopic description of K and 
C. The important point pertinent to the problem set up by Rayleigh is 
that knowledge of the molecular theory is irrelevant and k must not 
enter. 

The lesson here is an important one because it illustrates the role 
played by the fundamental constants. Consider Planck's constant 
h = h /2z  it would be completely inappropriate to introduce it into a 
problem of classical dynamics. For example, any solution of the 
scattering of two billiard balls will depend on macroscopic variables 
such as the masses, velocities, friction coefficients, and so on. Since 
billiard balls are made of protons, it might be tempting to the purist 
to include as a dependent variable the proton-proton totai cross 
section, which, of course, involves h.  This would clearly be totally 
inappropriate but is analogous to what Riabouchinsky did in 
Boussinesq's problem. 

Obviously, if the scattering is between two microscopic "atomic 
billiard bails" then h must Aeincluded. In this case it is not only quite 
legitimate but often convenient to choose a system of units where 
h = 1. However, having done so one cannot directly recover the 

classical limit corresponding to h == 0. With f i  I ,  one is stuck in 
quantum mechanics just as, with k = 1, one is stuck in kinetic theory. 

A similar situation obviously occurs in relativity: the velocity of 
light c must not occur in the classical Newtonian limit. However, in a 
relativistic situation one is quite at liberty to choose units where 
e = 1. Making that choice, though, presumes the physics involves 
relativity. 

The core of particle physics, relativistic quantum field theory, is a 
synthesis of quantum mechanics and relativity. For this reason, 
particle physicists find that a system of units in which h = c = 1 is 
not only convenient but is a manifesto that quantum mechanics and 
relativity are the basic physical laws governing their area of physics. 
In quantum mechanics, momentum p and wavelength X are related 
by the de Broglie relation: p = 2nh/X; similarly, energy E and fire- 
quency co are related by Planck's formula: E5 hw. In relativity we 
have the famous Einstein relation: E = w?. Obviously if we choose 
h = c == 1, all energies, masses, and momenta have the same units 
(for example, electron volts (el̂ ), and these are the same as inverse 
lengths and times. Thus larger energies and momenta inevitably 
correspond to shorter times and lengths. 

Using this choice of units automatically incorporates the profound 
physics of the uncertainty principle: to probe short space-time inter- 
vals one needs large energies. A useful number to remember is that 
1 centimeter, or 1 fermi (fm), equals the reciprocal of 200 MeV. 
We then find that the electron mass (a 1/2 MeV) corresponds to a 
length of 400 fm-its Compton wavelength. Or the 20 TeV 
(2 X lo7 MeV) typically proposed for a possible future facility 
corresponds to a length of 1 0 ' ~  centimeter. This is the scale distance 
that such a machine will probe! 8 

Equating these two different ways of effecting 
a scale change leads to the identity 

As a concrete example, consider the equation 
E = m(2. To change scale one can either 
transform E directly or transform m and c 
separately and multiply the results ap- 
propriately-obviously the final result must 
be the same. 

We now want to ensure that the resulting 
form of the equation does not depend on X. 
This is best accomplished using Euler's trick 

of taking a/& and then setting X = 1. For 
example, if we were to consider changes in 
the mass scale, we would use 9/9AM and the 
chain rule for partial differentiation to arrive 
at 

1 

When we set AM = 1, differentiation of Eqs. 
18 and 20 yields 

and x,' = xi, so that Eq. 23 reduces to 

Obviously this can be repeated with 
and AT to obtain a set of three coupled partial 
differential equations expressing the fimda- 
mental scale invariance ofphysical laws (that 
is, the invariance of the physics to the choice 
of units) implicit in Fourier's original work. 
These equations can be solved without too 
much difficulty; their solution is, in fact, a 
special case of the solution to the re- 
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normalization group equation (given ex- 
plicitly as Eq. 35 below). Not too surpris- 
ingly, one finds that the solution is precisely 
equivalent to the constraints of dimensional 
analysis. Thus there is never any explicit 
need to use these rather cumbersome equa- 
tions: ordinary dimensional analysis takes 
care of it for you! 

Quantum Field Theory 

We have gone through this little mathe- 
matical exercise to illustrate the well-known 
relationship of dimensional analysis to scale 
and form invariance. I now want to discuss 
how the formalism must be amended when 
applied to quantum field theory and give a 
sense of the profound consequences that fol- 
low. Using the above chain of reasoning as a 
guide, I shall examine the response of a 
quantum field theoretic system to a change 
in scale and derive a partial differential equa- 
tion analogous to EQ. 25. This equation is 
known as the renormalization group equa- 
tion since its origins lay in the somewhat 
arcane area of the renormalization procedure 
used to tame the infinities of quantum field 
theory. I shall therefore have to digress 
momentarily to give a brief r6sumk of this 
subject before returning to the question of 
scale change. 

Renormalization. Perhaps the most unnerv- 
ing characteristic of quantum field theory for 
the beginning student (and possibly also for 
the wise old men) is that almost all caleula- 
tions of its physical consequences naively 
lead to infinite answers. These infinities stem 
from divergences at high momenta as- 
sociated with virtual processes that are 
always present in any transition amplitude. 
The renormalization scheme, developed by 
Richard P. Feynman, Julian S. Schwinger, 
Sin-Itiro Tomonaga, and Freeman Dyson, 
was invented to make sense out of this for 
quantum electrodynamics (QED). 

To get a feel for how this works I shall 
focus on the photon, which carries the force 
associated with the electromagnetic field. At 
the classical limit the propagator* for the 

photon represents the usual static 1/r 
Coulomb potential. The corresponding 
Fourier transform (that is, the propagator's 
representation in momentum space) in this 
limit is 118, where q is the momentum car- 
ried by the photon. Now consider the 
'classical" scattering of two charged particles 
(represented by the Feynman diagram in Fig. 
8 (a)). For this event the exchange of a single 
photon gives a transition amplitude propor- 
tional to where eo is the charge (or 
coupling constant) occurring in the La- 
grangian. A standard calculation results in 
the classical Rutherford formula, which can 
be extended relativistically to the spin-112 
case embodied in the diagram. 

A typical quantum-mechanical correction 
to the scattering formula is illustrated in Fig. 
8 (b). The exchanged photon can, by virtue of 
the uncertainty principle, create for a very 
short time a virtual electron-positron pair, 
which is represented in the diagram by the 
loop. We shall use k to denote the momen- 
tum carried around the loop by the two 
particles. 

There are, of course, many such correc- 
tions that serve to modify the 112 single- 

photon behavior, and this is represented 
schematically in part (c). It is convenient to 
include all these corrections in a single multi- 
plicative factor Do that represents deviations 
from the single-photon term. The "full" 
photon propagator including all possible 
radiative corrections is therefore D*/$. The 
reason for doing this is that Do is a 
dimensionless function that gives a measure 
of the polarization of the vacuum caused by 
the production of virtual particles. (The ori- 
gin of the Lamb shift is vacuum polariza- 
tion.) 

We now come to the central problem: 
upon evaluation it is found that contribu- 
tions from diagrams like (b) are infinite be- 
cause there is no restriction on the magni- 
tude of the momentum k flowing in the loop! 
Thus, typical calculations lead to integrals of 
the form 

which diverge logarithmically. Several 
prescriptions have been invented for making 
such integrals finite; they all involve "reg- 

*Roughly speaking, the photon propagator can be 
thought of as the Green's function for the elec- 
tromagnetic field. In the relativistically covariant 
Lorentz gauge, the classical Maxwell's equations 
read 

where Afx) is the vector potential and j(x) is the 
current source term derived in QED from the mo- 
tion of the electrons. (To keep things simple I am 
suppressing all space-time indices, thereby ignoring 
spin.) This equation can be solved in the standard 
way using a Green's function: 

with 

Now a transition amplitude is proportional to the 
interaction energy, and this is given by 

illustrating how G "mediates" the force between 
two currents separated by a space-time interval 
(x-xt). I t  is usually more convenient to work with 
Fourier transforms of these quantities (that is, in 
momentum space). For pmp le ,  the momentum 
space solution for G is G(q) = 1/q2, and this is 
usually called the free photon propagator since it 
is essentially classical. The corresponding 
"classical" transition amplitude in momentum 
space is justj(q)(7/q2)j(q), which is represented 
by the Feynman graph in Fig. 8 (a). 

In quantum field theory, life gets much more 
complicated because of radiative corrections as 
discussed in the text and illustrated in (b) and (c) 
of Fig. 8. The definition of the propagator is 
generally in terms of a correlation function in 
which a photon is created at point x out of the 
vacuum for a period x-x' and then returns to the 
vacuum at point x'. Symbolically, this is repre- 
sented by 

During propagation, anything allowed by the 
uncertainty principle can happen-these are the 
radiative corrections that make an exact calcula- 
tion of G almost impossible. 
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ularizing" the integrals by introducing some 
large mass parameter A. A standard tech- 
nique is the so-called Pauli-Villars scheme in 
which a factor A~/(# + A ~ )  is introduced 
into the integrand with the understanding 
that A is to be taken to infinity at the end of ' the calculation (notice that in this limit the 
regulating factor approaches one). With this 
prescription, the above integral is therefore 

Â replaced by 

"LA 

L 

The integral can now be evaluated and its 
divergence expressed in terms of the (in- 
finite) mass parameter A. All the infinities 
arising from quantum fluctuations can be 
dealt with in a similar fashion with the result 
that the following series is generated: 

In this way the structure of the infinite 
divergences in the theory are parameterized 
in terms of A, which can serve as a finite 
cutoffin the integrals over virtual momenta.* 

The remarkable triumph of the re- 
normalization program is that, rather than 
imposing such an arbitrary cutoff, all these 
divergences can be swallowed up by an in- 
* .. ,- .-.. ,- . * . . jlniie rescanngor me neias ana coupling con- 

- -  - 
- - 

- - - -  

Fig. 8. Feynman diagrams for (a) the classical scattering of two particles of iIn this  isc cuss ion I rnsgmed, fm simfl ici~,  
charge eo, (b) a typical correction that must be made to that scattering-here that the original hgrangian was mass/ess; that 

because of the creation of a virtual electron-positron pair-and (c) a diagram ~~~~a~~~ 
representing all such possible Corre~tions. The matrix element is proportional for *ae the dis~ssion unneassarily withou gii- 
(a) to ei/q2 and for (c) to Do/q2 where Do includes all corrections. ing any new insights. 
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stants. Thus, a finite propagator D, that does would then be calculable in terms of the 
not depend on A, can be derived from Do by value of this single coupling at some given 
rescaling if, at the same time, one rescales the scale! A wonderful fantasy.) 
charge similarly. These rescalings take the To recapitulate, the physical finite re- 
form normalized propagator D is related to its bare 

and divergent counterpart Do (calculated 

(w) 
from the Lagrangian using a cutoff mass) by 
an infinite resealing: 

The crucial property of these scaling fac- 
tors is that they are independent of the physi- 
cal momenta (such as q) but depend on A in 
such a way that when the cutoff is removed, 
D and e remain finite. In other words, when 
A + W, Zn and Z<, must develop infinities of 
their own that precisely compensate for the 
infinities of Do and eo. The original so-called 
bare parameters in the theory calculated 
from the Lagrangian (Do and eo) therefore 
have no physical meaning-only the re- 
normalized parameters (D and e) do. 

Now let us apply some ordinary dimen- 
sional analysis to these remarks. Because 
they are simply scale factors, the Z's must be 
dimensionless. However, the 2's are func- 
tions of A but not of q. But that is very 
peculiar: a dimensionless function cannot 
depend on a single mass parameter! Thus, in 
order to express the Z's in dimensionless 
form, a new finite mass scale p must e * 
introduced so that one can write 
Z = Z ( A ~ / ~ ~ , ~ ~ ) .  An immediate consequence 
of renormalization is therefore to induce a 
mass scale not manifest in the Lagrangian. 
This is extremely interesting because it 
provides a possible mechanism for generat- 
ing mass even though no mass parameter 
appears in the Lagrangian. We therefore 
have the exciting possibility of being able to 
calculate the masses of all the elementary 
particles in terms of just one of them. Similar 
considerations for the dimensionless D's 
clearly require that they be expressible as 
Do= D Q ( ~ ~ / A ~ , ~ ~ ) ,  as in Eq. 28, and 
D = ~ ( $ / ~ ~ , e ) .  (The dream of particle 
theorists is to write down a Lagrangian with 
no mass parameter that describes all the 
interations in terms ofjust one coupling con- 
stant. The mass spectrum and scattering 
amplitudes for all the elemeritary particles 

Similarly, the physical finite charge e is given 
by an infinite rescaling of the bare charge eo 
that occurs in the Lagrangian 

Notice that the physical coupling e now de- 
pends implicitly on the renormalization 
scale parameter p. Thus, in QED, for exam- 
ple, it is not strictly sufficient to state that the 
fine structure constant a = 1/137; rather, 
one must also specify the corresponding 
scale. From this point of view there is 
nothing magic about the particular number 
137 since a change of scale would produce a 
different value. 

At this stage, some words of consolation to 
a possibly bewildered reader are in order. It is 
not intended to be obvious how such infinite 
rescalings of infinite complex objects lead to 
consistent finite results! An obvious question 
is what happens with more complicated 
processes such as scattering amplitudes and 
particle production? These are surely even 
more divergent than the relatively simple 
photon propagator. How does one know that 
a similar rescaling procedure can be carried 
through in the general case? 

The proof that such a procedure does in- 
deed work consistently for any transition 
amplitude in the theory was a real tour de 
force. A crucial aspect of this proof was the 
remarkable discovery that in QED only a 
finite number (three) of such rescalings was 

necessary to render the theory finite. This is 
terribly important because it means that 
once we have renormalized a few basic en- 
tities, such as en, all further rescalings of 
more complicated quantities are completely 
determined. Thus, the theory retains predic- 
tive power-in marked contrast to the highly 
unsuitable scenario in which each transition 
amplitude would require its own infinite 
rescaling to render it finite. Such theories, 
termed nonrenormalizable, would ap- 
parently have no predictive power. High 
energy physicists have, by and large, restrict- 
ed their attention to renormalizable theories 
just because all their consequences can, in 
principle, be calculated and predicted in 
terms of just a few parameters (such as the 
physical charge and some masses). 

I should emphasize the phrase "in prin- 
ciple" since in practice there are very few 
techniques available for actually carrying out 
honest calculations. The most prominent of 
these is perturbation theory in the guise of 
Feynman graphs. Most recently a great deal 
of effort, spurred by the work of K. G. 
Wilson, has gone into trying to adapt quan- 
tum field theory to the computer using lattice 
gauge theories.* In spite of this it remains 
sadly true that perturbation theory is our 
only "global" calculational technique. Cer- 
tainly its success in QED has been nothing 
less than phenomenal. 

Actually only a very small class of re- 
norrnalizable theories exist and these are 
characterized by dimensionless coupling 
constants. Within this class are gauge the- 
ories like QED and its non-Abelian ex- 
tension in which the photon interacts with 
itself. All modern particle physics is based 
upon such theories. One of the main reasons 
for their popularity, besides the fact they are 
renormalizable, is that they possess the prop- 
erty of being asymptotically free. In such 
theories one finds that the renormalization 
group constraint, to be discussed shortly, 
requires that the large momentum behavior 

*In recent years there has been some effort to 
come to grips analytically with the 
nonperturbative aspects of gauge theories. 
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Scale and Dimension 

be equivalent to the small coupling limit; 
thus for large momenta the renormalized 
coupling effectively vanishes thereby allow- 
ing the use of perturbation theory to calculate 
physical processes. 

This idea was of paramount importance in 
substantiating the existence of quarks from 
deep inelastic electron scattering experi- 
ments. In these experiments quarks behaved 
as if they were quasi-free even though they 
must be bound with very strong forces (since 
they are never observed as free particles). 
Asymptotic freedom gives a perfect expla- 
nation for this: the effective coupling, though 
strong at low energies, gets vanishingly small 
as 2 becomes large (or equivalently, as dis- 
tance becomes small). 

In seeing how this comes about we will be 
led back to the question of how the field 
theory responds to scale change. We shall 
follow the exact same procedure used in the 
classical case: first we scale the hidden pa- 
rameter (p, in this case) and see how a typical 
transition amplitude, such as a propagator, 
responds. A partial differential equation, 
analogous to Eq. 25, is then derived using 

Euler's trick. This is solved to yield the gen- 
eral constraints due to renormalization 
analogous to the constraints of dimensional 
analysis. I will then show how these con- 
straints can be exploited, using asymptotic 
freedom as an example. 

The Renormalization Group Equation. As 
already mentioned, renormalization makes 
the bare parameters occurring in the La- 
grangian effectively irrelevant; the theory has 
been transformed into one that is now speci- 
fied by the value of its physical coupling 
constants at some mass scale p. In this sense 
p plays the role of the hidden scale parameter 
M in ordinary dimensional analysis by set- 
ting the scale of units by which all quantities 
are measured. 

This analogy can be made almost exact by 
considering a scale change for the arbitrary 
parameter p in which p w. This change 
allows us to rewrite Eq. 30 in a form that 
expresses the response of D to a scale change: 

(From now on I will use g to denote the 
coupling rather than e because e is usually 
reserved for the electric charge in QED.) 

The scale factor Z(K), which is independ- 
ent of <72 and g, must, unlike the 2's of Eqs. 
30 and 31, be finite since it relates two finite 
quantities. Notice that all explicit reference 
to the bare quantities has now been 
eliminated. The structure of this equation is 
identical to Eq. 22, the scaling equation de- 
rived for the classical case; the crucial dif- 
ference is that Z(X) no longer has the simple 
power law behavior expressed in Eq. 18. In 
fact, the general structure of Z(X) and g(u) are 
not known in field theories of interest. 
Nevertheless we can still learn much by con- 
verting this equation to the differential form 
analogous to Eq. 25 that expresses scale in- 
variance. As before we simply take Q/d\ and 
set K = 1, thereby deriving the so-called re- 
normalization group equation: 

where 

and 

Comparing Eq. 33 with the scaling equation 
of classical dimensional analysis (Eq. 25), we 
see that the role of the dimension is played by 
y. For this reason, and to distinguish it from 
ordinary dimensions, y is usually called the 
anomalous dimension of D, a phrase orig- 
inally coined by Wilson. (We say anomalous 
because, in terms of ordinary dimensions 
and again by analogy with Eq. 25, D is actu- 
ally dimensionless!) It would similarly have 
been natural to call Q(g)/g the anomalous 
dimension of g however, conventionally, 
one simply refers to Q(g) as the pfunction. 
Notice that Q(g) characterizes the theory as a 
whole (as does g itself since it represents the 
coupling) whereas y(g) is a property of the 
particular object or field one is examining. 

The general solution of the renormaliza- 
tion group equation (Eq. 33) is given by 

where 

and 

The arbitrary function f is, in principle, fixed 
by imposing suitable boundary conditions. 
(Equation 25 can be viewed as a special and 
rather simple case of Eq. 33. If this is done, 
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the analogues of y(g) and Q(.g)/g are con- 
stants, resulting in trivial integrals for A and 
K. One can then straightforwardly use this 
general solution (Eq. 36) to verify the claim 
that the scaling equation (Eq. 22) is indeed 
exactly equivalent to using ordinary dimen- 
sional analysis.) The general solution reveals 
what is perhaps the most profound conse- 
quence of the renormalization group, 
namely, that in quantum field theory the 
momentum variables and the coupling con- 
stant are inextricably linked. The photon 
propagator (D/&, for instance, appears at 
first sight to depend separately on the 
momentum q2 and the coupling constant g. 
Actually, however, the renormalizability of 
the theory constrains it to depend effectively, 
as shown in Eq. 36, on only one variable 
(q̂^̂/ii2). This, of course, is exactly what 
happens in ordinary dimensional analysis. 
For example, recall the turkey cooking prob- 
lem. The temperature distribution at first 
sight depended on several different variables: 
however, scale invariance, in the guise of 
dimensional analysis, quickly showed that 
there was in fact only a single relevant 
variable. 

The observation that renormalization in- 
troduces an arbitrary mass scale upon which 
no physical consequences must depend was 
first made in 1953 by E. Stueckelberg and A. 
Peterman. Shortly thereafter Murray Gell- 
Mann and F. Low attempted to exploit this 
idea to understand the high-energy structure 
of QED and, in so doing, exposed the in- 
timate connection between g and $. Not 
much use was made of these general ideas 
until the pioneering work of Wilson in the 
late 1960s. I shall not review here his seminal 
work on phase transitions but simply remark 
that the scaling constraint implicit in the 
renormalization group can be applied to cor- 
relation functions to learn about critical ex- 
ponents.* Instead I shall concentrate on the 

- 

"Since the photon propagator is defined as the 
correlation function of two electromagnetic 
fields in the vacuum it is not difficult to imagine 
that the formalism discussed here can be directly 
applied to the correlation functions of statistical 
physics. 

particle physics successes, including 
Wilson's, that led to the discovery that non- 
Abelian gauge theories were asymptotically 
free. Although the foci of particle and con- 
densed matter physics are quite different, 
they become unified in a spectacular way 
through the language of field theory and the 
renormalization group. The analogy with di- 
mensional analysis is a good one, for, as we 
saw in the first part of this article, its con- 
straints can be applied to completely diverse 
problems to give powerful and insightful re- 
sults. In a similar fashion, the renormaliza- 
tion group can be applied to any problem 
that can be expressed as a field theory (such 
as particle physics or statistical physics). 

Often in physics, progress is made by ex- 
amining the system in some asymptotic re- 
gime where the underlying dynamics 
simplifies sufficiently for the general struc- 
ture to become transparent. With luck, 
having understood the system in some ex- 
treme region, one can work backwards into 
the murky regions of the problem to under- 
stand its more complex structures. This is 
essentially the philosophy behind bigger and 
bigger accelerators: keep pushing to higher 
energies in the hope that the problem will 
crack, revealing itself in all its beauty and 
simplicity. 'Tis indeed a faithful quest for the 
holy grail. As I shall now demonstrate, the 
paradigm of looking first for simplicity in 

asymptotic regimes is strongly supported by 
the methodology of the renormalization 
group. 

In essence, we use the same modeling- 
theory scaling technique used by ship de- 
signers. Going back to Eq. 36, one can see 
immediately that the high-energy or short- 
distance limit ($ -+ co with g fixed) is iden- 
tical to keeping 2 fixed while taking K W. 

However, from its definition (Eq. 38), K 
diverges whenever Q(g) has a zero. Similarly, 
the low-energy or long-distance limit ($ 0 
while g is fixed) is equivalent to K-+ -w, 
which also occurs when Q - 0. Thus knowl- 
edge of the zeros of Q, the so-called fixed 
points of the equation, determines the high- 
and low-energy behaviors of the theory. 

If one assumes that for small coupling 
quantum field theory is governed by or- 
dinary perturbation theory, then the p-func- 
tion has a zero at zero coupling (gÃ 0). In 
this limit one typically finds Q(g) Ã -bg5' 
where b is a calculable coefficient. Of course, 
p might have other zeroes, but, in general, 
this is unknown. In any case, for small g we 
find (using Eq. 38) that K(g) = (2b?)""l, 
which diverges to either +a or -a depending 
on the sign of b. In QED, the case originally 
studied by Gell-Mann and Low, b < 0 so that 
K + -w, which is equivalent to the low- 
energy limit. One can think of this as an 
explanation of why perturbation theory 
works so well in the low-energy regime of 
QED: the smaller the energy, the smaller the 
effective coupling constant. 

Quantum Chromodynamics. It appears that 
some non-Abelian gauge theories and, in 
particular, QCD (see "Particle Physics and 
the Standard Model") possess the unique 
property of having a positive b. This 
marvelous observation was first made by H. 
D. Politzer and independently by D. J. Gross 
and F. A. Wilczek in 1973 and was crucial in 
understanding the behavior of quarks in the 
famous deep inelastic scattering experiments 
at the Stanford Linear Accelerator Center. As 
a result, it promoted QCD to the star posi- 
tion of being a member of "the standard 
model." With b > 0 the high-energy limit is 
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related to perturbation theory and is there- determines the large x behavior offix), and, 
fore calculable and understandable. I shall once again, the "modeling technique" can be 
now give an explicit example of how this used-here to determine the large 
comes about. behavior of the propagator G. 

First we note that no boundary conditions In fact, combining Eq. 36 with Eq. 42 leads 
have yet been imposed on the general soh- to the conclusion that 
tion (Eq. 36). The one boundary condition 
that must be imposed is the known free field 
theory limit (g = 0). For the photon in QED, ff2 aI2b 

or the gluon in QCD, the propagator G $m. "($ ) = '"I( 2b ln ) 
(= D/& in this limit is just I/$. Thus - . - ,  . - 
JD^/L12,~) = 1. Imposing this on Eq. 36 gives 

Now when g + 0, y(g) -a2, where a is a 
calculable coefficient. Combining this with 
the fact that Q(g) = -bê  leads, by way of Eq. 
37, to A(g) = (a/&) In g. Since K(g) = 
(2bg3-l the boundary condition (Eq. 39) 
gives 

Defining the dimensionless variable in the 
functionfas 

it can be shown that with b > 0 Eq. 40 is 
equivalent to 

lim Ax) = (2b 1n x)^ . 
x-= 

An important point here is that the x - w 

limit can be reached either by letting g- 0 or 
by taking $ - m . Since the g - 0 limit is 
calculable, so is the ff2 - w limit. The free 
field (g - 0) boundary condition therefore 

This is the generic structure that finally 
emerges: the high-energy or large-$ behavior 
of the propagator G = D/$ is given by free 
field theory (I/$) modulated by calculable 
powers of logarithms. The wonderful miracle 
that has happened is that all the powers of 
l n ( ~ ~ / $ )  originally generated from the 
divergences in the "bare" theory (as il- 
lustrated by the series in Eq. 28) have been 
summed by the renormalization group to 
give the simple expression of Eq. 43. The 
amazing thing about this "exact" result is 
that is is far easier to calculate than having to 
sum an infinite number of individual terms 
in a series. Not only does the methodology 
do the summing, but, more important, it 
justifies it! 

I have already mentioned that asymptotic 
freedom (that is, the equivalence of van- 
ishingly small coupling with increasing 
momentum) provides a natural explanation 
of the apparent paradox that quarks could 
appear free in high-energy experiments even 
though they could not be isolated in the 
laboratory. Furthermore, with lepton probes, 
where the theoretical analysis is least am- 
biguous, the predicted logarithmic modula- 
tion of free-field theory expressed in Eq. 43 
has, in fact, been brilliantly verified. Indeed, 
this was the main reason that QCD was 
accepted as the standard model for the strong 
interactions. 

There is, however, an even more profound 
consequence of the application of the re- 
normalization group to the standard model 
that leads to interesting speculations con- 

cerning unified field theories. As discussed in 
"Particle Physics and the Standard Model," 
QED and the weak interactions are partially 
unified into the electroweak theory. Both of 
these have a negative b and so are not 
asymptotically free; their effective couplings 
grow with energy rather than decrease. By the 
same token, the QCD coupling should grow 
as the energy decreases, ultimately leading to 
the confinement of quarks. Thus as energy 
increases, the two small electroweak cou- 
plings grow and the relatively large QCD 
coupling decreases. In 1974, Georgi, Quinn, 
and Weinberg made the remarkable observa- 
tion that all three couplings eventually be- 
came equal at an energy scale of about 1014 
GeV! The reason that this energy turns out to 
be so large is simply due to the very slow 
logarithmic variation of the couplings. This 
is a very suggestive result because it is ex- 
tremely tempting to conjecture that beyond 
1014 GeV (that is, at distances below lo-'' 
cm) all three interactions become unified 
and are governed by the same single cou- 
pling. Thus, the strong, weak, and elec- 
tromagnetic forces, which at low energies 
appear quite disparate, may actually be 
manifestations of the same field theory. The 
search for such a unified field theory (and its 
possible extension to gravity) is certainly one 
of the central themes of present-day particle 
physics. It has proven to be a very exciting 
but frustrating quest that has sparked the 
imagination of many physicists. Such ideas 
are, of course, the legacy of Einstein, who 
devoted the last twenty years of his life to the 
search for a unified field theory. May his 
dreams become reality! On this note of fan- 
tasy and hope we end our brief discourse 
about the role of scale and dimension in 
understanding the world-or even the uni- 
verse-around us. The seemingly innocuous 
investigations into the size and scale of 
animals, ships, and buildings that started 
with Galileo have led us, via some minor 
diversions, into baked turkey, incubating 
eggs, old bones, and the obscure infinities of 
Feynman diagrams to the ultimate question 
of unified field theories. Indeed, similitudes 
have been used and visions multiplied. 

LOS ALAMOS SCIENCE Summer/Fall1984 



Geoffrey B. West was born in the county town of Taunton in Somerset, 
England. He received his B.A. from Cambridge University in 1961 and 
his Ph.D. from Stanford in 1966. His thesis, under the aegis of Leonard 
Schiff, dealt mostly with the electromagnetic interaction, an interest he 
has sustained throughout his career. He was a postdoctoral fellow at 
Cornell and Harvard before returning to Stanford in 1970 as a faculty 
member. He came to Los Alamos in 1974 as Leader of what was then 
called the High-Energy Physics Group in the Theoretical Division, a 
position he held until 198 1 when he was made a Laboratory Fellow. His 
present interests revolve around the structure and consistency of quan- 
tum field theory and, in particular, its relevance to quantum 
chromodynamics and unified field theories. He has served on several 
advisory panels and as a member of the executive committee of the 
Division of Particles and Fields of the American Physical Society. 

Further Reading 

The following are books on the classical application of dimensional analysis: 

Percy Williams Bridgman. Dimensional Analysis. New Haven: Yale University Press, 1963. 

Leonid Ivanovich Sedov. Similarity and Dimensional Methods in Mechanics. New York: Academic Press, 
1959. 

Garrett Birkhoff. Hydrodynamics: A Study in Logic, Fact and Similitude. Princeton: Princeton University 
Press, 1960. 

D7Arcy Wentworth Thompson. On Growth and Form. Cambridge: Cambridge University Press, 19 17. This 
book is, in some respects, comparable to Galileo's and should be required reading for all budding young 
scientists. 

Benoit B. Mandelbrot. The Fractal Geometry ofNature. New York: W .  H. Freeman, 1983. This recent, very 
interesting book represents a modem evolution of the subject into the areaof fractals; in principle, the book 
deals with related problems, though I find it somewhat obscure in spite of its very appealing format. 

Examples of classical scaling were drawn from the following: 

Thomas McMahon. "Size and Shape in Biology." Science 179(1973) 120 1- 1204. 

Hermann Rahn, Amos Ar, and Charles V. Paganelli. "How Bird Eggs Breathe." Scientific American 
24qFebruary 1979):46-55. 

Summer/Fall1984 LOS ALAMOS SCIENCE 



Scale and Dimension 

Thomas A. McMahon. "Rowing: a Similarity Analysis." Science 173(197 1):349-35 1. 

David Pilbeam and Stephen Jay Gould. "Size and Scaling in Human Evolution." Science 186(1974): 
892-90 1. 

The Rayleigh-Riabouchinsky exchange is to be found in: 

Rayleigh. "The Principle of Similitude." Nature 95(1915):66-68. 

D. Riabouchinsky. "Letters to Editor." Nature 95(1915):591. 

Rayleigh. "Letters to Editor." Nature 95(1915):644. 

Books on quantum electrodynamics (QED) include: 

Julian Schwinger, editor. Selected Papers on Quantum Electrodynamics. New York: Dover, 1958. This book 
gives a historical perspective and general review. 

James D. Bjorken and Sidney D. Drell. Relativistic Quantum Mechanics. New York: McGraw-Hill, 1964. 

N. N. Bogoliubov and D. V. Shirkov. Introduction to the Theory of Quantized Fields. New York: 
Interscience, 1959. 

H. David Politzer. "Asymptotic Freedom: An Approach to Strong Interactions." Physics Reports 
14(1974): 129-1 80. This and the previous reference include a technical review of the renormalization group. 

Claudio Rebbi. "The Lattice Theory of Quark Confinement." Scientific American 248(Febmary 
1983):54-65. This reference is also a nontechnical review of lattice gauge theories. 

For a review of the deep inelastic electron scattering experiments see: 

Henry W. Kendall and Wolfgang K. H. Panofsky. "The Structure of the Proton and the Neutron." Scientific 
American 224(June 1971):60-76. 

Geoffrey B. West. "Electron Scattering from Atoms, Nuclei and Nucleons." Physics Reports 
18(1975):263-323. 

References dealing with detailed aspects of renormalization and its consequences are: 

Kenneth G. Wilson. "Non-Lagrangian Models of Current Algebra." Physical Review 179(1969):1499-15 12. 

Geoffrey B. West. "Asymptotic Freedom and the Infrared Problem: A Novel Solution to the Renormaliza- 
tion-Group Equations." Physical Review D 27(1983): 1402-1405. 

E. C. G. Stueckelberg and A. Petermann. "La Normalisation des Constantes dans la Theorie des Quanta." 
Helvetica Physica Acta 26(1953):499-520. 

M. Gell-Mann and F. E. Low. "Quantum Electrodynamics at Small Distances." Physical Review 
95(1954): 1 300- 1 3 12. 

H. David Politzer. "Reliable Perturbative Results for Strong Interactions?" Physical Review Letters 
30(1973): 1346-1 349. 

David J. Gross and Frank Wilczck. "Ultraviolet Behavior of Non-Abelian Gauge Theories." Physical 
Review Letters 30(1973): 1343-1 346. 

LOS ALAMOS SCIENCE Summer/Fall 1984 




