				Lab								
Location		Fld Prep	Fld Qc		Anyl Suite	Analyte						
Name	Start Date	Code		Type Code		Desc	Analyte	Symbol	Std Result	Std Uncert	Std Mdl	Std Md
Buckman 1	05/17/11	UF		CS	GENINORG	Alkalinity-C	ALK-CO3	<	1		0.73	
Buckman 1	05/17/11	UF		CS	GENINORG	Alkalinity-C	ALK-CO3+F	ICO3	201		0.73	
Buckman 1	05/17/11	UF		CS	GENINORG	Ammonia a	NH3-N		0.058		0.016	
Buckman 1	05/17/11	UF		CS	GENINORG	Bromide	Br(-1)	<	0.2		0.066	
Buckman 1	05/17/11	UF		CS	GENINORG	Calcium	Са		7		0.05	
Buckman 1	05/17/11	UF		CS	GENINORG	Chloride	Cl(-1)		2.63		0.066	
Buckman 1	05/17/11	UF		CS	GENINORG	Cyanide (T	CN(TOTAL)	<	0.005		0.002	
Buckman 1	05/17/11	UF		CS	GENINORG	Dissolved (DO		6.6			
Buckman 1	05/17/11	UF		CS	GENINORG	Fluoride	F(-1)		0.751		0.033	
Buckman 1	05/17/11	UF		CS	GENINORG	Hardness	HARDNESS		19.2		0.45	
Buckman 1	05/17/11	UF		CS	GENINORG	Magnesiun	r Mg		0.431		0.11	
Buckman 1	05/17/11	UF		CS	GENINORG	Nitrate-Nit	NO3+NO2-	N	0.98		0.05	
Buckman 1	05/17/11	UF		CS	GENINORG	Oxidation I	ORP		208.6			
Buckman 1	05/17/11	UF		CS	GENINORG	Perchlorat	CIO4		0.285		0.05	
Buckman 1	05/17/11	UF		CS	GENINORG	Potassium	К		2.08		0.05	
Buckman 1	05/17/11	UF		CS	GENINORG	Sodium	Na		88.1		0.1	
Buckman 1	05/17/11	UF		CS	GENINORG	Specific Co	SPEC_CON	DC	435			
Buckman 1	05/17/11	UF		CS	GENINORG	Specific Co	SPEC_CON	DC	432		1	
Buckman 1	05/17/11	UF		CS	GENINORG	Sulfate	SO4(-2)		11.9		0.1	
Buckman 1	05/17/11			CS	GENINORG	Temperatu	ΙΤΕΜΡ		22.13			
Buckman 1	05/17/11			CS	GENINORG				284		2.4	
Buckman 1	05/17/11	UF		CS	GENINORG	Total Kjeld	TKN	<	0.5		0.18	
Buckman 1	05/17/11			CS	GENINORG	-			0.432		0.33	
Buckman 1	05/17/11			CS	GENINORG		•	<	0.034		0.015	
Buckman 1	05/17/11			CS	GENINORG		TURB		1.34			
Buckman 1	05/17/11			CS	GENINORG	рН	рН		8.33		0.01	
Buckman 1	05/17/11			CS	GENINORG		рН		8.27			
Buckman 1	05/17/11			CS	HEXP		6629-29-4		1.3		0.39	
Buckman 1	05/17/11			CS	HEXP	,	59229-75-3	<	1.3		0.39	
Buckman 1	05/17/11	UF		CS	HEXP	3,5-Dinitro	618-87-1	<	1.3		0.39	

Buckman 1	05/17/11 UF	 CS		Amino-2,6-			0.325		
Buckman 1	05/17/11 UF	CS		Amino-4,6-		2<	0.325		
Buckman 1	05/17/11 UF	 CS	HEXP	Dinitroben	99-65-0	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	Dinitrotolu	121-14-2	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	Dinitrotolu	606-20-2	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	НМХ	2691-41-0	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	Nitrobenze	98-95-3	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	Nitrotoluer	88-72-2	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	Nitrotoluer	99-08-1	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	Nitrotoluer	99-99-0	<	0.649	0.1	
Buckman 1	05/17/11 UF	CS	HEXP	PETN	78-11-5	<	1.3	3 0.13	
Buckman 1	05/17/11 UF	CS	HEXP	RDX	121-82-4	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	ТАТВ	3058-38-6	<	1.3	3 0.39	
Buckman 1	05/17/11 UF	CS	HEXP	Tetryl	479-45-8	<	0.649	0.13	
Buckman 1	05/17/11 UF	CS	HEXP	Trinitroben	99-35-4	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	Trinitrotolu	118-96-7	<	0.325	5 0.1	
Buckman 1	05/17/11 UF	CS	HEXP	Tris (o-cres	78-30-8	<	1.3	3 0.39	
Buckman 1	05/17/11 F	CS	METALS	Chromium	Cr		8.33	3 2	
Buckman 1	05/17/11 UF	CS	METALS	Aluminum	Al	<	200) 68	
Buckman 1	05/17/11 UF	CS	METALS	Antimony	Sb	<	3	3 1	
Buckman 1	05/17/11 UF	CS	METALS	Arsenic	As		11	L 1.7	
Buckman 1	05/17/11 UF	CS	METALS	Barium	Ва		19.3	3 1	
Buckman 1	05/17/11 UF	CS	METALS	Beryllium	Ве	<	Ţ	5 1	
Buckman 1	05/17/11 UF	CS	METALS	Boron	В		101	L 15	
Buckman 1	05/17/11 UF	CS	METALS	Cadmium	Cd	<	1	L 0.11	
Buckman 1	05/17/11 UF	CS	METALS	Chromium	Cr		8.81	L 2	
Buckman 1	05/17/11 UF	CS	METALS	Cobalt	Со	<	5	5 1	
Buckman 1	05/17/11 UF	CS	METALS	Copper	Cu		5.93	3 3	
Buckman 1	05/17/11 UF	CS		Iron	Fe	<	100	30	
Buckman 1	05/17/11 UF	CS	METALS	Lead	Pb		0.506	5 0.5	
Buckman 1	05/17/11 UF	CS	METALS	Manganese	Mn	<	10) 2	
Buckman 1	05/17/11 UF	CS		-	Hg	<	0.2	2 0.066	
Buckman 1	05/17/11 UF	CS		Molybdenu			3.29	0.17	
Buckman 1	05/17/11 UF	CS			Ni	<	2		

Buckman 1	05/17/11 UF	CS	METALS	Selenium	Se	<	5		1.5	
Buckman 1	05/17/11 UF	CS	METALS	Silicon Dio	SiO2		36.2		0.053	
Buckman 1	05/17/11 UF	CS	METALS	Silver	Ag	<	1		0.2	
Buckman 1	05/17/11 UF	CS	METALS	Strontium	Sr		128		1	
Buckman 1	05/17/11 UF	CS	METALS	Thallium	TI	<	2		0.45	
Buckman 1	05/17/11 UF	CS	METALS	Tin	Sn	<	10		2.5	
Buckman 1	05/17/11 UF	CS	METALS	Uranium	U		16.6		0.067	
Buckman 1	05/17/11 UF	CS	METALS	Vanadium	V		33.9		1	
Buckman 1	05/17/11 UF	CS	METALS	Zinc	Zn		3.57		3.3	
Buckman 1	05/17/11 UF	CS	PEST/PCB	Aroclor-10	12674-11	-2<	0.106		0.035	
Buckman 1	05/17/11 UF	CS	PEST/PCB	Aroclor-12	11104-28	8-2 <	0.106		0.035	
Buckman 1	05/17/11 UF	CS	PEST/PCB	Aroclor-12	11141-16	5-5 <	0.106		0.035	
Buckman 1	05/17/11 UF	CS	PEST/PCB	Aroclor-12	53469-21	<u>-ç</u> <	0.106		0.035	
Buckman 1	05/17/11 UF	CS	PEST/PCB	Aroclor-12	12672-29)-{<	0.106		0.035	
Buckman 1	05/17/11 UF	CS	PEST/PCB	Aroclor-12	11097-69)-1<	0.106		0.035	
Buckman 1	05/17/11 UF	CS	PEST/PCB	Aroclor-12	11096-82	2-5 <	0.106		0.035	
Buckman 1	05/17/11 UF	CS	PEST/PCB	Aroclor-12	37324-23	8-5 <	0.106		0.035	
Buckman 1	05/17/11 UF	CS	RAD	Actinium-2	Ac-228	<	-2.7	5.4		17
Buckman 1	05/17/11 UF	CS	RAD	Americium	Am-241	<	0.004	0.003		0.042
Buckman 1	05/17/11 UF	CS	RAD	Americium	Am-241	<	-1.92	6.8		21
Buckman 1	05/17/11 UF	CS	RAD	Bismuth-22	Bi-212	<	11.8	17		59
Buckman 1	05/17/11 UF	CS	RAD	Bismuth-22	Bi-214		13.8	3.9		6.4
Buckman 1	05/17/11 UF	CS	RAD	Cesium-13	Cs-134	<	-0.241	1.2		4
Buckman 1	05/17/11 UF	CS	RAD	Cesium-13	Cs-137	<	1.7	1.4		4.8
Buckman 1	05/17/11 UF	CS	RAD	Cobalt-60	Co-60	<	-2.01	1.3		3.4
Buckman 1	05/17/11 UF	CS	RAD	Gross alpha	GROSSA		11.2	2.2		2.1
Buckman 1	05/17/11 UF	CS	RAD	Gross beta	GROSSB		4.26	1.1		3
Buckman 1	05/17/11 UF	CS	RAD	Lead-212	Pb-212	<	-2.11	3.2		9.1
Buckman 1	05/17/11 UF	CS	RAD	Lead-214	Pb-214	<	1.84	3.1		10
Buckman 1	05/17/11 UF	CS	RAD	Neptunium	Np-237	<	-0.006	0.013		0.091
Buckman 1	05/17/11 UF	CS	RAD	Plutonium	Pu-238	<	-0.004	0.004		0.023
Buckman 1	05/17/11 UF	CS	RAD	Plutonium	Pu-239/2	4(<	0.004	0.004		0.035
Buckman 1	05/17/11 UF	CS	RAD	Potassium	K-40	<	-15.7	17		55
Buckman 1	05/17/11 UF	CS	RAD	Protactiniu	Pa-234m	<	-24	180		600

Buckman 1	05/17/11	UF		CS	RAD	Radium-22	Ra-226	<	0.233	0.11	0.31
Buckman 1	05/17/11			CS	RAD	Radium-22		<	0.538	0.2	0.55
Buckman 1	05/17/11			CS	RAD	Sodium-22		<	-0.382	1.1	3.3
Buckman 1	05/17/11			CS	RAD	Strontium-		<	-0.201	0.14	0.51
Buckman 1	05/17/11			CS	RAD	Thallium-2		<	1.6	2	3.7
Buckman 1	05/17/11			CS	RAD	Thorium-2		<	0.002	0.008	0.066
Buckman 1	05/17/11			CS	RAD	Thorium-2		<	-0.006	0.003	0.032
Buckman 1	05/17/11			CS	RAD	Thorium-2		<	0	0.003	0.018
Buckman 1	05/17/11			CS	RAD	Thorium-2		<	-33.1	73	210
Buckman 1	05/17/11			CS	RAD	Tritium	H-3	<	0.447	0.607	2.044
Buckman 1	05/17/11			CS	RAD	Uranium-2			8.18	0.6	0.071
Buckman 1	05/17/11			CS	RAD	Uranium-2		<	-6.75	9.4	29
Buckman 1	05/17/11			CS	RAD		U-235/236	j	0.287	0.037	0.055
Buckman 1	05/17/11	UF		CS	RAD	Uranium-2	U-238		5.83	0.44	0.037
Buckman 1	05/17/11	UF	FTB	CS	VOA	Acetone	67-64-1	<	10	3.	5
Buckman 1	05/17/11	UF	FTB	CS	VOA	Acetonitril	75-05-8	<	25	6.	3
Buckman 1	05/17/11	UF	FTB	CS	VOA	Acrolein	107-02-8	<	5	1.	3
Buckman 1	05/17/11	UF	FTB	CS	VOA	Acrylonitril	107-13-1	<	5		1
Buckman 1	05/17/11	UF	FTB	CS	VOA	Benzene	71-43-2	<	1	0.	3
Buckman 1	05/17/11	UF	FTB	CS	VOA	Bromoben	108-86-1	<	1	0.2	5
Buckman 1	05/17/11	UF	FTB	CS	VOA	Bromochlo	74-97-5	<	1	0.	3
Buckman 1	05/17/11	UF	FTB	CS	VOA	Bromodich	75-27-4	<	1	0.2	5
Buckman 1	05/17/11	UF	FTB	CS	VOA	Bromoforn	75-25-2	<	1	0.2	5
Buckman 1	05/17/11	UF	FTB	CS	VOA	Bromomet	74-83-9	<	1	0.	3
Buckman 1	05/17/11	UF	FTB	CS	VOA	Butanol[1-]	71-36-3	<	50	1	5
Buckman 1	05/17/11	UF	FTB	CS	VOA	Butanone[2	78-93-3	<	5	1.	3
Buckman 1	05/17/11	UF	FTB	CS	VOA	Butylbenze	104-51-8	<	1	0.2	5
Buckman 1	05/17/11	UF	FTB	CS	VOA	Butylbenze	135-98-8	<	1	0.2	5
Buckman 1	05/17/11	UF	FTB	CS	VOA	Butylbenze	98-06-6	<	1	0.2	5
Buckman 1	05/17/11	UF	FTB	CS	VOA	Carbon Dis	75-15-0	<	5	1.	3
Buckman 1	05/17/11	UF	FTB	CS	VOA	Carbon Tet	56-23-5	<	1	0.	3
Buckman 1	05/17/11	UF	FTB	CS	VOA	Chloro-1,3	126-99-8	<	1	0.	3
Buckman 1	05/17/11	UF	FTB	CS	VOA	Chloro-1-p	107-05-1	<	5	1.	5
Buckman 1	05/17/11	UF	FTB	CS	VOA	Chlorobenz	108-90-7	<	1	0.2	5

F											
Buckman 1	05/17/11	UF	FTB	CS	VOA	Chlorodibr	124-48-1	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Chloroetha	75-00-3	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Chloroform	67-66-3	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Chloromet	74-87-3	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Chlorotolu	95-49-8	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Chlorotolu	106-43-4	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dibromo-3	96-12-8	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dibromoet	106-93-4	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dibromom	74-95-3	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichlorobe	95-50-1	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichlorobe	541-73-1	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichlorobe	106-46-7	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichlorodif	75-71-8	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloroet	75-34-3	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloroet	107-06-2	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloroet	75-35-4	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloroet	156-59-2	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloroet	156-60-5	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloropro	78-87-5	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloropro	142-28-9	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloropro	594-20-7	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloropro	563-58-6	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Dichloropro	10061-01-	5<	1	0.25	
Buckman 1	05/17/11		FTB	CS	VOA	Dichloropro	10061-02-0	6<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Diethyl Eth	60-29-7	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Ethyl Meth	97-63-2	<	5	1	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Ethylbenze	100-41-4	<	1	0.25	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Hexachloro	87-68-3	<	1	0.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Hexanone[591-78-6	<	5	1.3	
Buckman 1	05/17/11		FTB	CS	VOA	lodometha	74-88-4	<	5	1.3	
Buckman 1	05/17/11	UF	FTB	CS	VOA	Isobutyl ald	78-83-1	<	50	13	
Buckman 1	05/17/11		FTB	CS	VOA	Isopropylb		<	1	0.25	
Buckman 1	05/17/11		FTB	CS	VOA	Isopropylto		<	1	0.25	
Buckman 1	05/17/11		FTB	CS	VOA	Methacrylo		<	5	1	

Buckman 1	05/17/11 UF	FTB	CS	VOA	Methyl Me 80-62-6 <	5	1
Buckman 1	05/17/11 UF	FTB	CS	VOA	Methyl ter 1634-04-4 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Methyl-2-p 108-10-1 <	5	1.3
Buckman 1	05/17/11 UF	FTB	CS	VOA	Methylene 75-09-2 <	10	3
Buckman 1	05/17/11 UF	FTB	CS	VOA	Naphthaler 91-20-3 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Propionitri 107-12-0 <	5	1.5
Buckman 1	05/17/11 UF	FTB	CS	VOA	Propylbenz 103-65-1 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Styrene 100-42-5 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Tetrachlor 630-20-6 <	1	0.3
Buckman 1	05/17/11 UF	FTB	CS	VOA	Tetrachlor 79-34-5 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Tetrachlor 127-18-4 <	1	0.3
Buckman 1	05/17/11 UF	FTB	CS	VOA	Toluene 108-88-3 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trichloro-1 76-13-1 <	5	1
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trichlorobe 87-61-6 <	1	0.33
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trichlorobe 120-82-1 <	1	0.3
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trichloroet 71-55-6 <	1	0.33
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trichloroet 79-00-5 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trichloroet 79-01-6 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trichloroflu 75-69-4 <	1	0.3
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trichloropr 96-18-4 <	1	0.3
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trimethylb 95-63-6 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Trimethylb 108-67-8 <	1	0.25
Buckman 1	05/17/11 UF	FTB	CS	VOA	Vinyl Chlor 75-01-4 <	1	0.5
Buckman 1	05/17/11 UF	FTB	CS	VOA	Vinyl aceta 108-05-4 <	5	1.5
Buckman 1	05/17/11 UF	FTB	CS	VOA	Xylene[1,2-95-47-6 <	1	0.3
Buckman 1	05/17/11 UF	FTB	CS	VOA	Xylene[1,3-Xylene[1,3 <	2	0.5
Buckman 1	05/17/11 UF		CS	VOA	Acetone 67-64-1 <	10	3.5
Buckman 1	05/17/11 UF		CS	VOA	Acetonitrile75-05-8 <	25	6.3
Buckman 1	05/17/11 UF		CS	VOA	Acrolein 107-02-8 <	5	1.3
Buckman 1	05/17/11 UF		CS	VOA	Acrylonitril 107-13-1 <	5	1
Buckman 1	05/17/11 UF		CS	VOA	Benzene 71-43-2 <	1	0.3
Buckman 1	05/17/11 UF		CS	VOA	Bromobenz 108-86-1 <	1	0.25
Buckman 1	05/17/11 UF		CS	VOA	Bromochlo 74-97-5 <	1	0.3
Buckman 1	05/17/11 UF		CS	VOA	Bromodich 75-27-4 <	1	0.25

Buckman 1	05/17/11 UF	CS	VOA	Bromoform 75-25-2 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Bromomet 74-83-9 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Butanol[1-]71-36-3 <	50	15
Buckman 1	05/17/11 UF	CS	VOA	Butanone[278-93-3 <	5	1.3
Buckman 1	05/17/11 UF	CS	VOA	Butylbenze 104-51-8 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Butylbenze 135-98-8 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Butylbenze 98-06-6 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Carbon Dis 75-15-0 <	5	1.3
Buckman 1	05/17/11 UF	CS	VOA	Carbon Tet 56-23-5 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Chloro-1,3-126-99-8 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Chloro-1-p 107-05-1 <	5	1.5
Buckman 1	05/17/11 UF	CS	VOA	Chlorobenz 108-90-7 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Chlorodibre 124-48-1 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Chloroetha 75-00-3 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Chloroform 67-66-3 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Chlorometl74-87-3 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Chlorotolu 95-49-8 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Chlorotolu 106-43-4 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Dibromo-3-96-12-8 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Dibromoet 106-93-4 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Dibromom 74-95-3 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Dichlorobe 95-50-1 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Dichlorobe 541-73-1 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Dichlorobe 106-46-7 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Dichlorodif 75-71-8 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Dichloroetl 75-34-3 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Dichloroetl 107-06-2 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Dichloroetl 75-35-4 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Dichloroetl 156-59-2 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Dichloroetl 156-60-5 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Dichloropre78-87-5 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Dichloropre142-28-9 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Dichloropre594-20-7 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Dichloropre563-58-6 <	1	0.25

Buckman 1	05/17/11 UF	CS	VOA	Dichloropre 10061-01-5 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Dichloropre 10061-02-6 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Diethyl Eth 60-29-7 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Ethyl Meth 97-63-2 <	5	1
Buckman 1	05/17/11 UF	CS	VOA	Ethylbenze 100-41-4 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Hexachlore 87-68-3 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Hexanone[591-78-6 <	5	1.3
Buckman 1	05/17/11 UF	CS	VOA	Iodometha 74-88-4 <	5	1.3
Buckman 1	05/17/11 UF	CS	VOA	Isobutyl alc 78-83-1 <	50	13
Buckman 1	05/17/11 UF	CS	VOA	Isopropylbe98-82-8 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Isopropyltc 99-87-6 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Methacrylc 126-98-7 <	5	1
Buckman 1	05/17/11 UF	CS	VOA	Methyl Me 80-62-6 <	5	1
Buckman 1	05/17/11 UF	CS	VOA	Methyl ter 1634-04-4 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Methyl-2-p 108-10-1 <	5	1.3
Buckman 1	05/17/11 UF	CS	VOA	Methylene 75-09-2 <	10	3
Buckman 1	05/17/11 UF	CS	VOA	Naphthaler 91-20-3 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Propionitri 107-12-0 <	5	1.5
Buckman 1	05/17/11 UF	CS	VOA	Propylbenz 103-65-1 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Styrene 100-42-5 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Tetrachlor 630-20-6 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Tetrachlore 79-34-5 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Tetrachlore 127-18-4 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Toluene 108-88-3 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Trichloro-1 76-13-1 <	5	1
Buckman 1	05/17/11 UF	CS	VOA	Trichlorobe 87-61-6 <	1	0.33
Buckman 1	05/17/11 UF	CS	VOA	Trichlorobe 120-82-1 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Trichloroet 71-55-6 <	1	0.33
Buckman 1	05/17/11 UF	CS	VOA	Trichloroet 79-00-5 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Trichloroet 79-01-6 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Trichloroflu 75-69-4 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Trichloropr 96-18-4 <	1	0.3
Buckman 1	05/17/11 UF	CS	VOA	Trimethylb 95-63-6 <	1	0.25
Buckman 1	05/17/11 UF	CS	VOA	Trimethylb 108-67-8 <	1	0.25

			1			1			
Buckman 1	05/17/11				or 75-01-4	<	1	0.5	
Buckman 1	05/17/11		CS	,	ta 108-05-4	<	5	1.5	
Buckman 1	05/17/11			, ,	,2-95-47-6	<	1	0.3	
Buckman 1	05/17/11			VOA Xylene[1	,3-Xylene[1,3	<	2	0.5	
Buckman 6	05/17/11	UF		GENINORG Alkalinity		<	1	0.73	
Buckman 6	05/17/11			GENINORG Alkalinity	-CALK-CO3+H	ICO3	282	0.73	
Buckman 6	05/17/11	UF	CS	GENINORG Ammoni	a a NH3-N		0.06	0.016	
Buckman 6	05/17/11			GENINORG Bromide	Br(-1)		0.076	0.066	
Buckman 6	05/17/11	UF	CS	GENINORG Calcium	Ca		59.1	0.05	
Buckman 6	05/17/11	UF	CS	GENINORG Chloride	Cl(-1)		3.87	0.066	
Buckman 6	05/17/11	UF	CS	GENINORG Cyanide	(TCN(TOTAL)	<	0.005	0.002	
Buckman 6	05/17/11			GENINORG Dissolve	d D D		6.07		
Buckman 6	05/17/11	UF	CS	GENINORG Fluoride	F(-1)		0.425	0.033	
Buckman 6	05/17/11	UF	CS	GENINORG Hardnes	HARDNESS	•	180	0.45	
Buckman 6	05/17/11	UF	CS	GENINORG Magnesi	un Mg		7.79	0.11	
Buckman 6	05/17/11	UF	CS	GENINORG Nitrate-N	lit NO3+NO2-	N	1.62	0.05	
Buckman 6	05/17/11	UF	CS	GENINORG Oxidatio	n FORP		255.2		
Buckman 6	05/17/11	UF	CS	GENINORG Perchlor	ate ClO4		0.401	0.05	
Buckman 6	05/17/11	UF	CS	GENINORG Potassiu	m K		4.29	0.05	
Buckman 6	05/17/11	UF	CS	GENINORG Sodium	Na		62.6	0.1	
Buckman 6	05/17/11	UF	CS	GENINORG Specific	Co SPEC_CON	DC	609		
Buckman 6	05/17/11	UF	CS	GENINORG Specific	Co SPEC_CON	DC	602	1	
Buckman 6	05/17/11	UF	CS	GENINORG Sulfate	SO4(-2)		18.8	0.1	
Buckman 6	05/17/11	UF	CS	GENINORG Tempera	tu TEMP		24.1		
Buckman 6	05/17/11	UF	CS	GENINORG Total Dis	so TDS		362	2.4	
Buckman 6	05/17/11	UF	CS	GENINORG Total Kje	ldaTKN	<	0.5	0.18	
Buckman 6	05/17/11			GENINORG Total Or	gar TOC		0.604	0.33	
Buckman 6	05/17/11	UF	CS	GENINORG Total Photometer	osr PO4-P	<	0.026	0.015	
Buckman 6	05/17/11	UF	CS	GENINORG Turbidity	TURB		1.59		
Buckman 6	05/17/11	UF	CS	GENINORG pH	рН		7.33	0.01	
Buckman 6	05/17/11	UF	CS	GENINORG pH	рН		6.72		
Buckman 6	05/17/11		CS	HEXP 2,4-Diam	in 6629-29-4	<	1.3	0.39	
Buckman 6	05/17/11	UF	CS	HEXP 2,6-Diam	in 59229-75-3	<	1.3	0.39	
Buckman 6	05/17/11		CS	HEXP 3,5-Dinit	ro 618-87-1	<	1.3	0.39	

Buckman 6	05/17/11 UF	CS	HEXP	Amino-2,6-19406-51-(< 0.32	5 0.1
Buckman 6	05/17/11 UF	CS	HEXP	Amino-4,6-35572-78-2		
Buckman 6	05/17/11 UF	CS	HEXP		< 0.32	
Buckman 6	05/17/11 UF	CS	HEXP		< 0.32	
Buckman 6	05/17/11 UF	CS	HEXP	Dinitrotolu 606-20-2	< 0.325	5 0.1
Buckman 6	05/17/11 UF	CS	HEXP	HMX 2691-41-0		
Buckman 6	05/17/11 UF	CS	HEXP	Nitrobenze 98-95-3	< 0.32	5 0.1
Buckman 6	05/17/11 UF	CS	HEXP	Nitrotoluer 88-72-2	< 0.325	5 0.1
Buckman 6	05/17/11 UF	CS	HEXP	Nitrotoluer 99-08-1	< 0.32	
Buckman 6	05/17/11 UF	CS	HEXP	Nitrotoluer 99-99-0	< 0.649	0.1
Buckman 6	05/17/11 UF	CS	HEXP	PETN 78-11-5	< 1.3	3 0.13
Buckman 6	05/17/11 UF	CS	HEXP	RDX 121-82-4	< 0.325	5 0.1
Buckman 6	05/17/11 UF	CS	HEXP	TATB 3058-38-6	< 1.3	0.39
Buckman 6	05/17/11 UF	CS	HEXP	Tetryl 479-45-8	< 0.649	0.13
Buckman 6	05/17/11 UF	CS	HEXP	Trinitroben 99-35-4	< 0.325	5 0.1
Buckman 6	05/17/11 UF	CS	HEXP	Trinitrotolu 118-96-7	< 0.325	5 0.1
Buckman 6	05/17/11 UF	CS	HEXP	Tris (o-cres 78-30-8	< 1.3	0.39
Buckman 6	05/17/11 F	CS	METALS	Chromium Cr	2.60	5 2
Buckman 6	05/17/11 UF	CS	METALS	Aluminum Al	< 200	0 68
Buckman 6	05/17/11 UF	CS	METALS	Antimony Sb	< 3	3 1
Buckman 6	05/17/11 UF	CS	METALS	Arsenic As	3.5	5 1.7
Buckman 6	05/17/11 UF	CS	METALS	Barium Ba	192	1
Buckman 6	05/17/11 UF	CS	METALS	Beryllium Be	< !	5 1
Buckman 6	05/17/11 UF	CS	METALS	Boron B	72.2	L 15
Buckman 6	05/17/11 UF	CS	METALS	Cadmium Cd	< 1	L 0.11
Buckman 6	05/17/11 UF	CS	METALS	Chromium Cr	3.2	L 2
Buckman 6	05/17/11 UF	CS	METALS			5 1
Buckman 6	05/17/11 UF	CS	METALS	Copper Cu	23.3	
Buckman 6	05/17/11 UF	CS	METALS		< 100	
Buckman 6	05/17/11 UF	CS	METALS	Lead Pb	0.9	7 0.5
Buckman 6	05/17/11 UF	CS	METALS	. 0.	< 10	
Buckman 6	05/17/11 UF	CS	METALS	Mercury Hg	< 0.2	
Buckman 6	05/17/11 UF	CS	METALS	Molybdent Mo	3.32	L 0.17
Buckman 6	05/17/11 UF	CS	METALS	Nickel Ni	1.44	4 0.5

Buckman 6	05/17/11 UF	CS	METALS	Selenium	Se	<	5		1.5	
Buckman 6	05/17/11 UF	CS	METALS	Silicon Diox	SiO2		34.6		0.053	
Buckman 6	05/17/11 UF	CS	METALS	Silver	Ag	<	1		0.2	
Buckman 6	05/17/11 UF	CS	METALS	Strontium	Sr		1,220.00		1	
Buckman 6	05/17/11 UF	CS	METALS	Thallium	TI	<	2		0.45	
Buckman 6	05/17/11 UF	CS	METALS	Tin	Sn	<	50		13	
Buckman 6	05/17/11 UF	CS	METALS	Uranium	U		5.22		0.067	
Buckman 6	05/17/11 UF	CS	METALS	Vanadium	V		10.5		1	
Buckman 6	05/17/11 UF	CS	METALS	Zinc	Zn		9.74		3.3	
Buckman 6	05/17/11 UF	CS	PEST/PCB	Aroclor-10	12674-11	L-2<	0.109		0.036	
Buckman 6	05/17/11 UF	CS	PEST/PCB	Aroclor-12	11104-28	3-2<	0.109		0.036	
Buckman 6	05/17/11 UF	CS	PEST/PCB	Aroclor-12	11141-16	5-5<	0.109		0.036	
Buckman 6	05/17/11 UF	CS	PEST/PCB	Aroclor-12	53469-21	L-9<	0.109		0.036	
Buckman 6	05/17/11 UF	CS	PEST/PCB	Aroclor-12	12672-29	9-6<	0.109		0.036	
Buckman 6	05/17/11 UF	CS	PEST/PCB	Aroclor-12	11097-69)-1<	0.109		0.036	
Buckman 6	05/17/11 UF	CS	PEST/PCB	Aroclor-12	11096-82	2-5 <	0.109		0.036	
Buckman 6	05/17/11 UF	CS	PEST/PCB	Aroclor-12	37324-23	3-5<	0.109		0.036	
Buckman 6	05/17/11 UF	CS	RAD	Actinium-2	Ac-228	<	3.95	6.8		23
Buckman 6	05/17/11 UF	CS	RAD	Americium	Am-241	<	-0.016	0.01		0.041
Buckman 6	05/17/11 UF	CS	RAD	Americium	Am-241	<	-1.52	8.9		30
Buckman 6	05/17/11 UF	CS	RAD	Bismuth-21	Bi-212	<	8.48	21		71
Buckman 6	05/17/11 UF	CS	RAD	Bismuth-21	Bi-214	<	5.06	5.9		14
Buckman 6	05/17/11 UF	CS	RAD	Cesium-13	Cs-134	<	0.869	1.4		4.8
Buckman 6	05/17/11 UF	CS	RAD	Cesium-13	Cs-137	<	1.06	1.3		4.8
Buckman 6	05/17/11 UF	CS	RAD	Cobalt-60	Co-60	<	-0.844	1.7		5.5
Buckman 6	05/17/11 UF	CS	RAD	Gross alpha	GROSSA		6.44	1.7		2.3
Buckman 6	05/17/11 UF	CS	RAD	Gross beta	GROSSB		4.38	1.1		2.9
Buckman 6	05/17/11 UF	CS	RAD	Lead-212	Pb-212	<	8.33	4.6		12
Buckman 6	05/17/11 UF	CS	RAD	Lead-214	Pb-214	<	-3.48	4.2		13
Buckman 6	05/17/11 UF	CS	RAD	Neptunium	Np-237	<	0	0.013		0.087
Buckman 6	05/17/11 UF	CS	RAD	Plutonium-	Pu-238	<	-0.015	0.006		0.023
Buckman 6	05/17/11 UF	CS	RAD	Plutonium-	Pu-239/2	.4(<	0	0.005		0.035
Buckman 6	05/17/11 UF	CS	RAD	Potassium-	K-40	<	-50.1	20		60
Buckman 6	05/17/11 UF	CS	RAD	Protactiniu	Pa-234m	<	202	220		770

Buckman 6	05/17/11 UF		CS	RAD	Radium-22 Ra-226 <	0.208	0.11		0.34
Buckman 6	05/17/11 UF		CS	RAD	Radium-22 Ra-228	0.854	0.25		0.63
Buckman 6	05/17/11 UF		CS	RAD	Sodium-22 Na-22 <	1.33	1.5		5.4
Buckman 6	05/17/11 UF		CS	RAD	Strontium-Sr-90 <	0.237	0.15		0.48
Buckman 6	05/17/11 UF		CS	RAD	Thallium-2(TI-208 <	2.38	2.4		4
Buckman 6	05/17/11 UF		CS	RAD	Thorium-22Th-228 <	0.018	0.008		0.066
Buckman 6	05/17/11 UF		CS	RAD	Thorium-23Th-230 <	0.003	0.004		0.032
Buckman 6	05/17/11 UF		CS	RAD	Thorium-23Th-232 <	0.004	0.004		0.018
Buckman 6	05/17/11 UF		CS	RAD	Thorium-23Th-234 <	90.2	87		300
Buckman 6	05/17/11 UF		CS	RAD	Tritium H-3 <	0.032	0.575		1.98
Buckman 6	05/17/11 UF		CS	RAD	Uranium-2:U-234	7.96	0.6		0.086
Buckman 6	05/17/11 UF		CS	RAD	Uranium-2:U-235 <	-7.14	11		35
Buckman 6	05/17/11 UF		CS	RAD	Uranium-2: U-235/236	0.135	0.025		0.066
Buckman 6	05/17/11 UF		CS	RAD	Uranium-2:U-238	2.06	0.17		0.045
Buckman 6	05/17/11 UF	FTB	CS	VOA	Acetone 67-64-1 <	10		3.5	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Acetonitrile75-05-8 <	25		6.3	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Acrolein 107-02-8 <	5		1.3	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Acrylonitril 107-13-1 <	5		1	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Benzene 71-43-2 <	1		0.3	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Bromoben: 108-86-1 <	1		0.25	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Bromochlo 74-97-5 <	1		0.3	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Bromodich 75-27-4 <	1		0.25	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Bromoform 75-25-2 <	1		0.25	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Bromomet 74-83-9 <	1		0.3	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Butanol[1-]71-36-3 <	50		15	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Butanone[278-93-3 <	5		1.3	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Butylbenze 104-51-8 <	1		0.25	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Butylbenze 135-98-8 <	1		0.25	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Butylbenze 98-06-6 <	1		0.25	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Carbon Dis 75-15-0 <	5		1.3	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Carbon Tet 56-23-5 <	1		0.3	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Chloro-1,3-126-99-8 <	1		0.3	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Chloro-1-p 107-05-1 <	5		1.5	
Buckman 6	05/17/11 UF	FTB	CS	VOA	Chlorobenz 108-90-7 <	1		0.25	

i				1			
Buckman 6	05/17/11 UF	FTB	CS	VOA	Chlorodibre 124-48-1 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Chloroetha 75-00-3 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Chloroform 67-66-3 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Chloromet 74-87-3 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Chlorotolue95-49-8 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Chlorotolue106-43-4 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dibromo-3-96-12-8 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dibromoet 106-93-4 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dibromom 74-95-3 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichlorobe 95-50-1 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichlorobe 541-73-1 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichlorobe 106-46-7 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichlorodif 75-71-8 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloroet 75-34-3 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloroet 107-06-2 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloroet 75-35-4 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloroet 156-59-2 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloroet 156-60-5 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloropre78-87-5 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloropre 142-28-9 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloropr 594-20-7 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloropr 563-58-6 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloropre 10061-01-5 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Dichloropre 10061-02-6 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Diethyl Eth 60-29-7 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Ethyl Meth 97-63-2 <	5	1
Buckman 6	05/17/11 UF	FTB	CS	VOA	Ethylbenze 100-41-4 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Hexachlorc 87-68-3 <	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Hexanone[591-78-6 <	5	1.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Iodometha 74-88-4 <	5	1.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Isobutyl ald 78-83-1 <	50	13
Buckman 6	05/17/11 UF	FTB	CS	VOA	Isopropylbe98-82-8 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Isopropyltc 99-87-6 <	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Methacrylc 126-98-7 <	5	1

Buckman 6	05/17/11 UF	FTB	CS	VOA	Methyl Me 80-62-6	<	5	1
Buckman 6	05/17/11 UF	FTB	CS	VOA	Methyl ter 1634-04-4	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Methyl-2-p 108-10-1	<	5	1.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Methylene 75-09-2	<	10	3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Naphthaler 91-20-3	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Propionitri 107-12-0	<	5	1.5
Buckman 6	05/17/11 UF	FTB	CS	VOA	Propylbenz 103-65-1	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Styrene 100-42-5	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Tetrachlore630-20-6	<	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Tetrachlore 79-34-5	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Tetrachlore 127-18-4	<	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Toluene 108-88-3	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trichloro-1 76-13-1	<	5	1
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trichlorobe 87-61-6	<	1	0.33
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trichlorobe 120-82-1	<	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trichloroet 71-55-6	<	1	0.33
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trichloroet 79-00-5	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trichloroet 79-01-6	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trichloroflu 75-69-4	<	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trichloropr 96-18-4	<	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trimethylb 95-63-6	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Trimethylb 108-67-8	<	1	0.25
Buckman 6	05/17/11 UF	FTB	CS	VOA	Vinyl Chlor 75-01-4	<	1	0.5
Buckman 6	05/17/11 UF	FTB	CS	VOA	Vinyl aceta 108-05-4	<	5	1.5
Buckman 6	05/17/11 UF	FTB	CS	VOA	Xylene[1,2-95-47-6	<	1	0.3
Buckman 6	05/17/11 UF	FTB	CS	VOA	Xylene[1,3-Xylene[1,3	<	2	0.5
Buckman 6	05/17/11 UF		CS	VOA	Acetone 67-64-1	<	10	3.5
Buckman 6	05/17/11 UF		CS	VOA	Acetonitrile75-05-8	<	25	6.3
Buckman 6	05/17/11 UF		CS	VOA	Acrolein 107-02-8	<	5	1.3
Buckman 6	05/17/11 UF		CS	VOA	Acrylonitril 107-13-1	<	5	1
Buckman 6	05/17/11 UF		CS	VOA	Benzene 71-43-2	<	1	0.3
Buckman 6	05/17/11 UF		CS	VOA	Bromoben: 108-86-1	<	1	0.25
Buckman 6	05/17/11 UF		CS	VOA	Bromochlo 74-97-5	<	1	0.3
Buckman 6	05/17/11 UF		CS	VOA	Bromodich 75-27-4	<	1	0.25

Buckman 6	05/17/11 UF	CS	VOA	Bromoform 75-25-2	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Bromomet 74-83-9	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Butanol[1-]71-36-3	<	50	15
Buckman 6	05/17/11 UF	CS	VOA	Butanone[278-93-3	<	5	1.3
Buckman 6	05/17/11 UF	CS	VOA	Butylbenze 104-51-8	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Butylbenze 135-98-8	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Butylbenze 98-06-6	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Carbon Dis 75-15-0	<	5	1.3
Buckman 6	05/17/11 UF	CS	VOA	Carbon Tet 56-23-5	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Chloro-1,3-126-99-8	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Chloro-1-p 107-05-1	<	5	1.5
Buckman 6	05/17/11 UF	CS	VOA	Chlorobenz 108-90-7	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Chlorodibre 124-48-1	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Chloroetha 75-00-3	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Chloroform 67-66-3	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Chloromet 74-87-3	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Chlorotolu 95-49-8	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Chlorotolue 106-43-4	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Dibromo-3 96-12-8	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Dibromoet 106-93-4	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Dibromom 74-95-3	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Dichlorobe 95-50-1	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Dichlorobe 541-73-1	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Dichlorobe 106-46-7	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Dichlorodif 75-71-8	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Dichloroet 75-34-3	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Dichloroet 107-06-2	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Dichloroet 75-35-4	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Dichloroet 156-59-2	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Dichloroet 156-60-5	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Dichloropre78-87-5	<	1	0.25
Buckman 6	05/17/11 UF	CS	VOA	Dichloropre 142-28-9	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Dichloropr(594-20-7	<	1	0.3
Buckman 6	05/17/11 UF	CS	VOA	Dichloropr(563-58-6	<	1	0.25

Buckman 6	05/17/11	UF	CS	VOA	Dichloropre 10061-01-5	<	1	0.25
Buckman 6	05/17/11		CS	VOA	Dichloropr 10061-02-6		1	0.25
Buckman 6	05/17/11		CS	VOA	Diethyl Eth 60-29-7	<	1	0.3
Buckman 6	05/17/11		CS	VOA	Ethyl Meth 97-63-2	<	5	1
Buckman 6	05/17/11		CS	VOA	Ethylbenze 100-41-4	<	1	0.25
Buckman 6	05/17/11		CS	VOA	Hexachlorg 87-68-3	<	1	0.3
Buckman 6	05/17/11		CS	VOA	Hexanone[591-78-6	<	5	1.3
Buckman 6	05/17/11		CS	VOA	Iodometha 74-88-4	<	5	1.3
Buckman 6	05/17/11		CS	VOA	Isobutyl alc 78-83-1	<	50	13
Buckman 6	05/17/11		CS	VOA	/ Isopropylbe98-82-8	<	1	0.25
Buckman 6	05/17/11		CS	VOA	Isopropyltc 99-87-6	<	1	0.25
Buckman 6	05/17/11		CS	VOA	Methacrylc 126-98-7	<	5	1
Buckman 6	05/17/11		CS	VOA	Methyl Me 80-62-6	<	5	1
Buckman 6	05/17/11		CS	VOA	Methyl ter 1634-04-4	<	1	0.25
Buckman 6	05/17/11		CS	VOA	Methyl-2-p 108-10-1	<	5	1.3
Buckman 6	05/17/11		CS	VOA	Methylene 75-09-2	<	10	3
Buckman 6	05/17/11	UF	CS	VOA	Naphthaler 91-20-3	<	1	0.25
Buckman 6	05/17/11	UF	CS	VOA	Propionitril 107-12-0	<	5	1.5
Buckman 6	05/17/11	UF	CS	VOA	Propylbenz 103-65-1	<	1	0.25
Buckman 6	05/17/11	UF	CS	VOA	Styrene 100-42-5	<	1	0.25
Buckman 6	05/17/11	UF	CS	VOA	Tetrachlor 630-20-6	<	1	0.3
Buckman 6	05/17/11	UF	CS	VOA	Tetrachlore 79-34-5	<	1	0.25
Buckman 6	05/17/11	UF	CS	VOA	Tetrachlor 127-18-4	<	1	0.3
Buckman 6	05/17/11	UF	CS	VOA	Toluene 108-88-3	<	1	0.25
Buckman 6	05/17/11	UF	CS	VOA	Trichloro-1 76-13-1	<	5	1
Buckman 6	05/17/11	UF	CS	VOA	Trichlorobe 87-61-6	<	1	0.33
Buckman 6	05/17/11	UF	CS	VOA	Trichlorobe 120-82-1	<	1	0.3
Buckman 6	05/17/11	UF	CS	VOA	Trichloroet 71-55-6	<	1	0.33
Buckman 6	05/17/11	UF	CS	VOA	Trichloroet 79-00-5	<	1	0.25
Buckman 6	05/17/11	UF	CS	VOA	Trichloroet 79-01-6	<	1	0.25
Buckman 6	05/17/11	UF	CS	VOA	Trichloroflu 75-69-4	<	1	0.3
Buckman 6	05/17/11	UF	CS	VOA	Trichloropr 96-18-4	<	1	0.3
Buckman 6	05/17/11	UF	CS	VOA	Trimethylb 95-63-6	<	1	0.25
Buckman 6	05/17/11	UF	CS	VOA	Trimethylb 108-67-8	<	1	0.25

Buckman 6	05/17/11 UF		CS	VOA	Vinyl Chlor 75-01-4 <	1	0.5
Buckman 6	05/17/11 UF		CS	VOA	Vinyl aceta 108-05-4 <	5	1.5
Buckman 6	05/17/11 UF		CS	VOA	Xylene[1,2-95-47-6 <	1	0.3
Buckman 6	05/17/11 UF		CS	VOA	Xylene[1,3-Xylene[1,3 <	2	0.5
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Alkalinity-CALK-CO3 <	1	0.73
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Alkalinity-CALK-CO3+HCO3	269	0.73
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Ammonia aNH3-N <	0.05	0.016
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Bromide Br(-1)	0.07	0.066
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Calcium Ca	22.5	0.05
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Chloride Cl(-1)	2.64	0.066
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Cyanide (TcCN(TOTAL) <	0.005	0.002
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Fluoride F(-1)	0.495	0.033
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Hardness HARDNESS	71.7	0.45
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Magnesiun Mg	3.78	0.11
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Nitrate-Nit NO3+NO2-N	0.645	0.05
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Perchlorate ClO4	0.268	0.05
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Potassium K	3.48	0.05
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Sodium Na	102	0.1
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Specific Co SPEC_CONDC	564	1
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Sulfate SO4(-2)	14.1	0.1
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Total Disso TDS	343	2.4
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Total Kjelda TKN <	0.1	0.035
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Total Orgar TOC	0.545	0.33
Buckman 8	05/17/11 UF	FD	CS	GENINORG	Total Phos PO4-P <	0.032	0.015
Buckman 8	05/17/11 UF	FD	CS	GENINORG	рН рН	8.04	0.01
Buckman 8	05/17/11 UF		CS	GENINORG	Alkalinity-CALK-CO3 <	1	0.73
Buckman 8	05/17/11 UF		CS	GENINORG	Alkalinity-CALK-CO3+HCO3	373	0.73
Buckman 8	05/17/11 UF		CS	GENINORG	Ammonia a NH3-N <	0.05	0.016
Buckman 8	05/17/11 UF		CS	GENINORG	Bromide Br(-1)	0.072	0.066
Buckman 8	05/17/11 UF		CS	GENINORG	Calcium Ca	20.9	0.05
Buckman 8	05/17/11 UF		CS	GENINORG	Chloride Cl(-1)	2.63	0.066
Buckman 8	05/17/11 UF		CS	GENINORG	Cyanide (TcCN(TOTAL)	0.006	0.002
Buckman 8	05/17/11 UF		CS	GENINORG	Dissolved C DO	5.1	
Buckman 8	05/17/11 UF		CS	GENINORG	Fluoride F(-1)	0.493	0.033

Buckman 8	05/17/11 UF	:	CS	GENINORG	Hardness	HARDNESS	66.7	0.45
Buckman 8	05/17/11 UF	:	CS	GENINORG	Magnesiun	Mg	3.54	0.11
Buckman 8	05/17/11 UF		CS	GENINORG	Nitrate-Nit	NO3+NO2-N	0.645	0.05
Buckman 8	05/17/11 UF		CS	GENINORG	Oxidation I	ORP	209.7	
Buckman 8	05/17/11 UF		CS	GENINORG	Perchlorat	CIO4	0.26	0.05
Buckman 8	05/17/11 UF		CS	GENINORG	Potassium	К	3.2	0.05
Buckman 8	05/17/11 UF		CS	GENINORG	Sodium	Na	95.1	0.1
Buckman 8	05/17/11 UF		CS	GENINORG	Specific Co	SPEC_CONDC	571	1
Buckman 8	05/17/11 UF		CS	GENINORG	Specific Co	SPEC_CONDC	564	
Buckman 8	05/17/11 UF		CS	GENINORG	Sulfate	SO4(-2)	14.1	0.1
Buckman 8	05/17/11 UF		CS	GENINORG	Temperatu	TEMP	25.68	
Buckman 8	05/17/11 UF	:	CS	GENINORG	Total Disso	TDS	350	2.4
Buckman 8	05/17/11 UF		CS	GENINORG	Total Kjeld	TKN <	0.1	0.035
Buckman 8	05/17/11 UF		CS	GENINORG	Total Orga	TOC	0.577	0.33
Buckman 8	05/17/11 UF		CS	GENINORG	Total Phos	PO4-P <	0.029	0.015
Buckman 8	05/17/11 UF		CS	GENINORG	Turbidity	TURB	1.69	
Buckman 8	05/17/11 UF		CS	GENINORG	рН	рН	7.41	
Buckman 8	05/17/11 UF	:	CS	GENINORG	рН	рН	7.39	0.01
Buckman 8	05/17/11 UF	FD	CS	HEXP	2,4-Diamin	6629-29-4 <	1.3	0.39
Buckman 8	05/17/11 UF	FD	CS	HEXP	2,6-Diamin	59229-75-3<	1.3	0.39
Buckman 8	05/17/11 UF	FD	CS	HEXP	3,5-Dinitro	618-87-1 <	1.3	0.39
Buckman 8	05/17/11 UF	FD	CS	HEXP	Amino-2,6	19406-51-(<	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Amino-4,6	-35572-78-2<	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Dinitroben	99-65-0 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Dinitrotolu	121-14-2 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Dinitrotolu	606-20-2 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	НМХ	2691-41-0 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Nitrobenze	98-95-3 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Nitrotolue	88-72-2 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Nitrotolue	99-08-1 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Nitrotolue	99-99-0 <	0.649	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	PETN	78-11-5 <	1.3	0.13
Buckman 8	05/17/11 UF	FD	CS	HEXP	RDX	121-82-4 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	ТАТВ	3058-38-6 <	1.3	0.39

Buckman 8	05/17/11 UF	FD	CS	HEXP	Tetryl 479-45-8 <	0.649	0.13
Buckman 8	05/17/11 UF	FD	CS	HEXP	Trinitroben 99-35-4 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Trinitrotolu 118-96-7 <	0.325	0.1
Buckman 8	05/17/11 UF	FD	CS	HEXP	Tris (o-cres 78-30-8 <	1.3	0.39
Buckman 8	05/17/11 UF		CS	HEXP	2,4-Diamin 6629-29-4 <	1.3	0.39
Buckman 8	05/17/11 UF		CS	HEXP	2,6-Diamin 59229-75-3<	1.3	0.39
Buckman 8	05/17/11 UF		CS	HEXP	3,5-Dinitro 618-87-1 <	1.3	0.39
Buckman 8	05/17/11 UF		CS	HEXP	Amino-2,6-19406-51-(<	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Amino-4,6-35572-78-2<	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Dinitroben: 99-65-0 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Dinitrotolu 121-14-2 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Dinitrotolu 606-20-2 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	HMX 2691-41-0 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Nitrobenze 98-95-3 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Nitrotoluer 88-72-2 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Nitrotoluer 99-08-1 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Nitrotoluer 99-99-0 <	0.649	0.1
Buckman 8	05/17/11 UF		CS	HEXP	PETN 78-11-5 <	1.3	0.13
Buckman 8	05/17/11 UF		CS	HEXP	RDX 121-82-4 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	TATB 3058-38-6 <	1.3	0.39
Buckman 8	05/17/11 UF		CS	HEXP	Tetryl 479-45-8 <	0.649	0.13
Buckman 8	05/17/11 UF		CS	HEXP	Trinitroben 99-35-4 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Trinitrotolu 118-96-7 <	0.325	0.1
Buckman 8	05/17/11 UF		CS	HEXP	Tris (o-cres 78-30-8 <	1.3	0.39
Buckman 8	05/17/11 F	FD	CS	METALS	Chromium Cr	5.31	2
Buckman 8	05/17/11 F		CS	METALS	Chromium Cr	4.88	2
Buckman 8	05/17/11 UF	FD	CS	METALS	Aluminum Al <	200	68
Buckman 8	05/17/11 UF	FD	CS	METALS	Antimony Sb <	3	1
Buckman 8	05/17/11 UF	FD	CS	METALS	Arsenic As	7.15	1.7
Buckman 8	05/17/11 UF	FD	CS	METALS	Barium Ba	71	1
Buckman 8	05/17/11 UF	FD	CS	METALS	Beryllium Be <	5	1
Buckman 8	05/17/11 UF	FD	CS	METALS	Boron B	102	15
Buckman 8	05/17/11 UF	FD	CS	METALS	Cadmium Cd <	1	0.11
Buckman 8	05/17/11 UF	FD	CS	METALS	Chromium Cr	4.98	2

Duraling and O	05/47/44			20	NACTALC	Calcalt	6-		r	4
Buckman 8	05/17/11 U				METALS	Cobalt	Co	<	5	1
Buckman 8	05/17/11 U			CS	METALS	Copper	Cu		31.9	3
Buckman 8	05/17/11 U				METALS	Iron	Fe	<	100	30
Buckman 8	05/17/11 U				METALS	Lead	Pb		1.71	0.5
Buckman 8	05/17/11 U				METALS	Manganese		<	10	2
Buckman 8	05/17/11 U				METALS	Mercury	Hg	<	0.2	0.066
Buckman 8	05/17/11 U				METALS	Molybdenu	Мо		1.92	0.17
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Nickel	Ni		0.706	0.5
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Selenium	Se	<	5	1.5
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Silicon Diox	SiO2		38.5	0.053
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Silver	Ag	<	1	0.2
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Strontium	Sr		543	1
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Thallium	TI	<	2	0.45
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Tin	Sn	<	50	13
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Uranium	U		20.6	0.067
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Vanadium	V		35.1	1
Buckman 8	05/17/11 U	F F	D C	CS	METALS	Zinc	Zn		7.65	3.3
Buckman 8	05/17/11 U	F	C	CS	METALS	Aluminum	Al	<	200	68
Buckman 8	05/17/11 U	F	C	CS	METALS	Antimony	Sb	<	3	1
Buckman 8	05/17/11 U	F	C	CS	METALS	Arsenic	As		7.49	1.7
Buckman 8	05/17/11 U	F	C	CS	METALS	Barium	Ва		65.8	1
Buckman 8	05/17/11 U	F	C	CS	METALS	Beryllium	Ве	<	5	1
Buckman 8	05/17/11 U	F	C	CS	METALS	Boron	В		94	15
Buckman 8	05/17/11 U	F	C	CS	METALS	Cadmium	Cd	<	1	0.11
Buckman 8	05/17/11 U	F	0	CS	METALS	Chromium	Cr		5.16	2
Buckman 8	05/17/11 U	F	(CS	METALS	Cobalt	Со	<	5	1
Buckman 8	05/17/11 U		0	CS	METALS	Copper	Cu		26.3	3
Buckman 8	05/17/11 U				METALS	Iron	Fe	<	100	30
Buckman 8	05/17/11 U			CS	METALS	Lead	Pb		1.57	0.5
Buckman 8	05/17/11 U				METALS	Manganese	Mn	<	10	2
Buckman 8	05/17/11 U				METALS	Mercury	Hg	<	0.2	0.066
Buckman 8	05/17/11 U				METALS	Molybdenu	-		1.9	0.17
Buckman 8	05/17/11 U				METALS	Nickel	Ni		0.728	0.5
Buckman 8	05/17/11 U				METALS		Se	<	5	1.5

Buckman 8	05/17/11 UF		CS	METALS	Silicon Diox SiO2	35.3	0	.053
Buckman 8	05/17/11 UF		CS	METALS	Silver Ag <	1		0.2
Buckman 8	05/17/11 UF		CS	METALS	Strontium Sr	505		1
Buckman 8	05/17/11 UF		CS	METALS	Thallium TI <	2		0.45
Buckman 8	05/17/11 UF		CS	METALS	Tin Sn <	10		2.5
Buckman 8	05/17/11 UF		CS	METALS	Uranium U	20.3	0	.067
Buckman 8	05/17/11 UF		CS	METALS	Vanadium V	31.7		1
Buckman 8	05/17/11 UF		CS	METALS	Zinc Zn	7.32		3.3
Buckman 8	05/17/11 UF	FD	CS	PEST/PCB	Aroclor-10 12674-11-2 <	0.108	0	.036
Buckman 8	05/17/11 UF	FD	CS	PEST/PCB	Aroclor-12 11104-28-2 <	0.108	0	.036
Buckman 8	05/17/11 UF	FD	CS	PEST/PCB	Aroclor-12 11141-16-5 <	0.108	0	.036
Buckman 8	05/17/11 UF	FD	CS	PEST/PCB	Aroclor-12 53469-21-9 <	0.108	0	.036
Buckman 8	05/17/11 UF	FD	CS	PEST/PCB	Aroclor-12 12672-29-6 <	0.108	0	.036
Buckman 8	05/17/11 UF	FD	CS	PEST/PCB	Aroclor-12 11097-69-1 <	0.108	0	.036
Buckman 8	05/17/11 UF	FD	CS	PEST/PCB	Aroclor-12(11096-82-5 <	0.108	0	.036
Buckman 8	05/17/11 UF	FD	CS	PEST/PCB	Aroclor-12(37324-23-5 <	0.108	0	.036
Buckman 8	05/17/11 UF		CS	PEST/PCB	Aroclor-10 12674-11-2 <	0.11	0.	.037
Buckman 8	05/17/11 UF		CS	PEST/PCB	Aroclor-12 11104-28-2 <	0.11	0.	.037
Buckman 8	05/17/11 UF		CS	PEST/PCB	Aroclor-12 11141-16-5 <	0.11	0.	.037
Buckman 8	05/17/11 UF		CS	PEST/PCB	Aroclor-12453469-21-9 <	0.11	0.	.037
Buckman 8	05/17/11 UF		CS	PEST/PCB	Aroclor-12 12672-29-6 <	0.11	0.	.037
Buckman 8	05/17/11 UF		CS	PEST/PCB	Aroclor-12:11097-69-1<	0.11	0.	.037
Buckman 8	05/17/11 UF		CS	PEST/PCB	Aroclor-12(11096-82-5 <	0.11	0.	.037
Buckman 8	05/17/11 UF		CS	PEST/PCB	Aroclor-12(37324-23-5 <	0.11	0.	.037
Buckman 8	05/17/11 UF	FD	CS	RAD	Actinium-2 Ac-228 <	1.21	5.8	19
Buckman 8	05/17/11 UF	FD	CS	RAD	Americium Am-241 <	2.51	8	24
Buckman 8	05/17/11 UF	FD	CS	RAD	Americium Am-241 <	0	0.006	0.046
Buckman 8	05/17/11 UF	FD	CS	RAD	Bismuth-21Bi-212 <	-3.35	19	60
Buckman 8	05/17/11 UF	FD	CS	RAD	Bismuth-21Bi-214 <	4.97	3.5	12
Buckman 8	05/17/11 UF	FD	CS	RAD	Cesium-134 Cs-134 <	2.71	1.4	5.2
Buckman 8	05/17/11 UF	FD	CS	RAD	Cesium-13 Cs-137 <	-0.91	1.3	4.2
Buckman 8	05/17/11 UF	FD	CS	RAD	Cobalt-60 Co-60 <	-1.34	1.3	3.8
Buckman 8	05/17/11 UF	FD	CS	RAD	Gross alpha GROSSA	14.4	2.7	2.6
Buckman 8	05/17/11 UF	FD	CS	RAD	Gross beta GROSSB	6.21	1.2	2.8

Buckman 8	05/17/11 UF	FD	CS	RAD	Lead-212 Pb-212 <	-4.97	3	8.6
Buckman 8	05/17/11 UF	FD	CS	RAD	Lead-214 Pb-214 <	-0.25	3.9	12
Buckman 8	05/17/11 UF	FD	CS	RAD	Neptunium Np-237 <	-0.03	0.017	0.11
Buckman 8	05/17/11 UF	FD	CS	RAD	Plutonium-Pu-238 <	0.006	0.004	0.024
Buckman 8	05/17/11 UF	FD	CS	RAD	Plutonium-Pu-239/24(<	-0.006	0.005	0.037
Buckman 8	05/17/11 UF	FD	CS	RAD	Potassium- K-40 <	8.3	19	71
Buckman 8	05/17/11 UF	FD	CS	RAD	Protactiniu Pa-234m <	111	190	630
Buckman 8	05/17/11 UF	FD	CS	RAD	Radium-22 Ra-226 <	0.227	0.077	0.13
Buckman 8	05/17/11 UF	FD	CS	RAD	Radium-22 Ra-228 <	-0.04	0.17	0.65
Buckman 8	05/17/11 UF	FD	CS	RAD	Sodium-22 Na-22 <	-0.011	1.3	4.3
Buckman 8	05/17/11 UF	FD	CS	RAD	Strontium-Sr-90 <	0.431	0.16	0.5
Buckman 8	05/17/11 UF	FD	CS	RAD	Thallium-2(TI-208 <	-0.332	1.5	4.9
Buckman 8	05/17/11 UF	FD	CS	RAD	Thorium-21Th-228 <	0.025	0.013	0.1
Buckman 8	05/17/11 UF	FD	CS	RAD	Thorium-2: Th-230	0.091	0.019	0.049
Buckman 8	05/17/11 UF	FD	CS	RAD	Thorium-2: Th-232 <	0.024	0.009	0.027
Buckman 8	05/17/11 UF	FD	CS	RAD	Thorium-2: Th-234 <	345	120	200
Buckman 8	05/17/11 UF	FD	CS	RAD	Tritium H-3 <	0.671	0.575	1.884
Buckman 8	05/17/11 UF	FD	CS	RAD	Uranium-2 U-234	11.7	0.88	0.086
Buckman 8	05/17/11 UF	FD	CS	RAD	Uranium-2 U-235 <	0.082	9.4	31
Buckman 8	05/17/11 UF	FD	CS	RAD	Uranium-2 U-235/236	0.357	0.047	0.066
Buckman 8	05/17/11 UF	FD	CS	RAD	Uranium-2.U-238	6.94	0.53	0.045
Buckman 8	05/17/11 UF		CS	RAD	Actinium-2 Ac-228 <	3.68	6.3	21
Buckman 8	05/17/11 UF		CS	RAD	Americium Am-241 <	0.674	11	36
Buckman 8	05/17/11 UF		CS	RAD	Americium Am-241 <	0	0.004	0.04
Buckman 8	05/17/11 UF		CS	RAD	Bismuth-21Bi-212 <	5.14	19	65
Buckman 8	05/17/11 UF		CS	RAD	Bismuth-21Bi-214 <	9.68	4.2	13
Buckman 8	05/17/11 UF		CS	RAD	Cesium-134 Cs-134 <	2.61	1.5	5.6
Buckman 8	05/17/11 UF		CS	RAD	Cesium-13 Cs-137 <	0.977	1.2	4.3
Buckman 8	05/17/11 UF		CS	RAD	Cobalt-60 Co-60 <	0.612	1.4	4.7
Buckman 8	05/17/11 UF		CS	RAD	Gross alpha GROSSA	16.2	2.9	2.4
Buckman 8	05/17/11 UF		CS	RAD	Gross beta GROSSB	6.03	1.2	2.9
Buckman 8	05/17/11 UF		CS	RAD	Lead-212 Pb-212 <	-2.12	3.4	11
Buckman 8	05/17/11 UF		CS	RAD	Lead-214 Pb-214 <	5.36	3.7	13
Buckman 8	05/17/11 UF		CS	RAD	Neptunium Np-237 <	0.021	0.024	0.1

Buckman 8	05/17/11	UF		CS	RAD	Plutonium-	Pu-238	<	0	0.003	0.027
Buckman 8	05/17/11	UF		CS	RAD	Plutonium-	Pu-239/24	(<	-0.007	0.006	0.04
Buckman 8	05/17/11	UF		CS	RAD	Potassium-	K-40	<	32.9	19	72
Buckman 8	05/17/11	UF		CS	RAD	Protactiniu	Pa-234m	<	72.7	200	670
Buckman 8	05/17/11	UF		CS	RAD	Radium-22	Ra-226	<	0.168	0.071	0.18
Buckman 8	05/17/11	UF		CS	RAD	Radium-22	Ra-228	<	0.347	0.18	0.55
Buckman 8	05/17/11	UF		CS	RAD	Sodium-22	Na-22	<	1.86	1.4	5.4
Buckman 8	05/17/11	UF		CS	RAD	Strontium-	Sr-90	<	-0.076	0.12	0.48
Buckman 8	05/17/11	UF		CS	RAD	Thallium-2	TI-208	<	0.039	1.7	5.4
Buckman 8	05/17/11	UF		CS	RAD	Thorium-2	Th-228	<	0.011	0.009	0.065
Buckman 8	05/17/11	UF		CS	RAD	Thorium-2	Th-230	<	0.005	0.003	0.031
Buckman 8	05/17/11	UF		CS	RAD	Thorium-2	Th-232	<	0.002	0.002	0.017
Buckman 8	05/17/11	UF		CS	RAD	Thorium-2	Th-234	<	-274	100	310
Buckman 8	05/17/11	UF		CS	RAD	Tritium	H-3	<	0.511	0.639	2.171
Buckman 8	05/17/11	UF		CS	RAD	Uranium-2	U-234		11.6	0.88	0.097
Buckman 8	05/17/11	UF		CS	RAD	Uranium-2	U-235	<	-5.04	11	33
Buckman 8	05/17/11	UF		CS	RAD	Uranium-2	U-235/236		0.355	0.048	0.074
Buckman 8	05/17/11	UF		CS	RAD	Uranium-2	U-238		6.89	0.54	0.05
Buckman 8	05/17/11	UF	FD	CS	VOA	Acetone	67-64-1	<	10	3.5	
Buckman 8	05/17/11	UF	FD	CS	VOA	Acetonitril	75-05-8	<	25	6.3	
Buckman 8	05/17/11	UF	FD	CS	VOA	Acrolein	107-02-8	<	5	1.3	
Buckman 8	05/17/11	UF	FD	CS	VOA	Acrylonitril	107-13-1	<	5	1	
Buckman 8	05/17/11	UF	FD	CS	VOA	Benzene	71-43-2	<	1	0.3	
Buckman 8	05/17/11	UF	FD	CS	VOA	Bromoben	108-86-1	<	1	0.25	
Buckman 8	05/17/11	UF	FD	CS	VOA	Bromochlo	74-97-5	<	1	0.3	
Buckman 8	05/17/11	UF	FD	CS	VOA	Bromodich	75-27-4	<	1	0.25	
Buckman 8	05/17/11	UF	FD	CS	VOA	Bromoforn	75-25-2	<	1	0.25	
Buckman 8	05/17/11	UF	FD	CS	VOA	Bromomet	74-83-9	<	1	0.3	
Buckman 8	05/17/11	UF	FD	CS	VOA	Butanol[1-]	71-36-3	<	50	15	
Buckman 8	05/17/11	UF	FD	CS	VOA	Butanone[2	78-93-3	<	5	1.3	
Buckman 8	05/17/11	UF	FD	CS	VOA	Butylbenze	104-51-8	<	1	0.25	
Buckman 8	05/17/11	UF	FD	CS	VOA	Butylbenze	135-98-8	<	1	0.25	
Buckman 8	05/17/11	UF	FD	CS	VOA	Butylbenze	98-06-6	<	1	0.25	
Buckman 8	05/17/11	UF	FD	CS	VOA	Carbon Dis	75-15-0	<	5	1.3	

Buckman 8	05/17/11 UF	FD	CS	VOA	Carbon Tet 56-23-5 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Chloro-1,3-126-99-8 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Chloro-1-pi 107-05-1 <	5	1.5
Buckman 8	05/17/11 UF	FD	CS	VOA	Chlorobenz 108-90-7 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Chlorodibre 124-48-1 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Chloroetha 75-00-3 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Chloroform 67-66-3 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Chlorometl 74-87-3 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Chlorotolu 95-49-8 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Chlorotolue106-43-4 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Dibromo-3-96-12-8 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Dibromoet 106-93-4 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Dibromom 74-95-3 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichlorobe 95-50-1 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichlorobe 541-73-1 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichlorobe 106-46-7 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichlorodif 75-71-8 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloroet 75-34-3 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloroet 107-06-2 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloroet 75-35-4 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloroetl 156-59-2 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloroet 156-60-5 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloropre78-87-5 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloropre142-28-9 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloropre 594-20-7 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloropr(563-58-6 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloropre10061-01-5 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Dichloropre 10061-02-6 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Diethyl Eth 60-29-7 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Ethyl Meth 97-63-2 <	5	1
Buckman 8	05/17/11 UF	FD	CS	VOA	Ethylbenze 100-41-4 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Hexachlord 87-68-3 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Hexanone[591-78-6 <	5	1.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Iodometha 74-88-4 <	5	1.3

Buckman 8	05/17/11 UF	FD	CS	VOA	Isobutyl ald 78-83-1 <	50	13
Buckman 8	05/17/11 UF	FD	CS	VOA	Isopropylb(98-82-8 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Isopropyltd 99-87-6 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Methacrylc126-98-7 <	5	1
Buckman 8	05/17/11 UF	FD	CS	VOA	Methyl Me 80-62-6 <	5	1
Buckman 8	05/17/11 UF	FD	CS	VOA	Methyl ter 1634-04-4 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Methyl-2-p 108-10-1 <	5	1.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Methylene 75-09-2 <	10	3
Buckman 8	05/17/11 UF	FD	CS	VOA	Naphthaler 91-20-3 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Propionitri 107-12-0 <	5	1.5
Buckman 8	05/17/11 UF	FD	CS	VOA	Propylbenz 103-65-1 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Styrene 100-42-5 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Tetrachlor 630-20-6 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Tetrachlor 79-34-5 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Tetrachlor 127-18-4 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Toluene 108-88-3 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Trichloro-1 76-13-1 <	5	1
Buckman 8	05/17/11 UF	FD	CS	VOA	Trichlorobe 87-61-6 <	1	0.33
Buckman 8	05/17/11 UF	FD	CS	VOA	Trichlorobe 120-82-1 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Trichloroet 71-55-6 <	1	0.33
Buckman 8	05/17/11 UF	FD	CS	VOA	Trichloroet 79-00-5 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Trichloroet 79-01-6 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Trichloroflu 75-69-4 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Trichloropr 96-18-4 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Trimethylb 95-63-6 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Trimethylb 108-67-8 <	1	0.25
Buckman 8	05/17/11 UF	FD	CS	VOA	Vinyl Chlor 75-01-4 <	1	0.5
Buckman 8	05/17/11 UF	FD	CS	VOA	Vinyl aceta 108-05-4 <	5	1.5
Buckman 8	05/17/11 UF	FD	CS	VOA	Xylene[1,2-95-47-6 <	1	0.3
Buckman 8	05/17/11 UF	FD	CS	VOA	Xylene[1,3-Xylene[1,3 <	2	0.5
Buckman 8	05/17/11 UF	FTB	CS	VOA	Acetone 67-64-1 <	10	3.5
Buckman 8	05/17/11 UF	FTB	CS	VOA	Acetonitrile 75-05-8 <	25	6.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Acrolein 107-02-8 <	5	1.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Acrylonitril 107-13-1 <	5	1

Buckman 8	05/17/11 UF	FTB	CS	VOA	Benzene 71-43-2 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Bromoben 108-86-1 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Bromochlo 74-97-5 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Bromodich 75-27-4 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Bromoform 75-25-2 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Bromomet 74-83-9 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Butanol[1-]71-36-3 <	50	15
Buckman 8	05/17/11 UF	FTB	CS	VOA	Butanone[278-93-3 <	5	1.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Butylbenze 104-51-8 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Butylbenze 135-98-8 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Butylbenze 98-06-6 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Carbon Dis 75-15-0 <	5	1.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Carbon Tet 56-23-5 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Chloro-1,3-126-99-8 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Chloro-1-pi 107-05-1 <	5	1.5
Buckman 8	05/17/11 UF	FTB	CS	VOA	Chlorobenz 108-90-7 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Chlorodibr 124-48-1 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Chloroetha 75-00-3 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Chloroform 67-66-3 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Chloromet 74-87-3 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Chlorotolu 95-49-8 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Chlorotolu 106-43-4 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dibromo-3 96-12-8 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dibromoet 106-93-4 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dibromom 74-95-3 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichlorobe 95-50-1 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichlorobe 541-73-1 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichlorobe 106-46-7 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichlorodif 75-71-8 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloroetl 75-34-3 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloroetl 107-06-2 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloroetl 75-35-4 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloroetl 156-59-2 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloroetl 156-60-5 <	1	0.3

Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloropre78-87-5 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloropre142-28-9 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloropr(594-20-7 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloropr(563-58-6 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Dichloropr 10061-01-5<	1	0.25
	05/17/11 UF	FTB	CS	VOA	Dichloropr 10061-02-6<		0.25
Buckman 8			CS		•	1	
Buckman 8	05/17/11 UF	FTB		VOA	Diethyl Eth 60-29-7 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Ethyl Meth 97-63-2 <	5	1
Buckman 8	05/17/11 UF	FTB	CS	VOA	Ethylbenze 100-41-4 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Hexachlord 87-68-3 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Hexanone[591-78-6 <	5	1.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Iodometha 74-88-4 <	5	1.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Isobutyl alc 78-83-1 <	50	13
Buckman 8	05/17/11 UF	FTB	CS	VOA	Isopropylbe98-82-8 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Isopropyltc 99-87-6 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Methacrylc 126-98-7 <	5	1
Buckman 8	05/17/11 UF	FTB	CS	VOA	Methyl Me 80-62-6 <	5	1
Buckman 8	05/17/11 UF	FTB	CS	VOA	Methyl ter 1634-04-4 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Methyl-2-p 108-10-1 <	5	1.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Methylene 75-09-2 <	10	3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Naphthaler 91-20-3 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Propionitri 107-12-0 <	5	1.5
Buckman 8	05/17/11 UF	FTB	CS	VOA	Propylbenz 103-65-1 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Styrene 100-42-5 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Tetrachlor 630-20-6 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Tetrachlor 79-34-5 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Tetrachlor 127-18-4 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Toluene 108-88-3 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trichloro-1 76-13-1 <	5	1
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trichlorobe 87-61-6 <	1	0.33
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trichlorobe 120-82-1 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trichloroet 71-55-6 <	1	0.33
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trichloroet 79-00-5 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trichloroet 79-01-6 <	1	0.25

·		1	1			1	
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trichloroflu 75-69-4 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trichloropr 96-18-4 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trimethylb 95-63-6 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Trimethylb 108-67-8 <	1	0.25
Buckman 8	05/17/11 UF	FTB	CS	VOA	Vinyl Chlor 75-01-4 <	1	0.5
Buckman 8	05/17/11 UF	FTB	CS	VOA	Vinyl aceta 108-05-4 <	5	1.5
Buckman 8	05/17/11 UF	FTB	CS	VOA	Xylene[1,2-95-47-6 <	1	0.3
Buckman 8	05/17/11 UF	FTB	CS	VOA	Xylene[1,3-Xylene[1,3 <	2	0.5
Buckman 8	05/17/11 UF		CS	VOA	Acetone 67-64-1 <	10	3.5
Buckman 8	05/17/11 UF		CS	VOA	Acetonitrile 75-05-8 <	25	6.3
Buckman 8	05/17/11 UF		CS	VOA	Acrolein 107-02-8 <	5	1.3
Buckman 8	05/17/11 UF		CS	VOA	Acrylonitril 107-13-1 <	5	1
Buckman 8	05/17/11 UF		CS	VOA	Benzene 71-43-2 <	1	0.3
Buckman 8	05/17/11 UF		CS	VOA	Bromoben: 108-86-1 <	1	0.25
Buckman 8	05/17/11 UF		CS	VOA	Bromochlo 74-97-5 <	1	0.3
Buckman 8	05/17/11 UF		CS	VOA	Bromodich 75-27-4 <	1	0.25
Buckman 8	05/17/11 UF		CS	VOA	Bromoform 75-25-2 <	1	0.25
Buckman 8	05/17/11 UF		CS	VOA	Bromomet 74-83-9 <	1	0.3
Buckman 8	05/17/11 UF		CS	VOA	Butanol[1-]71-36-3 <	50	15
Buckman 8	05/17/11 UF		CS	VOA	Butanone[278-93-3 <	5	1.3
Buckman 8	05/17/11 UF		CS	VOA	Butylbenze 104-51-8 <	1	0.25
Buckman 8	05/17/11 UF		CS	VOA	Butylbenze 135-98-8 <	1	0.25
Buckman 8	05/17/11 UF		CS	VOA	Butylbenze 98-06-6 <	1	0.25
Buckman 8	05/17/11 UF		CS	VOA	Carbon Dis 75-15-0 <	5	1.3
Buckman 8	05/17/11 UF		CS	VOA	Carbon Tet 56-23-5 <	1	0.3
Buckman 8	05/17/11 UF		CS	VOA	Chloro-1,3-126-99-8 <	1	0.3
Buckman 8	05/17/11 UF		CS	VOA	Chloro-1-p 107-05-1 <	5	1.5
Buckman 8	05/17/11 UF		CS	VOA	Chlorobenz 108-90-7 <	1	0.25
Buckman 8	05/17/11 UF		CS	VOA	Chlorodibre 124-48-1 <	1	0.3
Buckman 8	05/17/11 UF		CS	VOA	Chloroetha 75-00-3 <	1	0.3
Buckman 8	05/17/11 UF		CS	VOA	Chloroform 67-66-3 <	1	0.25
Buckman 8	05/17/11 UF		CS	VOA	Chloromet 74-87-3 <	1	0.3
Buckman 8	05/17/11 UF		CS	VOA	Chlorotolu 95-49-8 <	1	0.25
Buckman 8	05/17/11 UF		CS	VOA	Chlorotolue 106-43-4 <	1	0.25

		66	1/04			0.2
Buckman 8	05/17/11 UF	CS	VOA	Dibromo-3 96-12-8 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Dibromoet 106-93-4 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Dibromom 74-95-3 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Dichlorobe 95-50-1 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Dichlorobe 541-73-1 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Dichlorobe 106-46-7 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Dichlorodif 75-71-8 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Dichloroetl 75-34-3 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Dichloroetl 107-06-2 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Dichloroetl 75-35-4 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Dichloroetl 156-59-2 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Dichloroetl 156-60-5 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Dichloropr(78-87-5 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Dichloropr 142-28-9 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Dichloropr(594-20-7 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Dichloropr(563-58-6 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Dichloropre 10061-01-5 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Dichloropre 10061-02-6 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Diethyl Eth 60-29-7 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Ethyl Meth 97-63-2 <	5	1
Buckman 8	05/17/11 UF	CS	VOA	Ethylbenze 100-41-4 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Hexachlore 87-68-3 <	1	0.3
Buckman 8	05/17/11 UF	CS	VOA	Hexanone[591-78-6 <	5	1.3
Buckman 8	05/17/11 UF	CS	VOA	Iodometha 74-88-4 <	5	1.3
Buckman 8	05/17/11 UF	CS	VOA	Isobutyl alc 78-83-1 <	50	13
Buckman 8	05/17/11 UF	CS	VOA	Isopropylbe98-82-8 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Isopropyltc 99-87-6 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Methacrylc 126-98-7 <	5	1
Buckman 8	05/17/11 UF	CS	VOA	Methyl Me 80-62-6 <	5	1
Buckman 8	05/17/11 UF	CS	VOA	Methyl ter 1634-04-4 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Methyl-2-p 108-10-1 <	5	1.3
Buckman 8	05/17/11 UF	CS	VOA	Methylene 75-09-2 <	10	3
Buckman 8	05/17/11 UF	CS	VOA	Naphthaler 91-20-3 <	1	0.25
Buckman 8	05/17/11 UF	CS	VOA	Propionitri 107-12-0 <	5	1.5

05/17/11	UF	CS	VOA	Propylbenz	103-65-1	<	1	0.25	
05/17/11	UF	CS	VOA	Styrene	100-42-5	<	1	0.25	
05/17/11	UF	CS	VOA	Tetrachloro	630-20-6	<	1	0.3	
05/17/11	UF	CS	VOA	Tetrachloro	79-34-5	<	1	0.25	
05/17/11	UF	CS	VOA	Tetrachloro	127-18-4	<	1	0.3	
05/17/11	UF	CS	VOA	Toluene	108-88-3	<	1	0.25	
05/17/11	UF	CS	VOA	Trichloro-1	76-13-1	<	5	1	
05/17/11	UF	CS	VOA	Trichlorobe	87-61-6	<	1	0.33	
05/17/11	UF	CS	VOA	Trichlorobe	120-82-1	<	1	0.3	
05/17/11	UF	CS	VOA	Trichloroet	71-55-6	<	1	0.33	
05/17/11	UF	CS	VOA	Trichloroet	79-00-5	<	1	0.25	
05/17/11	UF	CS	VOA	Trichloroet	79-01-6	<	1	0.25	
05/17/11	UF	CS	VOA	Trichloroflu	75-69-4	<	1	0.3	
05/17/11	UF	CS	VOA	Trichloropr	96-18-4	<	1	0.3	
05/17/11	UF	CS	VOA	Trimethylb	95-63-6	<	1	0.25	
05/17/11	UF	CS	VOA	Trimethylb	108-67-8	<	1	0.25	
05/17/11	UF	CS	VOA	Vinyl Chlor	75-01-4	<	1	0.5	
05/17/11	UF	CS	VOA	Vinyl aceta	108-05-4	<	5	1.5	
05/17/11	UF	CS	VOA	Xylene[1,2-	95-47-6	<	1	0.3	
05/17/11	UF	CS	VOA	Xylene[1,3-	Xylene[1,3	<	2	0.5	
	05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11 05/17/11	05/17/11 UF 05/17/11 UF	05/17/11 UF CS 05/17/11 UF CS	05/17/11 UF CS VOA 05/17/11<	05/17/11UFCSVOAStyrene05/17/11UFCSVOATetrachlord05/17/11UFCSVOATetrachlord05/17/11UFCSVOATetrachlord05/17/11UFCSVOATetrachlord05/17/11UFCSVOATetrachlord05/17/11UFCSVOATetrachlord05/17/11UFCSVOATrichloro105/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOATrichlorobe05/17/11UFCSVOAVinyl chlori05/17/11UFCSVOAVinyl aceta05/17/11UFCSVOAXylene[1,2-05/17/11UFCS <td>05/17/11 UF CS VOA Styrene 100-42-5 05/17/11 UF CS VOA Tetrachlord 630-20-6 05/17/11 UF CS VOA Tetrachlord 79-34-5 05/17/11 UF CS VOA Tetrachlord 127-18-4 05/17/11 UF CS VOA Toluene 108-88-3 05/17/11 UF CS VOA Trichloro-1 76-13-1 05/17/11 UF CS VOA Trichlorobe 120-82-1 05/17/11 UF CS VOA Trichlorobe 120-82-1 05/17/11 UF CS VOA Trichlorobe 79-01-5 05/17/11 UF CS VOA Trichloropt<td>05/17/11 UF CS VOA Styrene 100-42-5 < 05/17/11 UF CS VOA Tetrachlor 630-20-6 <</td> 05/17/11 UF CS VOA Tetrachlor 79-34-5 <</td> 05/17/11 UF CS VOA Tetrachlor 127-18-4 <	05/17/11 UF CS VOA Styrene 100-42-5 05/17/11 UF CS VOA Tetrachlord 630-20-6 05/17/11 UF CS VOA Tetrachlord 79-34-5 05/17/11 UF CS VOA Tetrachlord 127-18-4 05/17/11 UF CS VOA Toluene 108-88-3 05/17/11 UF CS VOA Trichloro-1 76-13-1 05/17/11 UF CS VOA Trichlorobe 120-82-1 05/17/11 UF CS VOA Trichlorobe 120-82-1 05/17/11 UF CS VOA Trichlorobe 79-01-5 05/17/11 UF CS VOA Trichloropt <td>05/17/11 UF CS VOA Styrene 100-42-5 < 05/17/11 UF CS VOA Tetrachlor 630-20-6 <</td> 05/17/11 UF CS VOA Tetrachlor 79-34-5 <	05/17/11 UF CS VOA Styrene 100-42-5 < 05/17/11 UF CS VOA Tetrachlor 630-20-6 <	05/17/11 UF CS VOA Styrene 100-42-5 < 1 05/17/11 UF CS VOA Tetrachlor 630-20-6 <	05/17/11 UF CS VOA Styrene 100-42-5 < 1 0.25 05/17/11 UF CS VOA Tetrachlor 630-20-6 <

						Concat		
	Dilution	Anyl Meth		Lab Qual	Concat	Reason		
Std Uom	Factor	Code	Lab Code	Code	Flag Code	Code	Sample Id	
mg/L	1	EPA:310.1	GELC	U	U	U_LAB	Buckman1-	11-12475
mg/L	1	EPA:310.1	GELC				Buckman1-	11-12475
mg/L	1	EPA:350.1	GELC				Buckman1-	11-12475
mg/L	1	EPA:300.0	GELC	U	U	U_LAB	Buckman1-	11-12475
mg/L	1	SW-846:60	GELC				Buckman1-	11-12475
mg/L	1	EPA:300.0	GELC		J+	l6b	Buckman1-	11-12475
mg/L	1	EPA:335.4	GELC	U	U	U_LAB	Buckman1-	11-12475
mg/L		Generic Fie	FLD				Buckman1-	11-12475
mg/L	1	EPA:300.0	GELC				Buckman1-	11-12475
mg/L	1	SM:A2340E	GELC				Buckman1-	11-12475
mg/L	1	SW-846:60	GELC				Buckman1-	11-12475
mg/L	5	EPA:353.2	GELC				Buckman1-	11-12475
mV		Generic Fie	FLD				Buckman1-	11-12475
ug/L	1	SW-846:68	GELC				Buckman1-	11-12475
mg/L	1	SW-846:60	GELC				Buckman1-	11-12475
mg/L	1	SW-846:60	GELC				Buckman1-	11-12475
uS/cm		GENERIC FI	FLD				Buckman1-	11-12475
uS/cm	1	EPA:120.1	GELC				Buckman1-	11-12475
mg/L	1	EPA:300.0	GELC		J+	16b	Buckman1-	11-12475
deg C		GENERIC FI	FLD				Buckman1-	11-12475
mg/L	1	EPA:160.1	GELC				Buckman1-	11-12475
mg/L	5	EPA:351.2	GELC	U	UJ	l6a	Buckman1-	11-12475
mg/L	1	SW-846:90	GELC	J	J	J_LAB	Buckman1-	11-12475
mg/L	1	EPA:365.4	GELC	J	U	14	Buckman1-	11-12475
NTU		GENERIC FI	FLD				Buckman1-	11-12475
SU	1	EPA:150.1	GELC	Н	J-	19a	Buckman1-	11-12475
SU		GENERIC FI	FLD				Buckman1-	11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-	11-12475
ug/L	2	SW-846:83	GELC	U	UJ	HE12g	Buckman1-	11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-	11-12475

ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	UJ	HE7b	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	UJ	HE7b	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman1-11-12476
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC				Buckman1-11-12475
ug/L	1	SW-846:60	GELC				Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC				Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	EPA:245.2	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC		J	I4a	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475

ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
mg/L	1	SW-846:60	GELC				Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC			_	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:60	GELC				Buckman1-11-12475
ug/L	1	SW-846:60	GELC				Buckman1-11-12475
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman1-11-12475
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	HASL-300:A	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC				Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:900	GELC				Buckman1-11-12475
pCi/L	1	EPA:900	GELC				Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	HASL-300:N	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475

pCi/L	1	EPA:903.1	CELC	U	U	R5	Buckman1-11-12475
				-			
pCi/L		EPA:904	GELC	U	U	R5	Buckman1-11-12475
pCi/L		EPA:901.1		U	U	R5	Buckman1-11-12475
pCi/L		EPA:905.0		U	U	R5	Buckman1-11-12475
pCi/L		EPA:901.1		U	U	R5	Buckman1-11-12475
pCi/L		HASL-300:I		U	U	R5	Buckman1-11-12475
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	Generic:Lo	ARSL	U	U	R5	Buckman1-11-12475
pCi/L	1	HASL-300:I	GELC				Buckman1-11-12475
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman1-11-12475
pCi/L	1	HASL-300:I	GELC				Buckman1-11-12475
pCi/L	1	HASL-300:I	GELC				Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman1-11-12477
ug/L		SW-846:82		U	U	U LAB	Buckman1-11-12477
ug/L		SW-846:82		U	U	U LAB	Buckman1-11-12477
ug/L		SW-846:82		U	U	U LAB	Buckman1-11-12477
ug/L		SW-846:82		U	U	U LAB	Buckman1-11-12477
ug/L		SW-846:82		U	UJ	V7c	Buckman1-11-12477
ug/L		SW-846:82		U	U	U LAB	Buckman1-11-12477
ug/L		SW-846:82		U	U	U LAB	Buckman1-11-12477
ч _б / L	1	5.01 0-0.02	GLLC	U	U		

							1
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12477

ug/L	4						
	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12477
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475

		1					
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475

1.							
ug/L		SW-846:82		U	U	U_LAB	Buckman1-11-12475
ug/L		SW-846:82		U	U	U_LAB	Buckman1-11-12475
ug/L		SW-846:82		U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman1-11-12475

ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman1-11-12475
ug/L		SW-846:82		U	U	U LAB	Buckman1-11-12475
		SW-846:82		U	U	U LAB	Buckman1-11-12475
ug/L						-	
ug/L		SW-846:82		U	U	U_LAB	Buckman1-11-12475
mg/L		EPA:310.1		U	U	U_LAB	Buckman06-11-12478
mg/L		EPA:310.1					Buckman06-11-12478
mg/L		EPA:350.1					Buckman06-11-12478
mg/L			GELC	J	J	J_LAB	Buckman06-11-12478
mg/L		SW-846:60					Buckman06-11-12478
mg/L		EPA:300.0			J+	l6b	Buckman06-11-12478
mg/L	1	EPA:335.4		U	U	U_LAB	Buckman06-11-12478
mg/L		Generic Fie					Buckman06-11-12478
mg/L	1	EPA:300.0	GELC				Buckman06-11-12478
mg/L	1	SM:A2340	GELC				Buckman06-11-12478
mg/L	1	SW-846:60	GELC				Buckman06-11-12478
mg/L	5	EPA:353.2	GELC				Buckman06-11-12478
mV		Generic Fie	FLD				Buckman06-11-12478
ug/L	1	SW-846:68	GELC				Buckman06-11-12478
mg/L	1	SW-846:60	GELC				Buckman06-11-12478
mg/L	1	SW-846:60	GELC				Buckman06-11-12478
uS/cm		GENERIC FI	FLD				Buckman06-11-12478
uS/cm	1	EPA:120.1	GELC				Buckman06-11-12478
mg/L	1	EPA:300.0	GELC		J+	16b	Buckman06-11-12478
deg C		GENERIC FI	FLD				Buckman06-11-12478
mg/L	1	EPA:160.1	GELC				Buckman06-11-12478
mg/L	5	EPA:351.2	GELC	U	UJ	l6a	Buckman06-11-12478
mg/L		SW-846:90		J	J	J LAB	Buckman06-11-12478
mg/L		EPA:365.4		J	U	14	Buckman06-11-12478
NTU		GENERIC FI					Buckman06-11-12478
SU	1	EPA:150.1		Н	J-	19a	Buckman06-11-12478
SU	-	GENERIC FI				-	Buckman06-11-12478
ug/L	2	SW-846:83		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:83		U	UJ	HE12g	Buckman06-11-12478
ug/L		SW-846:83		U	U	U_LAB	Buckman06-11-12478
ug/ L	2	500-040.05	GLLC	5	5		Duckman00-11-12478

				1			
ug/L		SW-846:83		U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	UJ	HE7b	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	UJ	HE7b	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman06-11-12479
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC				Buckman06-11-12478
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC				Buckman06-11-12478
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC				Buckman06-11-12478
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	EPA:245.2	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC		J	 I4a	Buckman06-11-12478
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman06-11-12478

ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
mg/L	1	SW-846:60	GELC				Buckman06-11-12478
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC			_	Buckman06-11-12478
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	5	SW-846:60	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:60	GELC				Buckman06-11-12478
ug/L	1	SW-846:60	GELC				Buckman06-11-12478
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman06-11-12478
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:80	GELC	U	U	U_LAB	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	HASL-300:A	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:900	GELC				Buckman06-11-12478
pCi/L	1	EPA:900	GELC				Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	HASL-300:	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478

pCi/L	1	EPA:903.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:904	GELC				Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:905.0	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	Generic:Lo	ARSL	U	U	R5	Buckman06-11-12478
pCi/L	1	HASL-300:I	GELC				Buckman06-11-12478
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman06-11-12478
pCi/L	1	HASL-300:I	GELC				Buckman06-11-12478
pCi/L	1	HASL-300:I	GELC				Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480

1.							
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12480
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12480
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12480
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	UJ	 V7c	Buckman06-11-12480

/1		0.11.0.16.00	051.0				D I 00 11 10100
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12480
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12480
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12480
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12480
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478

ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman06-11-12478
		SW-846:82		U	U	U LAB	Buckman06-11-12478
ug/L						_	
ug/L		SW-846:82		U	UJ	V7b	Buckman06-11-12478
ug/L		SW-846:82		U	UJ	V7c	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U LAB	Buckman06-11-12478
ug/L	1	500-040.02	ULLC	0	0	U_LAD	Buckinan00-11-12470

	1	SW-846:82		U	U	U LAB	Buckman06 11 12479
ug/L						_	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman06-11-12478
ug/L	1	SW-846:82	GELC	U	U	U LAB	Buckman06-11-12478

	1	CM/ 04C-02					Buckman 0C 11 12470
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
ug/L		SW-846:82		U	U	U_LAB	Buckman06-11-12478
mg/L		EPA:310.1		U	U	U_LAB	Buckman08-11-12485
mg/L		EPA:310.1					Buckman08-11-12485
mg/L	1	EPA:350.1	GELC	U	U	U_LAB	Buckman08-11-12485
mg/L	1	EPA:300.0	GELC	J	J	J_LAB	Buckman08-11-12485
mg/L	1	SW-846:60	GELC				Buckman08-11-12485
mg/L	1	EPA:300.0	GELC		J+	16b	Buckman08-11-12485
mg/L	1	EPA:335.4	GELC	U	U	U_LAB	Buckman08-11-12485
mg/L	1	EPA:300.0	GELC				Buckman08-11-12485
mg/L	1	SM:A2340	GELC				Buckman08-11-12485
mg/L	1	SW-846:60	GELC				Buckman08-11-12485
mg/L	5	EPA:353.2	GELC				Buckman08-11-12485
ug/L	1	SW-846:68	GELC				Buckman08-11-12485
mg/L	1	SW-846:60	GELC				Buckman08-11-12485
mg/L	1	SW-846:60	GELC				Buckman08-11-12485
uS/cm	1	EPA:120.1	GELC				Buckman08-11-12485
mg/L	1	EPA:300.0	GELC		J+	16b	Buckman08-11-12485
mg/L	1	EPA:160.1	GELC				Buckman08-11-12485
mg/L	1	EPA:351.2	GELC	U	UJ	16a	Buckman08-11-12485
mg/L	1	SW-846:90	GELC	J	J	J_LAB	Buckman08-11-12485
mg/L	1	EPA:365.4	GELC	J	U	14	Buckman08-11-12485
SU	1	EPA:150.1	GELC	Н	J-	19a	Buckman08-11-12485
mg/L	1	EPA:310.1	GELC	U	U	U_LAB	Buckman08-11-12481
mg/L	1	EPA:310.1	GELC			_	Buckman08-11-12481
mg/L		EPA:350.1		U	U	U_LAB	Buckman08-11-12481
mg/L	1	EPA:300.0	GELC	J	J	J LAB	Buckman08-11-12481
mg/L		SW-846:60					Buckman08-11-12481
mg/L		EPA:300.0			J+	16b	Buckman08-11-12481
mg/L		EPA:335.4					Buckman08-11-12481
mg/L		Generic Fie					Buckman08-11-12481
mg/L	1	EPA:300.0					Buckman08-11-12481
	-				1	1	2.0

mg/L	1	SM:A2340	GELC				Buckman08-11-12481
mg/L	1	SW-846:60	GELC				Buckman08-11-12481
mg/L	5	EPA:353.2	GELC				Buckman08-11-12481
mV		Generic Fie	FLD				Buckman08-11-12481
ug/L	1	SW-846:68	GELC				Buckman08-11-12481
mg/L	1	SW-846:60	GELC				Buckman08-11-12481
mg/L	1	SW-846:60	GELC				Buckman08-11-12481
uS/cm	1	EPA:120.1	GELC				Buckman08-11-12481
uS/cm		GENERIC FI	FLD				Buckman08-11-12481
mg/L	1	EPA:300.0	GELC		J+	l6b	Buckman08-11-12481
deg C		GENERIC FI	FLD				Buckman08-11-12481
mg/L	1	EPA:160.1	GELC				Buckman08-11-12481
mg/L	1	EPA:351.2	GELC	U	UJ	16a	Buckman08-11-12481
mg/L	1	SW-846:90	GELC	J	J	J_LAB	Buckman08-11-12481
mg/L	1	EPA:365.4	GELC	J	U	14	Buckman08-11-12481
NTU		GENERIC FI	FLD				Buckman08-11-12481
SU		GENERIC FI	FLD				Buckman08-11-12481
SU	1	EPA:150.1	GELC	Н	J-	19a	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	UJ	HE12g	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	UJ	HE7b	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	UJ	HE7b	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12485

4							
ug/L		SW-846:83		U	U	U_LAB	Buckman08-11-12485
ug/L		SW-846:83		U	U	U_LAB	Buckman08-11-12485
ug/L		SW-846:83		U	U	U_LAB	Buckman08-11-12485
ug/L		SW-846:83		U	U	U_LAB	Buckman08-11-12485
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	UJ	HE12g	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	UJ	HE7b	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	UJ	HE7b	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	2	SW-846:83	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman08-11-12490
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman08-11-12482
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC				Buckman08-11-12485
ug/L		SW-846:60					Buckman08-11-12485
ug/L		SW-846:60		U	U	U_LAB	Buckman08-11-12485
ug/L		SW-846:60					Buckman08-11-12485
ug/L		SW-846:60		U	U	U_LAB	Buckman08-11-12485
ug/L		SW-846:60		J	J	J LAB	Buckman08-11-12485

ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC				Buckman08-11-12485
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	EPA:245.2	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC		J	I4a	Buckman08-11-12485
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12485
mg/L	1	SW-846:60	GELC				Buckman08-11-12485
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC				Buckman08-11-12485
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	5	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC				Buckman08-11-12485
ug/L	1	SW-846:60	GELC				Buckman08-11-12485
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman08-11-12485
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC				Buckman08-11-12481
ug/L	1	SW-846:60	GELC				Buckman08-11-12481
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC				Buckman08-11-12481
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC				Buckman08-11-12481
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	EPA:245.2	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC		J	I4a	Buckman08-11-12481
ug/L	1	SW-846:60	GELC	J	J	J_LAB	Buckman08-11-12481
ug/L	1	SW-846:60	GELC	U	U	U_LAB	Buckman08-11-12481

1	SW-846:60	GELC				Buckman08-11-12481
			U	U	U LAB	Buckman08-11-12481
			-	-		Buckman08-11-12481
			U	U	UIAB	Buckman08-11-12481
					_	Buckman08-11-12481
			-	-	•	Buckman08-11-12481
						Buckman08-11-12481
			1	1	LIAB	Buckman08-11-12481
					-	Buckman08-11-12485
					-	Buckman08-11-12485
					-	Buckman08-11-12485
					-	Buckman08-11-12485
					_	Buckman08-11-12485
					-	Buckman08-11-12485
					-	Buckman08-11-12485
					_	Buckman08-11-12485
					-	Buckman08-11-12481
					-	Buckman08-11-12481
					-	Buckman08-11-12481
					-	Buckman08-11-12481
					-	Buckman08-11-12481
					-	Buckman08-11-12481
					-	Buckman08-11-12481
					-	Buckman08-11-12481
					—	Buckman08-11-12485
						Buckman08-11-12485
						Buckman08-11-12485
						Buckman08-11-12485
						Buckman08-11-12485
						Buckman08-11-12485
						Buckman08-11-12485
			U			Buckman08-11-12485
						Buckman08-11-12485
						Buckman08-11-12485
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 SW-846:60 1 SW-846:80 1<	1 EPA:901.1 GELC 1 EPA:901.1 GELC 1 EPA:900 GELC	1 SW-846:60 GELC U 1 SW-846:60 GELC U 1 SW-846:60 GELC U 1 SW-846:60 GELC U 1 SW-846:60 GELC J 1 SW-846:60 GELC J 1 SW-846:60 GELC U 1 SW-846:80 GELC	1 SW-846:60 GELC U 1 SW-846:60 GELC J 1 SW-846:60 GELC J 1 SW-846:80 GELC U U 1 SW-846:80 GELC U<	1 SW-846:60 GELC U U U_LAB 1 SW-846:60 GELC I I SW-846:60 1 SW-846:60 GELC J J J_LAB 1 SW-846:80 GELC U U U_LAB 1 SW-846:80 GELC U U U_LAB

mC:/I	1	EDA:001 1		U	U	DE	Duckman 00 11 12405
pCi/L		EPA:901.1		-		R5	Buckman08-11-12485
pCi/L		EPA:901.1	GELC	U	U	R5	Buckman08-11-12485
pCi/L		HASL-300:N		U	U	R5	Buckman08-11-12485
pCi/L		HASL-300:I		U	U	R5	Buckman08-11-12485
pCi/L		HASL-300:I		U	U	R5	Buckman08-11-12485
pCi/L		EPA:901.1		U	U	R5	Buckman08-11-12485
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12485
pCi/L	1	EPA:903.1	GELC		U	R11	Buckman08-11-12485
pCi/L	1	EPA:904	GELC	U	U	R5	Buckman08-11-12485
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12485
pCi/L	1	EPA:905.0	GELC	U	U	R5	Buckman08-11-12485
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12485
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman08-11-12485
pCi/L	1	HASL-300:I	GELC				Buckman08-11-12485
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman08-11-12485
pCi/L	1	EPA:901.1	GELC	UI	R	R5a	Buckman08-11-12485
pCi/L	1	Generic:Lo	ARSL	U	U	R5	Buckman08-11-12485
pCi/L	1	HASL-300:I	GELC				Buckman08-11-12485
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12485
pCi/L	1	HASL-300:I	GELC				Buckman08-11-12485
pCi/L	1	HASL-300:I	GELC				Buckman08-11-12485
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	HASL-300:A	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L		EPA:900	GELC				Buckman08-11-12481
pCi/L		EPA:900	GELC				Buckman08-11-12481
pCi/L		EPA:901.1		U	U	R5	Buckman08-11-12481
pCi/L		EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L		HASL-300:N		U	U	R5	Buckman08-11-12481
	-			-	-		

pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:903.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:904	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:905.0	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	HASL-300:I	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	Generic:Lo	ARSL	U	U	R5	Buckman08-11-12481
pCi/L	1	HASL-300:I	GELC				Buckman08-11-12481
pCi/L	1	EPA:901.1	GELC	U	U	R5	Buckman08-11-12481
pCi/L	1	HASL-300:I	GELC				Buckman08-11-12481
pCi/L	1	HASL-300:I	GELC				Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485

ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485

ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1 1	SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82	GELC GELC GELC GELC GELC GELC GELC GELC	U U U U U U U U U U	UJ U U U U U U U	V7b U_LAB U_LAB U_LAB U_LAB U_LAB U_LAB	Buckman08-11-12485 Buckman08-11-12485 Buckman08-11-12485 Buckman08-11-12485 Buckman08-11-12485 Buckman08-11-12485 Buckman08-11-12485
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1 1	SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82	GELC GELC GELC GELC GELC GELC GELC	U U U U U	U U U U U	U_LAB U_LAB U_LAB U_LAB U_LAB	Buckman08-11-12485 Buckman08-11-12485 Buckman08-11-12485 Buckman08-11-12485
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1	SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82	GELC GELC GELC GELC GELC GELC	U U U U	U U U U	U_LAB U_LAB U_LAB	Buckman08-11-12485 Buckman08-11-12485 Buckman08-11-12485
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1	SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82	GELC GELC GELC GELC GELC	U U U	U U U	U_LAB U_LAB	Buckman08-11-12485 Buckman08-11-12485
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1	SW-846:82 SW-846:82 SW-846:82 SW-846:82 SW-846:82	GELC GELC GELC GELC	บ บ	U U	U_LAB	Buckman08-11-12485
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1	SW-846:82 SW-846:82 SW-846:82 SW-846:82	GELC GELC GELC	U	U	-	
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1	SW-846:82 SW-846:82 SW-846:82	GELC GELC			U LAB	Buckman09 11 12/05
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1	SW-846:82 SW-846:82	GELC	U			DUCKIIIdIIU6-11-12485
ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1	SW-846:82			U	U_LAB	Buckman08-11-12485
ug/L ug/L ug/L ug/L ug/L	1			U	U	U_LAB	Buckman08-11-12485
ug/L ug/L ug/L ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman08-11-12485
ug/L ug/L ug/L		5.0 510.02	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	_	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
s•0/ =	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12485
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	UJ	V7b	Buckman08-11-12483
ug/L		SW-846:82		U	UJ	V7c	Buckman08-11-12483
ug/L		SW-846:82		U	U		

1.							
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U LAB	Buckman08-11-12483

							-
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483

							-
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12483
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481

<i>'</i> .			0510				
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12481
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12481
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12481
ug/L		SW-846:82		U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	UJ	V7b	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	UJ	V7c	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	UJ	 V7c	Buckman08-11-12481

ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481
ug/L	1	SW-846:82	GELC	U	U	U_LAB	Buckman08-11-12481

Definitions for Other Codes

Fld Qc Type	
Code	Fld Qc Type Desc
EQB	Equipment Rinsate Blank
FB	Field Blank
FD	Field Duplicate
FR	Field Rinsate
FS	Field Split
FTB	Field Trip Blank
FTR	Field Triplicate
	Equipment blank taken during installation and not assoc
INB	with a sampling event
	Trip blank taken during installation and not assoc with a
ITB	sampling event
NA	Not Applicable
PEB	Performance Evaluation Blank
PEK	Performance Evaluation Known
RES	Resample
SS	Special sampling event, data unique
SS-EQB	Equipment Blank of special sampling event, data unique
SS-FB	Field Blank of special sampling event, data unique
SS-FD	Field Duplicate of special sampling event, data unique
SS-FTB	Field Trip Blank of special sampling event, data unique
Fld Prep Code	Fld Prep Desc
F	Filtered
UF	Unfiltered
Anyl Suite Code	Anyl Suite Desc
Anyl Suite Code ANION	Anyl Suite Desc
	ANION Dioxin and Furans
DRO	Diesel Range Organics
GAMMA	Gamma Spectroscopy
GAMMA_SPEC	GAMMA_SPEC
GENINORG	General Inorganics
GRO	Gasoline Range Organics
GROSSAB	GROSSAB
HERB	Herbicides
HEXP	High Explosives
INORGANIC	Inorganics

ISOTOPE	Isotopes Ratios
METALS	Metals
PCB	PCB
PCB CONG	PCB Congeners
PEST	PEST
PEST/PCB	Pesticide and PCBs
PESTPCB	Pesticides/PCBs
RAD	Radiochemistry (Not Gamma)
SVOA	Semivolatiles Organics
SVOC	SVOC
VOA	Volatile Organics
VOC	Volatile Organic Compounds
vee	Volatile Organie compounds
Lab Sample Type	
Code	Lab Sample Type Desc
CS	Client Sample
DL	Dilution
DUP	Duplicate
RE	Reanalysis
REDL	Reanalysis Dilution
REDP	Reanalysis Duplicate
RI	Reissue
TRP	Triplicate
Fld Matrix Code	Fld Matrix Desc
WG	Ground Water
WG WM	Ground Water Snowmelt
WG WM WP	Ground Water Snowmelt Persistent Flow
WG WM WP WS	Ground Water Snowmelt Persistent Flow Base Flow
WG WM WP	Ground Water Snowmelt Persistent Flow
WG WM WP WS WT	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff
WG WM WP WS WT Lab Code	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc
WG WM WP WS WT Lab Code ALTC	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated
WG WM WP WS WT Lab Code	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary
WG WM WP WS WT Lab Code ALTC ARSL	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear
WG WM WP WS WT Lab Code ALTC ARSL C-INC	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison
WG WM WP WS WT Lab Code ALTC ARSL C-INC COAST	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison Coastal Science Lab
WG WM WP WS WT Lab Code ALTC ARSL C-INC COAST CST	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison Coastal Science Lab LANL Chemical Sciences & Technology
WG WM WP WS WT Lab Code ALTC ARSL C-INC COAST	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison Coastal Science Lab LANL Chemical Sciences & Technology Environmental Sciences Division
WG WM WP WS WT Lab Code ALTC ARSL C-INC COAST CST EES6	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison Coastal Science Lab LANL Chemical Sciences & Technology Environmental Sciences & Engineering, Inc., Gainesville,
WG WM WP WS WT Lab Code ALTC ARSL C-INC COAST CST EES6 ESE	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison Coastal Science Lab LANL Chemical Sciences & Technology Environmental Sciences & Engineering, Inc., Gainesville, FL
WG WM WP WS WT Lab Code ALTC ARSL C-INC COAST CST EES6 ESE FLD	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison Coastal Science Lab LANL Chemical Sciences & Technology Environmental Sciences & Engineering, Inc., Gainesville, FL Measurement taken in Field
WG WM WP WS WT Lab Code ALTC ARSL C-INC COAST CST EES6 ESE	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison Coastal Science Lab LANL Chemical Sciences & Technology Environmental Sciences & Engineering, Inc., Gainesville, FL
WG WM WP WS WT Lab Code ALTC ARSL C-INC COAST CST EES6 ESE FLD	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison Coastal Science Lab LANL Chemical Sciences & Technology Environmental Sciences & Engineering, Inc., Gainesville, FL Measurement taken in Field
WG WM WP WS WT Lab Code ALTC ARSL C-INC COAST CST EES6 ESE FLD GEL	Ground Water Snowmelt Persistent Flow Base Flow Storm Runoff Lab Desc Alta Analytical Lab Incorporated American Radiation Services - Primary Los Alamos National Laboratory-Isotope and Nuclear chemistry divison Coastal Science Lab LANL Chemical Sciences & Technology Environmental Sciences Division Environmental Sciences & Engineering, Inc., Gainesville, FL Measurement taken in Field General Engineering Laboratories, Inc.

HENV	JCNNM
HUFFMAN	Huffman
КА	KEMRON
LVLI	LVLI
PARA	Paragon Analytics, Inc.
PEC	Pacific EcoRisk Laboratories
QESL	Quanterra Environmental Services, St. Louis, MO
QST	QST Environmental, Newberry, FL
RECRAP	RECRA Labnet, Lionville, PA
RFWC	Roy F. Weston, West Chester, PA
SGSW	Paradigm
SILENS	Stable Isotopes Laboratory
STL2	Severn Trent Laboratories - Richland, Historical
STLA	Severn Trent - Los Angeles
STR	Severn Trent Laboratories - Richland
STSL	Severn Trent Laboraties, Inc., St. Louis
SwRI	Southwest Research Institute
UAZ	University of Arizona
UIL	University of Illinios
UMTL	University of Miami Tritium Lab

Analytical Laboratory Qualifier Codes.

Lab Qual Code Lab Qual Desc

В

* (Inorganic) - Duplicate Analysis (relative percent difference) not within control limits.

(Organic) - Analyte present in the blank and the sample. (Inorganic) - reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).

- BJ See B code and see J code
- BJP See B code, see J code and see P code

(B) (Organic) - This analyte was detected in the associated Laboratory Method Blank and the sample. (B) (Inorganic) - The result for this analyte was greater than the Instrument Detection Limit but less than the Contract Required Detection Limit. (P) (Pesticides/PCBs) - The quantitative results for this analyte between the primary and secondary GC columns were greater than 25% difference. (P) (SW-846 EPA Method 8310 High Pressure Liquid Chromotography, HPLC results) - The quantitative results for this analyte between the primary and secondary HPLC detectors were greater than 40% difference. (X) (Organic/Inorganic) - The result for this analyte should be regarded as not detected.

- BPX regarded as not detected.
- D The result for this analyte was reported from a dilution.
- DJ See D code and see J code
- DNA did not analyze due to broken equipment.
- Analyte exceeded the concentration range (Organics). The serial dilution was exceeded E (Inorganics)
- E* See E code and see * code.
- EJ See E code and see J code
- EJ* See E code, See J code and see * code

(E) (Organic) - The result for this anlayte exceeded the upper range of the instrument initial calibration curve. (E) (Inorganic) (ICP-AES) - The result for this analyte in the serial dilution analysis was outside acceptance criteria. (E) (Inorganic) (GFAA) - The result for this analyte failed one or more CLP acceptance critera as explained in the case narrative. (J) (Organic/General Inorganics) - The result for this analyte was greater than the Method Detection Limit (MDL) but less than the Practical Quantitaion Limit (PQL). (N) (Organic) - The reported analyte is a tentitively idenififed compound (TIC). (N) (Inorganic) - The result for this analyte in the matrix spike sample was outside acceptance criteria.

EN See E code and see N code

EJN

(E) (Organic) - The result for this anlayte exceeded the upper range of the instrument initial calibration curve. (E) (Inorganic) (ICP-AES) - The result for this analyte in the serial dilution analysis was outside acceptance criteria. (E) (Inorganic) (GFAA) - The result for this analyte failed one or more CLP acceptance critera as explained in the case narrative. (N) (Organic) - The reported analyte is a tentitively idenififed compound (TIC). (N) (Inorganic) - The result for this analyte in the matrix spike sample was outside acceptance criteria. * (Inorganic) - The result for this analyte in the Laboratory Replicate analysis was outside acceptance

EN* criteria.

н

Η*

INS

(H) (Organic/Inorganic) - The required extraction or analysis holding time for this result was exceeded.

(H) (Organic/Inorganic) - The required extraction or analysis holding time for this result was exceeded. * (Organic) and (Inorganic) - The result for this analyte in the Laboratory Control Sample analysis was outside acceptance criteria.

HJ See H code and see J code

(H) (Organic/Inorganic) - The required extraction or analysis holding time for this result was exceeded. (J) (Organic/General Inorganics) - The result for this analyte was greater than the Method Detection Limit (MDL) but less than the Practical Quantitaion Limit (PQL). * (Inorganic) - The result for this analyte in the Laboratory Replicate analysis was outside

HJ* acceptance criteria.

(d15N) - The d15N of nitrate is a signature of the nitrate present in a sample. Therefore, nitrate has to be present to have a signature. A d15N value can not be given to a blank, since the blank does not have nitrate. This is different than most analytical methods where you would run a blank and use the designator: "non detect" or detected, but below detection limit.

- (Inorganic) -The associated numerical value is an estimated quantity. (Organic) The
 J associated numerical value is an estimated quantity.
- J* See J code and see * code.
- JB See J code and see B code
- JN See J code and see N code
- JN* See J code, see N code and see * code
- JP See J code and see P code
- N (Inorganic) Spiked sample recovery not within control limits.
- N* See N code and see * code.
- N*E See N code, see * code and see E code
- NE See N code and see E code
- Percent difference between the results on the two columns during the analysis differed by more than 40%.
- PJ See P code and see J code
- The material was analyzed for, but was not detected above the level of the associated
- U numeric value.
- U* See U code and see * code
- UD See U code and see D code.
- UE See U code and see E code
- UE* See U code, see E code and see * code
- UEN See U code, see E code and see N code
- UH See U code and see H code.

(U) (Organic/Inorganic) - The result for this analyte was not detected at the specified reporting limit.
 (H) (Organic/Inorganic) - The required extraction or analysis holding time for this result was exceeded.
 * (Inorganic) - The result for this analyte in the Laboratory

- UH* Replicate analysis was outside acceptance criteria.
- UI This code is no longer used.

EPA Flag (Inorganic) Compound was analyzed for, but not detected and spiked sample

- UN recovery not within control limits.
- UN* EPA Flag (Inorganic) -see U code, see N code, and see * code.
- X Lab suspects result is a nondetect despite positive quantification results.

Secondary '

Valid Flag Code A		
I		
J		
J-		
J+		
JN-		
JN+ N		
NJ		
NQ		
PM		
R U		
IJ		

Validation Flag Codes.

Valid Flag Desc

The contractually-required supporting documentation for this datum is absent.

The calculated sums are considered incomplete due to lack of one or more congener results.

The analyte is classified as detected but the reported concentration value is expected to be more uncertain than usual.

The analyte is classified as detected but the reported concentration value is expected to be more uncertain than usual with a potential negative bias.

The analyte is classified as detected but the reported concentration value is expected to be more uncertain than usual with a potential positive bias.

Presumptive evidence of the presence of the material at an an estimated quantity with a suspected negative bias.

Presumptive evidence of the presence of the material at an an estimated quantity with a suspected positive bias.

Presumptive evidence of the presence of the material.

(Organic) -Analyte has been tentatively identified and the associated numerical value is estimated based upon 1:1 response factor to the nearest eluting internal standard.

No validation qualifier flag is associated with this result, and the analyte is classified as detected. Manual review of raw data is recommended to determine if the observed non-compliances with quality acceptance criteria adversely impacts data use.

The reported sample result is classified as rejected due to serious noncompliances regarding quality control acceptance criteria. The presence or absence of the analyte cannot be verified based on routine validation alone

The analyte is classified as not detected.

The analyte is classified as not detected, with an expectation that the reported result is more uncertain than usual.

Secondary Validatio

Valid Reason Code 12a

CB0

CB0b

CB12

CB12a

CB12b

CB12c

CB12d

CB15

CB16

CB16c

CB19			
CB3			
СВЗа			
CB3b			
CB3d			
CB4			
CB4a			
CB4d			
CB4e CB7			

CB7a

CB7b

CB7c			
CB7d			
CB7f			
CB8 CB88			
CB8a			
CB9			
CB9a			
0254			

DF0

DF0b DF12 DF12a

DF12b			
DF12c DF12d DF12e DF12f DF12g			
DF12h			
DF12i			
DF12j			
DF12k			
DF15			
DF15a DF16			
DF16c			
DF19			
DF1d			

DF4

DF4a DF4d DF4e

DF7

DF7a

DF7b

DF7c

DF7d
DF7f
DF8
DF8 DF88
DF8b
DF8c
DF9 DF9a DR0 or GR0
DR0b or GR0b DR12 or GR12
DR12a or GR12a

DR12b or GR12b

DR12c or GR12c DR12d or GR12d DR12e or GR12e DR12f or GR12f DR12g or GR12g

DR15 or GR15

DR19 or GR19

DR3 or GR3

DR3a or GR3a

DR3b or GR3b

DR3d or GR3d

DR4 or GR4

DR4a or GR4a

DR4d or GR4d

DR4e or GR4e DR7 or GR7

DR7a or GR7a DR7c or GR7c DR7d or GR7d

DR7f or GR7f DR88 or GR88

DR9 or GR9 DR9a or GR9a

H0

H0a

H0b

H12

H12a

H12b

H12c			
H15			
H19			
Н3			
H3a			
H3b			
НЗс			
H3d			
H4			
H4a			
H4d			
H4e H7			
H7a			
H7c H7d			
H7f H8 H88			
H8a H9 H9a H9b HE0			
HEOb			

HE12	
HE12a	

HE12b

HE12c

HE12d HE12e HE12f

HE12g

HE15

HE15a HE16c

HE19

HE1a			
HE1b			
HE1c			
HE1d			
HE3			
HE3a			
HE3b			
HE3c			
He3d			
HE4			
HE4a			
HE4d			
HE4e			

HE4f

HE7

HE7a

HE7b

HE7c

HE7d

HE7f

HE8a HE9

HE99

HE9a I1		
I10a		
I10a		
I10d		
l10d l12 l12		
l12a		
l12a		
l12b		
l12b		
l12c		
112c 116 116a 116b		
l16c		
l18 l18a		
119		
119		
11a		
l1b		
l1c		
11d 12 12 12a		

I2b			
I2b			
I2c			
l2c			
14			
14			
I4a			
l4a			
I4b			
110			
146			
I4b			
l4c			
l4c			
I4d			
I4d			
140			
l4e			
l4e			
16			
16			
10			
l6a			
l6a			
16b			
16b			
100			
16.			
16c			
l6c			
17			
17			
I7a			
17a			

I7c		
l7c l7d l7d		
I7f		
17f 188 188 19 19 19a 19a 19b PO		
POb P12		
P12a		
P12b		
P12c		
P13		
P13a		
P13b		
P15		
P19		
Р3		
P3a		
P3b		
РЗс		

P3d			
P4			
P4a			
P4b			
P4d			
P4e P7			
P7a P7c			
P7d P7e			
P7f P8			
P88			
P8a P9			
P9a			
P9b PEO			
PEOb			
PE12			
PE12a			
PE12b			
PE12c			

PE12d PE12e PE12f	
PE12g	

PE15a

PE15

PE16

PE16a PE16c

PE19

PE1a			
PE1b			
PE1c			
PE1d			
PE4			
PE4a			
PE4d			
PE4e			

PE7

PE7a

PE7c

PE7d

PE7f

PE8		
PE88		
PE8a		
PE9		
PE9a		
R10		
R10d		
R11		
R12		
R12a		

R12b			
R12c			
R19			
R3			
R3a			
R3b			
R3d R4			
R4a R4d			
R4e			
R5			
R5a			
R5b			
R6			
R6a			
R6b			
R6c			
R88			
R9			
R9a			
SV0			
SV0a			
SV0b			
SV12			
SV12a			
SV12b			

SV12c		
SV15 SV16		
SV16b		
SV16c		
SV19		
SV1a		
SV1b		
SV1c		
SV1d		
SV3		
SV3a		
SV3b		
SV3c		
SV3d		
SV4		
SV4a		
SV4d		
SV4e		
SV7		
SV7a SV7b		
SV70 SV7c		
SV7d		
SV7f		
SV8		
SV88		

SV8a SV9 SV9a SV9b

U_LAB, J_LAB, NQ

U_LAB, J_LAB, NQ V0 V0a

V0b

V12

V12a

V12b

V12c

V15

V16

V16b

V16c

V19

V1a

V1b			
V1c			
V1d			
V3			
V3a			
V3b			
V3c			
V3d			
V4			
V4a			
V4d			
V4e V7			
V7a			
V7a V7b			
V70 V7c			
V7d			
V7f			
V8			
V88			
V8a			
V9			
V9a			

n Reason Codes.

Valid Reason Description

Metals interference check sample percent recovery value is ≥50% and <80%.

The absolute RT of CB 209 must be \geq 55 minutes if the SPB-octyl column is used. If a GC column or column system alternate to the SPB-octyl column is used, the absolute Retention Time (RT) of CB 209 must be \geq the laboratory-established minimum RT for CB 209. If the laboratory has not established a minimum RT value for CB 209, the RT for CB 209 must be \geq 55 minutes. If an SPB-octyl column was used and the absolute RT of CB 209 is <55 minutes, qualify all associated results as R. If a GC column on column systems alternate to the SPB-octyl column was used and the absolute RT is < the laboratory established minimum RT for CB 209, or <55 minutes if the laboratory has not established a minimum RT, qualify all associated results as R. The absolute retention times of the Labeled Toxics/LOC/window defining standard congeners in the verification test must be within ±15 seconds of the respective retention times in the calibration or, if an alternate column or column system is employed, within ±15 seconds of the respective retention times in the calibration for the alternate column or Required RT documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The Ongoing Precision Recovery (OPR) percent recovery was less than 10%.OPR is a method blank spiked with known quantities of analytes. The OPR is analyzed exactly like a sample. Its purpose is to assure that the results produced by the laboratory remain within the limits specified in this EPA Method for precision and recovery. OPR must be established for every batch of samples extracted and analyzed and must meet the recovery and %RSD limits listed in Attachment 5. If the OPR criteria are not met and reanalysis was not performed, the laboratory performance and method accuracy are in question: 1. If the OPR recovery is <10% qualify all detects as J- and all associated non-detects as R. 2. If recoveries of more than half of the compounds in the OPR analysis are below 10%, qualify all associated defects as J- and all associated non-detects as R. [NOTE: If recoveries for more than half of the compounds in the OPR analysis are below the acceptance range, the laboratory has not shown that it can actually meet program required detection limits.]

The OPR sample percent recovery was < the Lower Acceptance Limit (LAL) but >10%. If the OPR recovery is < the LAL, qualify all associated detects as J- and all associated non-detects as "UJ" if the recovery is \geq 10%.

The OPR sample percent recovery was > the Upper Acceptance Limit. If the OPR recover is > the UAL, qualify all associated detects as J+. If recoveries of more than half of the compounds in the OPR analysis are above the acceptance range, qualify all associated detects as J+.

The OPR sample documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

If recoveries of more than half of the compounds in the OPR analysis exceed the acceptance range, both above and below, qualify all associated detects as J and all associated non-detects as UJ.

The affected analytes are considered suspect because the sample was diluted without any target analytes identified due to matrix interference. (Qualify as Reject if the analytical laboratory cannot provide proof for matrix interference.)

Gas chromatograph/mass spectrometer (GC/MS) instrument performance checks are performed to ensure mass resolution, identification, and to some degree, sensitivity. These criteria are not sample specific. Conformance is determined using standard materials; therefore, these criteria should be met in all circumstances. Failure to meet either the resolution or the retention window criteria invalidates all calibration or sample data collected during the 12-hour time window. If mass spectrometer performance was not evaluated at the required frequency or if method criteria were not met, qualify all associated detects and non-detects as R.

The required instrument performance sample information is missing. Contact the SMO or external laboratory for information.

The project chemist identified quality deficiencies in the reported data that require further qualification. This code can only be used under advisement by the project chemist.

To assess method performance on the sample matrix, the laboratory must spike all samples with the labeled toxics/LOC/window defining standard spiking solution and all sample extracts with the labeled cleanup standard spiking solution. The recovery of each labeled compound must be within the limits listed in Table 6 of the method. If the recovery of any labeled toxics/LOC/window defining standard compound is < 10%, qualify all not detected results as R and all detected results as J-.

The labeled compound is < the Lower Acceptance Limit but $\ge 10\%$ R. The recovery of each labeled compound must be within the limits in Table 6 of the method. If the recovery of any labeled toxics/LOC/window defining standard compound is below acceptance limits, qualify all detects for that sample fraction as J and all nondetects for that sample fraction as UJ if the recovery is $\ge 10\%$.

The labeled compound is > the Upper Acceptance Limit. The recovery of each labeled compound must be within the limits listed in Table 6 of the method. If the recovery of any labeled toxics/LOC/window defining standard compound is above acceptance limits, qualify all detects for that sample fraction as J and all nondetects for that sample fraction as UJ.

Required labeled compound information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The sample result is ≤ 5 times the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5x.

The sample result is ≤5x the concentration of the related analyte in the trip blank, rinsate blank, and equipment blank, which indicates the reported detection is considered indistinguishable from contamination in the blank. Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting Isotope dilution shall be used for calibration of the toxics and beginning and ending level of chlorination (LOC) chlorinated biphenyls (CBs). A 5- or 6-point calibration is prepared for each native congener. The RRF %RSD for all native toxins/LOC CBs must be <20%. If a linear curve is used for initial calibration, the r2 of the curve must be >0.99. 1. If the %RSD for any target compound is >20% but ≤40%, qualify all associated detects as J and, if any other calibration criteria have been exceeded for that compound, gualify all associated non-detects as UJ. 2. If the %RSD for any target compound is >40% but ≤60%, qualify all associated detects as J and all associated nondetects as UJ. 3. If the %RSD for any target compound is >60%, qualify all associated detects as J and all associated non-detects as R. 4. If the r2 for any target compound is <0.99 but ≥ 0.90 , gualify all associated detects as J and , if any other calibration criteria have been exceeded for that compound, qualify all associated nondetects as UJ. 5. If the r2 for any target compound is <0.90 but ≥0.80, qualify all associated detects as J and all The affected analytes did not meet the ion abundance ratios criteria in the initial calibration and/or CCV. Calibration using internal standards is used for determination of native CBs for which a labeled compound is not available. For these CBs, calibration is performed at a single point. Compounds should be quantitated using the appropriate reference internal standard listed in Table 2 of the method. Ion abundance ratios must meet the criteria in Attachment 4, Theoretical Ion Abundance Ratios and QC Limits for EPA Method 1668A, of this procedure, or must be within 15% of the theoretical ratio of the ion monitored. If the ion abundance criteria are not met, qualify all detected results for that analyte as R.

The ICV and/or CCV were recovered outside the method limits (see CB7a for ICAL specifications). At the beginning of each 12-hour period during which analysis is performed, calibration is verified for all native CBs and labeled compounds. The ion abundance ratios for all CBs must be within the limits in Attachment 4, and all compounds must meet the calibration verification recovery limits listed in Attachment 5, QA Acceptance Criteria for CBs in Calibration Verification, Initial Precision and Recovery, OPR, and Samples for EPA Method 1668A. RRTs of native CBs and labeled compounds in the calibration verification must be within ±0.5% of the mean RRT determined from the initial calibration or most recent calibration verification and must meet the minimum analysis and resolution specifications of the method. If the ion abundance ratio for any calibration verification compound is outside of the method limits, qualify all associated detects as J and all associated non-detects as UJ. If the verification limits are not met for any calibration verification compound and the recovery is The ICV and/or CCV were not analyzed at the appropriate method frequency. At the beginning of each 12-hour period during which analysis is performed, calibration is verified for all native CBs and labeled compounds. Use professional judgment based on when ICVs and CCVs were analyzed (also, see CB7f).

Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

The affected analyte is considered rejected because ion abundance ratios did not meet specifications. For identification of any CB or labeled compound, the ion abundance ratios must be within the limits specified in Attachment 4, or ±15% of the calibration verification standard. If ion abundance ratio criteria were not met for any compound, qualify all associated results as R.

Duplicate, dilution, or reanalysis.

The ion ratio documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The extraction/analytical holding time is exceeded by less than 2x the published method for holding times. There are no demonstrated maximum holding times associated with the CBs in EPA Method 1668, aqueous, solid, semi-solid, tissues, or other sample matrices. If stored in the dark at 0-4°C and preserved as given above (if required), aqueous samples may be stored for up to one year. Similarly, if stored in the dark at <-10°C, solid semi-solid, multi-phase, and tissue samples may be stored for up to one year. Store sample extracts in the dark at <-10°C until analyzed. If stored in the dark at <-10°C, sample extracts may be stored for up to one year.

The extraction/analytical holding time was exceeded by more than 2x the published method for holding times. There are no demonstrated maximum holding times associated with the CBs in EPA Method 1668, aqueous, solid, semi-solid, tissues, or other sample matrices. If stored in the dark at 0-4°C and preserved as given above (if required), aqueous samples may be stored for up to one year. Similarly, if stored in the dark at <-10°C, solid, semi-solid, multi-phase, and tissue samples may be stored for up to one year. Store sample extracts in the dark at<-10°C until analyzed. If stored in the dark at <-10°C, sample extracts may be stored for up to one year. The IS retention time and qualitative criteria for target compound identification were not met. For 2,3,7,8-substituted compounds that have an isotopically-labeled internal standard or recovery standard present in the sample extract, the Retention Time (RT) must be -1 to +3 seconds of the isotopically-labeled standard. For 2,3,7,8-substituted compounds that do not have an isotopically-labeled internal standard or recovery standard present in the sample extract, the RT must fall within 0.005 RRT units of the Required Retention Time (RRT) measured in the continuing calibration. For non-2,3,7,8-substituted compounds, the RT must be within the corresponding homologous RT windows established by analyzing the column performance check solution. If the RT of any compound is outside of the RT window, qualify all associated results as R.

RRT documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The LCS percent recovery was <10%.

The LCS percent recovery was < the Lower Acceptance Limit but >10%. Follow the external laboratory limits.

The LCS percent recovery was > the Upper Acceptance Limit. Follow the external laboratory limits.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The MS/MSD percent recovery was <10%.

The MS/MSD percent recovery was >10% but <70%.

The MS/MSD percent recovery was >130%.

The MS/MSD relative percent difference was >30%.

The laboratory must spike all samples with the sample fortification solution and all sample extracts with recovery standard solution. The recovery acceptance criteria for each compound is 40% to 135%. The fortification sample percent recovery was <10%.

The laboratory must spike all samples with the sample fortification solution and all sample extracts with recovery standard solution. The recovery acceptance criteria for each compound is 40% to 135%. The fortification sample percent recovery was <40% but >10%.

The laboratory must spike all samples with the sample fortification solution and all sample extracts with recovery standard solution. The recovery acceptance criteria for each compound is 40% to 135%. The fortification sample percent recovery was >135%.

The fortification sample documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected analytes have elevated detection limits and may not meet project DQOs because the sample was diluted without any target analytes identified due to matrix interference. (Qualify non-detected results as rejected if the analytical laboratory cannot provide proof for matrix interference.)

Sample clean-up was not performed. If run log notations, spectral data and/or internal standard or labeled compound recoveries indicate interferences and extract clean-up was not performed, qualify all associated detects as J and all non-detects as UJ.

The instrument performance sample did not pass method acceptance criteria.

The required instrument performance sample information is missing. Contact the SMO or external laboratory for information.

The project chemist identified quality deficiencies in the reported data that require further qualification. This code can only be used under advisement by the project chemist.

Required IS information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The sample result is ≤5 times the concentration of the related analyte in the method blank. The criteria for the frequency of extraction and analysis of method blanks as stated in Section 9.5 of Method 1613B shall be followed and demonstrated in the documented data. The maximum amount of PCDD and PCDF isomer contamination in method blanks is stated in Table 2 of Method 1613B. The method blank must be measured on each GC/MS system which is used to measure a group of samples. This requirement includes measuring method blanks on a second GC column if confirmatory analysis of sample extracts on a second column is required by the method or by the laboratory statement of work. Any PCDD or PCDF measurement in a sample that is also measured in any associated blank, is qualified with a U flag if the sample concentration is <5 times the blank

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5x. The criteria for the frequency of extraction and analysis of method blanks as stated in Section 9.5 of Method 1613B shall be followed and demonstrated in the documented data. The maximum amount of PCDD and PCDF isomer contamination in method blanks is stated in Table 2 of Method 1613B. The method blank must be measured on each GC/MS system which is used to measure a group of samples. This requirement includes measuring method blanks on a second GC column if confirmatory analysis of sample extracts on a second column is required by the method or by the laboratory statement of work. If the maximum contamination requirements of specific TCDD and TCDF isomers stated in Table 2 of Method 1613B are not met, then all isomers in all samples associated with a method blank shall be qualified with a J flag.

The sample result is ≤5 times the concentration of the related analyte in the trip blank, rinsate blank, or equipment blank. Any PCDD or PCDF measurement in a sample that is also measured in any associated blank is qualified with a U flag if the sample concentration is less than 5 times the blank concentration.

Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information. If the frequency of measuring method blanks is not met by the laboratory in the data submitted, then the results of all samples which do not meet the frequency of extraction and measurement of method blanks shall be qualified with an R flag.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting limit. There shall be an initial calibration curve consisting of five points for each analyte. The initial calibration curve shall be determined < 30 days from the time the first samples of a Sample Delivery Group (SDG) are measured by the laboratory. The laboratory shall use the same calibration standards with the same lot number, for all internal standards, and labeled standards used in measuring the initial calibration curve, verification standards, field samples, and method blanks on both the primary GC column and on the secondary confirmation The affected analytes were analyzed with an initial calibration curve that exceeded the %RSD criteria. A 5-point calibration is prepared for each labeled and unlabeled compound. The RRF %RSD for the unlabeled standards must be \leq 30%. Ion abundance ratios must meet the criteria listed in Attachment 4. If the %RSD is >20% for any unlabeled calibration standard, or >30% for any labeled calibration standard, but ≤40%, qualify all associated detects as J and, if any other calibration criteria have been exceeded for that compound, qualify all associated non-detects as UJ. If the %RSD is >40% but <60% for either a labeled or unlabeled calibration standard, qualify all associated detects as J and all associated non-detects as UJ. If the %RSD is >60% for either a labeled or unlabeled calibration standard, qualify all associated detects as J and all associated non-detects as R. If the ion abundance criteria were not met for any calibration compound, gualify all associated detects as J and all associated nondetects as UJ. If the affected results were not analyzed with a valid 5-point calibration curve and/or a standard at The affected analytes were analyzed with an out-of-range ion abundance in the initial calibration and/or CCV. Ion abundance must meet the criteria in Attachment 4. If the ion abundance criteria are not met, gualify results for that analyte R.

The ICV and/or CCV were recovered outside the method specific limits. See DF7a for ICAL specifications. The ion abundance must be within the limits in Attachment 4. For the calibration verification analyzed at the beginning of a 12-hour period, the effect on data quality of a standard that does not meet criteria must be assessed using professional judgment. Guidance is provided in Section 7.7.4.4 of the EPA method 8290. For the calibration verification analyzed at the end of a 12-hour period, a %D of 25% for unlabeled compounds and 35% for labeled compounds is acceptable; however, in this instance, the mean RFs obtained from the beginning and ending daily calibration runs are used to calculate analyte concentrations instead of the RFs obtained from the initial calibration. If the %D of the ending calibration is >25% for any unlabeled compound and/or >35% for any labeled compound, then successful performance of another initial calibration must be analyzed within two hours of sample analysis for the data to be acceptable. In this case, the mean RFs from the beginning and ending daily

The ICV and/or CCV were not analyzed at the appropriate method frequency. It should be noted that CLP protocol DFLM01.1 requires that the GC/MS system must be calibrated based upon a daily Calibration Check Standard, whereas, EPA Methods 1613B and 8290 require that the GC/MS system criteria of a daily calibration verification standard must be met with each 12-hour batch of samples measured, and that response factors for native target compounds are derived from the 5-point initial calibration.

Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

The affected analyte is considered rejected because the ion abundances did not meet specifications. For identification of any compound, the ion abundance ratios must be within the limits specified in Attachment 4. If ion abundance ratio criteria were not met for any compound, qualify all associated results as R. If the RT of any compound is outside of the RT window, qualify all associated results as R.

The ion abundance documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

Duplicate, dilution, or reanalysis.

The GC column performance solution is used for defining the homologous GC RT windows and to document the chromatographic resolution. Column performance must be evaluated at the beginning of each analytical period and must meet method acceptance criteria (see Section 8.2 of the 8290) before sample analysis may begin. If GC column performance was not evaluated at the required frequency or if method criteria were not met, qualify all associated detects as J and all associated non-detects as UJ.

The DB-5 GC column generally used for PCDD and PCDF analyses does not adequately separate 2,3,7,8-TCDF from its closest eluting isomer. If 2,3,7,8-TCDF is detected in a sample, the result must be confirmed on a second column capable of separating 2,3,7,8-TCDF from all other TCDF homologues (as proven by successful analysis of the GC column performance column mix with <25% valley between 2,3,7,8-TCDF and its closest eluting isomer). If 2,3,7,8-TCDF was detected in a sample and the result was not confirmed on a second column with successful analysis of the GC column performance mix, qualify all associated detects as U.

The extraction/analytical holding time are exceeded by <2 times the published method for holding times. Regulations require water samples be preserved by neutralizing any chlorine residual with 0.008% sodium thiosulfate, and cooling to 4°C using a holding time of 7 days from day of collection to day of extraction of the sample. In addition, the maximum holding time of extracts is 40 days from day of extraction to day of injection of the extract. The holdinig time and preservation requirements of 2,3,7,8-TCDD and of other measured PCDD and PCDF isomers in non-water matrixes have not been promulgated by EPA. Therefore, the data validator should use the holding time specified in EPA Method 8290, which specifies that all samples, except fish and adipose tissue samples, must be stored at 4°C in the dark, extracted within 30 days, and completely analyzed within 45 days of extraction. Fish and adipose samples must be stored at -20°C in the dark, extracted within 30 days, and completely analyzed within 45 days of collection (see Section 6.4 of EPA Method 8290). EPA Method The extraction/analytical holding time was exceeded by >2 times the published method for holding times. The retention time criteria were not met.

Required retention time documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The LCS percent recovery was less than 10%. Follow the external laboratory limits.

The LCS percent recovery was less than the Lower Acceptance Limit but greater than or equal to 10%. Follow the external laboratory limits.

The LCS percent recovery was greater than the Upper Acceptance Limit. Follow the external laboratory limits. The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The MS/MSD percent recovery was less than 10%.

The MS/MSD percent recovery was greater than or equal to 10% but less than 70%.

The MS/MSD percent recovery was greater than 130%.

The MS/MSD relative percent difference was greater than 30%.

The affected analytes have elevated detection limits and may not meet project DQOs because the sample was diluted without any target analytes identified due to matrix interference. (Qualify as Reject if the analytical laboratory cannot provide proof for matrix interference.)

The project chemist identified quality deficiencies in the reported data that requires further qualification. This code can only be used under advisement by the project chemist.

The surrogate is less than 10%R, which indicates the potential for a severely low bias in the results. Follow the external laboratory limits.

The surrogate is less than the Lower Acceptance Limit, but greater than or equal to 10%R, which indicates the potential for a low bias in the results. Follow the external laboratory limits.

The surrogate %R value is greater than the Upper Acceptance Limit, which indicates a potential for a high bias in the results and a potential for false positive results. Follow the external laboratory limits.

Required surrogate information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The sample result is less than or equal to 5 times the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank. The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was greater than 5x.

The sample result is less than or equal to 5 times the concentration of the related analyte in the trip blank, rinsate blank, or equipment blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting The affected analytes were analyzed with an initial calibration curve that exceeded the %RSD criteria and/or the associated multipoint calibration correlation coefficient is less than 0.995.

The ICV and/or CCV were recovered outside the method specific limits.

The ICV and/or CCV were not analyzed at the appropriate method frequency.

Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

Duplicate, dilution, or reanalysis.

The extraction/analytical holding time is greater than 1x and less than or equal to 2 times the applicable holding time requirement.

The extraction/analytical holding times were exceeded by more than 2x the published method for holding times. The analyte RT shifted by more than 0.05 minutes from the mid-level standard of the initial calibration. Reject nondetects for HPLC.

Analyte is positively confirmed but outside the retention time window; however, spectral matches must be provided (hexp – diode array detector).

Required retention time documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The LCS percent recovery was <10%. Follow external laboratory limits located within the associated data The LCS percent recovery was < the Lower Acceptance Limit (LAL) but >10%. Follow external laboratory limits located within the associated data package.

The LCS percent recovery was > than the Upper Acceptance Limit (UAL). Follow the external laboratory limits located within the associated data package.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected analytes have elevated detection limits and may not meet project DQOs because the sample was diluted without any target analytes identified due to matrix interference. Qualify as Reject if the analytical laboratory cannot provide proof for cleanup or matrix interference.

The LANL project chemist identified quality deficiencies in the reported data that requires further qualification. This code can ONLY be used and/or under advisement by the project chemist.

The surrogate is <10%R, which indicates the potential for a severely low bias in the results. Follow external laboratory limits located within the associated data package.

The surrogate is < the LAL but \geq 10%R, which indicates the potential for a low bias in the results. Follow the external laboratory limits located within the associated data package.

The surrogate %R value is > the UAL, which indicates a potential for a high bias in the results and a potential for false positive results. Follow the external laboratory limits located within the associated data package.

At least one surrogate is > the UAL and one surrogate is < the LAL, which indicates a greater than normal degree of uncertainty in the result. Follow external laboratory limits located within the associated data package. Required surrogate information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The sample result is ≤5X the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5X.

The sample result is ≤5X the concentration of the related analyte in the trip blank, rinsate blank, or equipment blank, which indicates the reported detection is considered indistinguishable from contamination in the blank. Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting The affected analytes were analyzed with an initial calibration curve that exceeded the %RSD criteria and/or the associated multipoint calibration correlation coefficient is <0.995.

The Initial Calibration Verification (ICV) and/or Continuing Calibration Verification (CCV) were recovered outside the method-specific limits.

The ICV and/or CCV were not analyzed at the appropriate method frequency.

Required calibration information is missing or Samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

The analyte was not confirmed on a second dissimilar column or diode array spectrums do not match library. Duplicate, dilution, or reanalysis.

The required second dissimilar column or diode array documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The extraction/analytical holding time was exceeded by <2X the published method for holding times.

The extraction/analytical holding time was exceeded by >2X the published method for holding times.

The affected analytes are regarded as rejected because the analytical holding time was exceeded.

The IS retention time has shifted by >30 seconds.

Required retention time documentation is missing. Data may not be acceptable for use. Contact the SMO and external laboratory for information.

An LCS should be analyzed at a frequency of once per data package, once per matrix, An LCS should be analyzed at a frequency of once per data package, once per matrix, or once per 20 analytical samples, whichever is most frequent. The LCS must meet all sample acceptance criteria and all method-specific LCS requirements. The LCS for high explosives must meet laboratory-derived acceptance criteria. If surrogate and IS recovery acceptance criteria are not met for the LCS analysis, the LCS must be reanalyzed. If the recovery acceptance criteria are not reported in the analytical data package recovery limits of 70% to 130% should be used as the criteria. If, based on professional judgment, the laboratory's internal acceptance criteria are excessively wide or acceptable recoveries are significantly biased, notify the program manager. The LCS percent recovery was <10%. Qualify detected results as J- and not detected results as R.

The LCS percent recovery was < the Lower Acceptance Limit but >10%. Follow the external laboratory limits. Qualify detected results as J- and not detected results as UJ.

The LCS percent recovery was > the Upper Acceptance Limit. Follow the external laboratory limits. Qualify detected results as J+.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or the external laboratory for information.

The MS/MSD percent recovery was <10%. The MS/MSD data shall not be used to evaluate associate field sample results unless the MS/MSD sample was from the same client and of similar matrix. If the acceptance criteria are not reported, recovery limits are 70% to 130%. The MS and MSD %R must be within the limits unless the sample concentration is >4X the spike concentration. The MS and MSD results may be used in conjunction with other QC results to determine the need for qualification of the data. An effort to determine to what extent the results of the MS/MSD affect the associated data should determine to what extent the results of the MS/MSD affect the associated data should determine to what extent the results of the MS/MSD affect the associated data should determine to what extent the results of the MS/MSD affect the associated data should determine to what extent the results of the MS/MSD affect the associated data should first be made. This determination should be made considering the MS/MSD sample matrix, the surrogate and internal standard recoveries, and the LCS results. Professional judgment should be used to determine if MS/MSD failure warrants qualification of only the results for the failed compounds or if the compounds associated with the failed MS compound are affected. Generally, unless evidence exists to warrant qualification of other compounds, only the compounds in the MS spiking mixture shall be qualified. If the If the MS/MSD percent recovery was >10%, but <70%, qualify all detects as J and all non-detects as UJ. If the MS/MSD percent recovery was >130%, gualify all associated detects as J+.

If the MS/MSD relative percent difference was >30%, and the acceptance criteria are not reported, recovery limits of 70% to 130% and an RPD of \leq 30% should be used as the criteria. For solid and waste samples, it may be appropriate to accept an RPD of up to 40% based on professional judgment.

If the affected analytes are considered suspect because the sample was diluted without any target analytes identified due to matrix interference, qualify as Reject if the analytical laboratory cannot provide proof for The Practical Quantitation Limits must be adjusted to reflect all sample dilutions, concentrations, splits, clean-up activities, and dry weight factors that are not accounted for by the method. Samples must be diluted and reanalyzed when any analyte exceeds the calibration range. Data from the original sample analysis should be included when any sample requires dilution due to one or more analytes exceeding the calibration range. The original undiluted results document the actual MDLs for non-detects. If the PQLs have not been properly adjusted, request an amended report from the laboratory. If an initial dilution was required because of expected high concentrations of non-target analytes or because one or more target analyte exceeded the greatly exceed the instrument working range and the laboratory was not able to analyze the undiluted sample, note the dilution and elevated MDLs in the data validation report. If any target analyte exceeded the calibration range and the original undiluted sample result was reported, qualify all detects from the undiluted analysis that The required CRI sample information is missing. Contact the SMO or the external laboratory for information. The project chemist identified quality deficiencies in the reported data that require further qualification. This code can ONLY be used and/or under advisement by the project chemist.

The quantitating IS area count is <25% of the expected value, which indicates increased potential for false negative results and other possible problems with sample quantitation. Follow the method specific windows. Qualify data as R if the IS area count is <25%.

If the internal standard was used for quantification and its area count is <70% but >25% of the average of that obtained from the calibration standards, qualify all associated detects as J+ and all associated non-detects as UJ. The internal standard area counts must not vary by >70% to 130% from the average of those obtained from the calibration standards or from the mid-level calibration standard. If the internal standard was used for quantification and its area count is >130% of the average of that obtained from the calibration standards, qualify all associated non-detects as UJ.

Required IS information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The surrogate is <10% recovery, which indicates the potential for a severely low bias in the results. Follow the external laboratory limits. Qualify non-detected results as R and detected results as J-. Also, if an initial dilution was performed on any sample and surrogate recovery is <10% recovery and all results are non-detect, qualify all The surrogate is < the Lower Acceptance Limit but \geq 10% recovery, which indicates the potential for a low bias in the results. Follow the external laboratory limits. Qualify non-detected results as UJ and detected results as J-. Also, if an initial dilution was performed on any sample and at least one surrogate recover is < the Lower Acceptance Limit, but \geq 10%, or all surrogate recoveries are <10% and the results for one or more compounds are > the PQL, qualify non-detected results as UJ and detected results are > the PQL, qualify non-detected results as UJ and detected results as UJ and detected results are > the PQL, qualify non-detected results as UJ and detected results as UJ.

The surrogate % recovery value is > the Upper Acceptance Limit, which indicates the potential for a high bias in the results and a potential for false positive results. Follow the external laboratory limits.

At least one surrogate is > the Upper Acceptance Limit and one surrogate is < the Lower Acceptance Limit, which indicates a > normal degree of uncertainty in the result. Follow the external laboratory limits.

Required surrogate information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information. Sample and blank surrogate recoveries must be within limits specified by the laboratory. Surrogate compound recoveries shall be calculated using the procedure described in SW-846 EPA Method 8000B. Reported recoveries shall be accompanied by the applicable acceptance limits. Results from spiked or replicate QC samples that have surrogate recoveries <10% cannot be used to evaluate associated The sample result is ≤5 times the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The affected analytes are considered estimates and biased high because this analyte was identified in the method blank but was >5x.

The sample result is ≤5 times the concentration of the related analyte in the trip blank, rinsate blank, and equipment blank, which indicates the reported detection is considered indistinguishable from contamination in Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The absence of sample carry-over must be determined and verified. If examination of the run logs indicates that any samples in the analytical run of interest required dilution and there is no documentation of a rinse or blank analysis immediately following the original undiluted analysis, then sample carry-over may be suspected in the subsequent sample. If any target analyte found in the sample requiring dilution exceeded the high calibration standard and was also found in the following sample at a concentration <5x the PQL, qualify the result for that analyte in the second sample as R. If no data are available for the sample that required dilution, the laboratory has not documented that carry-over was evaluated, and any analyte was also found in the following sample as a concentration <5x the PQL, qualify the result for that analyte in the second sample as N.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting limit. LC/MS/MS instrument calibration shall be performed using a minimum of five (5) calibration standards. The lowest point of the curve must be at or below the reporting limit. If calibration curves are used, five (5) standards are required for a linear (first order) calibration model, six (6) standards are required for a quadratic (second order) model, and seven (7) standards are required for a third order polynomial. Higher order curves should not normally be used. If the laboratory uses a higher order equation to and all associated non-detects as UJ. establish a calibration curve, it should be evaluated for the appropriate application. If an insufficient number of calibration standards was used, the PQLs were incorrect, or all points were not analyzed within a 24-hour period, qualify all associated detects as J.

The affected analytes were analyzed with an initial calibration curve that exceeded the %RSD or r2. If the %RSD for any target analyte is >20% but \leq 40%, qualify all associated detects as J and, if any other calibration criteria have been exceeded for that compound, qualify all associated non-detects as UJ. If the %RSD for any target analyte is >40% but \leq 60%, qualify all associated detects as J and all associated non-detects as UJ. If the %RSD for any target analyte is >60%, qualify all associated detects as J and all associated non-detects as R. If the r2 for any target analyte is <0.99 but \geq 0.90, qualify all associated detects as J and all associated non-detects as R. If the r2 for any target analyte is <0.99 but \geq 0.90, qualify all associated detects as J and, if any other calibration criteria have been exceeded for that compound, qualify all associated non-detects as UJ. If the r2 for any target analyte is <0.99 but \geq 0.90, qualify all associated non-detects as UJ. If the r2 for any target analyte is <0.90 but \leq 0.80, qualify all associated detects as J and all associated non-detects as UJ. If the r2 for any target analyte is <0.90 but \leq 0.80, qualify all associated detects as J and all associated non-detects as UJ. If the r2 for any target analyte is <0.90 but \leq 0.80, qualify all associated detects as J and all associated non-detects as UJ. If the r2 for any target analyte is <0.80, qualify all associated detects as J and all associated non-detects as UJ. If the r2 for any target analyte is <0.80, qualify all associated detects as J and all associated non-detects as UJ. If the r2 for any target analyte is <0.80, qualify all associated detects as J and all associated non-detects as UJ. If the r2 for any target analyte is <0.80, qualify all associated detects as J and all associated non-detects as UJ. If the r2 for any target analyte is <0.80, qualify all associated detects as J and all associated non-detects as UJ. If the r2 for any target analyte is <0.80, qualify all associated detects as J and

The ICV and/or CCV were recovered outside the method limits. The %D between the ICV and CCV standard concentrations and their true values shall be calculated according to the formula in Attachment 4, and must be ≤20%. The evaluation of CCV data applies to all CCVs that bracket samples of interest. If the %D was reported with the wrong sign (e.g., +%D for negative bias), document the occurrence in the data validation report and assess any infractions using the correct sign. 1. If the %D between a measured ICV and/or CCV concentration and its true value for any analyte is >20%, qualify all associated detects as J+. 2. If the %D between a measured ICV and/or CCV concentration and is true value for any analyte is >20% but ≤40% and negative (low bias), qualify all associated detects as J- and, if any other calibration criteria have been exceeded for that compound, gualify all associated non-detects as UJ. 3. If the %D between a measured ICV and/or CCV concentration and its true value for any analyte is >40% but ≤60% and negative, qualify all associated detects as J and all associated non-detects The ICV and/or CCV were not analyzed at the appropriate method frequency. An ICV standard is analyzed immediately following an initial calibration. For high explosive analysis, the ICV standard analysis results are not required to be reported in the data package unless the samples in the SDG were analyzed after the initial calibration but before a CCV standard analysis was performed. In this case, the ICV %D is assessed according to the calibration verification criteria described below for the associated samples. If a CCV is analyzed prior to samples and ICV data are also reported in the package, both the ICV %D and the appropriate CCV %D are to be assessed as described below. If both ICV %D and CCV %D infractions occur, the worst infraction should be evaluated for result qualification. A CCV must be analyzed in the following instances: • at the beginning of each analytical run; • at least once every 10 samples; and • at the end of each analytical run. If multiple CCVs were analyzed to obtain a passing CCV, the calibration is not verified and the calibration frequency is not met. If the Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

The mass spectral documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The extraction/analytical holding time is exceeded by <2x the published method for holding times. Duplicate, dilution, or reanalysis.

The extraction/analytical holding time was exceeded by more than 2x the published method for holding times. The sample result was reported as detected between the IDL and the EDL.

The sample and the duplicate sample results were \geq 5X the RL and the duplicate RPD was >20% for water samples and >35% for soil samples.

The sample and the duplicate sample results were \geq 5X the RL and the duplicate RPD was \geq 20% for water samples and \geq 35% for soil samples.

The duplicate sample was not prepared and/or analyzed with the samples for unspecified reasons. The duplicate information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for The duplicate sample was not prepared and/or analyzed with the samples for unspecified reasons. The duplicate information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for The LCS percent recovery was <10%. Follow the external laboratory limits located within the associated data The LCS percent recovery was <10%. Follow external laboratory limits located within the associated data The LCS percent recovery was < the Lower Acceptance Limit (LAL) but >10%. Follow the external laboratory limits located within the associated data The LCS percent recovery was < the Lower Acceptance Limit (LAL) but >10%. Follow the external laboratory limits located within the associated data package.

The LCS percent recovery was < the Lower Acceptance Limit (LAL) but >10%. Follow the external laboratory limits located within the associated data package.

The LCS percent recovery was > Upper Acceptance Limit (UAL). Follow the external laboratory limits located within the associated data package.

The LCS percent recovery was > Upper Acceptance Limit (UAL). Follow the external laboratory limits located within the associated data package.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information. Do not Reject if MS/MSD information is present. Qualify according to MS/MSD criteria.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information. Do not Reject if MS/MSD information is present. Qualify according to MS/MSD criteria.

The instrument performance sample did not pass the method acceptance criteria.

The mass calibration is not within 0.1 amu or %RSD exceeds 5% for any isotope (Be, Mg, Co, In, Pb). Samples were analyzed outside specific method tune time criteria.

The required instrument performance sample information is missing. Contact the SMO or external laboratory for information.

Serial dilution sample RPD was >10% and the sample results was >50X the MDL (>100X the MDL for ICPMS). Qualify ONLY the sample used for the serial dilution.

Serial dilution sample was not analyzed with the samples.

The project chemist identified quality deficiencies in the reported data that requires further qualification. This code can ONLY be used and/or under the advisement by the project chemist.

The project chemist identified quality deficiencies in the reported data that require further qualification. This code can ONLY be used and/or under advisement by the project chemist.

The quantitating IS area could is <10% for metals window in relation to the initial calibration blank. Follow method-specific windows.

The IS area count for the quantitating IS is <60% but >10% for metals window in relation to the initial calibration blank. Follow method-specific windows.

The IS area count for the quantitiating IS is >125% in relation to the metals initial calibration blank. Follow method-specific windows.

Required IS information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

Metals interference check sample percent recovery value is <50%.

Metals interference check sample percent recovery value is <50%.

Metals interference check sample percent recovery value is \geq 50% and <80%.

Metals interference check sample percent recovery value is >120%.

Metals interference check sample percent recovery value is >120%.

Metals interference check sample was not analyzed with the samples.

Metals interference check sample was not analyzed with the samples.

The sample result is $\leq 5X$ the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The sample result is $\leq 5X$ the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5X.

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5X.

The sample result is ≤5X the concentration of the related analyte in the ICB/CCB, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The sample result is ≤5X the concentration of the related analyte in the instrument blank and continuing calibration blank, which indicates the reported detection is considered indistinguishable from contamination in Continuing calibration blanks were not analyzed at the appropriate method frequency.

Continuing calibration blanks were not analyzed at the appropriate method frequency.

The sample result is $\leq 5X$ the concentration of the related analyte in the trip blank, equipment blank, or rinsate, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The sample result is ≤5X the concentration of the related analyte in the trip blank, rinsate blank, or equipment blank, which indicates the reported detection is considered indistinguishable from contamination in the blank. Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

Required method blank information is missing. Data may not be acceptable for use.

The associated matrix spike recovery was <10%. Follow the external laboratory limits located within the associated data package.

The associated matrix spike recovery was <10%. Follow the external laboratory limits located within the associated data package.

The associated matrix spike recovery was < the LAL but >10%. Follow the external laboratory limits located within the associated data package.

The associated matrix spike recovery was < the LAL but > 10%. Follow the external laboratory limits located within the associated data package.

The associated matrix spike recovery was > the UAL. Follow the external laboratory limits located within the associated data package.

The associated matrix spike recovery was > the UAL. Follow the external laboratory limits located within the associated data package.

Required matrix spike information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

Required matrix spike information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information. If LCS information is present, do not Reject. Qualify data based on LCS information.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting The affected analytes were analyzed with a initial calibration curve that exceeded the %RSD criteria and/or the associated multipoint calibration correlation coefficient is <0.995.

The affected analytes were analyzed with an initial calibration curve that exceeded the %RSD criteria and/or the associated multipoint calibration correlation coefficient is <0.995.

The ICV and/or CCV were recovered outside the method-specific limits.

The Initial Calibration Verification (ICV) and/or Continuing Calibration Verification (CCV) were recovered outside the method specific limits.

The ICV and/or CCV were not analyzed at the appropriate method frequency.

The ICV and/or CCV were not analyzed at the appropriate method frequency.

Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

Duplicate, dilution, or reanalysis.

Duplicate, dilution, or reanalysis.

The extraction/analytical holding time are exceeded by <2X the published method for holding times.

The extraction holding time was exceeded by <2X the published method for holding times.

The extraction/analytical holding time are exceeded by >2X the published method for holding times.

The extraction holding time was exceeded by >2X the published method for holding times.

The affected analytes are regarded as rejected because the analytical holding time was exceeded.

The analyte RT shifted by >0.05 minutes from the mid-level standard of the initial calibration.

Required retention time documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The LCS percent recovery was <10%. Follow the external laboratory limits located within the associated data The LCS percent recovery was < the Lower Acceptance Limit (LAL) but >10%. Follow the external laboratory limits located within the associated data package.

The LCS percent recovery was > the Upper Acceptance Limit (UAL). Follow the external laboratory limits located within the associated data package.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information located within the associated data package.

The breakdown criteria have been exceeded. This can cause low bias in reported results. If compound is detected, qualify J-. If compounds not present, but breakdown products are present, qualify R. If compounds and no breakdown products are present, qualify UJ (4,4' DDT and Endrin).

The breakdown criteria have been exceeded. This can cause high bias in the reported results and potential false positive results for the breakdown products Endrin ketone, Endrin aldehyde, DDD, and DDE.

The breakdown documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected analytes have elevated detection limits and may not meet project DQOs because the sample was diluted without any target analytes identified due to matrix interference. Qualify as Reject if the analytical laboratory cannot provide proof for cleanup or matrix interference.

The project chemist identified quality deficiencies in the reported data that requires further qualification. This code can ONLY be used and/or under advisement by the project chemist.

The surrogate is <10%R, which indicates the potential for a severely low bias in the results. Follow the external laboratory limits located within the associated data package.

The surrogate is < the LAL but \geq 10%R, which indicates the potential for a low bias in the results. Follow the external laboratory limits.

The surrogate %R value is > the UAL, which indicates a potential for a high bias in the results and a potential for false positive results. Follow the external laboratory limits located within the associated data package.

At least one surrogate is > the UAL and one surrogate is < the LAL, which indicates a > normal degree of uncertainty in the result. Follow the external laboratory limits located within the associated data package.

Required surrogate information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The sample result is $\leq 5X$ the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5X.

The sample result is $\leq 5X$ the concentration of the related analyte in the instrument and CCB, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The sample result is ≤5X the concentration of the related analyte in the trip blank, rinsate blank, or equipment blank, which indicates the reported detection is considered indistinguishable from contamination in the blank. Required blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting The affected analytes were analyzed with an initial calibration curve that exceeded the %RSD criteria and/or the associated multipoint calibration correlation coefficient is <0.995.

The ICV and/or CCV were recovered outside the method-specific limits.

The ICV and/or CCV were not analyzed at the appropriate method frequency.

The multicomponent standard was not analyzed within 72 hours of the initial analysis.

Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

The analyte was not confirmed on a second dissimilar column.

Duplicate, dilution, or reanalysis.

The required dissimilar column documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The extraction/analytical holding time is exceeded by <2X the published method for holding times.

The extraction/analytical holding time was exceeded by >2X the published method for holding times.

The affected analytes are regarded as Rejected because the analytical holding time was exceeded.

The perchlorate RRT is outside the acceptance range of 0.98 to 1.02 seconds.

Required retention time documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

An LCS should be analyzed at a frequency of once per data package, once per matrix, or once per 20 analytical samples, whichever is most frequent. The LCS must meet all sample acceptance criteria and all method-specific LCS requirements. The LCS for perchlorate must meet laboratory-derived acceptance criteria. If IS recovery acceptance criteria are not met for the LCS analysis, the LCS must be reanalyzed. If the recovery acceptance criteria are not reported in the analytical data package recovery limits of 85% to 115% (perchlorate limits) should be used as the criteria. The LCS percent recovery was <10%. Qualify detected results as J- and not detected The LCS percent recovery limit but >10%. Follow the external laboratory limits. Qualify detected results as J- and not detected results as UJ.

The LCS percent recovery was > the Upper Acceptance Limit. Follow the external laboratory limits. Qualify detected results as J+.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The MS/MSD percent recovery was <10%. The MS/MSD data shall not be used to evaluate associate field sample results unless the MS/MSD sample was from the same client and of similar matrix. For perchlorate, the MS/MSD recovery acceptance criteria are 75% to 125% with an RPD of ≤20%. For solid and waste samples, it may be appropriate to accept an RPD of up to 30% based on professional judgment. The MS and MSD %R must be within the limits unless the sample concentration is >4X the spike concentration. The MS and MSD results may be used in conjunction with othe QC results to determine the need for qualification of the data. An effort to determine to what extent the results of the MS/MSD affect the associated data should first be made. This determination should be made considering the MS/MSD sample matrix, the surrogate and internal standard recoveries, and the LCS results. Professional judgment should be used to determine if MS/MSD failure warrants qualification of only the results for the failed compounds or if results for all compounds associated with the failed MS compound are affected. Generally, unless evidence exists to warrant qualification of other compounds, only the compounds in The MS/MSD percent recovery was >10% but <75%. Qualify all detects as J and all non-detects as UJ. The MS/MSD percent recovery was >125%. Qualify all associated detects as J+.

The MS/MSD relative percent difference was >20%. If the acceptance criteria are not reported, recovery limits of 75% to 125% and an RPD of 20% should be used as the criteria. For solid and waste samples, it may be appropriate to accept an RPD of up to 30% based on professional judgment.

The affected analytes are considered suspect because the sample was diluted without any target analytes identified due to matrix interference. Qualify as Reject if the analytical laboratory cannot provide proof for The sample was diluted because target analytes were > the initial verification calibration. The Practical Quantitation Limits must be adjusted to reflect all sample dilutions, concentrations, splits, clean-up activities, and dry weight factors that are not accounted for by the method. Samples must be diluted and reanalyzed when any analyte exceeds the calibration range. Data from the original sample analysis should be included when any sample requires dilution due to one or more analytes exceeding the calibration range. The original undiluted results document the actual MDLs for non-detects. If the PQLs have not been properly adjusted, request an amended report from the laboratory. If an initial dilution was required because of expected high concentrations of non-target analytes or because one or more target analytes were expected to greatly exceed the instrument working range and the laboratory was not able to analyze the undiluted sample, note the dilution and elevated MDLs in the data validation report. If any target analyte exceeded the calibration range and the original The Contract Required Detection Limit check standard (CRI) sample did not pass method-acceptance criteria. CRI analysis recoveries for perchlorate analysis must be within limits specified by the Laboratory. If acceptance criteria are not reported, the recovery acceptance range shall be 70% to 130%. 1. If frequency criteria were not met, qualify all detects <5X the PQL as J and all non-detects as UJ. 2. If the recovery is > the upper acceptance limit, qualify all associated detects <5X the PQL as J+. 3. If the recovery is < the lower acceptance limit but \geq 30%, qualify all associated detects <5X the PQL as J- and all associated non-detects as UJ. If the recovery is <30%, qualify all associated detects <5X the PQL as J- and all associated non-detects as R.

The Interference Check Sample recovery was not within $\pm 20\%$ of the known value. The laboratory shall analyze an Interference Check Sample from a matrix containing 500 ppm each of chloride, sulfate, carbonate, and bicarbonate in every batch. The concentration of this standard will be at the PQL. To determine that perchlorate is adequately isolated and recovered under the specific conditions used, this standard should recover within $\pm 20\%$ of the known value. If frequency criteria were not met, note the deficiency in the data validation report. If the recovery is not within $\pm 20\%$ of the known value, note the deficiency in the data validation report. Qualify not detected results as UJ and detected results as J.

The required CRI sample information is missing. Contact the SMO or external laboratory for information. The project chemist identified quality deficiencies in the reported data that require further qualification. This code can ONLY be used and/or under advisement by the project chemist. This IS area count is <25% of the expected value. If the internal standard is used only as a Retention Time (RT) check (perchlorate analysis), the Relative Retention Time (RRT) of the internal standard must fall within the acceptance range of 0.98 to 1.02, and the internal standard recovery should be evaluated using the surrogate criteria. If recovery acceptance limits are not reported in the data package, recovery should be evaluated based on reported Matrix Spike acceptance limits.

The internal standard area could is <70% but >25% of the average of that obtained from the calibration standards, qualify all associated detects as J and all associated non-detects as UJ. If the internal standard is used only as a RT check (perchlorate analysis), the RRT of the internal standard must fall within the acceptance range of 0.98 to 1.02, and the internal standard recovery should be evaluated using the surrogate criteria. If recovery acceptance limits are not reported in the data package, recovery should be evaluated based on reported Matrix If the internal standard is >130% of the average of that obtained from the calibration standards, qualify all associated detects as J and all associated non-detects as UJ. If the internal standard is used only as a RT check (perchlorate analysis), the RRT of the internal standard must fall within the acceptance range of 0.98 to 1.02, and the internal standard non-detects as UJ. If the internal standard is used only as a RT check (perchlorate analysis), the RRT of the internal standard must fall within the acceptance range of 0.98 to 1.02, and the internal standard recovery should be evaluated using the surrogate criteria. If recovery acceptance limits are not reported in the data package, recovery should be evaluated based on reported of 0.98 to 1.02, and the internal standard recovery should be evaluated using the surrogate criteria. If recovery acceptance limits are not reported in the data package, recovery should be evaluated based on reported Matrix Spike acceptance Required Internal Standard information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The sample result is ≤5X the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5X.

The sample result is ≤5X the concentration of the related analyte in the trip blank, rinsate blank, and equipment blank, which indicates the reported detection is considered indistinguishable from contamination in the blank. Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting limit. LC/MS/MS instrument calibration shall be performed using a minimum of five (5) calibration standards. The lowest point of the curve must be at or below the reporting limit. If calibration curves are used, five (5) standards are required for a linear (first-order) calibration model, six (6) standards are required for a guadratic (secondorder) model, and seven (7) standards are required for a third-order polynomial. Higher-order curve should not normally be used. If the laboratory uses a higher-order equation to establish a calibration curve, it should be evaluated for the appropriate application. If an insufficient number of calibration standards was used, the PQLs were incorrect, or all points were not analyzed within a 24-hour period, qualify all associated detects as The affected analytes were analyzed with an initial calibration curve that exceeded the %RSD or r2. If the %RSD for any target analyte is >15% but ≤40%, qualify all associated detects as J and, if any other calibration criteria have been exceeded for that compound, qualify all associated non-detects as UJ. If the %RSD for any target analyte is >40% but ≤60%, gualify all associated detects as J and all associated nondetects as UJ. If the %RSD for any target analyte is >60%, qualify all associated detects as J and all associated non-detects as R. If the r2 for any target analyte is <0.99 but \geq 0.90, qualify all associated detects as J and, if any other calibration criteria have been exceeded for that compound, qualify all associated non-detects as UJ. If the r2 for any target analyte is <0.90 but ≥0.80, qualify all associated detects as J and all associated non-detects as UJ. If the r2 for any target analyte is <0.80, gualify all associated detects as J and all associated non-detects, if the intercept for any target analyte is positive and >3X the MDL, qualify all associated detects <3X the intercept as J+ as R.

The ICV and/or CCV were recovered outside the method limits. The %D between the ICV and CCV standard concentrations and their true values must be \leq 15%. The evaluation of CCV data applies to all CCVs that bracket samples of interest. If the %D was reported with the wrong sign (e.g., +%D for negative bias), document the occurrence in the data validation report and assess any infractions using the correct sign. 1. If the %D between a measured ICV and/or CCV concentration and its true value for any analyte is >15%, qualify all associated detects as J+. 2. If the %D between a measured ICV and/or CCV concentration and is true value for any analyte is >15% but ≤40% and negative (low bias), qualify all associated detects as J- and, if any other calibration criteria have been exceeded for that compound, qualify all associated non-detects as UJ. 3. If the %D between a measured ICV and/or CCV concentration and its true value for any analyte is >40% but ≤60% and negative, qualify all associated detects as J- and all associated non-detects as UJ. 4. If the %D between a measured ICV and/or CCV concentration and its true value for any analyte is >60% and is negative, gualify all associated detects as J- and all The ICV and/or CCV were not analyzed at the appropriate method frequency. An ICV standard is analyzed immediately following an initial calibration. The ICV standard analysis results are not required to be reported in the data package unless the samples in the SDG were analyzed after the initial calibration but before a CCV standard analysis was performed. In this case, the ICV %D is assessed according to the calibration verification criteria described below for the associated samples. If a CCV is analyzed prior to samples and ICV data are also reported in the package, both the ICV %D and the appropriate CCV %D are to be assessed as described below. If both %D and CCV %D infractions occur, the worst infraction should be evaluated for result qualification. A CCV must be analyzed in the following instances: • at the beginning of each analytical run; • at least once every 10 samples; and • at the end of each analytical run. If multiple CCVs were analyzed to obtain a passing CCV, the calibration is not verified and the calibration frequency is not met. If the ICV and CCV standards were not Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

The affected analyte is considered not detected because ion abundance ratios did not meet specifications. The natural isotopic abundances for the chlorine isotopes give a 35Cl/37Cl ratio of approximately 3.08. Laboratories must statistically derive isotope ratio acceptance criteria to be used as an additional confirmation of analyte identity. When the laboratory does not specify acceptance criteria, the mean of the ration population shall not deviate by more than 10% from the 3.08 theoretical value and the standard deviation shall not significantly exceed 0.2. Between the MDL and the PQL, the individual sample isotope acceptance limits shall be near the population mean ±20% (approximately 3 sigma). Above the PQL, the individual sample isotope ratio acceptance criteria are not met, the laboratory must provide supporting data and explanatory case narrative comments in the data package. If the isotope ratios were not reported, calculate the ratio if the raw data were supplied or request an Duplicate, dilution, or reanalysis.

The ion ratio documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The extraction/analytical holding time is exceeded by less than 2X the published method for holding times. The extraction/analytical holding time is exceeded by less than 2X the published method for holding times. Associated duplicate sample has DER or RER > the analytical laboratory's acceptance limits.

The duplicate sample was not prepared and/or analyzed with the samples for unspecified reasons. The duplicate information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for The results for the affected analytes should be regarded as not detected (U) because the associated sample concentration was less than 3X the 1 sigma TPU.

The LCS percent recovery was <10%. Follow the external laboratory limits located within the associated data The LCS percent recovery was < the LAL but >10%. Follow the external laboratory limits located within the associated data package.

The LCS percent recovery was > the UAL. Follow the external laboratory limits located within the associated data package.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The LANL project chemist identified quality deficiencies in the reported data that require further qualification. This code can ONLY be used and/or under advisement by the LANL project chemist.

The tracer is <10%R. Follow the external laboratory limits located within the associated data package. Tracer%R is not applicable for Gamma Spectroscopy.

The tracer is < the Lower Acceptance Level (LAL) but \geq 10%R. Follow the external laboratory limits located within the associated data package. Tracer%R is not applicable for Gamma Spectroscopy.

The Tracer%R value is > the Upper Acceptance Limit (UAL). Follow the external laboratory limits located within the associated data package. Tracer%R is not applicable for Gamma Spectroscopy.

Required tracer information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information. Tracer%R is not applicable for Gamma Spectroscopy.

The sample result is \leq 5X the concentration of the related analyte in the method blank.

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5X.

The sample result is $\leq 5X$ the concentration of the related analyte in the trip blank, rinsate blank, or equipment Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The results for the affected analytes are considered not detected (U) because the associated sample concentration was less than or equal to the MDC.

The analyte should be regarded as rejected because spectral interferences prevent positive identification of the analytes.

The MDC and/or TPU documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The associated matrix spike recovery was <10%. Follow the external laboratory limits. MS/MSD is not applicable to Gamma Spectroscopy.

The associated matrix spike recovery was <10%. Follow the external laboratory limits. MS/MSD is not applicable to Gamma Spectroscopy.

The associated matrix spike recovery was above the UAL. Follow the external laboratory limits. MS/MSD is not applicable to Gamma Spectroscopy.

Required matrix spike information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information. If LCS information is present, do not Reject. Qualify data based on LCS information. MS/MSD is not applicable to Gamma Spectroscopy.

Duplicate, dilution, or reanalysis.

The holding time was >1 and \leq 2 times the applicable holding time requirement.

The holding time was >2 times the applicable holding time requirement.

The IS retention time has shifted by >30 seconds.

Analyte is positively confirmed but outside the IS retention window; however, spectral matches must be Required retention time documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The LCS percent recovery was <10%. Follow the external laboratory limits located within the associated data The LCS percent recovery was < the Lower Acceptance Limit (LAL) but >10%. Follow the external laboratory limits located within the associated data package.

The LCS percent recovery was > the Upper Acceptance Limit (UAL). Follow the external laboratory limits located within the associated data package.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information located within the associated data package.

The affected analytes have elevated detection limits and may not meet project DQOs because the sample was diluted without any target analytes identified due to matrix interference. Qualify as Reject if the analytical laboratory cannot provide proof for matrix interference.

The instrument performance sample did not pass the method acceptance criteria.

Samples were analyzed outside specific method tune time criteria.

The required instrument performance sample information is missing. Contact the SMO or external laboratory for information.

The project chemist identified quality deficiencies in the reported data that requires further qualification. This code can ONLY be used and/or under advisement by the project chemist.

The quantitating IS area count is <10% of the expected value. Follow the method-specific windows.

The IS area count for the quantitating IS is <50% but >10% for organics window relation to the previous continuing calibration. Follow the method-specific windows.

The IS area count for the quantitating IS is >200% of the area count for the previous organic continuing calibration. Follow the method-specific windows.

Required IS information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The surrogate is <10%R, which indicates the potential for a severely low bias in the results. Follow the external laboratory limits located within the associated data package.

The surrogate is < the LAL but \geq 10%R, which indicates the potential for a low bias in the results. Follow the external laboratory limits.

The surrogate %R value is > the UAL, which indicates a potential for a high bias in the results and a potential for false positive results. Follow the external laboratory limits located within the associated data package. At least one surrogate is > the UAL and one surrogate is < the LAL, which indicates a > normal degree of uncertainty in the result. Follow the external laboratory limits located within the associated data package. Required surrogate/tracer information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The sample result is ≤5X (10X for common organic laboratory contaminants) the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5X (10X for common laboratory contaminants).

The sample result is ≤5X the concentration of the related analyte in the trip blank, rinsate blank, or equipment blank, which indicates the reported detection is considered indistinguishable from contamination in the blank. Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting The affected analytes were analyzed with an initial calibration curve that exceeded the %RSD criteria and/or the associated multipoint calibration correlation coefficient is <0.995.

The affected analytes were analyzed with an RRF of <0.05 in the initial calibration and/or CCV.

The ICV and/or CCV were recovered outside the method-specific limits.

The ICV and/or CCV were not analyzed at the appropriate method frequency.

Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

The affected analyte is considered not detected because mass spectrum did not meet specifications. Duplicate, dilution, or reanalysis.

The mass spectrum column documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The extraction holding time is exceeded by <2X the published method for holding times.

The extraction holding time was exceeded by >2X the published method for holding times.

The affected analytes are regarded as rejected because the analytical holding time was exceeded.

Qualification of data via data validation did not occur based on Quality Control requirements in this procedure. Adhere to the external laboratory qualifiers found within the Form I analytical data summary sheets generated by the external laboratory.

Qualification of data via data validation did not occur based on Quality Control requirements in this procedure. Adhere to the external laboratory qualifiers found within the Form I analytical data summary sheets generated by the external laboratory.

Qualification of data via data validation did not occur based on Quality Control requirements in this procedure. Adhere to the external laboratory qualifiers found within the Form I analytical data summary sheets generated by the external laboratory.

Qualification of data via data validation did not occur based on Quality Control requirements in this procedure. Adhere to the external laboratory qualifiers found with the Form 1 analytical data summary sheets generated by the external laboratory.

Qualification of the data via data validation did not occur because of Quality Control requirements in this procedure. Adhere to external laboratory qualifiers found within the Form I analytical data summary sheets generated by the external laboratory.

Quantification of data via data validation did not occur based on Quality Control requirements in this procedure. Adhere to the external laboratory qualifiers found within the Form I analytical data summary sheets generated by the external laboratory.

Quantification of data via data validation did not occur based on Quality Control requirements in this procedure. Adhere to the external laboratory qualifiers found within the Form I analytical data summary sheets generated by the external laboratory.

The IS retention time has shifted by >30 seconds.

Analyte is positively confirmed but outside the IS retention window; however, spectral matches must be Required retention time documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The LCS percent recovery was <10%. Follow the external laboratory limits located within the associated data The LCS percent recovery was < the Lower Acceptance Limit (LAL) but >10%. Follow the external laboratory limits located within the associated data package.

The LCS percent recovery was > the Upper Acceptance Limit (UAL). Follow the external laboratory limits located within the associated data package.

The LCS documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information located within the associated data package.

The affected analytes have elevated detection limits and may not meet project DQOs because the sample was diluted without any target analytes identified due to matrix interference. Qualify as Reject if the analytical laboratory cannot provide proof for matrix interference.

The instrument performance sample did not pass the method acceptance criteria.

Samples were analyzed outside specific method tune time criteria.

The required instrument performance sample information is missing. Contact the SMO or external laboratory for information.

The project chemist identified quality deficiencies in the reported data that requires further qualification. This code can ONLY be used under advisement by the project chemist.

The quantitating IS area count is <10% of the expected value. Follow the method-specific windows.

The IS area count for the quantitating IS is <50% but >10% for organics window relation to the previous continuing calibration. Follow the method-specific windows.

The IS area count for the quantitating IS is >200% of the area count for the previous organic continuing calibration. Follow the method-specific windows.

Required IS information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The surrogate is <10%R, which indicates the potential for a severely low bias in the results. Follow the external laboratory limits located within the associated data package.

The surrogate is < the LAL but \geq 10%R, which indicates the potential for a low bias in the results. Follow the external laboratory limits.

The surrogate %R value is > the UAL, which indicates a potential for a high bias in the results and a potential for false positive results. Follow the external laboratory limits located within the associated data package.

At least one surrogate is > the UAL and one surrogate is < the LAL, which indicates a > normal degree of uncertainty in the result. Follow the external laboratory limits located within the associated data package. Required surrogate/tracer information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The sample result is \leq 5X (10X for common organic laboratory contaminants) the concentration of the related analyte in the method blank, which indicates the reported detection is considered indistinguishable from contamination in the blank.

The affected analytes are considered estimated and biased high because this analyte was identified in the method blank but was >5X (10X for common laboratory contaminants).

The sample result is ≤5X the concentration of the related analyte in the trip blank, rinsate blank, or equipment blank, which indicates the reported detection is considered indistinguishable from contamination in the blank. Required method blank information is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The affected results were not analyzed with a valid 5-point calibration curve and/or a standard at the reporting The affected analytes were analyzed with an initial calibration curve that exceeded the %RSD criteria and/or the associated multipoint calibration correlation coefficient is <0.995.

The affected analytes were analyzed with an RRF of <0.05 in the initial calibration and/or CCV.

The ICV and/or CCV were recovered outside the method-specific limits.

The ICV and/or CCV were not analyzed at the appropriate method frequency.

Required calibration information is missing or samples were analyzed on an expired calibration. Contact the SMO or external laboratory for information.

The affected analyte is considered not detected because mass spectrum did not meet specifications. Duplicate, dilution, or reanalysis.

The mass spectrum column documentation is missing. Data may not be acceptable for use. Contact the SMO or external laboratory for information.

The extraction/analytical holding time is exceeded by <2X the published method for holding times.

The extraction/analytical holding time was exceeded by >2X the published method for holding times.

The Contract Required Detection Limit check standard (CRI) sample did not pass method-acceptance criteria. CRI analysis recoveries for high explosives analysis must be within limits specified by the Laboratory. If acceptance criteria are not reported, the recovery acceptance range shall be 70% to 130%. 1. If frequency criteria were not met, qualify all detects <5X the PQL as J and all nondetects as UJ. 2. If the recovery is > the upper acceptance limit, qualify all associated detects <5X the PQL as J+. 3. If the recovery is < the lower acceptance limit but \geq 30%, qualify all associated detects <5X the PQL as J- and all associated non-detects as UJ. 4. If the recovery is <30%, qualify all associated detects <5X the PQL as J- and all associated non-detects as R.