
Monte Carlo 

and the MONTE CARL0 METHOD 
by Roger Eckhardt 

T 
he Monte Carlo method is a sta- 
tistical sampling technique that 
over the years has been applied 
successfully to a vast number of 

scientific problems. Although the com- 
puter codes that implement Monte Carlo 
have grown ever more sophisticated, the 
essence of the method is captured in some 
unpublished remarks Stan made in 1983 
about solitaire. 

"The first thoughts and attempts I 
made to practice [the Monte Carlo 
method] were suggested by a question 
which occurred to me in 1946 as I was 
convalescing from an illness and play- 
ing solitaires. The question was what 
are the chances that a Canfield solitaire 
laid out with 52 cards will come out 
successfully? After spending a lot of 
time trying to estimate them by pure 

combinatorial calculations, I wondered 
whether a more practical method than 
"abstract thinking" might not be to 
lay it out say one hundred times and 
simply observe and count the number 
of successful plays. This was already 
possible to envisage with the begin- 
ning of the new era of fast computers, 
and I immediately thought of problems 
of neutron diffusion and other ques- 
tions of mathematical physics, and more 
generally how to change processes de- 
scribed by certain differential equations 
into an equivalent form interpretable 
as a succession of random operations. 
Later. . . [ in 1946, I ] described the idea 
to John von Neumann and we began to 
plan actual calculations." 

Von Neumann was intrigued. Statis- 
tical sampling was already well known 

in mathematics, but he was taken by 
the idea of doing such sampling using 
the newly developed electronic comput- 
ing techniques. The approach .seemed es- 
pecially suitable for exploring the behav- 
ior of neutron chain reactions in fission 
devices. In particular, neutron multiplica- 
tion rates could be estimated and used to 
predict the explosive behavior of the var- 
ious fission weapons then being designed. 

In March of 1947, he wrote to Rob- 
ert Richtmyer, at that time the Theoretical 
Division Leader at Los Alamos (Fig. 1). 
He had concluded that "the statistical ap- 
proach is very well suited to a digital 
treatment," and he outlined in some de- 
tail how this method could be used to 
solve neutron diffusion and multiplica- 
tion problems in fission devices for the 
case "of 'inert' criticality" (that is, ap- 
proximated as momentarily static config- 
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Fig. 1. The first and last pages of von Neumann's remarkable letter to Robert Richtmyer are shown above, as well as a portion of his tentative 
computing sheet. The last illustrates how extensivly von Neumann had applied himself to the details of a neutron-diffusion calculation. 
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urations). This outline was the first for- 
mulation of a Monte Carlo computation 
for an electronic computing machine. 

In his formulation von Neumann used a 
spherically symmetric geometry in which 
the various materials of interest varied 
only with the radius. He assumed that 
the neutrons were generated isotropically 
and had a known velocity spectrum and 
that the absorption, scattering, and fission 
cross-sections in the fissionable material 
and any surrounding materials (such as 
neutron moderators or reflectors) could be 
described as a function of neutron veloc- 
ity. Finally, he assumed an appropriate 
accounting of the statistical character of 
the number of fission neutrons with prob- 
abilities specified for the generation of 2, 
3, or 4 neutrons in each fission process. 

The idea then was to trace out the 
history of a given neutron, using ran- 
dom digits to select the outcomes of the 
various interactions along the way. For 
example, von Neumann suggested that 
in the compution "each neutron is rep- 
resented by [an 80-entry punched com- 
puter] card . . . which carries its character- 
istics," that is, such things as the zone of 
material the neutron was in, its radial po- 
sition, whether it was moving inward or 
outward, its velocity, and the time. The 
card also carried "the necessary random 
values" that were used to determine at the 
next step in the history such things as path 
length and direction, type of collision, ve- 
locity after scattering-up to seven vari- 
ables in all. A "new" neutron was started 
(by assigning values to a new card) when- 
ever the neutron under consideration was 
scattered or whenever it passed into an- 
other shell; cards were started for several 
neutrons if the original neutron initiated 
a fission. One of the main quantities of 
interest, of course, was the neutron mul- 
tiplication rate-for each of the 100 neu- 
trons started, how many would be present 
after, say, 1 0 " ~  second? 

At the end of the letter, von Neumann 
attached a tentative "computing sheet" 
that he felt would serve as a basis for 

setting up this calculation on the ENIAC. 
He went on to say that "it seems to me 
very likely that the instructions given on 
this 'computing sheet' do not exceed the 
'logical' capacity of the ENIAC." He es- 
timated that if a problem of the type he 
had just outlined required "following 100 
primary neutrons through 100 collisions 
[each]. . .of the primary neutron or its de- 
scendants," then the calculations would 
"take about 5 hours." He further stated, 
somewhat optimistically, that "in chang- 
ing over from one problem of this cate- 
gory to another one, only a few numeri- 
cal constants will have to be set anew on 
one of the 'function table' organs of the 
ENIAC." 

His treatment did not allow "for the 
displacements, and hence changes of ma- 
terial distribution, caused by hydrody- 
namics," which, of course, would have 
to be taken into account for an explo- 
sive device. But he stated that "I think 
that I know how to set up this problem, 
too: One has to follow, say 100 neu- 
trons through a short time interval At; 
get their momentum and energy trans- 
fer and generation in the ambient mat- 
ter; calculate from this the displacement 
of matter; recalculate the history of the 
100 neutrons by assuming that matter is 
in the middle position between its orig- 
inal (unperturbed) state and the above 
displaced (perturbed) state;. . . iterating in 
this manner until a "self-consistent" sys- 
tem of neutron history and displacement 
of matter is reached. This is the treat- 
ment of the first time interval At. When 
it is completed, it will serve as a basis 
for a similar treatment of the second time 
interval.. , etc., etc." 

Von Neumann also discussed the treat- 
ment of the radiation that is generated 
during fission. "The photons, too, may 
have to be treated 'individually' and sta- 
tistically, on the same footing as the neu- 
trons. This is, of course, a non-trivial 
complication, but it can hardly consume 
much more time and instructions than the 
corresponding neutronic part. It seems 

to me, therefore, that this approach will 
gradually lead to a completely satisfac- 
tory theory of efficiency, and ultimately 
permit prediction of the behavior of all 
possible arrangements, the simple ones as 
well as the sophisticated ones." 

And so it has. At Los Alamos in 1947, 
the method was quickly brought to bear 
on problems pertaining to thermonuclear 
as well as fission devices, and, in 1948, 
Stan was able to report to the Atomic 
Energy Commission about the applica- 
bility of the method for such things as 
cosmic ray showers and the study of the 
Hamilton Jacobi partial differential equa- 
tion. Essentially all the ensuing work on 
Monte Carlo neutron-transport codes for 
weapons development and other applica- 
tions has been directed at implementing 
the details of what von Neumann out- 
lined so presciently in his 1947 letter (see 
"Monte Carlo at Work"). 

I n von Neumann's formulation of the 
neutron diffusion problem, each neu- 

tron history is analogous to a single game 
of solitare, and the use of random num- 
bers to make the choices along the way 
is analogous to the random turn of the 
card. Thus, to carry out a Monte Carlo 
calculation, one needs a source of ran- 
dom numbers, and many techniques have 
been developed that pick random num- 
bers that are uniformly distributed on the 
unit interval (see "Random-Number Gen- 
erators"). What is really needed, how- 
ever, are nonuniform distributions that 
simulate probability distribution functions 
specific to each particular type of de- 
cision. In other words, how does one 
ensure that in random flights of a neu- 
tron, on the average, a fraction e *  
travel a distance x/ \  mean free paths or 
farther without colliding? (For a more 
mathematical discussion of random vari- 
ables, probability distribution functions, 
and Monte Carlo, see pages 68-73 of 
"A Tutorial on Probability, Measure, and 
the Laws of Large Numbers.") 

The history of each neutron is gener- 
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3ECISION POINTS 
IN MONTE CARL0 

Fig. 2. A schematic of some of the de- 
cisions that are made to generate the 
"history" of an individual neutron in a 
Monte Carlo calculation. The nonuniform 
random-number distributions g used in 
those decisions are determined from a 
variety of data. 

gr Determined from 
Properties of New Material 

g,, and gx Assumed 
from Initial Conditions 

gi Determined from 
Material Properties 

Crossing of 
Material Boundary 

/ \  Crossing of 
Material Boundary Collision 

Collision 

/ 
Scattering 

g,,, Determined from 
Scattering Cross Sections 

and Incoming Velocity 

Absorption 

g,, , gv; , gv; , . . . Determined 

from Fission Cross Sections 

ated by making various decisions about 
the physical events that occur as the neu- 
tron goes along (Fig. 2). Associated with 
each of these decision points is a known, 
and usually nonuniform, distribution of 
random numbers g that mirrors the prob- 
abilities for the outcomes possible for the 
event in question. For instance, return- 
ing to the example above, the distribu- 
tion of random numbers g~ used to de- 
termine the distance that a neutron trav- 

els before interacting with a nucleus is 
exponentially decreasing, making the se- 
lection of shorter distances more proba- 
ble than longer distances. Such a distri- 
bution simulates the observed exponen- 
tial falloff of neutron path lengths. Simi- 
larly, the distribution of random numbers 
gk used to select between a scattering, 
a fission, and an absorption must reflect 
the known probabilities for these differ- 
ent outcomes. The idea is to divide the 

unit interval (0,l)  into three subintervals 
in such a way that the probability of a 
uniform random number being in a given 
subinterval equals the probability of the 
outcome assigned to that set. 

In another 1947 letter, this time to Stan 
Ularn, von Neumann discussed two tech- 
niques for using uniform distributions of 
random numbers to generate the desired 
nonuniform distributions .g (Fig. 3). The 
first technique, which had already been 

Los Alumos Science Special Issue 1987 





Monte Carlo 

proposed by Stan, uses the inverse of the 
desired function f = g l .  For example, 
to get the exponentially decreasing distri- 
bution of random numbers on the interval 
(0, co) needed for path lengths, one ap- 
plies the inverse function f (x) = - lnx to 
a uniform distribution of random numbers 
on the open interval (0 , l ) .  

What if it is difficult or computation- 
ally expensive to form the inverse func- 
tion, which is frequently true when the 
desired function is empirical? The rest of 
von Neumann's letter describes an alter- 
native technique that will work for such 
cases. In this approach two uniform and 
independent distributions (xi) and fy') are 
used. A value x i  from the first set is 
accepted when a value y i  from the sec- 
ond set satisfies the condition yi  < f (x'}. 
where f ((-')d(- is the density of the de- 
sired distribution function (that is. g (x) = 

ff (x)dx). 
This acceptance-rejection technique of 

von Neumann's can best be illustrated 
graphically (Fig. 4). If the two numbers 
x i  and yi  are selected randomly from the 
domain and range, respectively, of the 
function f ,  then each pair of numbers rep- 
resents a point in the function's coordi- 
nate plane (xi ,  yi) .  When y i  > f (xi) the 
point lies above the curve for f (x), and x1 
is rejected; when y' < f (xi) the point lies 
on or below the curve, and xi  is accepted. 
Thus, the fraction of accepted points is 
equal to the fraction of the area below the 
curve. In fact, the proportion of points se- 
lected that fall in a small interval along 
the x-axis will be proportional to the av- 
erage height of the curve in that interval, 
ensuring generation of random numbers 
that mirror the desired distribution. 

A fter a series of "games" have been 
played, how does one extract mean- 

ingful information? For each of thou- 
sands of neutrons, the variables describ- 
ing the chain of events are stored, and this 
collection constitutes a numerical model 
of the process being studied. The collec- 
tion of variables is analyzed using sta- 

THE ACCEPTANCE-REJECTION 
METHOD 

Fig. 4. If two independent sets of random 

numbers are used. one of which ( x i )  ex- 

tends uniformly over the range of the distri- 

bution function f  and the other ({) extends 

over the domain of f ,  then an acceptance- 

rejection technique based on whether or not 

y i  < f(x) will generate a distribution for 
(2) whose density is f ( x i )  dx'. 

Reject xi since yi > f (xi). 

Accept x2 since y2 < f(x2). 

tistical methods identical to those used 
to analyze experimental observations of 
physical processes. One can thus extract 
information about any variable that was 
accounted for in the process. For exam- 
ple, the average energy of the neutrons at 
a particular time is calculated by simply 
taking the average of all the values gen- 
erated by the chains at that time. This 
value has an uncertainty proportional to 
^ / V / ( N ,  where V is the variance 
of, in this case, the energy and N is the 
number of trials, or chains, followed. 

It is, of course, desirable to reduce sta- 
tistical uncertainty. Any modification to 
the stochastic calculational process that 
generates the same expectation values but 
smaller variances is called a variance- 

reduction technique. Such techniques 
frequently reflect the addition of known 
physics to the problem, and they reduce 
the variance by effectively increasing the 
number of data points pertinent to the 
variable of interest. 

An example is dealing with neutron ab- 
sorption by weighted sampling. In this 
technique, each neutron is assigned a unit 
"weight" at the start of its path. The 
weight is then decreased, bit by bit at each 
collision, in proportion to the absorption 
cross section divided by the total collision 
cross section. After each collision an out- 
come other than absorption is selected by 
random sampling and the path is contin- 
ued. This technique reduces the variance 
by replacing the sudden, one-time process 
of neutron absorption by a gradual elim- 
ination of the neutron. 

Another example of variance reduction 
is a technique that deals with outcomes 
that terminate a chain. Say that at each 
collision one of the alternative outcomes 
terminates the chain and associated with 
this outcome is a particular value xc for 
the variable of interest (an example is 
xt being a path length long enough for 
the neutron to escape). Instead of col- 
lecting these values only when the chain 
terminates, one can generate considerably 
more data about this particular outcome 
by making an extra calculation at each 
decision point. In this calculation the 
know value x, for termination is multi- 
plied by the probability that that outcome 
will occur. Then random values are se- 
lected to continue the chain in the usual 
manner. By the end of the calculation, 
the "weighted values" for the terminat- 
ing outcome have been summed over all 
decision points. This variance-reduction 
technique is especially useful if the prob- 
ablity of the alternative in question is low. 
For example, shielding calculations typi- 
cally predict that only one in many thou- 
sands of neutrons actually get through the 
shielding. Instead of accumulating those 
rare paths, the small probabilities that a 
neutron will get through the shield on its 
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very next free flight are accumulated after 
each collision. 

T he Monte Carlo method has proven 
to be a powerful and useful tool. In 

fact, "solitaire games" now range from 
the neutron- and photon-transport codes 
through the evaluation of multi-dimen- 
sional integrals, the exploration of the 
properties of high-temperature plasmas, 
and into the quantum mechanics of sys- 
tems too complex for other methods. 

by Tony Warnock 

rs have applications in many as: simulation, game-playing, 
cryptography, statistical sampling, evaluation of multiple integrals, particle- 
transport calculations, and computations in statistical physics, to name a few. 

Since each application involves slightly different criteria for judging the "worthiness" 
of the random numbers generated, a variety of generators have been developed, each 
with its own set of advantages and disadvantages. 

Depending on the application, three types of number sequences might prove 
equate as m numbers.'' From a purist point of view. of course, a series of 
mbers ge a truly random process is most desirable. This type of sequence 

a random-number sequence, and one of the key problems is deciding whether 
or not the generating process is, in fact, random. A more practical sequence is the 
pseudo-random sequence, & series of numbers generated by a deterministic process 
that is intended merely to imitate a random sequence but which, of course, does not 
rigorously obey such things as the laws of large numbers (see page 69). Finally, a 1 
@St-randm sequence is a series of numbers that makes no pretense at being random 
but that has important predefined statistical properties shared with random sequences. 

Physical Random-Number Generators 1 
Games of chance are the classic examples of random processes, and the first 

inclination would to use traditional gambling devices as random-number generators. 
Unfortunately, these dev are rather slow, especially since the typical computer 
application may require ms of numbers per second. Also, the numbers obtained 

cards may be imperfectly shuffled, 
, and so forth. However, in the early 
digit table of random numbers using 
slots, of which 12 were ignored; the 

only because of our ignorance of initial 1 
terninistic Newtonian physics. Another 

advantage of the Heisenberg 
g decays of a radioactive 

h of these methods have been used to 
0th suffer the defects of slowness and 

order of magnitude than 

I 
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For instance, although each decay in a radioactive source may occur randomly 
and independently of other decays, it is not necessarily true that successive counts in 
the detector are independent of each other. The time it takes to reset the counter, 
for example, might depend on the previous count. Furthermore, the source itself 
constantly changes in time as the number of remaining radioactive particles decreases 
exponentially. Also, voltage drifts can introduce bias into the noise of electrical devices. 

There are, of course, various tricks to overcome some of these disadvantages. One 
can partially compensate for the counter-reset problem by replacing the string of bits 
that represents a given count with a new number in which all of the original 1-1 and 0-0 
pairs have been discarded and all of the original 0-1 and 1-0 pairs have been changed 
to 0 and 1, respectively. This trick reduces the bias caused when the probability of a 
0 is different from that of a 1 but does not completely eliminate nonindependence of 
successive counts. 

A shortcoming of any physical generator is the lack of reproducibility. Repro- 
ducibility is needed for debugging codes that use the random numbers and for making 
correlated or anti-correlated computations. Of course, if one wants random numbers 
for a cryptographic one-time pad, reproducibility is the last attribute desired, and time 
can be traded for security. A radioactive source used with the bias-removal technique 
described above is probably sufficient. 

Arithmetical Pseudo-Random Generators 

The most common method of generating pseudo-random numbers on the computer 
uses a recursive technique called the linear-congruential, or Lehmer, generator. The 
sequence is defined on the set of integers by the recursion formula 

xn+i = Axn + C (mod M ). 

where xn is the nth member of the sequence, and A, C ,  and M are parameters that can 
be adjusted for convenience and to ensure the pseudo-random nature of the sequence. 
For example, M,  the modulus, is frequently taken to be the word size on the computer, 
and A, the multiplier, is chosen to yield both a long period for the sequence and good 
statistical properties. 

When M is a power of 2, it has been shown that a suitable sequence can be 
generated if, among other things, C is odd and A satisfies A = 5 (mod 8) (that is, A - 5 
is a multiple of 8). A simple example of the generation of a 5-bit number sequence 
using these conditions would be to set M = 32 (5 bits), A = 21, C = 1, and xo = 13. 
This yields the sequence 
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and 

yield 

Of course, if Seq. 3 is carried out to many places, a pattern in it will also become 
apparent. To eliminate the new pattern, the sequence can be XOR'ed with a third 
pseudo-random sequence of another type, and so on. 

This type of hybrid sequence is easy to generate on a binary computer. Although 
for most computations one does not have to go to such pains, the technique is especially 

attractive for constructing "canonical" generators of apparently random numbers. 
A key idea here is to take the notion of randomness to mean simply that the 

sequence can pass a given set of statistical tests. In a sequence based on normal 
numbers, each term will depend nonlinearly on the previous terms. As a result, there 
are nonlinear statistical tests that can show the sequence not to be random. In particular, 
a test based on the transformations used to construct the sequence itself will fail. But, 
the sequence will pass all linear statistical tests, and, on that level, it can be considered 
to be random. 

What types of linear statistical tests are applied to pseudo-random numbers? 
Traditionally, sequences are tested for uniformity of distribution of single elements, 
pairs, triples, and so forth. Other tests may be performed depending on the type of 
problem for which the sequence will be used. For example, just as the correlation 
between two sequences can be tested, the auto-correlation of a single sequence can be 
tested after displacing the original sequence by various amounts. Or the number of 
different types of "runs" can be checked against the known statistics for runs. An 
increasing run, for example, consists of a sequential string of increasing numbers 
from the generator (such as, 0.08, 0.21, 0.55, 0.58, 0.73, . . .). The waiting times 
for various events (such as the generation of a number in each of the five intervals 
(0,0.2), (0.2,0.4), . . . , (0.8,l)) may be tallied and, again, checked against the known 
statistics for random-number sequences. 

If a generator of pseudo-random numbers passes these tests, it is deemed to be a 
"good" generator, otherwise it is "bad." Calling these criteria "tests of randomness" is 
misleading because one is testing a hypothesis known to be false. The usefulness of 
the tests lies in their similarity to the problems that need to be solved using the stream 
of pseudo-random numbers. If the generator fails one of the simple tests, it will surely 
not perform reliably for the real problem. (Passing all such tests may not, however, be 
enough to make a generator work for a given problem, but it makes the programmers 
setting up the generator feel better.) 
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