Los Alamos National Laboratory

Renewal Application for NPDES Permit Number NM0030759

Individual Permit for Storm Water Discharges from Solid Waste Management Units and Areas of Concern

March 2014

Volume 1 of 2

LA-UR-14-21861

CONTENTS

REFERENCES

SUPPORTING MATERIAL

PROPOSED CHANGES

FORM 1

FORM 2F

- I. Outfall Location
- II. Improvements
- III. Site Drainage Map
- IV. Narrative Description of Pollutant Sources
- V. Nonstormwater Discharges
- VI. Significant Leaks or Spills
- VII. Discharge Information
- VIII. Biological Toxicity Testing Data
- IX. Contract Analysis Information
- X. Certification

ACA	accelerated corrective action
AEA	Atomic Energy Act
AOC	area of concern
AST	aboveground storage tank
ATAL	average target action level
BCM	baseline control measure
bgs	below ground surface
BMP	best management practice
BV	background value
CEARP	Comprehensive Environmental Assessment and Response Program
CGP	Construction General Permit (NPDES)
CME	corrective measures evaluation
CMI	corrective measures implementation
CMP	corrugated metal pipe
CMR	Chemistry and Metallurgy Research (building)
CoC	certificate of completion
Consent Order	Compliance Order on Consent (NMED)
COPC	chemical of potential concern
County	Los Alamos County
cpm	counts per minute
CWA	Clean Water Act
CWWTP	central wastewater treatment plant
D&D	decontamination and decommissioning
DL	detectable level
DOE	Department of Energy (U.S.)
DOE-OB	Department of Energy Oversight Bureau (NMED)
DRO	diesel range organics
DU	depleted uranium
EC	expedited cleanup
EPA	Environmental Protection Agency (U.S.)
EQL	estimated quantitation limit
ER	Environmental Restoration Project
FFCA	Federal Facility Compliance Agreement
FV	fallout value
FY	fiscal year
GPR	ground-penetrating radar
GWQB	Ground Water Quality Bureau (NMED)

ACRONYMS AND ABBREVIATIONS

HAZMAT	hazardous material
HE	high explosives
HMX	octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
HPS	High Priority Site
HRL	Health Research Laboratory
HSWA	Hazardous and Solid Waste Amendment
HWA	Hazardous Waste Act (New Mexico)
HWMR	Hazardous Waste Management Regulations
HYPO	high power (reactor)
IA	interim action
IM	interim measure
IP	Individual Permit (NM0030759)
IR	investigation report
Laboratory	Los Alamos National Laboratory
LANL	Los Alamos National Laboratory
LANS	Los Alamos National Security, LLC
LASL	Los Alamos Scientific Laboratory
LASCP	Los Alamos Site Characterization Program
LLW	low-level waste
LOPO	low power (reactor)
MD	munitions debris
MDA	material disposal area
MDL	method detection limit
MEC	munitions and explosives of concern
MLLW	mixed low-level waste
MPS	Moderate Priority Site
MQL	maximum quantitation level
MSGP	Multi-Sector General Permit
MTAL	maximum target action level
n/a	not applicable
na	not available
N/A	not analyzed
NES	nuclear environmental site
NFA	no further action
NM	New Mexico
NMAC	New Mexico Administrative Code
NMED	New Mexico Environment Department
NMSSUP	Nuclear Materials Safeguards and Security Upgrades Project

NOAA	National Oceanic and Atmospheric Administration
NPDES	National Pollutant Discharge Elimination System
NSSB	National Security Science Building
OD	open detonation
OEW	ordnance and explosive waste
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PBX	plastic-bonded explosive
Permittees	DOE and LANS
PHERMEX	Pulsed High-Energy Radiographic Machine Emitting X-Rays
PMR	permit modification request
PPT	Pollution Prevention Team
PRS	Potential Release Sites (Laboratory database)
OWR	Omega West Reactor
RCRA	Resource Conservation and Recovery Act
RDX	hexahydro-1,3,5-trinitro-1,3,5-triazine
RFI	RCRA facility investigation
RLW	radioactive liquid waste
RLWTF	Radioactive Liquid Waste Treatment Facility
SAA	satellite accumulation area
SAL	screening action level
SAP	sampling and analysis plan
SDPPP	Site Discharge Pollution Prevention Plan
SERF	Sanitary Effluent Reclamation Facility
SMA	site monitoring area
SOP	standard operating procedure
SSL	soil screening level
SUPO	super power (reactor)
SVOC	semivolatile organic compound
SWMU	solid waste management unit
SWPPP	Storm Water Pollution Prevention Plan
SWQB	Storm Water Quality Bureau (NMED)
SWSC	Sanitary Wastewater Systems Consolidated
ТА	technical area
TAL	target action level
TCLP	toxicity characteristic leaching procedure
TNT	trinitrotoluene(2,4,6-)
TPH	total petroleum hydrocarbon

TRU	transuranic
TSCA	Toxic Substances Control Act
TSTA	Tritium System Test Assembly
TSS	total suspended solids
UTL	upper tolerance limit
URL	unassigned land release
USFS	U.S. Forest Service
USGS	U.S. Geological Survey
UXO	unexploded ordnance
VCA	voluntary corrective action
VCP	vitrified clay pipe
VCM	voluntary corrective measure
VOC	volatile organic compound
WBR	Water Boiler Reactor
WQC	water-quality criteria
WWTP	waste water treatment plant

SMA Number to Site Number

SMA Number	Site Number
2M-SMA-1	03-010(a)
2M-SMA-1.42	06-001(a)
2M-SMA-1.43	22-014(a)
	22-015(a)
2M-SMA-1.44	06-001(b)
2M-SMA-1.45	06-006
2M-SMA-1.5	22-014(b)
2M-SMA-1.65	40-005
2M-SMA-1.67	06-003(h)
2M-SMA-1.7	03-055(a)
2M-SMA-1.8	03-001(k)
2M-SMA-1.9	03-003(a)
2M-SMA-2	03-050(d)
	03-054(b)
2M-SMA-2.2	03-003(k)
2M-SMA-2.5	40-001(c)
2M-SMA-3	07-001(a)
	07-001(b)
	07-001(c)
	07-001(d)
3M-SMA-0.2	15-010(b)
3M-SMA-0.4	15-006(b)
3M-SMA-0.5	15-006(c)
	15-009(c)
3M-SMA-0.6	15-008(b)
	36-008
	C-36-003
3M-SMA-4	18-002(b)
	18-003(c)
	18-010(f)
ACID-SMA-1.05	00-030(g)
ACID-SMA-2	01-002(b)-00
	45-001
	45-002
	45-004
ACID-SMA-2.01	00-030(f)
ACID-SMA-2.1	01-002(b)-00
A-SMA-1.1	39-004(a)
	39-004(d)

SMA Number	Site Number
A-SMA-2	39-004(b)
	39-004(e)
A-SMA-2.5	39-010
A-SMA-2.7	39-002(c)
	39-008
A-SMA-2.8	39-001(b)
A-SMA-3	39-002(b)
	39-004(c)
A-SMA-3.5	39-006(a)
A-SMA-4	33-010(d)
A-SMA-6	33-004(k)
	33-007(a)
	33-010(a)
B-SMA-0.5	10-001(a)
	10-001(b)
	10-001(c)
	10-001(d)
	10-004(a)
	10-004(b)
	10-008
	10-009
B-SMA-1	00-011(d)
CDB-SMA-0.15	04-003(a)
	04-004
CDB-SMA-0.25	46-004(c2)
	46-004(e2)
CDB-SMA-0.55	46-004(g)
	46-004(m)
	46-004(s)
	46-006(f)
CDB-SMA-1	46-003(c)
	46-004(d2)
	46-004(f)
	46-004(t)
	46-004(w)
	46-008(g)
	46-009(a)
	C-46-001

SMA Number	Site Number
CDD-SIVIA-1.15	46-004(b)
	46-004(y)
	46-004(Z)
	46-006(d)
CDB-SMA-1.35	46-004(a2)
	46-004(u)
	46-004(v)
	46-004(x)
	46-006(d)
	46-008(f)
CDB-SMA-1.54	46-004(h)
	46-004(q)
	46-006(d)
CDB-SMA-1.55	46-003(e)
CDB-SMA-1.65	46-003(b)
CDB-SMA-4	54-017
	54-018
	54-020
CDV-SMA-1.2	16-017(b)-99
	16-029(k)
CDV-SMA-1.3	16-017(a)-99
	16-026(m)
CDV-SMA-1.4	16-020
	16-026(l)
	16-028(c)
	16-030(c)
CDV-SMA-1.45	16-026(i)
CDV-SMA-1.7	16-019
CDV-SMA-2	16-021(c)
CDV-SMA-2.3	13-001
	13-002
	16-003(n)
	16-003(o)
	16-029(h)
	16-031(h)
CDV-SMA-2.41	16-018
CDV-SMA-2.42	16-010(b)

SMA Number	Site Number
CDV-SMA-2.5	16-010(c)
	16-010(d)
	16-028(a)
CDV-SMA-2.51	16-010(i)
CDV-SMA-3	14-009
CDV-SMA-4	14-010
CDV-SMA-6.01	14-001(g)
	14-006
CDV-SMA-6.02	14-002(c)
CDV-SMA-7	15-008(d)
CDV-SMA-8	15-011(c)
CDV-SMA-8.5	15-014(a)
CDV-SMA-9.05	15-007(b)
CHQ-SMA-0.5	33-004(g)
	33-007(c)
	33-009
CHQ-SMA-1.01	33-002(d)
CHQ-SMA-1.02	33-004(h)
	33-008(c)
	33-011(d)
	33-015
CHQ-SMA-1.03	33-008(c)
	33-012(a)
	33-017
	C-33-001
	C-33-003
CHQ-SMA-2	33-004(d)
	33-007(c)
	C-33-003
CHQ-SMA-3.05	33-010(f)
CHQ-SMA-4	33-011(e)
CHQ-SMA-4.1	33-016
CHQ-SMA-4.5	33-011(b)
CHQ-SMA-5.05	33-007(b)

SMA Number	Site Number
CHQ-SMA-6	33-004(j)
	33-006(a)
	33-007(b)
	33-010(c)
	33-010(g)
	33-010(h)
	33-014
CHQ-SMA-7.1	33-010(g)
DP-SMA-0.3	21-029
DP-SMA-0.4	21-021
DP-SMA-0.6	21-021
	21-024(l)
DP-SMA-1	21-011(k)
	21-021
DP-SMA-2	21-021
	21-024(h)
DP-SMA-2.35	21-021
	21-024(n)
DP-SMA-3	21-013(c)
	21-021
DP-SMA-4	21-021
F-SMA-2	36-004(c)
LA-SMA-0.85	03-055(c)
LA-SMA-0.9	00-017
	C-00-044
LA-SMA-1	00-017
	C-00-044
LA-SMA-1.1	43-001(b2)
LA-SMA-1.25	C-43-001
LA-SMA-10.11	53-002(a)
LA-SMA-10.12	53-008
LA-SMA-2.1	01-001(f)
LA-SMA-2.3	01-001(b)
LA-SMA-3.1	01-001(e)
	01-003(a)
LA-SMA-3.9	01-001(g)
	01-006(a)
LA-SMA-4.1	01-003(b)
	01-006(b)

SMA Number	Site Number
LA-SMA-4.2	01-001(c)
	01-006(c)
	01-006(d)
LA-SMA-5.01	01-001(d)
	01-006(h)
LA-SMA-5.02	01-003(e)
LA-SMA-5.2	01-003(d)
LA-SMA-5.31	41-002(c)
LA-SMA-5.33	32-004
LA-SMA-5.35	C-41-004
LA-SMA-5.361	32-002(b1)
	32-002(b2)
LA-SMA-5.362	32-003
LA-SMA-5.51	02-003(a)
	02-003(e)
	02-004(a)
	02-005
	02-006(b)
	02-006(c)
	02-006(d)
	02-006(e)
	02-008(a)
	02-009(b)
	02-011(a)
	02-011(b)
	02-011(c)
	02-011(d)
LA-SMA-5.52	02-003(b)
	02-007
	02-008(c)
LA-SMA-5.53	02-009(a)
LA-SMA-5.54	02-009(c)
LA-SMA-5.91	21-009
	21-021
	21-023(c)
	21-027(d)

SMA Number	Site Number
LA-SMA-5.92	21-013(b)
	21-013(g)
	21-018(a)
	21-021
LA-SMA-6.25	21-021
	21-024(d)
	21-027(c)
LA-SMA-6.27	21-021
	21-027(c)
LA-SMA-6.3	21-006(b)
LA-SMA-6.31	21-027(a)
LA-SMA-6.32	21-021
LA-SMA-6.34	21-021
	21-022(h)
LA-SMA-6.36	21-021
	21-024(a)
LA-SMA-6.38	21-021
	21-024(c)
LA-SMA-6.395	21-021
	21-024(j)
LA-SMA-6.5	21-021
	21-024(i)
LA-SMA-9	26-001
	26-002(a)
	26-002(b)
	26-003
M-SMA-1	03-050(a)
	03-054(e)
M-SMA-1.2	03-049(a)
M-SMA-1.21	03-049(e)
M-SMA-1.22	03-045(h)
M-SMA-10	35-008
	35-014(e)
M-SMA-10.01	35-016(e)
M-SMA-10.3	35-014(e2)
	35-016(i)
M-SMA-11.1	35-016(o)
M-SMA-12	35-016(p)

SMA Number	Site Number
M-SMA-12.5	05-005(b)
	05-006(c)
M-SMA-12.6	05-004
M-SMA-12.7	05-002
	05-005(a)
	05-006(b)
	05-006(e)
M-SMA-12.8	05-001(a)
	05-002
M-SMA-12.9	05-001(b)
	05-002
M-SMA-12.92	00-001
M-SMA-13	05-001(c)
M-SMA-3	48-001
	48-005
	48-007(c)
M-SMA-3.1	48-001
	48-007(b)
M-SMA-3.5	48-001
	48-003
M-SMA-4	48-001
	48-005
	48-007(a)
	48-007(d)
	48-010
M-SMA-5	42-001(a)
	42-001(b)
	42-001(c)
	42-002(a)
	42-002(b)
M-SMA-6	35-016(h)
M-SMA-7	35-016(g)
M-SMA-7.9	50-006(d)
M-SMA-9.1	35-016(f)
PJ-SMA-1.05	09-013
PJ-SMA-10	40-006(a)
PJ-SMA-11	40-003(a)
PJ-SMA-11.1	40-003(b)
PJ-SMA-13	18-002(a)

SMA	Number	to Site	Number	(continued)
-----	--------	---------	--------	-------------

SMA Number	Site Number
PJ-SMA-13.7	18-010(b)
PJ-SMA-14	54-004
PJ-SMA-14.2	18-012(b)
PJ-SMA-14.3	18-003(e)
PJ-SMA-14.4	18-010(d)
PJ-SMA-14.6	18-010(e)
PJ-SMA-14.8	18-012(a)
PJ-SMA-16	27-002
PJ-SMA-17	54-018
PJ-SMA-18	54-014(d)
	54-017
PJ-SMA-19	54-013(b)
	54-017
	54-020
PJ-SMA-2	09-009
PJ-SMA-20	54-017
PJ-SMA-3.05	09-004(o)
PJ-SMA-4.05	09-004(g)
PJ-SMA-5	22-015(c)
PJ-SMA-5.1	22-010(b)
PJ-SMA-6	40-010
PJ-SMA-7	40-006(c)
PJ-SMA-8	40-006(b)
PJ-SMA-9	40-009
Pratt-SMA-1.05	35-003(h)
	35-003(p)
	35-003(r)
	35-004(h)
	35-009(d)
	35-016(k)
	35-016(l)
	35-016(m)
P-SMA-0.3	00-018(b)
P-SMA-1	73-001(a)
	73-004(d)
P-SMA-2	73-002
	73-006
P-SMA-2.15	31-001
P-SMA-2.2	00-019

SMA	Number	to	Site	Number	(continued)
-----	--------	----	------	--------	-------------

SMA Number	Site Number
P-SMA-3.05	00-018(a)
PT-SMA-0.5	15-009(e)
	C-15-004
PT-SMA-1	15-004(f)
	15-008(a)
PT-SMA-1.7	15-006(a)
PT-SMA-2	15-008(f)
	36-003(b)
	36-004(e)
PT-SMA-2.01	C-36-001
	C-36-006(e)
PT-SMA-3	36-004(a)
	36-006
PT-SMA-4.2	36-004(d)
R-SMA-0.5	C-00-020
R-SMA-1	C-00-041
R-SMA-1.95	00-015
R-SMA-2.05	00-011(c)
R-SMA-2.3	00-011(e)
R-SMA-2.5	00-011(a)
S-SMA-0.25	03-013(a)
	03-052(f)
S-SMA-1.1	03-029
S-SMA-2	03-012(b)
	03-045(b)
	03-045(c)
	03-056(c)
S-SMA-2.01	03-052(b)
S-SMA-2.8	03-014(c2)
S-SMA-3.51	03-009(i)
S-SMA-3.52	03-021
S-SMA-3.53	03-014(b2)
S-SMA-3.6	60-007(b)
S-SMA-3.7	53-012(e)
S-SMA-3.71	53-001(a)
S-SMA-3.72	53-001(b)
S-SMA-3.95	20-002(a)
S-SMA-4.1	53-014
S-SMA-4.5	20-002(d)

SMA Number	Site Number
S-SMA-5	20-002(c)
S-SMA-5.2	20-003(c)
S-SMA-5.5	20-005
S-SMA-6	72-001
STRM-SMA-1.05	08-009(f)
STRM-SMA-1.5	08-009(d)
STRM-SMA-4.2	09-008(b)
STRM-SMA-5.05	09-013
T-SMA-1	50-006(a)
	50-009
T-SMA-2.5	35-014(g3)
T-SMA-2.85	35-014(g)
	35-016(n)
T-SMA-3	35-016(b)
T-SMA-4	35-004(a)
	35-009(a)
	35-016(c)
	35-016(d)
T-SMA-5	35-004(a)
	35-009(a)
	35-016(a)
	35-016(q)
T-SMA-6.8	35-010(e)
T-SMA-7	04-003(b)
T-SMA-7.1	04-001
	04-002
W-SMA-1	16-017(j)-99
	16-026(c2)
	16-026(v)
W-SMA-1.5	16-026(b2)
	16-028(d)
W-SMA-10	11-002
	11-003(b)
	11-005(a)
	11-005(b)
	11-006(c)
	11-006(d)
	11-011(d)
W-SMA-11.7	49-008(c)

SMA	Number	to S	ite N	umber	(continued)

SMA Number	Site Number
W-SMA-12.05	49-001(g)
W-SMA-14.1	15-004(h)
	15-014(l)
W-SMA-15.1	49-005(a)
W-SMA-2.05	16-028(e)
W-SMA-3.5	16-026(y)
W-SMA-4.1	16-003(a)
W-SMA-5	16-001(e)
	16-003(f)
	16-026(b)
	16-026(c)
	16-026(d)
	16-026(e)
W-SMA-6	11-001(c)
W-SMA-7	16-029(e)
W-SMA-7.8	16-031(a)
W-SMA-7.9	16-006(c)
W-SMA-8	16-016(g)
	16-028(b)
W-SMA-8.7	13-001
	13-002
	16-004(a)
	16-026(j2)
	16-029(h)
	16-035
W-SMA-8.71	16-004(c)
W-SMA-9.05	16-030(g)
W-SMA-9.5	11-012(c)
W-SMA-9.7	11-011(a)
	11-011(b)
W-SMA-9.8	11-005(c)
W-SMA-9.9	11-006(b)

Site Number to SMA Number

Site Number	SMA Number
00-001	M-SMA-12.92
00-011(a)	R-SMA-2.5
00-011(c)	R-SMA-2.05
00-011(d)	B-SMA-1
00-011(e)	R-SMA-2.3
00-015	R-SMA-1.95
00-017	LA-SMA-0.9
	LA-SMA-1
00-018(a)	P-SMA-3.05
00-018(b)	P-SMA-0.3
00-019	P-SMA-2.2
00-030(f)	ACID-SMA-2.01
00-030(g)	ACID-SMA-1.05
01-001(b)	LA-SMA-2.3
01-001(c)	LA-SMA-4.2
01-001(d)	LA-SMA-5.01
01-001(e)	LA-SMA-3.1
01-001(f)	LA-SMA-2.1
01-001(g)	LA-SMA-3.9
01-002(b)-00	ACID-SMA-2
	ACID-SMA-2.1
01-003(a)	LA-SMA-3.1
01-003(b)	LA-SMA-4.1
01-003(d)	LA-SMA-5.2
01-003(e)	LA-SMA-5.02
01-006(a)	LA-SMA-3.9
01-006(b)	LA-SMA-4.1
01-006(c)	LA-SMA-4.2
01-006(d)	LA-SMA-4.2
01-006(h)	LA-SMA-5.01
02-003(a)	LA-SMA-5.51
02-003(b)	LA-SMA-5.52
02-003(e)	LA-SMA-5.51
02-004(a)	LA-SMA-5.51
02-005	LA-SMA-5.51
02-006(b)	LA-SMA-5.51
02-006(c)	LA-SMA-5.51
02-006(d)	LA-SMA-5.51
02-006(e)	LA-SMA-5.51

Site Number	SMA Number
02-007	LA-SMA-5.52
02-008(a)	LA-SMA-5.51
02-008(c)	LA-SMA-5.52
02-009(a)	LA-SMA-5.53
02-009(b)	LA-SMA-5.51
02-009(c)	LA-SMA-5.54
02-011(a)	LA-SMA-5.51
02-011(b)	LA-SMA-5.51
02-011(c)	LA-SMA-5.51
02-011(d)	LA-SMA-5.51
03-001(k)	2M-SMA-1.8
03-003(a)	2M-SMA-1.9
03-003(k)	2M-SMA-2.2
03-009(i)	S-SMA-3.51
03-010(a)	2M-SMA-1
03-012(b)	S-SMA-2
03-013(a)	S-SMA-0.25
03-014(b2)	S-SMA-3.53
03-014(c2)	S-SMA-2.8
03-021	S-SMA-3.52
03-029	S-SMA-1.1
03-045(b)	S-SMA-2
03-045(c)	S-SMA-2
03-045(h)	M-SMA-1.22
03-049(a)	M-SMA-1.2
03-049(e)	M-SMA-1.21
03-050(a)	M-SMA-1
03-050(d)	2M-SMA-2
03-052(b)	S-SMA-2.01
03-052(f)	S-SMA-0.25
03-054(b)	2M-SMA-2
03-054(e)	M-SMA-1
03-055(a)	2M-SMA-1.7
03-055(c)	LA-SMA-0.85
03-056(c)	S-SMA-2
04-001	T-SMA-7.1
04-002	T-SMA-7.1
04-003(a)	CDB-SMA-0.15
04-003(b)	T-SMA-7

Site Number to SMA Number (continued)

Site Number	SMA Number
04-004	CDB-SMA-0.15
05-001(a)	M-SMA-12.8
05-001(b)	M-SMA-12.9
05-001(c)	M-SMA-13
05-002	M-SMA-12.7
	M-SMA-12.8
	M-SMA-12.9
05-004	M-SMA-12.6
05-005(a)	M-SMA-12.7
05-005(b)	M-SMA-12.5
05-006(b)	M-SMA-12.7
05-006(c)	M-SMA-12.5
05-006(e)	M-SMA-12.7
06-001(a)	2M-SMA-1.42
06-001(b)	2M-SMA-1.44
06-003(h)	2M-SMA-1.67
06-006	2M-SMA-1.45
07-001(a)	2M-SMA-3
07-001(b)	2M-SMA-3
07-001(c)	2M-SMA-3
07-001(d)	2M-SMA-3
08-009(d)	STRM-SMA-1.5
08-009(f)	STRM-SMA-1.05
09-004(g)	PJ-SMA-4.05
09-004(o)	PJ-SMA-3.05
09-008(b)	STRM-SMA-4.2
09-009	PJ-SMA-2
09-013	PJ-SMA-1.05
	STRM-SMA-5.05
10-001(a)	B-SMA-0.5
10-001(b)	B-SMA-0.5
10-001(c)	B-SMA-0.5
10-001(d)	B-SMA-0.5
10-004(a)	B-SMA-0.5
10-004(b)	B-SMA-0.5
10-008	B-SMA-0.5
10-009	B-SMA-0.5
11-001(c)	W-SMA-6
11-002	W-SMA-10

|--|

Site Number	SMA Number
11-003(b)	W-SMA-10
11-005(a)	W-SMA-10
11-005(b)	W-SMA-10
11-005(c)	W-SMA-9.8
11-006(b)	W-SMA-9.9
11-006(c)	W-SMA-10
11-006(d)	W-SMA-10
11-011(a)	W-SMA-9.7
11-011(b)	W-SMA-9.7
11-011(d)	W-SMA-10
11-012(c)	W-SMA-9.5
13-001	CDV-SMA-2.3
	W-SMA-8.7
13-002	CDV-SMA-2.3
	W-SMA-8.7
14-001(g)	CDV-SMA-6.01
14-002(c)	CDV-SMA-6.02
14-006	CDV-SMA-6.01
14-009	CDV-SMA-3
14-010	CDV-SMA-4
15-004(f)	PT-SMA-1
15-004(h)	W-SMA-14.1
15-006(a)	PT-SMA-1.7
15-006(b)	3M-SMA-0.4
15-006(c)	3M-SMA-0.5
15-007(b)	CDV-SMA-9.05
15-008(a)	PT-SMA-1
15-008(b)	3M-SMA-0.6
15-008(d)	CDV-SMA-7
15-008(f)	PT-SMA-2
15-009(c)	3M-SMA-0.5
15-009(e)	PT-SMA-0.5
15-010(b)	3M-SMA-0.2
15-011(c)	CDV-SMA-8
15-014(a)	CDV-SMA-8.5
15-014(l)	W-SMA-14.1
16-001(e)	W-SMA-5
16-003(a)	W-SMA-4.1
16-003(f)	W-SMA-5

Site Number	to SMA	Number	(continued)
-------------	--------	--------	-------------

Site Number	SMA Number
16-003(n)	CDV-SMA-2.3
16-003(o)	CDV-SMA-2.3
16-004(a)	W-SMA-8.7
16-004(c)	W-SMA-8.71
16-006(c)	W-SMA-7.9
16-010(b)	CDV-SMA-2.42
16-010(c)	CDV-SMA-2.5
16-010(d)	CDV-SMA-2.5
16-010(i)	CDV-SMA-2.51
16-016(g)	W-SMA-8
16-017(a)-99	CDV-SMA-1.3
16-017(b)-99	CDV-SMA-1.2
16-017(j)-99	W-SMA-1
16-018	CDV-SMA-2.41
16-019	CDV-SMA-1.7
16-020	CDV-SMA-1.4
16-021(c)	CDV-SMA-2
16-026(b)	W-SMA-5
16-026(b2)	W-SMA-1.5
16-026(c)	W-SMA-5
16-026(c2)	W-SMA-1
16-026(d)	W-SMA-5
16-026(e)	W-SMA-5
16-026(i)	CDV-SMA-1.45
16-026(j2)	W-SMA-8.7
16-026(I)	CDV-SMA-1.4
16-026(m)	CDV-SMA-1.3
16-026(v)	W-SMA-1
16-026(y)	W-SMA-3.5
16-028(a)	CDV-SMA-2.5
16-028(b)	W-SMA-8
16-028(c)	CDV-SMA-1.4
16-028(d)	W-SMA-1.5
16-028(e)	W-SMA-2.05
16-029(e)	W-SMA-7
16-029(h)	CDV-SMA-2.3
	W-SMA-8.7
16-029(k)	CDV-SMA-1.2
16-030(c)	CDV-SMA-1.4

Site Number to SM/	Number	(continued)
--------------------	---------------	-------------

Site Number	SMA Number
16-030(g)	W-SMA-9.05
16-031(a)	W-SMA-7.8
16-031(h)	CDV-SMA-2.3
16-035	W-SMA-8.7
18-002(a)	PJ-SMA-13
18-002(b)	3M-SMA-4
18-003(c)	3M-SMA-4
18-003(e)	PJ-SMA-14.3
18-010(b)	PJ-SMA-13.7
18-010(d)	PJ-SMA-14.4
18-010(e)	PJ-SMA-14.6
18-010(f)	3M-SMA-4
18-012(a)	PJ-SMA-14.8
18-012(b)	PJ-SMA-14.2
20-002(a)	S-SMA-3.95
20-002(c)	S-SMA-5
20-002(d)	S-SMA-4.5
20-003(c)	S-SMA-5.2
20-005	S-SMA-5.5
21-006(b)	LA-SMA-6.3
21-009	LA-SMA-5.91
21-011(k)	DP-SMA-1
21-013(b)	LA-SMA-5.92
21-013(c)	DP-SMA-3
21-013(g)	LA-SMA-5.92
21-018(a)	LA-SMA-5.92
21-021	DP-SMA-0.4
21-021	DP-SMA-0.6
	DP-SMA-1
	DP-SMA-2
	DP-SMA-2.35
	DP-SMA-3
	DP-SMA-4
	LA-SMA-5.91
	LA-SMA-5.92
	LA-SMA-6.25
	LA-SMA-6.27
	LA-SMA-6.32
	LA-SMA-6.34

	NPDES In	ndividual Stori	n Water Pern	nit Renewal	Application
--	----------	-----------------	--------------	-------------	-------------

Site Number to SMA Number (continued)

Site Number	SMA Number
21-021	LA-SMA-6.36
	LA-SMA-6.38
	LA-SMA-6.395
	LA-SMA-6.5
21-022(h)	LA-SMA-6.34
21-023(c)	LA-SMA-5.91
21-024(a)	LA-SMA-6.36
21-024(c)	LA-SMA-6.38
21-024(d)	LA-SMA-6.25
21-024(h)	DP-SMA-2
21-024(i)	LA-SMA-6.5
21-024(j)	LA-SMA-6.395
21-024(l)	DP-SMA-0.6
21-024(n)	DP-SMA-2.35
21-027(a)	LA-SMA-6.31
21-027(c)	LA-SMA-6.25
	LA-SMA-6.27
21-027(d)	LA-SMA-5.91
21-029	DP-SMA-0.3
22-010(b)	PJ-SMA-5.1
22-014(a)	2M-SMA-1.43
22-014(b)	2M-SMA-1.5
22-015(a)	2M-SMA-1.43
22-015(c)	PJ-SMA-5
26-001	LA-SMA-9
26-002(a)	LA-SMA-9
26-002(b)	LA-SMA-9
26-003	LA-SMA-9
27-002	PJ-SMA-16
31-001	P-SMA-2.15
32-002(b1)	LA-SMA-5.361
32-002(b2)	LA-SMA-5.361
32-003	LA-SMA-5.362
32-004	LA-SMA-5.33
33-002(d)	CHQ-SMA-1.01
33-004(d)	CHQ-SMA-2
33-004(g)	CHQ-SMA-0.5
33-004(h)	CHQ-SMA-1.02
33-004(j)	CHQ-SMA-6

Site Number to	SMA	Number	(continued)
----------------	-----	--------	-------------

Site Number	SMA Number
33-004(k)	A-SMA-6
33-006(a)	CHQ-SMA-6
33-007(a)	A-SMA-6
33-007(b)	CHQ-SMA-5.05
	CHQ-SMA-6
33-007(c)	CHQ-SMA-0.5
	CHQ-SMA-2
33-008(c)	CHQ-SMA-1.02
	CHQ-SMA-1.03
33-009	CHQ-SMA-0.5
33-010(a)	A-SMA-6
33-010(c)	CHQ-SMA-6
33-010(d)	A-SMA-4
33-010(f)	CHQ-SMA-3.05
33-010(g)	CHQ-SMA-6
	CHQ-SMA-7.1
33-010(h)	CHQ-SMA-6
33-011(b)	CHQ-SMA-4.5
33-011(d)	CHQ-SMA-1.02
33-011(e)	CHQ-SMA-4
33-012(a)	CHQ-SMA-1.03
33-014	CHQ-SMA-6
33-015	CHQ-SMA-1.02
33-016	CHQ-SMA-4.1
33-017	CHQ-SMA-1.03
35-003(h)	Pratt-SMA-1.05
35-003(p)	Pratt-SMA-1.05
35-003(r)	Pratt-SMA-1.05
35-004(a)	T-SMA-4
	T-SMA-5
35-004(h)	Pratt-SMA-1.05
35-008	M-SMA-10
35-009(a)	T-SMA-4
	T-SMA-5
35-009(d)	Pratt-SMA-1.05
35-010(e)	T-SMA-6.8
35-014(e)	M-SMA-10
35-014(e2)	M-SMA-10.3
35-014(g)	T-SMA-2.85

Site Number to SMA Number	(continued)
---------------------------	-------------

Site Number	SMA Number
35-014(g3)	T-SMA-2.5
35-016(a)	T-SMA-5
35-016(b)	T-SMA-3
35-016(c)	T-SMA-4
35-016(d)	T-SMA-4
35-016(e)	M-SMA-10.01
35-016(f)	M-SMA-9.1
35-016(g)	M-SMA-7
35-016(h)	M-SMA-6
35-016(i)	M-SMA-10.3
35-016(k)	Pratt-SMA-1.05
35-016(l)	Pratt-SMA-1.05
35-016(m)	Pratt-SMA-1.05
35-016(n)	T-SMA-2.85
35-016(o)	M-SMA-11.1
35-016(p)	M-SMA-12
35-016(q)	T-SMA-5
36-003(b)	PT-SMA-2
36-004(a)	PT-SMA-3
36-004(c)	F-SMA-2
36-004(d)	PT-SMA-4.2
36-004(e)	PT-SMA-2
36-006	PT-SMA-3
36-008	3M-SMA-2.6
39-001(b)	A-SMA-2.8
39-002(b)	A-SMA-3
39-002(c)	A-SMA-2.7
39-004(a)	A-SMA-1.1
39-004(b)	A-SMA-2
39-004(c)	A-SMA-3
39-004(d)	A-SMA-1.1
39-004(e)	A-SMA-2
39-006(a)	A-SMA-3.5
39-008	A-SMA-2.7
39-010	A-SMA-2.5
40-001(c)	2M-SMA-2.5
40-003(a)	PJ-SMA-11
40-003(b)	PJ-SMA-11.1
40-005	2M-SMA-1.65

Site Number	to SMA	Number	(continued)
-------------	--------	--------	-------------

Site Number	SMA Number	
40-006(a)	PJ-SMA-10	
40-006(b)	PJ-SMA-8	
40-006(c)	PJ-SMA-7	
40-009	PJ-SMA-9	
40-010	PJ-SMA-6	
41-002(c)	LA-SMA-5.31	
42-001(a)	M-SMA-5	
42-001(b)	M-SMA-5	
42-001(c)	M-SMA-5	
42-002(a)	M-SMA-5	
42-002(b)	M-SMA-5	
43-001(b2)	LA-SMA-1.1	
45-001	ACID-SMA-2	
45-002	ACID-SMA-2	
45-004	ACID-SMA-2	
46-003(b)	CDB-SMA-1.65	
46-003(c)	CDB-SMA-1	
46-003(e)	CDB-SMA-1.55	
46-004(a2)	CDB-SMA-1.35	
46-004(b)	CDB-SMA-1.15	
46-004(c2)	CDB-SMA-0.25	
46-004(d2)	CDB-SMA-1	
46-004(e2)	CDB-SMA-0.25	
46-004(f)	CDB-SMA-1	
46-004(g)	CDB-SMA-0.55	
46-004(h)	CDB-SMA-1.54	
46-004(m)	CDB-SMA-0.55	
46-004(q)	CDB-SMA-1.54	
46-004(s)	CDB-SMA-0.55	
46-004(t)	CDB-SMA-1	
46-004(u)	CDB-SMA-1.35	
46-004(v)	CDB-SMA-1.35	
46-004(w)	CDB-SMA-1	
46-004(x)	CDB-SMA-1.35	
46-004(y)	CDB-SMA-1.15	
46-004(z)	CDB-SMA-1.15	
46-006(d)	CDB-SMA-1.15	
	CDB-SMA-1.35	
	CDB-SMA-1.54	

Site Number to SMA Number (continued)

Site Number	SMA Number	
46-006(f)	CDB-SMA-0.55	
46-008(f)	CDB-SMA-1.35	
46-008(g)	CDB-SMA-1	
46-009(a)	CDB-SMA-1	
48-001	M-SMA-3	
	M-SMA-3.1	
	M-SMA-3.5	
	M-SMA-4	
48-003	M-SMA-3.5	
48-005	M-SMA-3	
	M-SMA-4	
48-007(a)	M-SMA-4	
48-007(b)	M-SMA-3.1	
48-007(c)	M-SMA-3	
48-007(d)	M-SMA-4	
48-010	M-SMA-4	
49-001(g)	W-SMA-12.05	
49-005(a)	W-SMA-15.1	
49-008(c)	W-SMA-11.7	
50-006(a)	T-SMA-1	
50-006(d)	M-SMA-7.9	
50-009	T-SMA-1	
53-001(a)	S-SMA-3.71	
53-001(b)	S-SMA-3.72	
53-002(a)	LA-SMA-10.11	
53-008	LA-SMA-10.12	
53-012(e)	S-SMA-3.7	
53-014	S-SMA-4.1	
54-004	PJ-SMA-14	
54-013(b)	PJ-SMA-19	
54-014(d)	PJ-SMA-18	
54-017	CDB-SMA-4	
	PJ-SMA-18	
	PJ-SMA-19	
	PJ-SMA-20	
54-018	CDB-SMA-4	
	PJ-SMA-17	
54-020	CDB-SMA-4	
	PJ-SMA-19	

Site Number	SMA Number
60-007(b)	S-SMA-3.6
72-001	S-SMA-6
73-001(a)	P-SMA-1
73-002	P-SMA-2
73-004(d)	P-SMA-1
73-006	P-SMA-2
C-00-020	R-SMA-0.5
C-00-041	R-SMA-1
C-00-044	LA-SMA-0.9
	LA-SMA-1
C-15-004	PT-SMA-0.5
C-33-001	CHQ-SMA-1.03
C-33-003	CHQ-SMA-1.03
	CHQ-SMA-2
C-36-001	PT-SMA-2.01
C-36-003	3M-SMA-2.6
C-36-006(e)	PT-SMA-2.01
C-41-004	LA-SMA-5.35
C-43-001	LA-SMA-1.25
C-46-001	CDB-SMA-1

REFERENCES

- Buckland, C., April 20, 1948. "Sandia Canyon–Clearing for Future Public Road, Picnic Area," Los Alamos Scientific Laboratory memorandum to R.J. Westcott from C. Buckland, Los Alamos, New Mexico.
- CH2M Hill, April 1998. "Highway Stormwater Runoff Study," report prepared for The Michigan Department of Transportation.
- DOE (U.S. Department of Energy), March 1, 2004. "Interim Measures (IM) Completion Report, Solid Waste Management Unit 73-001(a), Technical Area 73," U.S. Department of Energy letter and attachment to S. Martin (NMED-HWB) from D. Gregory (DOE-LASO), Los Alamos, New Mexico.
- DOE (U.S. Department of Energy), April 20, 2006. "Investigation Report for Solid Waste Management Units 03-010(a) and 03-001(e) at Technical Area 3 [NMED NOD Replacement]," DOE Los Alamos Area Office document, Los Alamos, New Mexico.
- DOE (U.S. Department of Energy), May 2008. "Final Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory, Los Alamos, New Mexico, Volume 1," DOE/EIS-0380, Los Alamos, New Mexico.
- Göbel, P., C. Dierkes, and W.G. Coldewey, April 2007. "Storm Water Runoff Concentration Matrix for Urban Areas," *Journal of Contaminant Hydrology*, Vol. 91, No. 1–2, pp. 26–42.
- IT Corporation (International Technology Corporation), March 1995. "Closure Certification Report for the Technical Area 40 Scrap Detonation Site (Condensed)," report prepared for Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 1990. "Solid Waste Management Units Report," Vol. II of IV (TA-10 through TA-25), Los Alamos National Laboratory document LA-UR-90-3400, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 1991. "Final Closure Plan, TA-40 Scrap Detonation Site, Revision 1," Los Alamos National Laboratory document LA-UR-91-2399, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1992. "RFI Work Plan for Operable Unit 1071," Los Alamos National Laboratory document LA-UR-92-810, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1992. "RFI Work Plan for Operable Unit 1078," Los Alamos National Laboratory document LA-UR-92-838, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1992. "RFI Work Plan for Operable Unit 1079," Los Alamos National Laboratory document LA-UR-92-850, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1992. "RFI Work Plan for Operable Unit 1122," Los Alamos National Laboratory document LA-UR-92-925, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1992. "RFI Work Plan for Operable Unit 1129," Los Alamos National Laboratory document LA-UR-92-800, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1992. "RFI Work Plan for Operable Unit 1147," Los Alamos National Laboratory document LA-UR-92-969, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), June 1993. "RFI Work Plan for Operable Unit 1098," Los Alamos National Laboratory document LA-UR-92-3825, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 1993. "RFI Work Plan for Operable Unit 1130," Los Alamos National Laboratory document LA-UR-93-1152, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 1993. "RFI Work Plan for Operable Unit 1132," Los Alamos National Laboratory document LA-UR-93-768, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 1993. "RFI Work Plan for Operable Unit 1082," Los Alamos National Laboratory document LA-UR-93-1196, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 1993. "RFI Work Plan for Operable Unit 1086," Los Alamos National Laboratory document LA-UR-92-3968, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 1993. "RFI Work Plan for Operable Unit 1114," Los Alamos National Laboratory document LA-UR-93-1000, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 1993. "RFI Work Plan for Operable Unit 1157," Los Alamos National Laboratory document LA-UR-93-1230, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 1993. "RFI Work Plan for Operable Unit 1140," Los Alamos National Laboratory document LA-UR-93-1940, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 1993. "RFI Work Plan for Operable Unit 1111," Los Alamos National Laboratory document LA-UR-93-2166, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 28, 1994. "Phase Report 1B, TA-21 Operable Unit RCRA Facility Investigation, Operable Unit-Wide Surface Soil, Deposition Layer and Filter Building Investigation," Los Alamos National Laboratory document LA-UR-93-4390, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 1994. "RFI Phase Report, Operable Unit 1071, SWMU Aggregate 0-D, Ordnance Impact Areas," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1994. "RFI Work Plan for Operable Unit 1085," Los Alamos National Laboratory document LA-UR-94-1033, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1994. "RFI Work Plan for Operable Unit 1100," Los Alamos National Laboratory document LA-UR-94-1097, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 13, 1994. "Addendum to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Work Plan for Operable Unit (OU) 1129," Los Alamos National Laboratory letter (EM/ER:94-J242) to T.J. Taylor (DOE ER Program Manager) from J. Jansen (ER Program Manager), Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 1994. "RFI Work Plan for Operable Unit 1082, Addendum I," Los Alamos National Laboratory document LA-UR-94-1580, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), September 1994. "Phase II RFI Work Plan for SWMU 3-010(a), Mercury Cleanup, OU 1114, Environmental Restoration Project," report prepared for Los Alamos National Laboratory by the ERM Program Management Company and Golder Federal Services, Inc., Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 30, 1995. "RFI Report for Field Unit 2 (OU 1086), Potential Release Sites 15-004(b,c), 15-004(a,d), 15-004(f), 15-007(b), 15-008(a,b), 15-012(b), 15-009(e,j), C-15-004," Environmental Restoration Project, Los Alamos National Laboratory document LA-UR-95-3738, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 1995. "RFI Report for Potential Release Sites 33-004(b), 33-004(c), 33-004(j), 33-004(m), 33-006(a), 33-006(b), 33-007(a), 33-007(b), 33-010(a), 33-010(b), 33-010(c), 33-010(d), 33-010(g), 33-010(h), 33-011(b), 33-011(c), 33-014," Los Alamos National Laboratory document LA-UR-95-4439, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 1995. "Task/Site Work Plan for Operable Unit 1049, Los Alamos Canyon and Pueblo Canyon," Los Alamos National Laboratory document LA-UR-95-2053, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 31, 1995. "Field Unit 3, Operable Unit 1122, Technical Area 33, RFI Report for PRSs 33-004(d), 33-004(g), 33-004(h), 33-004(i), 33-005(a), 33-005(b), 33-005(c), 33-010(e), 33-011(e), 33-011(e), 33-012(a), 33-015, 33-007(c), 33-011(a)," Los Alamos National Laboratory document LA-UR-95-0882, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 1995. "RFI Report for Potential Release Sites 39-002(a-f), 39-005, 39-006(a), 39-007(a) (d) (located in former Operable Unit 1132)," Los Alamos National Laboratory document LA-UR-95-1069, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 28, 1995. "RFI Report for Field Unit 1, SWMU 3-010(a)," Los Alamos National Laboratory document LA-UR-95-1485, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 5, 1995. "RFI Report for PRS 31-001," Los Alamos National Laboratory document LA-UR-95-1542, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 12, 1995. "RFI Report for PRSs 1-002, 45-001, 45-002, 45-003, 45-004, C-45-001," Los Alamos National Laboratory document LA-UR-95-1542, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 1995. "RFI Work Plan for Operable Unit 1082, Addendum 2," Los Alamos National Laboratory document LA-UR-95-1038, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 1995. "RFI Work Plan for Operable Unit 1114, Addendum 1," Los Alamos National Laboratory document LA-UR-95-731, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 1995. "RFI Report for Potential Release Sites 42-001(a), 42-001(b), 42-001(c), 42-002(a), 42-002(b), 42-003," Los Alamos National Laboratory document LA-UR-95-2881, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), September 1995. "Expedited Cleanup Completion Report for Potential Release Site 22-015(c), Outfall from a Former Plating and Etching Facility, Revision 1," Los Alamos National Laboratory document LA-UR-96-467, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1995. "RFI Report for Potential Release Sites 36-003(a), 36-003(b), 36-005, C-36-003 (located in former Operable Unit 1130)," Los Alamos National Laboratory document LA-UR-95-3375, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1995. "RFI Report for Potential Release Sites 50-006(c), 50-007, 50-008, 50-006(a) (located in former Operable Unit 1147)," Los Alamos National Laboratory document LA-UR-95-2738, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1995. "RFI Report for Potential Release Sites 48-001, 48-002(e), 48-003, 48-005, 48-007(a), 48-007(b), 48-007(c), 48-007(d), 48-007(f), 48-010," Los Alamos National Laboratory document LA-UR-95-3328, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 5, 1995. "RFI Report for Solid Waste Management Units 10-001(a–d)," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 29, 1995. "RFI Report for Field Unit 3, Operable Unit 1122, Technical Area 33, RFI Report for PRSs 33-003(a), 33-004(a), 33-007(c), 33-009, 33-011(d), 33-013, 33-016, 33-017, Revised Sampling Plans for PRSs 33-003(b), 33-004(k), 33-008(a), 33-008(b), C-33-001, C-33-002," Los Alamos National Laboratory document LA-UR-95-3626, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2, 1995. "RFI Report for Potential Release Sites 18-002(a–c), 18-003(a–h), 18-004(a,b), 18-005(a), 18-008, 18-010(b–f), 18-011, 18-012(a–c), 18-013, 27-002, PCO Wells, LACEF Monitoring Wells, Wetlands (located in former Operable Unit 1093)," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 1996. "Voluntary Corrective Action Completion Report for Potential Release Site C-36-001, Test Containment Vessel, Revision 1," Los Alamos National Laboratory document LA-UR-96-276, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 1996. "Voluntary Corrective Action Completion Report for Potential Release Site 39-002(c), Waste Container Storage Area, Revision 1," Los Alamos National Laboratory document LA-UR-96-445, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 1996. "Voluntary Corrective Action Completion Report for Potential Release Sites 20-003(c) and 53-010, Revision 1," Los Alamos National Laboratory document LA-UR-96-1089, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 1996. "RFI Report for Potential Release Sites at TA-14 and TA-12/67 (located in former Operable Unit 1085)," Los Alamos National Laboratory document LA-UR-96-511, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 1996. "Interim Action Report for Potential Release Site 33-007(c)," Los Alamos National Laboratory document LA-UR-96-710, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 1996. "RFI Report for 53 Potential Release Sites in TA-3, TA-59, TA-60, TA-61," Los Alamos National Laboratory document LA-UR-96-726, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), March 1996. "RFI Report for Potential Release Sites at TAs-20, -53, and -72 (located in former Operable Unit 1100)," Los Alamos National Laboratory document LA-UR-96-906, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 1996. "Interim Action Report for TA-10, Bayo Canyon Shrapnel," Los Alamos National Laboratory document LA-UR-96-1088, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1996. "Interim Action Report for Potential Release Site 33-007(b)," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1996. "Interim Action Plan for Potential Release Site 36-001," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1996. "RFI Report for Potential Release Sites at TA-15, 15-001, 15-002, 15-004(g,h), 15-005(b,c), 15-006(c,d), 15-007(a), 15-008(c,g), 15-009(a,f,i,k), 15-010(a-c), 15-011(a-c), 15-012(a), 15-014(a,b,d,e,g-l), C-15-001, C-15-005, C-15-007, C-15-010, and C-15-011 (located in former Operable Unit 1086)," Los Alamos National Laboratory document LA-UR-95-1685, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 1996. "RFI Report for Potential Release Sites 35-003(d, e, f, g, I, m, o, q, and r), 35-016(g and h)," Los Alamos National Laboratory document LA-UR-96-1605, Los Alamos National Laboratory.
- LANL (Los Alamos National Laboratory), June 1996. "RFI Report for Potential Release Sites at TA-36, 36-001, 36-004(d), (Skunk Works and Burn [P]its), 36-006 (located in former Operable Unit 1130)," Los Alamos National Laboratory document LA-UR-96-2139, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 1996. "RFI Report for Potential Release Sites in TA-46, 46-003(h), 46-004(b), 46-004(g), 46-004(h), 46-004(m), 46-004(q), 46-004(s), 46-004(u), 46-004(v), 46-004(x), 46-004(z), 46-004(a2), 46-004(b2), 46-004(c2), 46-004(d2), 46-004(d2), 46-004(e2), 46-004(f2), 46-006(a), 46-006(b), 46-006(c), 46-006(d), 46-006(f), 46-006(g), 46-007, 46-008(b), 46-010(d), C-46-002, C-46-003," Los Alamos National Laboratory document LA-UR-96-1957, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 1996. "Voluntary Corrective Action Completion Report for Solid Waste Management Units at TA-33, 33-010(a), Canyon-Side Disposal Area, 33-010(d), Surface Disposal Area, 33-010(g), Canyon-Side Disposal Area, 33-011(b), General Storage Area," Los Alamos National Laboratory document LA-UR-96-1839, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1996. "Voluntary Corrective Action Completion Report for Potential Release Site 36-003(b), Septic System," Los Alamos National Laboratory document LA-UR-96-3346, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1996. "Voluntary Corrective Action Report for a Solid Waste Management Unit at TA-33, 33-007(c)," Los Alamos National Laboratory document LA-UR-96-3198, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1996. "Voluntary Corrective Action Completion Report for Potential Release Sites at TA-16, 90s-Line: 16-026(m–p), 16-029(k,I,q,s,t,u), C-16-064, C-16-067," Los Alamos National Laboratory document LA-UR-96-3285, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), September 1996. "RFI Report for Potential Release Sites 2-004(a through f), 2-008(b), and 2-012," Los Alamos National Laboratory document LA-UR-96-3155, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1996. "Voluntary Corrective Action Report for Potential Release Site 15-004(b), Firing Site A," Los Alamos National Laboratory document LA-UR-96-3339, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1996. "Phase II and Voluntary Corrective Action Report for Potential Release Sites at TA-32: 32-001, Former Incinerator; 32-002(a,b), Former Septic Systems; 32-003, Former Transformer; 32-004, Former Radioactive Source Vault, Drain Line, and Outfall," Los Alamos National Laboratory document LA-UR-96-3128, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 1997. "Sampling and Analysis Plan for TA-48," Los Alamos National Laboratory document LA-UR-97-4839, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 1997. "RFI Report for Potential Release Sites at TA-39, 39-001(a&b), 39-004(a-e), and 39-008 (located in former Operable Unit 1132)," Los Alamos National Laboratory document LA-UR-97-1408, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 1997. "Interim Action Report for Potential Release Site 33-006(a), Operable Unit 1122, Technical Area 33," Los Alamos National Laboratory document LA-UR-97-641, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 20, 1997. "Voluntary Corrective Measures Plan for Potential Release Sites at TA-16: 16-005(d), 16-006(g,h), 16-013, 16-017, 16-025(x), 16-026(q), 16-029(g2,h2,w,x), 16-031(c,d), 16-034(p), C-16-065, C-16-068, C-16-074," Los Alamos National Laboratory document LA-UR-97-640, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 22, 1997. "Interim Action Report for TA-50, PRS 50-006(a) Activities," Los Alamos National Laboratory letter (EM/ER:97-178) to T.J. Taylor (DOE ER Program Manager) from J. Jansen (ER Program Manager), Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 1997. "Interim Action Plan for Potential Release Sites 36-004(e) - I-J Firing Site, 15-008(f) - The Mounds, C-36-006(e) - Projectile Test Area," Los Alamos National Laboratory document LA-UR-97-2739, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 1997. "Voluntary Corrective Action Completion Plan for Potential Release Site 53-008, Boneyard," draft, Los Alamos National Laboratory document LA-UR-09-2465, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1997. "Addendum to the RFI Report for Potential Release Sites at Technical Area 48 (Located in Former Operable Unit 1129)," Los Alamos National Laboratory document LA-UR-97-3112, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1997. "RFI Report for Potential Release Sites at TAs -6, -8, -22, and -40 (located in former Operable Units 1157 and 1111)," Los Alamos National Laboratory document LA-UR-97-3316, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), September 1997. "RFI Report for Potential Release Sites 22-012, 22-015 (a, b, d, e) (located in former Operable Unit 1111)," Los Alamos National Laboratory document LA-UR-97-3340, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1997. "Voluntary Corrective Action Report for Potential Release Site 15-009(e), Septic Tank," Los Alamos National Laboratory document LA-UR-97-3919, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1997. "RFI Report for Potential Release Sites at TA-16: 11-012(a,b), 13-003(a), 16-006(c,d), 16-010(a), 16-021(a), 16-026(c,d,v), 16-028(a), 16-030(g)," Los Alamos National Laboratory document LA-UR-97-3072, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1997. "Voluntary Corrective Action Completion Report for Potential Release Site 53-014, Lead Shot Site," Los Alamos National Laboratory document LA-UR-97-3846, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1997. "RFI Report for PRSs 0-018(a,b), Wastewater Treatment Plants," Los Alamos National Laboratory document LA-UR-97-3319, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1997. "RFI Report for TA-3 for Potential Release Sites 3-004(c,d), 3-007, 3-014(k,l,o), 3-021, 3-049(a), 3-052(b), 3-056(k), C-3-014," Los Alamos National Laboratory document LA-UR-97-3571, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1997. "Voluntary Corrective Action Completion Report for Potential Release Site 53-001(a), Storage Area," draft, Los Alamos National Laboratory document LA-UR-09-2464, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1997. "RFI Report for AOC C-3-006 and PRS 3-054(e), Manhole and Outfall," Los Alamos National Laboratory document LA-UR-97-3392, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 1998. "RFI Work Plan and SAP for Potential Release Sites 53-002(a), 53-002(b), and Associated Piping and Drainages at TA-53," Los Alamos National Laboratory document LA-UR-98-2547, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1998. "RFI Report for Potential Release Site 16-021(c)," Los Alamos National Laboratory document LA-UR-98-4101, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1998. "Work Plan for Pajarito Canyon," Los Alamos National Laboratory document LA-UR-98-2550, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 30, 1998. "RFI Report for Potential Release Sites in the Eastern and Western Aggregates at Technical Area 6," Los Alamos National Laboratory document LA-UR-98-3710, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 1998. "RFI Report for Potential Release Sites 73-001(a, b, c, d) (Airport Landfill Areas)," Los Alamos National Laboratory document LA-UR-98-3824, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), March 23, 1999. "VCA Plan for Potential Release Sites 33-007(b), 33-010(c), C-33-003," Los Alamos National Laboratory document LA-UR-99-3002, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 8, 1999. "Identification of New PRSs," Los Alamos National Laboratory letter (EM/ER:99-147) to J. Bearzi (NMED-HRMB) from J.A. Canepa (LANL) and T.J. Taylor (DOE-LAAO), Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 1999. "Work Plan for Sandia Canyon and Cañada del Buey," Los Alamos National Laboratory document LA-UR-99-3610, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 2000. "RFI Report for Material Disposal Areas G, H, and L at Technical Area 54," Los Alamos National Laboratory document LA-UR-00-1140, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2000. "Decommissioning Completion Report for Buildings 4, 46, 49, 50, 53, 54, 55, 56, 57, 69, and 88 at TA-02, Omega Site, Flood Control Project," draft, Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 18, 2000. "Submittal of Response to Request for Supplemental Information (RSI) for the Voluntary Corrective Action (VCA) Plan for Potential Release Sites (PRSs) 33-007(b), 33-010(c), and C-33-003 [and attached 'Segmented Gate System, Voluntary Corrective Action Status Report for Potential Release Sites 33-007(b), 33-010(c), C-33-033]," Los Alamos National Laboratory letter (ER2000-0171) to J. Kieling (NMED-HWB) from J.A. Canepa (LANL) and T.J. Taylor (DOE-LAAO), Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2000. "Addendum to RFI Report for Field Unit 1, SWMU 3-010(a)," Los Alamos National Laboratory document, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 2001. "RFI Report for SWMU 0-030(g)," Los Alamos National Laboratory document LA-UR-00-5378, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 2001. "TA-2 Sampling and Soil Removal, Final Closeout Report," Los Alamos National Laboratory document LA-UR-01-1243, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2001. "Voluntary Corrective Action Completion Report for Potential Release Site 03-056(c)," Los Alamos National Laboratory document LA-UR-01-5349, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2001. "Voluntary Corrective Action Completion Report for Potential Release Site 0-019 (former Central Waste Water Treatment Plant)," Los Alamos National Laboratory document LA-UR-01-4140, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2001. "Phase II RFI Report for Potential Release Site 21-029, DP Tank Farm," Los Alamos National Laboratory document LA-UR-01-5254, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 13, 2001. "Response to Request for Supplemental Information for the Phase II RFI Report for Potential Release Site 21-029, DP Tank Farm," Los Alamos National Laboratory document LA-UR-01-6737, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), July 23, 2001–March 13, 2002. "Field Notebook for SWMUs 03-001(k), 03-003(c), 03-011, 03-049(e), 03-056(a), 27-003, 39-007(a), 60-002, 60-007(a), and C-09-001," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2003. "Investigation Work Plan for Material Disposal Area G, at Technical Area 54," Los Alamos National Laboratory document LA-UR-03-6491, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2003. "Voluntary Corrective Measure Completion Report for Solid Waste Management Unit 21-011(k) at Technical Area 21," Los Alamos National Laboratory document LA-UR-03-7293, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2003. "Groundwater Investigation Work Plan for Solid Waste Management Unit 3-010(a) at Technical Area 3," Los Alamos National Laboratory document LA-UR-03-7349, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 13, 1999. "Plan for Characterization of Groundwater, Surface Water, and Sediments at SWMU 3-010(a)," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 2004. "Investigation and Remediation Report for Consolidated SWMU 53-002(a)-99, Inactive Wastewater Impoundments, and AOC 53-008, Storage Area, at Technical Area 53," Los Alamos National Laboratory document LA-UR-03-9119, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 2004. "Los Alamos and Pueblo Canyons Investigation Report," Los Alamos National Laboratory document LA-UR-04-2714, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2004. "Accelerated Corrective Action Work Plan for the Investigation and Remediation of Area of Concern 03-001(i) and Solid Waste Management Units 03-029 and 61-002," Los Alamos National Laboratory document LA-UR-04-7879, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 2005. "Pueblo Canyon Aggregate Area Investigation Work Plan," Los Alamos National Laboratory document LA-UR-05-2366, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2005. "Investigation Work Plan for Bayo Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-05-4761, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2005. "Historical Investigation Report for Technical Area 10," Los Alamos National Laboratory document LA-UR-05-3955, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 2005. "Material Disposal Area P Site Closure Certification Report, Revision 1," Volume 2 of 2, Los Alamos National Laboratory document LA-UR-05-6536, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 2005. "Material Disposal Area P Site Closure Certification Report, Revision 1," Los Alamos National Laboratory document LA-UR-05-6536, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), September 2005. "Investigation and Remediation Report for Consolidated SWMU 53-002(a)-99, Inactive Wastewater Impoundments, and AOC 53-008, Storage Area, at Technical Area 53, Revision 1," Los Alamos National Laboratory document LA-UR-05-6373, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2005. "Investigation Report for the Middle Mortandad/Ten Site Aggregate," Los Alamos National Laboratory document LA-UR-05-6135, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 30, 2005. "Submittal of Revisions to the 'Investigation Work Plan for Delta Prime Site Aggregate Area, at Technical Area 21'," Los Alamos National Laboratory letter (ER2005-0475) to J.P. Bearzi (NMED HWB) from D. McInroy (ERS Deputy Program Director) and D. Gregory (DOE-LASO), Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 2005. "Remedy Completion Report for the Investigation and Remediation of Area of Concern 03-001(i) and Solid Waste Management Units 03-029 and 61-002," Los Alamos National Laboratory document LA-UR-05-8863, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 2005. "Los Alamos and Pueblo Canyons Supplemental Investigation Report," Los Alamos National Laboratory document LA-UR-05-9230, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2006. "Historical Investigation Report for Cañon de Valle Aggregate Area," Los Alamos National Laboratory document LA-UR-06-4961, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2006. "Investigation Work Plan for Cañon de Valle Aggregate Area," Los Alamos National Laboratory document LA-UR-06-4960, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 2006. "Investigation Work Plan for Upper Los Alamos Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-06-2464, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 2006. "Historical Investigation Report for Upper Los Alamos Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-06-2465, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 2006. "Investigation Work Plan for Middle Los Alamos Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-06-3015, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2006. "Investigation Report for Consolidated Unit 21-018(a)-99, Material Disposal Area V, at Technical Area 21," Los Alamos National Laboratory document LA-UR-06-6609, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2006. "Mortandad Canyon Investigation Report," Los Alamos National Laboratory document LA-UR-06-6752, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), July 2007. "Investigation Report for Consolidated Unit 73-002-99 and Corrective Action of Solid Waste Management Unit 73-002, at Technical Area 73," Los Alamos National Laboratory document LA-UR-07-4479, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2007. "Investigation Report for the Middle Mortandad/Ten Site Aggregate, Revision 1," Los Alamos National Laboratory document LA-UR-07-4716, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 2007. "Investigation Report for Guaje/Barrancas/Rendija Canyons Aggregate Area at Technical Area 00," Los Alamos National Laboratory document LA-UR-07-5326, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2007. "Historical Investigation Report for S-Site Aggregate Area," Los Alamos National Laboratory document LA-UR-07-5620, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2007. "Historical Investigation Report for North Ancho Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-07-5948, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2007. "Investigation Work Plan for North Ancho Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-07-5947, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2007. "Historical Investigation Report for Middle Cañada del Buey Aggregate Area," Los Alamos National Laboratory document LA-UR-07-7039, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 15, 2007. "Submittal of Certification of Culvert Repair Behind the SM-30 Warehouse, in the Vicinity of Solid Waste Management Units 03-010(a) and 03-001(e)," Los Alamos National Laboratory letter (EP2007-0635) to J.P. Bearzi (NMED-HWB) from S. Stiger (LANL) and D. Gregory (DOE-LASO), Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2007. "Investigation Report for Guaje/Barrancas/Rendija Canyons Aggregate Area at Technical Area 00, Revision 1," Los Alamos National Laboratory document LA-UR-07-7820, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2007. "Delta Prime Site Aggregate Area Investigation Report," Los Alamos National Laboratory document LA-UR-07-5459, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2007. "Investigation Work Plan for Upper Mortandad Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-07-7696, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2007. "Historical Investigation Report for Upper Mortandad Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-07-7802, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 2007. "Investigation Work Plan for North Ancho Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-07-8272, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), December 2007. "Investigation Work Plan for S-Site Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-07-8366, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 2008. "Investigation Work Plan for Sites at Technical Area 49 Inside the Nuclear Environmental Site Boundary, Revision 1," Los Alamos National Laboratory document LA-UR-08-0447, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 2008. "Investigation Work Plan for Sites at Technical Area 49 Outside the Nuclear Environmental Site Boundary, Revision 1," Los Alamos National Laboratory document LA-UR-08-0449, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 2008. "Investigation Report for the Middle Mortandad/Ten Site Aggregate, Revision 2," Los Alamos National Laboratory document LA-UR-08-0336, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 2008. "Investigation Work Plan for Upper Mortandad Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-08-1272, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 2008. "Historical Investigation Report for Upper Sandia Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-08-1851, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 2008. "Delta Prime Site Aggregate Area Investigation Report, Revision 1," Los Alamos National Laboratory document LA-UR-08-1834, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 2008. "Investigation Report for Bayo Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-08-1134, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 2008. "Investigation Report for Middle Los Alamos Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-08-2725, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2008. "Historical Investigation Report for Threemile Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-08-4713, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2008. "Investigation Report for Pueblo Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-08-4765, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2008. "Investigation Work Plan for Upper Sandia Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-08-4798, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 18, 2008. "Response to Direction to Modify Bayo Canyon Aggregate Area Investigation Report, Revision 1," Los Alamos National Laboratory letter (EP2008-0404) to J.P. Bearzi (NMED-HWB) from S.G. Stiger (LANL) and D. Gregory (DOE-LASO), Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), September 2008. "Investigation Work Plan for Upper Cañada del Buey Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-08-6122, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2008. "Phase II Investigation Report for the TA-16-340 Complex [Consolidated Units 13-003(a)-99 and 16-003(n)-99 and Solid Waste Management Units 16-003(o), 16-026(j2), and 16-029(f)]," Los Alamos National Laboratory document LA-UR-08-6071, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2008. "Investigation Work Plan for Threemile Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-08-6727, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2008. "Pueblo Canyon Aggregate Area Phase II Investigation Work Plan," Los Alamos National Laboratory document LA-UR-08-6722, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2008. "Los Alamos Site Monitoring Area 2 Interim Measure and Monitoring Plan," Los Alamos National Laboratory document LA-UR-08-6891, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 2008. "Delta Prime Site Aggregate Area Phase II Work Plan, Revision 1," Los Alamos National Laboratory document LA-UR-08-7794, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 2009. "Work Plan for Installation of Stormwater Controls at Area of Concern 00-030(f)," Los Alamos National Laboratory document LA-UR-09-0794, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 2009. "Phase II Investigation Work Plan for Middle Los Alamos Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-09-1206, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 2009. "Historical Investigation Report for Lower Sandia Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-09-2077, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 2009. "Historical Investigation Report for Potrillo and Fence Canyons Aggregate Area," Los Alamos National Laboratory document LA-UR-09-2341, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 2009. "Investigation Report for Middle Cañada del Buey Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-09-1985, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 1, 2009. "Request for Approval of Expanded Boundaries for Areas of Contamination for the Investigation and Remediation of Solid Waste Management Units 39-001(a) and 39-001(b) at Technical Area 39," Los Alamos National Laboratory letter (EP2009-0180) to J.P. Bearzi (NMED-HWB) from M.J. Graham (LANL) and D.R. Gregory (DOE-LASO), Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), July 2009. "Investigation Work Plan for Potrillo and Fence Canyons Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-09-4327, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2009. "Investigation Work Plan for Lower Sandia Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-09-4329, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 2009. "Pajarito Canyon Investigation Report, Revision 1," Los Alamos National Laboratory document LA-UR-09-4670, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2009. "Investigation Report for Sandia Canyon," Los Alamos National Laboratory document LA-UR-09-6450, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2009. "Historical Investigation Report for Lower Mortandad/Cedro Canyons Aggregate Area," Los Alamos National Laboratory document LA-UR-09-6566, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2009. "Historical Investigation Report for Chaquehui Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-09-7402, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2009. "Cañada del Buey Investigation Report, Revision 1," Los Alamos National Laboratory document LA-UR-09-7317, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 2009. "Accelerated Corrective Action Work Plan for Upper Los Alamos Canyon Aggregate Area, Former Technical Area 32," Los Alamos National Laboratory document LA-UR-09-8056, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 2009. "2009 Biennial Ordnance Survey Report, Solid Waste Management Units 00-011(a, c, d, and e) and Area of Concern C-00-020, Guaje/Barrancas/Rendija Canyons Aggregate," Los Alamos National Laboratory document LA-UR-09-8186, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 2010. "Historical Investigation Report for Twomile Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-10-0386, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 2010. "Investigation Report for North Ancho Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-10-0125, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 2010. "Supplemental Investigation Report for Consolidated Units 16-007(a)-99 and 16-008(a)-99 at Technical Area 16," Los Alamos National Laboratory document LA-UR-09-8193, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 2010. "Investigation Report for Upper Los Alamos Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-10-0422, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), March 2010. "Summary Report for the Corrective Measures Implementation at Consolidated Unit 16-021(c)-99," Los Alamos National Laboratory document LA-UR-10-0947, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 2010. "Investigation Report for Upper Mortandad Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-10-2046, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 2010. "Investigation Work Plan for Twomile Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-10-2899, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 2010. "Interim Measure Report for Solid Waste Management Unit 01-001(f) and Los Alamos Site Monitoring Area 2," Los Alamos National Laboratory document LA-UR-10-2641, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 2010. "Investigation Report for Threemile Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-10-4358, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2010. "Historical Investigation Report for Lower Pajarito Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-10-3299, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2010. "Delta Prime East Building Footprints Letter Work Plan, Revision 1," Los Alamos National Laboratory document LA-UR-10-4812, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), July 2010. "Investigation Work Plan for Lower Pajarito Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-10-3302, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 2010. "Historical Investigation Report for Upper Water Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-10-5226, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2010. "Historical Investigation Report for Starmer/Upper Pajarito Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-10-6031, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2010. "Phase II Investigation Report for Pueblo Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-10-6411, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2010. "Investigation Report for Sites at Technical Area 49 Inside the Nuclear Environmental Site Boundary, Revision 1," Los Alamos National Laboratory document LA-UR-10-6032, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2010. "Phase II Investigation Report for Delta Prime Site Aggregate Area at Technical Area 21, Revision 1," Los Alamos National Laboratory document LA-UR-10-6478, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), October 2010. "Supplemental Interim Measures Report for Solid Waste Management Unit 01-001(f)," Los Alamos National Laboratory document LA-UR-10-6329, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), October 2010. "Investigation Report for Upper Sandia Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-10-6410, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2010. "Investigation Work Plan for Chaquehui Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-10-7226, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2010. "Investigation Report for Upper Cañada del Buey Aggregate Area," Los Alamos National Laboratory document LA-UR-10-7539, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2010. "Investigation Work Plan for Lower Pajarito Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-10-7635, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2010. "Investigation Report for Threemile Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-10-7227, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2010. "Remedy Completion Report for Upper Los Alamos Canyon Aggregate Area, Former Technical Area 32," Los Alamos National Laboratory document LA-UR-10-6899, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), December 2010. "Phase II Investigation Work Plan for Upper Mortandad Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-10-7423, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 2011. "Phase II Investigation Work Plan for Sites at Technical Area 49 Outside the Nuclear Environmental Site Boundary," Los Alamos National Laboratory document LA-UR-11-0553, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 2011. "Remedy Completion Report for Upper Los Alamos Canyon Aggregate Area, Former Technical Area 32, Revision 1," Los Alamos National Laboratory document LA-UR-11-1177, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), February 2011. "Investigation Report for S-Site Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-11-0561, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 2011. "Phase II Investigation Work Plan for Sites at Technical Area 49 Inside the Nuclear Environmental Site Boundary," Los Alamos National Laboratory document LA-UR-11-1818, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 2011. "Investigation Work Plan for Starmer/Upper Pajarito Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-11-1821, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), March 28, 2011. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, March 28, 2011, Volume 5, Ancho/Chaquehui Watershed," Environmental Programs document no. EP-DIR-PLAN-10007, R.0, Los Alamos National Laboratory document LA-UR-11-1555, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 5, 2011. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, April 5, 2011, Volume 3, Pajarito Watershed," Environmental Programs document no. EP-DIR-PLAN-10005, R.0, Los Alamos National Laboratory document LA-UR-11-1553, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 7, 2011. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, April 7, 2011, Volume 4, Water Canyon and Cañon de Valle Watershed," Environmental Programs document no. EP-DIR-PLAN-10006, R.0, Los Alamos National Laboratory document LA-UR-11-1554, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 14, 2011. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, April 14, 2011, Volume 2, Sandia/Mortandad Watershed," Environmental Programs document no. EP-DIR-PLAN-10004, R.0, Los Alamos National Laboratory document LA-UR-11-1552, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 18, 2011. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, April 18, 2011, Volume 1, Los Alamos/Pueblo Watershed," Environmental Programs document no. EP-DIR-PLAN-10003, R.0, Los Alamos National Laboratory document LA-UR-11-1551, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 2011. "Investigation Report for Upper Cañada del Buey Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-11-2487, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 2011. "Investigation Report for Potrillo and Fence Canyons Aggregate Area," Los Alamos National Laboratory document LA-UR-11-2608, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), June 2011. "Investigation Report for Ancho, Chaquehui, and Indio Canyons, Revision 1," Los Alamos National Laboratory document LA-UR-11-3305, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 2011. "Phase II Investigation Report for Middle Los Alamos Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-11-3820, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 2011. "Investigation Report for Lower Sandia Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-11-4795, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2011. "Phase II Investigation Work Plan for S-Site Aggregate Area," Los Alamos National Laboratory document LA-UR-11-5388, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2011. "Investigation Report for Water Canyon/Cañon de Valle," Los Alamos National Laboratory document LA-UR-11-5478, Los Alamos, New Mexico.

- LANL (Los Alamos National Laboratory), September 2011. "Phase II Investigation Work Plan for Upper Sandia Canyon Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-11-4912, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), November 2011. "Investigation Report for Potrillo and Fence Canyons Aggregate Area, Revision 1," Los Alamos National Laboratory document LA-UR-11-6217, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), January 2012. "Investigation Report for Cañon de Valle Aggregate Area, Technical Area 14," Los Alamos National Laboratory document LA-UR-12-0072, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 2012. "Polychlorinated Biphenyls in Precipitation and Stormwater within the Upper Rio Grande Watershed," Los Alamos National Laboratory document LA-UR-12-1081, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1, 2012. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, May 1, 2012, LA-UR-12-20395, Revision 1, Pajarito Watershed, Receiving Waters: Pajarito Canyon, Twomile Canyon, Threemile Canyon, Volume 3," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1, 2012. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, May 1, 2012, LA-UR-12-20497, Revision 1, Los Alamos/Pueblo Watershed, Receiving Waters: Rendija Canyon, Bayo Canyon, Pueblo Canyon, DP Canyon, Los Alamos Canyon, Volume 1," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1, 2012. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, May 1, 2012, LA-UR-12-20224, Revision 1, Water/Cañon de Valle Watershed, Receiving Waters: Cañon de Valle, Potrillo Canyon, Water Canyon, Fence Canyon, Volume 4," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1, 2012. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, May 1, 2012, LA-UR-12-00849, Revision 1, Ancho/Chaquehui Watershed, Receiving Waters: Ancho Canyon and Chaquehui Canyon, Volume 5," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), May 1, 2012. "Site Discharge Pollution Prevention Plan, Los Alamos National Laboratory, NPDES Permit No. NM0030759, May 1, 2012, LA-UR-12-20798, Revision 1, Sandia/Mortandad Watershed, Receiving Waters: Cañada del Buey, Mortandad Canyon, Sandia Canyon, Ten Site Canyon, Volume 2," Los Alamos National Laboratory, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), September 2012. "Corrective Measures Evaluation Report for Material Disposal Area C, Solid Waste Management Unit 50-009 at Technical Area 50," Los Alamos National Laboratory document LA-UR-12-24944, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), March 2013. "Storm Water Individual Permit Annual Report, Reporting Period: January 1–December 31, 2012, NPDES Permit No. NM0030759," Los Alamos National Laboratory document LA-UR-13-20566, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), April 2013. "Background Metals Concentrations and Radioactivity in Storm Water on the Pajarito Plateau, Northern New Mexico," Los Alamos National Laboratory document LA-UR-13-22841, Los Alamos, New Mexico.
- LANL (Los Alamos National Laboratory), August 2013. "Supplemental Investigation Report for Upper Sandia Canyon Aggregate Area," Los Alamos National Laboratory document LA-UR-13-26024, Los Alamos, New Mexico.
- McGehee, E.D., E. Loomis, K.L.M. Garcia, K. Towery, J. Ronquillo, N. Naranjo, and J. Isaacson, September 2004. "Engineering the Bomb: Detonator and Plutonium Recovery Research at Two-Mile Mesa Site (TA-6)," Historic Context and Property Documentaiton, Historic Building Survey Report No. 236, Los Alamos National Laboratory document LA-UR-04-7130, Los Alamos, New Mexico.
- McNaughton, M., W. Eisele, D. Englert, R. Ford-Schmid, and J. Whicker, 2012. "Natural Radioactivity in Northern New Mexico Water," Los Alamos National Laboratory document LA-UR-12-26061, Los Alamos, New Mexico.
- NMED (New Mexico Environment Department), June 3, 1997. "Approval of Los Alamos and Pueblo Canyon RFI Workplan (Operable Unit 1049)," New Mexico Environment Department letter to T. Taylor (DOE-LAAO) and J. Jansen (ER Project) from R.S. Dinwiddie (NMED-HRMB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), August 13, 2007. "Approval of Investigation Report for Consolidated Unit 73-002-99 and Corrective Action of Solid Waste Management Unit 73-002 at Technical Area 73," New Mexico Environment Department letter to D. Gregory (DOE-LASO) and D. McInroy (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), January 23, 2008. "Approval of Los Alamos National Laboratory Proposal for No Further Action," New Mexico Environment Department letter to D. Gregory (DOE-LASO) and D. McInroy (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), January 12, 2009. "Approval, Delta Prime Site Aggregate Area Phase II Work Plan, Revision 1," New Mexico Environment Department letter to D. Gregory (DOE-LASO) and D. McInroy (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), April 6, 2010. "Approval, Request for Certificates of Completion for Two Solid Waste Management Units and Five Areas of Concern in the North Ancho Canyon Aggregate Area," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), September 7, 2010. "Certificates of Completion, Upper Mortandad Canyon Aggregate Area," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), September 10, 2010. "Certificates of Completion, Upper Los Alamos Canyon Aggregate Area," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico.

- NMED (New Mexico Environment Department), October 19, 2010. "Direction to Modify Phase II Investigation Report for Delta Prime Site Aggregate Area, Technical Area 21, Revision 1," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), January 14, 2011. "Certificate of Completion, Pueblo Canyon Aggregate Area, Area of Concern (AOC) 00-018(b)," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), February 18, 2011. "Certificates of Completion, Upper Sandia Canyon Aggregate Area," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), May 4, 2011. "Certificates of Completion Request, Middle Mortandad/Ten Site Aggregate Area SWMUs and AOCs," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), June 3, 2011. "Certificate of Completion, Material Disposal Area V, Technical Area 21, Los Alamos National Laboratory," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), February 2012 (updated June 2012). "Risk Assessment Guidance for Site Investigations and Remediation," Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), May 16, 2012. "Certificates of Completion, One Solid Waste Management Unit and One Area of Concern in the Guaje/Barrancas/Rendija Canyons Aggregate Area," New Mexico Environment Department letter to P. Maggiore (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), July 13, 2012. "Approval of Request for Certificates of Completion for Six Solid Waste Management Units and One Area of Concern in the Upper Cañada del Buey Aggregate Area," New Mexico Environment Department letter to P. Maggiore (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), December 20, 2012. "Certificates of Completion for One One Area of Concern in the Upper Los Alamos Canyon Aggregate Area," New Mexico Environment Department letter to P. Maggiore (DOE-LASO) and J.D. Mousseau (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), February 22, 2013. "Certificates of Completion for Four Solid Waste Management and One Area Of Concern in the Pueblo Canyon Aggregate Area," New Mexico Environment Department letter to P. Maggiore (DOE-LASO) and J. Mousseau (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), May 7, 2013. "Certificates of Completion Three Solid Waste Management Units [00-011(a), 00-011(d), 00-011(d)] in the Guaje/Barranceas/Rindija Canyons Aggregate Area," New Mexico Environment Department letter to P. Maggiore (DOE-LASO) and J. Mousseau (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico.

- NMED (New Mexico Environment Department), July 31, 2013. "Certificates of Completion for One Solid Waste Management and Two Area Of Concern in the Lower Sandia Canyon Aggregate Area," New Mexico Environment Department letter to P. Maggiore (DOE-LASO) and J. Mousseau (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico.
- NMED (New Mexico Environment Department), September 27, 2013. "Certificates of Completion for One Solid Waste Management Unit and One Area of Concern in the Middle Mortandad/TenSite Aggregate Area," New Mexico Environment Department letter to P. Maggiore (DOE-LASO) and J.D. Mousseau (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico.
- Nonno, L., February 22, 2012. "Documentation of 'No Further Action' under the Consent Order for 20 RCRA Hazardous Waste Management Units," Los Alamos National Laboratory memorandum to file from L. Nonno (LANL), Los Alamos, New Mexico.
- Rose, S., M.S. Crean, D.K. Sheheen, and A.M. Ghazi, June 2001. "Comparative Zinc Dynamics in Atlanta Metropolitan Region Stream and Street Runoff," *Environmental Geology*, Vol. 40, pp. 983–992.
- Urbanas, P.L., Guo, J.C.Y., Tucker, L.S., October 1989. "Sizing a Capture Volume for Stormwater Quality Enhancement," Urban Drainage and Flood Control District, Flood Hazard News 1989 Edition, Denver, Colorado.
- USDA (U.S. Department of Agriculture), June 2013. "Hydrologic Analyses of Post-Wildfire Conditions," Draft Technical Note, National Resources Conservation Service, Washington, D.C.
- WGII (Washington Group International, Inc.), October 3, 2000. "Mortandad Canyon Sediment Trap Maintenance, Final Closeout Report," Los Alamos, New Mexico.

SUPPORTING MATERIAL

1.0 INTRODUCTION AND BACKGROUND

This section provides information regarding the scope and content of this renewal application for the Individual Storm Water Permit (NPDES Permit No. NM0030759). This Individual Permit renewal application is submitted by co-Permittees DOE and LANS for LANL or the Laboratory facility in Los Alamos, New Mexico. It is being submitted before March 29, 2014, as approved by Region 6 of the EPA on April 8, 2013.

2.0 APPLICATION OBJECTIVES AND SCOPE

EPA issued the Individual Permit to the co-Permittees on February 13, 2009. The Individual Permit was subsequently modified on September 30, 2010, and became effective on November 1, 2010. The Individual Permit regulates storm water discharges associated with industrial activities from 405 specified SWMUs and/or AOCs (collectively, "Sites"). The majority of the Sites covered by the Individual Permit are remotely located and are not associated with current industrial activities. Storm water discharges associated with current conventional industrial activities at the Laboratory are excluded from the Individual Permit.

This Individual Permit renewal package discusses specific proposed changes to the current Permit. These changes fall into the following categories: (1) substantive changes to reflect substantial new information from investigations and analysis conducted under the RCRA Consent Order; (2) organizational changes to clarify, improve, and facilitate understanding of Permit requirements; and (3) nonsubstantive changes and minor typographical errors. These changes are provided in a redlinestrikeout version of the Permit and are described in Section 10 below.

This renewal application has been provided in NPDES Individual Storm Water Renewal Application, Volumes 1 and 2. The acronyms used in this application and the references used to prepare it are included in lists that follow the table of contents.

3.0 SITE ORGANIZATION

Table 1 lists the seven major watersheds and associated canyons in north to south order, the SMA name, the Site name, and the name of the receiving water. The information and data in this renewal application are grouped according to the following hierarchy, starting at the watershed level:

- <u>Watershed</u>: One of the seven major watersheds on the Pajarito Plateau where the SMAs and their associated Sites are located.
- <u>Canyon</u>: Significant canyon system within the watershed (NMAC 20.6.4 §§ 20.6.4.126 and 20.6.4.128)
- <u>SMA</u>: The Sites are grouped into subwatersheds called SMAs. Note that a Site may be assigned to more than one SMA based upon drainage patterns.
- <u>Site</u>: A uniquely numbered SWMU or AOC.
- <u>Receiving Water</u>: Identified for the SMA or Site, either the significant canyon system or a named significant tributary to a canyon to which that SMA/Site drains.

4.0 INDIVIDUAL PERMIT APPLICATION FORMS

This renewal application consists of EPA Form 1, General Information, and NPDES Form 2F, Application for Permit to Discharge Storm Water Discharges Associated with Industrial Activity.

4.1 EPA Form 1 – General Information

EPA Form 1 presents general information such as the nature of the business, name, mailing address, location and existing permit numbers regarding EPA environmental programs that apply to the Laboratory. Since the original Individual Permit application submittal in 2008, several personnel changes at both DOE and the Laboratory have impacted the delegated signatory authority. These changes are reflected on EPA Form 1.

4.2 NPDES Form 2F

Form 2F is the component of this renewal application that requests the following specific information and data:

- Section I Outfall Locations
- Section II Improvements
- Section III Site Drainage Maps
- Section IV Narrative Description of Pollutant Sources
- Section V Nonstormwater Discharges
- Section VI Significant Leaks or Spills
- Section VII Discharge Information
- Section VIII Biological Toxicity Testing Data
- Section IX Contract Analysis Information
- Section X Certification

New and updated information is provided for all sections of Form 2F.

Because of the extent of Laboratory facility data and information, the standard Form 2F format for presenting data and information could not always be followed. To address this issue and to effectively present the extensive amounts of available data and information, supporting tables and figures have been provided. The locations of supporting materials are referenced within the appropriate section of Form 2F. A narrative description of the data and information organization are also provided for each section.

5.0 BACKGROUND

General background information regarding facility operations, terrestrial ecology, geology, climate, and hydrology are provided below.

5.1 Facility Description

The Laboratory and the associated communities of Los Alamos and White Rock are located in Los Alamos County in north-central New Mexico approximately 60 mi north-northeast of Albuquerque and

20 mi northwest of Santa Fe (Figure 1). The 36-mi² facility is situated on the Pajarito Plateau, which consists of a series of finger-like mesas separated by deep east-to-west oriented canyons cut by predominately ephemeral and intermittent streams. The mesa tops range in elevation from approximately 7800 ft on the flanks of the Jemez Mountains to about 6200 ft at their eastern termination above the Rio Grande Canyon.

The land surrounding the Laboratory is largely undeveloped. Public access to much of the facility is limited for safety and security reasons. Large tracts of surrounding land are held by the U.S. Forest Service (Santa Fe National Forest), the Bureau of Land Management (Bandelier National Monument), the General Services Administration and the Pueblo de San Ildefonso (Figure 2).

The communities closest to the Laboratory are the Los Alamos townsite, which is just to the north, and White Rock, which is located a few miles to the east-southeast. Los Alamos County had an estimated population of 17,950 in 2010. About one-third of Laboratory employees commute from other counties.

5.2 Laboratory Research Activities

The Laboratory's original mission to design, develop, and test nuclear weapons has broadened to address changes in technologies, priorities, and the global community. The Laboratory's current mission is to develop and apply science and technology according to the following:

- ensure the safety and reliability of the United States' nuclear deterrent,
- reduce global threats, and
- foster energy security by developing clean, sustainable energy sources.

Extensive basic research programs in physics, chemistry, metallurgy, mathematics, computers, earth sciences, and electronics support these efforts.

5.3 Terrestrial Ecology

Five vegetation zones have been identified within the Laboratory. In general, these zones result from changes in elevation, temperature, and moisture along the approximately 12-mi-wide, 5000-ft elevation gradient from the Rio Grande to the western edge of the site. The five zones include juniper-savanna, piñon-juniper woodlands, spruce-fir, ponderosa pine forests, and mixed-conifer forests. While mixed conifer forests are prevalent at higher elevations to the west of the Laboratory, within the site this vegetation zone is restricted to cooler north-facing canyons walls.

5.4 Geologic Setting

The Pajarito Plateau is capped by Bandelier Tuff, which formed as the result of volcanic eruptions that occurred in the Jemez Mountains 1.2 to 1.6 million years ago. The tuff is more than 1000 ft thick in the western part of the plateau and thins eastward to about 260 ft adjacent to the Rio Grande.

On the western part of the plateau, the Bandelier Tuff overlaps the Tschicoma Formation, which consists of older volcanics that form the Jemez Mountains. The Puye Formation conglomerate underlies the Bandelier Tuff beneath the central and eastern portions of the plateau. The Cerros del Rio basalt flows interfinger with the Puye Formation conglomerate beneath the Laboratory. These formations, which are over 3300 ft thick, overlie the sediments of the Santa Fe Group, which extend across the Rio Grande Valley.

5.5 Climate and Hydrologic Setting

5.5.1 Climate

Los Alamos County has a temperate, semiarid mountain climate. Large differences in locally observed temperature and precipitation exist because of the 1000-ft elevation change across the Laboratory site and the complex topography. Four distinct seasons occur in Los Alamos County. Winters are generally mild, with occasional winter storms. Spring is the windiest season. Summer is the rainy season, with occasional afternoon thunderstorms. New Mexico receives up to half of its annual rainfall during the summer monsoon season. Fall is typically dry, cool, and calm.

The most recent drought has essentially spanned the years 1998 through 2013, with near-average precipitation years occurring from 2004 to 2010. In Los Alamos, the highest summertime (June, July, August) average temperature on record was documented during 2011 and the second highest during 2012. For New Mexico, the 2011 and 2012 calendar years were the driest and warmest 2-year period on record (weather records go back to 1895), and calendar year 2012 was the warmest on record and the second driest (only 1956 was drier). This was most likely the result of the Pacific La Niña pattern governing the weather during 2011 and 2012. Fortunately, 2013 was wetter with around normal statewide precipitation and an unusually extremely wet September. Even with the above-average precipitation in 2013, the normal-to-below-normal precipitation and consistently below-normal snowfall over the past 15 years have resulted in very severe drought conditions throughout New Mexico.

A tree falling on a power line started the Las Conchas fire in June 2011. The fire, which burned 157,000 acres in the Jemez Mountains of north-central New Mexico, was the largest in recorded history for the state. The fire burned areas upstream from the Los Alamos townsite and the Laboratory. Affected watersheds included the Rio Grande to the east and the Jemez River to the west of the burn area. The fire and related back burns burned approximately 133 acres of DOE property.

The northeastern edge of the fire perimeter burned into the Cerro Grande fire (2000) area. The burned area extends across several landscape types, from the flat valleys of the Valle Grande at nearly 9000 ft in elevation, eastward over mountainous areas of the Sierra de los Valles, across the Pajarito Plateau with its rugged fingerlike mesa and canyon topography, and down to elevations below 6000 ft near the Rio Grande. Concentrated areas of high-burn severity occurred near Frijoles and Santa Clara Canyons on the Pajarito Plateau. Following the fire, sites in the canyons were armored to protect them from potential flooding because flooding, erosion, and the transport of debris, ash, and sediment became a significant issue at the Laboratory. Indeed, post-fire flooding of roads and drainages created safety and environmental hazards, destroying infrastructure and environmental monitoring sites and equipment.

5.5.2 Hydrologic Setting

The Laboratory lies in the upper Rio Grande watershed denoted by USGS hydrologic unit codes 13020101 and 13010005 (<u>http://water.usgs.gov/wsc/reg/13.html</u>). The upper Rio Grande is a large watershed (approximately 7500 mi²) that generally flows from north to south. The New Mexico portion of the watershed is within seven counties: Rio Arriba, Taos, Santa Fe, Los Alamos, Sandoval, Mora, and San Miguel.

The Rio Grande is the largest river in New Mexico, and the Rio Chama is its largest tributary within the state. Historically, stream flow in these rivers was influenced by spring snowmelt (April through June) and summer monsoon thunderstorms (July and August). This natural stream-flow pattern has been altered and regulated by reservoirs on the main stem and tributaries that store the water for later use, primarily

for irrigation. In addition to the precipitation and reservoir-controlled fluctuations, base flow is maintained by regional groundwater discharge from the Rio Grande basin.

The quality of storm water runoff from most Laboratory facilities is rigorously monitored through several programs. The flow of surface water on the Pajarito Plateau is extremely limited, and no drinking water systems rely on surface water. The Laboratory is located in an approximately 36-mi² portion of the Pajarito Plateau drained by a large number of canyons and streams. Surface water is carried downstream to the Rio Grande through relatively small channels situated in the bottom of canyons that have cut into the plateau surface (erodible Bandelier Tuff). A few canyons contain relatively short segments of "perennial" streams that flow year round because of spring sources, snowmelt, and rainfall, largely from watersheds extending into the mountains. However, most of the canyons originating on the plateau have ephemeral streams with flow limited to periods of short duration in response to intense thunderstorm rainfall events and snowmelt close to the mountain front. Because of the intensity of these events and the partial vegetative cover, the storm water runoff can carry substantial amounts of sediment. Any landscape-associated constituents, such as metals, are also present in sediment entrained in the runoff. Developed landscapes within the Laboratory boundary include parking lots, roads, and structures ranging in age from the 1940s to 2012.

Areas of the Laboratory receive storm water runoff from the adjacent Los Alamos townsite. The basic footprint of the developed portions of the townsite has changed little over decades. Retail stores, county government operations, and businesses are concentrated together in the downtown and situated on a mesa top within a zone roughly 2 to 3 mi across. Away from the commercial center, land use transitions to a residential mix of apartment complexes and single-family houses. The townsite has been laid out in this general configuration since the 1960s. A portion of this development was built on ground that once housed research activities of the Manhattan Project. Buildings from that earlier era were removed, and several rounds of remediation of the surface have been performed; remaining SWMUs and AOCs have been delineated and are under investigation by the Laboratory under the March 2005 Consent Order issued by NMED. Most of the townsite area has long been covered with imported fill dirt, new buildings, pavement, or park land, in essence forming caps over the original ground.

Post–Las Conchas fire rain storms in July and August 2011 mobilized ash, charcoal, and sediment from the burned sites into nearby tributaries. Numerous bridge and culvert crossings on NM 4 and other roadways were impacted by the effects of post-wildfire flooding and debris flows.

Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 3). Los Alamos County received between 200% and 600% of the normal precipitation for this time period (Figure 4), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 5). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-year return period event that occurred between September 12 and 13 (Table 2). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding caused significant damage to the Laboratory's environmental infrastructure, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Repair work was underway at the time of this submittal.

Samples were collected at 49 SMAs during the September 12 and 13 storm event. TAL exceedances included aluminum, copper, zinc, gross-alpha radiation, and PCBs (Figures 6 and 7). The majority of the TAL exceedances, however, fell in the range of background/baseline concentrations established in the 2012 "PCBs in Precipitation and Storm Water within the Upper Rio Grande Watershed" (PCB Background Report) (<u>http://permalink.lanl.gov/object/tr?what=info:lanl-repo/eprr/ERID-219767</u>) and the 2013 "Background Metals Concentrations and Radioactivity in Storm Water on the Pajarito Plateau, Northern

New Mexico" (Background Metals Report) (<u>http://permalink.lanl.gov/object/tr?what=info:lanl-repo/eprr/ERID-239557</u>).

6.0 RELATIONSHIP OF INDIVIDUAL PERMIT TO THE RCRA CONSENT ORDER

The Individual Permit and the RCRA Consent Order are linked in the following two key ways:

- The Sites regulated under the Individual Permit are a subset of the SWMUs and AOCs that are being addressed under the RCRA Consent Order.
- One method of achieving completion of corrective action under the Individual Permit for a Site with a TAL exceedance is by submitting a certification to EPA that documents that the Site has achieved RCRA corrective action complete with or without controls status or a certificate of completion under the RCRA Consent Order with or without controls.

6.1 Site Selection

In March 2005, NMED issued a Consent Order under the New Mexico HWA and the RCRA of 1976, as amended to address investigation, cleanup, including corrective action obligations for hazardous and mixed wastes and hazardous constituents released or disposed of in SWMUs and AOCs located at the Laboratory. The RCRA Consent Order fulfills the corrective action requirements in §3004(u) and §3008(h) of RCRA for addressing SWMUs and AOCs.

The RCRA Consent Order does not apply to radionuclides, including but not limited to, source, special nuclear, or byproduct material as defined in the AEA of 1954, as amended, or the radioactive portion of mixed waste. Historical and operating low-level waste disposal units and transuranic waste storage units are exclusively regulated by the DOE under the AEA. DOE's authority to regulate nuclear safety is governed by the provisions of 10 CFR Parts 830 through 835. Pursuant to these regulations, DOE is required to review and approve all activities and work related to radionuclides, including activities and work under the RCRA Consent Order. Information on radioactive materials and radionuclides, including the results of sampling and analysis of radioactive constituents, is voluntarily provided to NMED in accordance with DOE policy and Section III.A of the RCRA Consent Order.

A SWMU is a discernible waste management unit from which hazardous constituents may migrate, regardless of whether the unit was intended to manage solid or hazardous waste. Examples of SWMUs include, but are not limited to, landfills, surface impoundments, waste piles, tanks, container storage areas, and wastewater treatment systems. SWMUs include any area at a facility at which solid wastes have been routinely and systematically released. A SWMU does not include a one-time spill. An AOC is defined in Section III.B of the Consent Order as any area that may have had a release of a hazardous waste or hazardous constituent and is not a SWMU.

The selection of SWMUs and AOCs for inclusion in the Individual Permit was based on historical information and any storm water, sediment, and soil data available at the time the Permit application was submitted. The selection of Sites for inclusion in the Individual Permit ended in early 2008 with the final supplemental information submittal. The investigation and remediation of SWMUs and AOCs under the RCRA Consent Order began before the effective date of the Individual Permit and continues concurrently with implementation of the Permit, which began in November 2010.

A Site that has met the definition of a SWMU or AOC was evaluated for inclusion in the current Individual Permit based on the following criteria: (1) the SWMU/AOC is exposed to storm water (e.g., not capped or

subsurface); (2) the SWMU/AOC contains "significant industrial material" (e.g., not cleaned up or has contamination in place); and (3) the SWMU/AOC potentially impacts surface water.

The identification and investigation of SWMUs and AOCs is an iterative process. The initial identification process is conservative—that is, it errs on the side of inclusion if there is any indication in the record of a possible historical release of hazardous wastes or hazardous constituents. The RCRA Consent Order requires initial investigations to run broad, conservative analytical scans regardless of what the historical reviews indicate may have been released. As a result, all samples in the first phase of investigations under the Consent Order are typically analyzed for EPA target analyte list metals, total cyanide, VOCs), SVOCs, PCBs, and nitrate and perchlorate.

6.2 RCRA Consent Order Certificates of Completion

Phased investigations proceed under the Consent Order until the nature and extent of contamination from any historical release at a SWMU or AOC have been defined in all relevant media. If the risk assessment demonstrates that the site poses no unacceptable risk to human health or the environment under current and reasonably foreseeable future land use, DOE/LANS will submit a request for a CoC with or without controls, as appropriate. DOE/LANS may perform remediation activities and confirmation sampling before they request a CoC.

On the other hand, if the risk assessment demonstrates that a site may pose a potential risk to human health or the environment, DOE/LANS may be required to prepare a CME report. Typically, a CME may be required for Sites with buried waste, vadose zone contamination, and/or groundwater contamination. The CME is used to identify, develop, and evaluate potential remedial alternatives for removal, containment, and/or treatment of contamination. Upon approval of the CME report, NMED will select a remedy or remedies for the Site and issue a Statement of Basis for public comment. NMED will select a final remedy and issue a response to public comments within 90 days or other appropriate time after the conclusion of the public comment period. The RCRA Consent Order also provides an opportunity for public hearing.

NMED and DOE entered into a framework agreement in January 2012 for the realignment of environmental priorities at the Laboratory. Under the framework agreement, NMED and DOE agreed to review characterization efforts undertaken to date pursuant to the RCRA Consent Order to identify those Sites where the nature and extent of contamination have been adequately characterized. Pursuant to the framework agreement, the Laboratory reviewed its data evaluation process with respect to EPA guidance and the framework agreement principles and concluded that this process could be revised to more efficiently complete site characterization, while providing full protection of human health and the environment. Specifically, the process for evaluating data to define extent of contamination was revised to provide a greater emphasis on risk reduction, consistent with EPA corrective action guidance.

This data evaluation process is being performed by DOE and LANS by aggregate area. An aggregate area is defined in the RCRA Consent Order as "an area within a single watershed or canyon made up of one or more SWMUs or AOCs and the media affected or potentially affected by releases from those SWMUs or AOCs, and for which the investigation or remediation, in part or in entirety, is conducted for the area as a whole in order to address area-wide contamination, ecological risk assessment, and other factors." The objectives of this data evaluation process are to determine if a SWMU or AOC is currently eligible for a CoC with or without controls or if additional investigation is required. The results of the data evaluation for each aggregate area will be summarized in a supplemental investigation report, which is submitted to NMED for review and approval. Once NMED has approved a supplemental investigation report, DOE/LANS will submit requests for CoCs to NMED for eligible SWMUs or AOCs. At the time of

this application, one supplemental investigation report has been submitted to NMED. The Upper Sandia Canyon Aggregate Area Supplemental Investigation Report was submitted on August 27, 2013. The remaining 12 supplemental investigation reports will be submitted to the NMED in the following order:

- Upper Mortandad Canyon Aggregate Area
- Upper Cañada del Buey Aggregate Area
- S-Site Canyon Aggregate Area
- DP Site Aggregate Area
- Potrillo and Fence Canyon Aggregate Area
- Threemile Canyon Aggregate Area
- Technical Area 49 (TA-49) (inside the nuclear environmental site boundary)
- TA-49 (outside the nuclear environmental site boundary)
- Cañon de Valle Aggregate Area TA-14
- North Ancho Canyon Aggregate Area
- Middle Los Alamos Canyon Aggregate Area
- Lower Sandia Canyon Aggregate Area

The Individual Permit Sites in each of these aggregate areas are shown in Table 3. NMED has agreed to accelerate its review of Individual Permit Sites within these supplemental investigation reports to facilitate the issuance of CoCs for eligible Sites.

7.0 NPDES-PERMITTED SITES

7.1 Current Permit

The following is a brief overview of the key conditions in the current Individual Permit. Detailed information on all submittals to EPA under the Individual Permit, including but not limited to, monitoring results, storm water controls, inspection reports, and corrective action certifications, is available on the public Individual Permit website (<u>http://www.lanl.gov/community-environment/environmental-stewardship/protection/compliance/individual-permit-stormwater/index.php</u>).

The Individual Permit treats a Site as an "industrial activity" that may create a "point-source discharge" and directs the Permittees to monitor storm water releases from Sites at specified sampling points known as SMAs. An SMA is a single drainage area within a subwatershed and can include more than one Site. Storm water from a Site may drain to multiple subwatersheds and may be associated with multiple SMAs.

The Individual Permit divides the Sites into two categories. Sixty-three Sites were identified as "High Priority Sites" based upon the detection of PCBs in gage station data at concentrations above New Mexico State water-quality criteria. The remaining 342 Sites were identified as "Moderate Priority Sites."

The Individual Permit contains nonnumeric technology-based effluent limitations, coupled with a comprehensive, coordinated inspection and monitoring program, to minimize pollutants in the Permittees' storm water releases associated with historical industrial activities from specified SWMUs and AOCs. The Permittees are required to implement Site-specific control measures (including BMPs) to address the

nonnumeric technology-based effluent limits, as necessary, to minimize pollutants in any storm water discharges.

Part I.A describes the nonnumeric technology-based effluent limitations required under the Individual Permit to minimize pollutants in any storm water discharges. The erosion and sedimentation and run-on and runoff controls identified in Part I.A were installed as baseline control measures within the first 6 months of the effective date of the Individual Permit, and certifications of completion were submitted to EPA. The other nonnumeric technology-based effluent limitations include employee training and the elimination of non–storm water discharges not authorized by an NPDES permit.

The Individual Permit establishes TALs that are equivalent to New Mexico State water-quality criteria. These TALs are used as benchmarks to determine the effectiveness of control measures implemented under the Permit. That is, confirmation monitoring sample results for an SMA are compared with applicable TALs. If one or more confirmation monitoring result exceeds a TAL, the Permittees must take corrective action by a specific deadline. The deadlines to complete corrective action at High Priority Sites and Moderate Priority Sites are October 31, 2013, and October 31, 2015, respectively.

Figure 8 is a "road map" illustrating key activities in the Individual Permit and shows the steps involved in the corrective action process.

Part I.E.2(a) through (d) of the Individual Permit define the following four possible paths for "completion of corrective action":

- Enhanced controls have produced analytical results from confirmation sampling demonstrating that pollutant concentrations for all pollutants of concern at a Site are at or below applicable TALs;
- Control measures that totally retain and prevent the discharge of storm water have been installed at the Site;
- Control measures that totally eliminate exposure of pollutants to storm water have been installed at the Site; or
- The Site has achieved RCRA corrective action complete with or without controls status or a certificate of completion under the RCRA Consent Order.

As of December 31, 2013, corrective action under the Individual Permit has been completed at 27 Sites:

- No completion of corrective action certifications have been submitted based upon enhanced controls although 30 are currently being monitored.
- No completion of corrective action certifications have been submitted based upon total retention.
- Two completion of corrective action certifications have been submitted based upon elimination of exposure to pollutants. The co-Permittees submitted completion of corrective action certifications based upon the elimination of exposure on October 25, 2013, for Site 54-017 and on October 31, 2013, for Site 50-009.
- Twenty-five completion of corrective action certifications have been submitted based upon the receipt of a CoC under the RCRA Consent Order (see Table 6).

The Permittees may seek to place a Site or Sites into alternative compliance when they have installed baseline control measures to minimize pollutants in storm water discharges but are unable to certify completion of corrective action under Part I.E.2(a) through (d), individually or collectively. Part I.E.3(b) of

the Permit requires the co-Permittees to file a written request with EPA within 6 months before the applicable deadlines for completion of corrective action. If EPA grants the alternative compliance request in whole or in part, it will issue a new individually tailored work plan for the Site or Sites. EPA will also extend the compliance deadline for completion of corrective action, as necessary, to implement this work plan. If EPA denies the alternative compliance request, it will promptly notify the co-Permittees of the specifics of its decision and of the time frame under which completion of corrective action must be completed under Parts I.E.2(a) through I.E.2(d).

As of December 31, 2013, co-Permittees submitted two alternative compliance requests to EPA. On April 30, 2013, the co-Permittees submitted a request for alternative compliance for Sites 03-013(a) and 03-052(f), monitored at S-SMA-0.25, and at Site 03-056(c) within S-SMA-2. In response to public comments, the alternative compliance request was revised on October 1, 2013, to include Sites 03-045(b) and 03-045(c) within S-SMA-2. EPA has stated that it will respond to the requests in the spring 2014. A total of 3669 Permit-required inspections and 5563 sampling equipment inspections have been performed since the effective date of the Individual Permit. The Individual Permit contains the following six inspection requirements:

- Part I.G.2, post-storm inspections of control measures at any Site affected by a "storm rain event"
- Part I.G.1, Site-specific annual erosion inspections to evaluate any changes of conditions affecting erosion
- Part I.G.1, Site-specific significant event inspections after notice of a significant event that could impact the control measures
- Part I.E.1, visual inspections for all Sites at SMAs where TAL exceedances are observed
- Part I.I.1, weekly remediation construction activity inspections to ensure sediment and runoff control measures are maintained in good order
- Part I.D.3, sampler inspections to collect water and to maintain samplers in operating condition

Fifty-three reports have been submitted to EPA since the effective date of the Individual Permit. The Individual Permit contains the following six reporting and certification requirements:

• Part I.F.4, Site Discharge Pollution Prevention Plan, describes the historical industrial activities that led the Site to be included in the Individual Permit, summarizes the available data regarding the nature and extent of any surface contamination related to the historical activities, and identifies the structural control practices implemented or that will be implemented to prevent the pollutants of concern from impacting storm water runoff quality.

The SDPPP also describes other relevant information, such as monitoring results, inspections and maintenance, and procedures. The report, which is updated annually, is intended to be a living document that is kept current throughout the year by maintaining records and relevant documents alongside the SDPPP.

At the end of each field season, all changes made during the year and any projected for the coming year are incorporated into an update. The SDPPP uses a five-volume watershed organizational structure for administrative convenience. Current and past annual SDPPP updates are available on the public Individual Permit website (<u>http://www.lanl.gov/community-environment/environmental-stewardship/protection/compliance/individual-permit-stormwater/site-discharge-pollution-prevention-plan.php</u>).

- Part I.H.2, Annual Report, provides an annual "snap shot" of Site-specific compliance status for the previous year. This report summarizes monitoring results; identifies constituents that exceed TALs; describes baseline and enhanced control measures installed during the year; describes corrective actions that are planned and implemented; identifies Sites that have certified completion of corrective action; highlights any change of compliance status from the previous Annual Report; provides lists of requests for EPA approval; and summarizes inspections performed under Parts I.G.1, I.G.2, and I.E.1. Current and past Annual Report updates are available on the public Individual Permit website (<u>http://www.lanl.gov/communityenvironment/environmental-stewardship/protection/compliance/individual-permitstormwater/reports.php</u>).
- Part I.H.1, Compliance Status Reports, is organized by SMA, and the report is updated annually. This report includes the SMA ID number, pollutants of concern greater than applicable TALs, target control measure completion dates, and actual control measure completion dates. Current and past Compliance Status Report updates are available on the public Individual Permit website (<u>http://www.lanl.gov/community-environment/environmental-</u> <u>stewardship/protection/compliance/individual-permit-stormwater/reports.php</u>).
- Part II.B, Target Action Level Exceedance Reports, requires reports be submitted to EPA and NMED Surface Water Quality Bureau within 24 h after the co-Permittees receive validated data confirming a TAL exceedance. Reports are available on the public Individual Permit website (<u>http://www.lanl.gov/community-environment/environmental-</u> stewardship/protection/compliance/individual-permit-stormwater/reports.php).
- Part I.E.I(c), Construction Certifications, requires the co-Permittees to certify the completion of the installation of control measures within 30 days of completion of the installation of all such measures at the Site. Certifications are available on the public Individual Permit website (<u>http://www.lanl.gov/community-environment/environmental-</u>stewardship/protection/compliance/individual-permit-stormwater/construction-certifications.php).
- Part I.E.2, Completion of Corrective Action Certifications, requires certifications be submitted to EPA upon completion of corrective action activities at a Site or Sites with one or more TAL exceedances. Certifications are available on the public Individual Permit website (<u>http://www.lanl.gov/community-environment/environmental-</u> <u>stewardship/protection/compliance/individual-permit-stormwater/corrective-action.php</u>).

Part I.I.7(c) of the Individual Permit establishes a requirement for public meetings to be held approximately every 6 months. Public meetings are advertised through the email notification process and in local newspapers. The agenda and presentations for these meetings are available on the public Individual Permit website (<u>http://www.lanl.gov/community-environment/environmental-stewardship/protection/compliance/individual-permit-stormwater/public-meetings.php</u>). The Individual Permit program also holds two annual technical meetings with the Communities for Clean Water technical oversight team.

Site status as of December 31, 2013, is listed below:

- Baseline monitoring extended was continued at 111 SMAs associated with 162 Sites because no sample has been collected as of December 31, 2013.
- Baseline confirmation complete was obtained at 13 Sites with 10 associated SMAs because no TALs were exceeded.
- Corrective action was initiated at 245 Sites with 129 associated SMAs.

Of the Sites where corrective action was initiated, enhanced control monitoring was initiated at 67 Sites associated with 42 SMAs; corrective action complete was certified at 27 Sites associated with 9 SMAs; and alternative compliance was requested at 5 Sites associated with 2 SMAs.

Part I.E.4(a) establishes a 3-year deadline for completion of corrective action for High Priority Sites that exceed one or more TALs. Fifteen High Priority Sites exceeded TALs as of December 31, 2013. The current status of these Sites is described below and is summarized in Table 5.

- The co-Permittees submitted a permit modification request to EPA on October 25, 2013 to move Site 72-001 (S-SMA-6) from the High Priority category to the Moderate Priority category on the basis of extensive data and analysis indicating this Site is not the source of PCBs.
- The co-Permittees submitted two alternative compliance requests for five High Priority Sites (see discussion in Section 7.1 above).

The Permittees submitted certifications of completion of corrective action for 15 Sites pursuant to Section E.2 of the Individual Permit, 2 based upon no exposure and 13 based upon the receipt of a CoC from NMED. The Permit compliance status for the 2013 annual reporting period is summarized in Table 6 and is shown in Figure 9. The Site-specific compliance status is provided in Table 6.

8.0 NEW AND SUBSTANTIAL INFORMATION

A substantial amount of new information has been collected since the January 18, 2008, supplemental information submittal to EPA in support of the application for the current Individual Permit. A significant number of soil samples were collected under the RCRA Consent Order at Individual Permit Sites, and three seasons of storm water data have been collected under the Individual Permit.

The Laboratory also performed two storm water studies (i.e., "Polychlorinated Biphenyls in Precipitation and Stormwater within the Upper Rio Grande Watershed" and "Background Metals Concentrations and Radioactivity in Storm Water on the Pajarito Plateau, Northern New Mexico") that were designed to explain the chemical composition of storm water runoff in developed and undeveloped areas in and around the Laboratory.

8.1 RCRA Consent Order Soil Data

RCRA Consent Order soil data are the primary source of information for determining if a Site contains "significant industrial material" (e.g., not cleaned up or has contamination in place). A significant amount of new soil data have been collected under the RCRA Consent Order since the Sites were initially evaluated for inclusion in the Individual Permit. In addition, RFI data collected before 2005 have been subject to additional evaluation as RCRA Consent Order investigations have progressed and reports have been drafted.

The co-Permittees evaluated all available shallow soil data (i.e., from the surface to a depth of 3 ft bgs) from RFI and RCRA Consent Order investigations to identify any inorganic and organic significant industrial materials from historical Site-related activities that are exposed to storm water. The conservative 3-ft depth interval was selected to ensure any Site-related industrial materials that may be exposed to precipitation by erosion were included in the evaluation. The data evaluated consisted of those previously reported to EPA or NMED in documents submitted under the RCRA Consent Order or RCRA permit. Data that have not been reported to EPA or NMED are not part of the administrative record for the Sites and, therefore, were not evaluated.

The evaluation process consisted of an initial screening to determine constituents potentially present as a result of Site-related activities. Constituents identified as potentially Site-related by the initial screening were then evaluated in more detail to identify if they were likely to be Site-related. Tables 7 and 8 contain the summary of this data evaluation. The evaluation processes for inorganic and organic chemicals are described below.

8.2 Storm Water Data Collected under the Individual Permit

As of December 31, 2013, a baseline confirmation monitoring sample had not been collected at 111 SMAs associated with 162 Sites because there was no flow or insufficient sample volume was collected. Of the storm water samples that were collected at 250 SMAs, samples exceeded one or more TALs collected from 129 SMA samplers. Of these exceedances, 22 were from SMAs containing High Priority Sites, and 107 were from SMAs containing Moderate Priority Sites.

The initial monitoring requirements and frequency of sampling for each pollutant of concern following installation and implementation of baseline control measures vary on a site-by-site basis, as specified in Part I.D.1 of the Permit. BCMs were installed and implemented before the November 1, 2010, Permit effective date at 63 SMAs listed in Appendix E, Table E-2, of the Permit. Baseline confirmation monitoring was complete at 19 of these SMAs on October 31, 2011, with the collection of one or more confirmation monitoring samples. Baseline confirmation monitoring was extended at 44 SMAs where no confirmation monitoring samples were collected before November 1, 2011. BCMs were installed within 6 months of the effective date of the Permit at 187 SMAs not listed in Appendix E, Table E-2. Baseline confirmation monitoring was complete at 51 of these SMAs on April 30, 2012, with the collection of one or more confirmation monitoring samples. Baseline confirmation monitoring was extended at 136 SMAs where no confirmation monitoring samples. Baseline confirmation monitoring was extended at 136 SMAs where no confirmation monitoring samples. Baseline confirmation monitoring was extended at 136 SMAs where no confirmation monitoring samples. Baseline confirmation monitoring was extended at 136 SMAs where no confirmation monitoring samples were collected before May 1, 2012. If no confirmation sample could be collected by October 31, 2011, or April 30, 2012, from a measurable storm event, Part I.E.5(e) of the Permit requires that confirmation sampling shall continue until at least one sample is collected. Table 9 summarizes the number of SMAs where one, two, or no samples were collected.

Enhanced control measures were installed and implemented at 42 SMAs in 2012 and at 10 SMAs in 2013. Monitoring of storm water associated with these enhanced controls was complete at 13 of these SMAs on December 31, 2013, with the collection of two confirmation monitoring samples or certification of completion of corrective action under Part I.E.2 of the Permit. Corrective action monitoring is continuing at 39 SMAs. Table 10 and 11 summarize ATAL and MTAL exceedances for all confirmation monitoring samples collected through December 31, 2013.

8.3 Supporting Storm Water Studies

8.3.1 Polychlorinated Biphenyls in Precipitation and Stormwater within the Upper Rio Grande Watershed

The unique chemical properties of PCBs allow them to persist in the environment for decades, usually adsorbed to soil, stream sediment, or organic matter. With time, a portion of the lighter PCB molecules volatilizes and is distributed globally through the atmosphere and from precipitation events. Consequently, PCBs are found in the landscape not only near industrial centers but also in residential areas, on undeveloped lands, and even in remote polar regions and mountain snow packs. According to the EPA, environmental cycling of past releases of PCBs is a major source of PCB contamination worldwide. This cycling consists of volatilization of PCBs from land and water, atmospheric dispersion, wet or dry deposition, followed by revolatilization. Evidence of this dispersion is reported in a large body

of work documenting widespread distribution of PCBs in environmental media around the world, even in the absence of point sources of PCBs.

Because of this unique property of PCBs the Individual Permit differentiates between High Priority Sites, which were assumed to have Site-related PCBs exposed to storm water, and Moderate Priority Sites, which were assumed not to have Site-related PCBs exposed to storm water. The RCRA Consent Order soil data demonstrated that many of the Sites in the Individual Permit, including some High Priority Sites, did not have Site-related PCBs exposed to storm water. These findings highlighted the need to differentiate between PCBs in surface waters that originate from local industrial and urban sources, on the one hand, and global atmospheric deposition, on the other. DOE, the NMED–DOE Oversight Bureau, and LANS conducted a multiyear cooperative study to characterize PCBs in certain surface waters located in the upper Rio Grande watershed and in areas in and around the Laboratory. The PCB Background Report summarizes the findings of this investigation.

The PCB Background Report presents baseline, base-flow, and storm-flow concentrations of PCBs in certain surface waters located in the upper Rio Grande watershed and in areas in and around the Laboratory. The objectives of this study were to establish the following:

- Baseline levels of PCB concentrations in precipitation and snowpack near Los Alamos, New Mexico, and from alpine peaks overlooking the northern Rio Grande watershed up to the state border with Colorado
- Baseline levels of PCB concentrations in storm water in northern New Mexico streams and arroyos that are tributaries to the Rio Grande and Rio Chama
- The range of PCB concentrations found in the Rio Grande during base-flow (dry weather flow) and storm-flow conditions
- Baseline levels of PCBs in storm water from undeveloped watersheds of the Pajarito Plateau and the northeast flank of the Jemez Mountains near Los Alamos
- The concentrations of PCBs in urban runoff from the Los Alamos townsite adjacent to the Laboratory
- How these findings may be used to target significant sources of PCBs

In northern New Mexico, the predominant mechanism for redistributing PCBs is sediment transport by storm water. The sampling locations used for this report to determine baseline levels of PCBs in storm water on the Pajarito Plateau were selected to avoid any known contamination and to provide reasonable estimates of baseline concentrations, including a wide variety of bedrock source areas and sediment texture. The data do not indicate distinct contributions of PCBs from local industrial pollution sources at most locations. The total PCB concentrations in precipitation were generally low, probably reflecting the rural nature of the study area. Levels in precipitation and snowpack samples from the upper Rio Grande watershed rank among the lowest when compared with those reported in the scientific literature for other "nonpollution" locations. With the possible exception of samples taken near Albuquerque, samples of snowpack from alpine mountains in northern New Mexico did not show a clear PCB airborne impact from the nearest municipality.

Total PCB concentrations for precipitation and storm water are summarized in Table 12. Although PCB concentrations in precipitation and snowpack are relatively low, those sources still play a major indirect role in impacting surface-water quality. Over long periods of time—perhaps decades—precipitation events leave behind an inventory of PCBs on surface soil. The quality of nearby surface water deteriorates once the surface soil is eroded and carried by runoff into watercourses. Temporary

deterioration of water quality is observed in drainages both small and large. Storm flow occurs infrequently, and the flow events are generally very short lived, with flows lasting less than an hour.

Environmental monitoring results show that small tributaries carrying a moderate amount of suspended soil/sediment likely will have total PCB concentrations above the human-health WQC of 0.64 ng/L and occasionally the wildlife habitat WQC of 14 ng/L, even in the absence of industrial pollution. PCB concentrations above the WQC would be expected in the most remote parts of the drainage system because of the high sediment load carried by small tributaries during periods of storm runoff. Table 12 shows that concentrations greater than the New Mexico human-health WQC were measured in 91% of storm water samples collected from tributaries to the Rio Chama and Rio Grande, in 28% to 78% in ephemeral channels on the Pajarito Plateau, and in 38% of storm water samples from the Rio Grande or Rio Chama.

Sources of PCBs detected in water may include recognizable discrete local-scale PCB sources (e.g., Site-related PCBs in surface soil) as well as ubiquitously dispersed sources. The upper ranges of PCB concentrations in baseline or Rio Grande storm runoff were approximately an order of magnitude larger than those for precipitation (less than 1 ng/L in precipitation and 10 ng/L to 50 ng/L in storm runoff). This increase was primarily from the presence of PCBs associated with suspended sediment in runoff. Similarly, another order of magnitude increase in PCB concentrations was evident when upper ranges in runoff from developed, urban areas (above 100 ng/L) were compared with upper ranges in baseline or Rio Grande storm runoff. The higher concentrations associated with the runoff from developed, urban areas likely resulted from the contribution of additional diffuse local sources in the urban environment. This finding is consistent with information in the toxicological profile for PCBs published by the Agency for Toxic Substances and Disease Registry as well as numerous studies, which report that PCB concentrations in storm water in developed urban areas are higher than in rural locations.

The disparity between PCB concentrations during base-flow (ambient) and storm-flow periods because of suspended sediment is significant. While concentrations are elevated during storm runoff events in perennial or intermittent segments, they may recover quickly to lower levels during the intervening periods of base flow (unless impacted by a significant pollution source). On a time-weighted basis, average exposure levels in the water column would be relatively low, yet the perennial segment could exceed WQC if the assessment data set includes samples collected when runoff was occurring.

To illustrate the role of suspended sediment in affecting PCB concentrations in surface water, data for base-flow periods were compiled for these same drainage areas. Figure 10 shows that PCB concentrations were only rarely above the New Mexico human health WQC under base-flow conditions because suspended sediment concentrations associated with base flow were very low, typically less than 100 mg/L. For perennial or intermittent surface waters, base flow predominates perhaps 90% or more of the time. In contrast, surface waters during storm runoff generally contained PCB concentrations above 5 ng/L and substantially above the New Mexico WQC for protection of human health. Such concentrations were measured even in the most remote parts of the watershed and can be attributed to the increased concentrations of suspended soils and sediments carried by surface waters during storm runoff.

As illustrated in Table 12, the PCB UTLs for storm water runoff from precipitation, snowpack, reference watersheds, and the Los Alamos townsite all exceed the 0.00064-µg/L TAL. That is, Sites with no Site-related sources of PCBs may exceed the TAL for total PCBs solely from nonpoint atmospheric and/or developed landscape PCB contributions.

These findings, combined with RCRA Consent Order shallow soil data, provide the basis for the determinations in the Individual Permit Site narratives of whether or not any PCB TAL exceedance is

wholly or partially from Site-related PCBs exposed to storm water and/or from nonpoint contributions, such as atmospheric deposition or runoff from developed, urban areas.

8.3.2 Background Metals Concentrations and Radioactivity in Storm Water on the Pajarito Plateau, Northern New Mexico

Common TAL exceedances of metals and radioactivity in storm water runoff from Sites on the Pajarito Plateau include aluminum, copper, zinc, and gross-alpha radiation. Screening of RFI and RCRA Consent Order shallow soil data demonstrates that these TAL exceedances are not from Site-related releases of significant industrial materials. A metals background study was conducted from 2009 to 2012 to investigate both natural (i.e., distant from any industrial activity or urban development) and anthropogenic sources of metals and gross-alpha radioactivity on the Pajarito Plateau. The two principal objectives of this study were to determine (1) background concentrations in reference watersheds and western boundary locations and (2) baseline concentrations of metals and radioactivity in nonpoint, urban runoff from the Los Alamos townsite and developed landscapes within the Laboratory. The results of this study are presented in the Background Metals Report.

Results for the metals and gross-alpha radioactivity with common exceedances were strongly associated with each landscape type. Aluminum and gross alpha were elevated in distant nondeveloped landscapes because of the composition of natural minerals in weathered Bandelier Tuff. Copper and zinc were elevated within and adjacent to developed urban landscapes because these metals are associated with materials and activity occurring within a developed urban landscape.

8.3.2.1 Aluminum and Gross Alpha

Aluminum is the third most abundant element in the Earth's crust and is a component of a wide variety of minerals. Specific to the Pajarito Plateau are copious amounts of poorly crystalline aluminum-bearing volcanic glass, clay, and feldspars minerals that are abundant in the Bandelier Tuff, a major rock type on the plateau. Bandelier Tuff is the prevalent geologic material throughout the Laboratory and within the distant background locations monitored for the Background Metals Report. Colloidal phases of these minerals are not captured by filtration during processing and are measured in the analysis although they are not a component of the dissolved phase.

Alpha-emitting radiogenic minerals are also present in natural rock throughout the Laboratory and are responsible for the high gross-alpha activity in storm water. Gross-alpha measurements are performed on nonfiltered water samples that often contain high concentrations of suspended sediments, typical of storm water runoff in an arid environment. Gross-alpha exceedances are routinely observed in turbid storm flow in the Rio Grande as well. In addition, natural sediments entrained in turbid storm water runoff from SWMUs distant from developed landscapes are the leading factor for routine exceedances of gross alpha within the Laboratory.

Alpha-emitting radionuclides associated with source, special nuclear, or byproduct material as defined in the AEA or the radioactive portion of mixed waste are exempt from regulation under the CWA. Although these radionuclides may be associated with the gross-alpha radioactivity detected in the Individual Permit samples, they are excluded from the definition of adjusted gross-alpha radioactivity.

Table 13 presents the results for aluminum and gross alpha from reference and developed watersheds. The reference watershed BV of 2210 μ g/L for dissolved aluminum significantly exceeds the Individual Permit TAL of 750 μ g/L. Similarly, the reference watershed BV of 1490 pCi/L for gross alpha significantly exceeds the Individual Permit TAL of 15 pCi/L.

8.3.2.2 Copper and Zinc

There is a vast body of literature describing elevated levels of copper and zinc in storm water runoff from developed, urban landscapes (Table 14). Copper is a major component of brake-pad emissions and electrical components, and trace amounts are present in automobile tires. Copper containing building components such as roof flashing, cladding, and pipes are also widely distributed in urban landscapes. Zinc is the principal component of galvanized metal fences, roof flashing, siding, heating and ventilation, ducts, downspouts, storage boxes and sheds, and housing sidings and is commonly seen in storm water runoff in developed landscapes. As an urban environment is developed and weathered, metals and other compounds are continually shed and entrained in storm water runoff. This effect has been recognized for some time throughout the developed world.

Run-on from developed areas onto Sites commonly contains elevated concentrations of copper and zinc, which are subsequently observed as TAL exceedances even though the concentrations of these metals in shallow soil samples are consistent with BVs, and no historical Site-related processes used these metals. The fact that concentrations of copper and zinc are well below TALs in storm water runoff from remote nondeveloped watersheds on the Pajarito Plateau verify that these metals are associated with developed urban landscapes.

Table 13 presents the results for copper and zinc from developed, urban landscapes. The developed BV of 32.3 μ g/L for dissolved copper significantly exceeds the Individual Permit TAL of 4.3 μ g/L. Similarly, the developed BV of 1350 μ g/L for dissolved zinc significantly exceeds the Individual Permit TAL of 42 μ g/L.

9.0 SUPPORTING DOCUMENTATION—UPDATED INDIVIDUAL PERMIT SITE NARRATIVES

The co-Permittees updated the Individual Permit Site narratives that were submitted for the current Permit based upon the new and substantial information described above. It should be noted that, while considerable information is being submitted in these Permit renewal materials pertaining to all Sites covered by the existing Permit, the co-Permittees will not be seeking coverage under the renewal Permit for all Sites. Analysis of the information described above enabled the co-Permittees to eliminate a number of Sites from Permit coverage because no significant industrial materials are exposed to storm water. Additional, less-extensive supplemental submissions can be anticipated as the ongoing investigations and analysis under the RCRA Consent Order enable the co-Permittees to further refine the coverage of Sites in this renewal application.

The updated Individual Permit Site narratives, which are provided in Section IV, include the following.

- <u>A description of the current status of the SWMU or AOC</u>: The updated description documents any changes that have been made at the Site since the Individual Permit was issued. Examples of Site updates include documentation of the removal or remediation of impacted soil, plugged outfalls, septic tank removals, and building demolitions.
- <u>A description of the Site's status under the RCRA Consent Order</u>: The updated description includes a Site's RCRA Consent Order status because once NMED issues a CoC, the co-Permittees may submit a certification of completion of corrective action to EPA under the Individual Permit. A Site's Consent Order status will fall under one of the following six categories:
 - ✤ a CoC was issued by NMED;
 - ✤ a CoC request was submitted to NMED;
 - a supplemental investigation report has been submitted to NMED;

- an supplemental investigation report has not yet been submitted to NMED, but the data evaluation indicates that a Site is eligible for a CoC;
- ✤ additional investigation is required; or
- the Site is deferred or delayed.
- <u>A description of any significant industrial materials exposed to storm water</u>: As discussed above, the concentrations of Site-related, naturally occurring constituents in shallow soil samples were compared with the applicable soil background concentrations and residential SSLs. The concentrations of anthropogenic constituents in shallow samples were compared with residential SSLs. Based upon this data evaluation, a determination was made of whether or not the Site contains significant industrial material(s). If there are one or more TAL exceedances, the storm water and soil data are evaluated to determine if the TAL exceedance is from Site-related, significant industrial materials exposed to storm water.
- For Sites with one or more TAL exceedances, an evaluation of other source(s) of the constituents that exceeded TALs: The nature of the SMA is evaluated to determine if it receives runoff from developed and/or undeveloped areas. The TAL exceedance is then compared with the applicable background UTL.

Section IV Part B of Form 2F requires a narrative description of significant materials that are currently or in the past 3 years have been treated, stored, or disposed of in a manner to allow exposure to storm water; the method of treatment, storage, or disposal; past and present materials management practices employed to minimize contact of these materials with storm water runoff; and materials loading and access areas. Unlike a typical facility subject to an Individual Permit, the source of the significant industrial materials exposed to storm water is the historical activity that caused the Site to be identified as a SWMU or AOC in the 1990 SWMU Report. That is, the potential historical releases at a Site are the "industrial activity" that could create a "point source discharge" requiring NPDES coverage. Therefore, the 3-year time frame in Section IV Part B of Form 2F is not applicable. Any current waste and/or material management practices are included in the updated Individual Permit Site narrative for completeness.

Although some Sites may currently manage new products or wastes, these current activities are regulated separately from the historical releases that caused the Site to be identified as a SWMU or AOC. The Individual Permit specifically excludes regulated storm water discharges associated with current conventional industrial activities or urban runoff that is not impacted by historical releases of significant industrial materials from a Site. These operational storm water discharges are, however, subject to a comprehensive regulatory framework.

Some Sites are subject to the Laboratory's NPDES MSGP (No. NMR05GB21). The industrial sectors covered under the MSGP that apply to TA-03 are Sector AA, fabricated metal products, and Sector O, steam electric-generating facilities. Pursuant to the MSGP, the Laboratory has SWPPPs and performs benchmark storm water monitoring for the two relevant industrial sectors within TA-03. The SWPPP is a written assessment of potential sources of pollutants in storm water runoff and the control measures that are implemented at each site to minimize the discharge of these pollutants in runoff. These control measures include site-specific BMPs, maintenance plans, inspections, employee training, and reporting.

Storm water discharges from construction activities (such as clearing, grading, excavating, and stockpiling) that disturb one or more acres, or smaller sites that are part of a larger common plan of development or sale, are regulated by EPA under the NPDES CGP. The CGP also authorizes storm water discharges from any other construction activity designated by EPA, where EPA makes that designation based on the potential for contribution to an excursion of a water-quality standard or for

significant contribution of pollutants to waters of the U.S. Soil-disturbing activities at the Laboratory that meet these criteria are covered under the CGP and comply with CGP requirements. Storm water control measures used during construction projects subject to the CGP include the following.

- <u>Erosion and sediment controls</u>: Erosion controls provide the first line of defense in preventing offsite sedimentation and are designed to prevent erosion through protection and preservation of soil. Sediment controls are designed to remove sediment from runoff before it is discharged from the Site.
- <u>Storm water management measures</u>: Storm water management measures include, but are not limited to, on-site infiltration of runoff, flow attenuation by vegetation or natural depressions, outfall velocity dissipation devices, storm water retention basins and artificial wetlands, and storm water detention structures.
- <u>Housekeeping BMPs</u>: Construction BMPs are designed to keep pollutants associated with construction projects such as oil; grease; paints; gasoline; concrete truck chute washdown; raw materials used in the manufacture of concrete (sand, aggregate, and cement); litter; and debris out of storm water.

As a federal facility, any development or redevelopment project at the Laboratory with a footprint that exceeds 5000 ft² is subject to Section 438 of the Energy Independence and Security Act of 2007. Projects subject to Section 438 must be developed or redeveloped in a manner that maintains or restores storm water runoff to the maximum extent technically feasible by the use of green infrastructure/low-impact development. Section 438 does not, however, require retrofitting unless it is associated with development.

10.0 PROPOSED CHANGES TO THE RENEWED DRAFT PERMIT

This section discusses specific changes that are proposed for the draft permit associated with the renewed Individual Permit. These changes fall into the following categories: (1) substantive changes to reflect substantial new information from investigations and analysis conducted under the RCRA Consent Order; (2) organizational changes to clarify, improve, and facilitate understanding of requirements of the Individual Permit; and (3) nonsubstantive changes and minor typographical errors. These changes are provided in a redline-strikeout version of the Permit ("Proposed Changes," Volume 1), and specific justifications for changes are provided below and in Table A ("Proposed Changes," Volume 1).

10.1 Section E and Section I.5(c): NMED-Approved Investigation Reports

The Permittees request that the renewed draft permit for the Individual Permit include specific language that allows the co-Permittees to complete corrective action or delete a Site, as appropriate, based on an NMED decision under the RCRA Consent Order that the Site poses no unacceptable risk to human health or the environment. This change is consistent with the existing Permit language under Section E, which recognizes the Laboratory may demonstrate a Site poses no unacceptable risk to human health or the environment through an NMED-approved CoC with or without controls under the RCRA Consent Order. These changes are identified in the introductory text to Section E, *Corrective Action*, Section E.1(d), Section E.3(ii) and Section I.5(c), *Deletion of Site*. The revised language would allow the Permittees to achieve corrective action and delete a Site "through an NMED-approved investigation report under the RCRA Consent Order or a Certificate of Clean Closure under the Hazardous Waste Facility Permit confirming that the Site poses no unacceptable risk.

As discussed in Section 6.1, the Permittees have made substantial progress undertaking activities and investigations for Sites (SWMUs and AOCs) under the RCRA Consent Order since the Sites were originally selected for inclusion in the Individual Permit. The RCRA Consent Order process involves phased investigations of SWMUs and AOCs organized around three separate and distinct sections: (1) "*Canyon Watershed Investigations*" at Section IV.B (i.e., Los Alamos Canyon, Pueblo Canyon, Mortandad Canyon, Pajarito Canyon, and others): (2) "*Technical Areas*," which are specific land-based areas within the Laboratory complex such as MDA G at Section IV.C, and (3) "*Aggregate Areas*," which are specified areas listed in the RCRA Consent Order. An "Aggregate Area" is defined in the RCRA Consent Order at Section III.B as "an area within a single watershed or canyon made up of one or more SWMUs or AOCs and the media affected or potentially affected by releases from those SWMUs or AOCs, and for which the investigation or remediation, in part or in entirety, is conducted for the area as a whole to address area-wide contamination, ecological risk assessment, and other factors." The following is a summary of the RCRA Consent Order process:

- Investigation: The Laboratory must investigate the nature and extent of contamination for specific SWMUs and AOCs based on a canyon watershed, technical areas, or aggregate area under Sections IV and V of the RCRA Consent Order. These investigations are performed in phases until the nature and extent of contamination have been sufficiently defined (see Section 6.1);
- 2. <u>Investigation Report</u>: At the conclusion of each phase of an investigation, the Laboratory will submit an "Investigation Report" to NMED for review and written approval:
 - a. The investigation report may conclude that the nature and extent of any contamination have been defined one or more Sites (SWMUs or AOCs). A risk assessment will be performed for each of these Sites and the results presented in the investigation report. The risk assessment will answer the following questions for each Site: (1) What are the current and foreseeable Site uses? (2) Do the data satisfy residential risk criteria regardless of use? (3) If not, do the data satisfy risk criteria consist with current and foreseeable site use (e.g., industrial or recreational)?
 - b. The investigation report may recommend that further investigation or limited corrective action is required (e.g., soil removal).
 - c. NMED will review and approve, approve with modifications, or disapprove the Investigation Report.
- 3. <u>Request for a CoC</u>: Once NMED approves an investigation report, the Laboratory may request a CoC for eligible Sites (Section VII.E.6.b).
- 4. <u>CoC Issued</u>: NMED grants a CoC with or without controls.

More complicated Sites may go to the next step in the RCRA Consent Order corrective action process the CME. For example, a CME has been submitted to NMED for the buried mixed and low-level waste pits and shafts at MDA G. The CME is used to identify, develop, and evaluate potential remedial alternatives for removal, containment, and/or treatment of contamination (Section VII.D).Once a CME has been submitted to NMED, the next steps are outlined below.

• <u>Remedy Section</u>: Upon approval of the CME report, NMED will select a final remedy for the SWMU or AOC, which is subject to an opportunity for public comment and public hearing (Section VII.D.7).

- <u>CMI:</u> Following the final remedy decision, the Laboratory submits a CMI Plan outlining the design, construction, operation, maintenance, and performance monitoring for the selected remedy (Section VII.E).
- <u>Remedy Completion Report</u>: Following completion of the remedy, the Laboratory submits a remedy completion report that contains specific required information demonstrating the work has been certified as complete (Section VII.E.6)
- <u>Request for a CoC</u>: At the conclusion of this process, the Laboratory may request a CoC along with approval of a report documenting the work has been completed (Section VII.E.6.b).
- <u>NMED issuance of a CoC</u>: At the end of this process, NMED may issue a CoC with or without controls once it is satisfied the SWMU or AOC poses no potential risk to human health and the environment.

The Individual Permit application was submitted in March 2005, the same year DOE and NMED signed the RCRA Consent Order. Since 2005, however, the Laboratory has undertaken significant investigation and sampling activities as required under the RCRA Consent Order. As described above, NMED's approval of the final investigation report for an aggregate area, technical area, or canyon is a key regulatory decision point because it documents whether or not an individual Site poses a risk to human health or the environment based upon current and reasonably foreseeable future use. Although the Laboratory will request CoCs for eligible SWMUs and AOCs once NMED has approved an investigation report, the time frame for receiving the CoC is dependent upon NMED. The co-Permittees believe NMED's approval of the investigation report and the associated risk assessment provides the documentation necessary to demonstrate that a Site does not have any significant industrial materials exposed to storm water if it satisfies residential risk.

For these reasons, the Permittees propose the following to EPA:

- Revise Section E to add a new Section E.2 (e) to allow the Laboratory to demonstrate that it may be eligible for completion of corrective action under the Individual Permit or Site deletion if it received an NMED-approved investigation report under the RCRA Consent Order, confirming a Site poses no unacceptable risk to human health or the environment based on residential SSLs.
- Revise Section I.5.C to allow the Laboratory to demonstrate that a Site may be deleted if it
 receives an NMED-approved investigation report under the RCRA Consent Order confirming that
 the Site poses no unacceptable risk to human health or the environment based upon residential
 SSLs.

10.2 Section E and Section I.5.d: RCRA Clean Closure

The Permittees request that the renewed draft Permit for the Individual Permit incorporate specific language that allows the co-Permittees to complete corrective action or delete a Site, as appropriate, for Sites that have achieved RCRA "clean closure." A Site that has a certificate of clean closure is equivalent to an NMED decision that a SWMU or AOC poses no unacceptable risk to human health or the environment because all hazardous waste and hazardous waste residues must be removed and all soil containing or contaminated with hazardous waste or hazardous waste residues must be decontaminated or removed (see closure 40 CFR 264.178). This change is also consistent with the existing Permit language under Section E, which recognizes that the Laboratory may demonstrate that a Site poses no unacceptable risk to human health or the environment through an NMED-approved CoC with or without controls under the RCRA Consent Order. These changes are identified in the introductory text to Section E, Section E.1(d), Section E.3(iii) and Section I.5(d), *Deletion of Site.* The revised language would

allow the Permittees to achieve completion of corrective action under the Individual Permit and delete a Site "through an NMED-approved Certificate of Clean Closure under the Hazardous Waste Facility Permit confirming that the Site poses no unacceptable risk to human health or the environment based upon residential soil screening levels."

Under the RCRA Consent Order, some SWMUs and AOCs are also "interim status units" under the Laboratory's Hazardous Waste Facility Permit and RCRA regulations. A number of these interim status units have undergone and completed clean closure under the Hazardous Waste Facility Permit. RCRA clean closure is a confirmation that all hazardous or mixed wastes are removed from the unit, and all equipment, structures, and surrounding soils are decontaminated or removed (Part 9.2.1 of Hazardous Waste Facility Permit). In addition, a number of active RCRA interim status units (i.e., firing sites) that are also Sites under the Individual Permit will be subject to RCRA closure at the end of their active life.

10.3 High Priority Sites

The Permittees request that their progress in addressing High Priority Sites be reflected in the draft permit for the renewal of the Individual Permit. As a result of new information and progress under the RCRA Consent Order, the Laboratory has determined that a substantial number of High Priority Sites identified in the Individual Permit are not the industrial source for PCBs and did not previously handle, store, treat or otherwise manage PCBs. The process supporting this determination is discussed below, along with supporting documentation.

In addition, the Permittees submitted a Permit modification request to EPA to move Site 72-001 from the High Priority category to the Moderate Priority category on the basis of extensive data and analysis indicating that PCBs were never used at this Site (see October 25, 2013, letter from Jeff Mousseau and Peter Maggiore to Jan Walker and Diana McDonald). This request also demonstrated that aluminum, cyanide, gross-alpha radioactivity, and radium-226 and radium-228 were never used at Site 72-001. The co-Permittees, therefore, recommend that Site 72-001 be moved from the List of High Priority Sites in Section E.4(a) of the Individual Permit to the list of Moderate Priority Sites in Appendix A (see revised draft Individual Permit, at p. 11).

The following describes the basis for seeking to remove the remainder of the Sites presented in Table 15 from High Priority status to Moderate Priority status. The co-Permittees have used new RCRA Consent Order soil data to reevaluate Sites initially identified as High Priority based upon FFCA storm water sample data. As described in Section 8.1, RCRA Consent Order soil data are the primary source of information for determining if a Site contains "significant industrial material" (e.g., not cleaned up or has contamination in place). The co-Permittees evaluated all readily available shallow soil data (i.e., from the surface to a depth of 3 ft bgs) from RFI and RCRA Consent Order investigations to determine if Site-related PCBs may have been released from historical Site-related activities.

The Laboratory does not have soil background data for PCBs because they are not naturally occurring constituents. Concentrations of detected PCBs were compared with residential SSLs and 10% of residential SSLs. Comparisons with residential SSLs were made to indicate if PCBs are present at concentrations that might be indicative of significant industrial materials. Comparisons with 10% of residential SSLs were made to indicate if PCBs are present at concentrations that could require corrective action under the RCRA Consent Order (i.e., constituents present at less than 10% of the residential SSL generally would not require additional sampling or cleanup under the RCRA Consent Order). The results of the evaluation include the maximum detected concentration as a multiple of the SSL and 10% of the SSL, the number of results greater than the SSL and 10% of the SSL out of the total number of samples,

and the percentage of samples having results greater than SSL and 10% of the SSL. These results are presented in Table 8, which includes a guide to using the Table.

The PCB results carried through this initial screening as well as those present in storm water samples above TALs were then evaluated further to identify those likely to be Site-related. This evaluation considered the following factors:

- <u>Site history</u>: If there was no known or potential historical use of PCBs or evidence the Site had previously stored, disposed, or otherwise managed PCBs, then PCBs were generally identified as being non-Site-related. However, if there were frequent detections above10% of the residential SSL, PCBs were identified as Site-related unless there is another potential source (e.g., an upgradient Site with known historical use).
- <u>Frequency of detection</u>: If a constituent was detected only infrequently above 10% of residential SSLs, it was generally identified as "equivalent to anthropogenic background," even though there may have been potential historical use. In these cases, infrequent, isolated detections above 10% of residential SSLs were assumed to result in impacts to storm water similar to "anthropogenic background concentrations." That is, the contribution of potential Site-related contamination to the total concentration in storm water runoff would be minor.
- <u>Magnitude of detection</u>: PCBs detected at concentrations above residential SSLs were generally identified as Site-related significant industrial materials. However, if there were only one or two detections at high concentrations out of a large number of samples otherwise below residential SSLs, the results were identified as outliers and non-Site-related.
- <u>Geographic distribution</u>: Investigation samples are generally collected at the potential source of a release and along potential transport pathways. The geographic distribution of detections above residential SSLs was reviewed to determine if the results were consistent with the conceptual model of release from the Site. If the pattern of detections was consistent with the conceptual model, PCBs were identified as a Site-related significant industrial material even if not greatly elevated above residential SSLs. However, if high concentrations were not detected near potential source areas or were only detected at locations distant from the Site that could have been impacted by other potential sources, PCBs were identified as non-Site-related.

Table A in the attached redline strikeout of the Individual Permit was revised to propose to remove Sites from the High Priority list if the data screening process described above determined that PCBs are not a significant industrial material for that Site.

10.4 Appendix B Revisions

Appendix B of the current Individual Permit lists the monitoring requirements for each Site. The proposed revisions to Appendix B were developed in two steps. First, if confirmation sampling results demonstrated that all analytical results for a particular pollutant of concern at an SMA are at or below the MTAL and the average of all applicable sampling results is at or below the ATAL, the constituent was removed from Appendix B in accordance with Part I.D.4(a) of the Individual Permit. Appendix B was then further revised based upon the evaluation of RCRA Consent Order data described in Section 8.1 to reflect Site-related constituents present in shallow soil at concentrations that confirm that the SWMU or AOC released significant industrial materials. Tables 7 and 8 contain the summary of this data evaluation. These revisions, combined with the sampler relocations described in Section 10.6 below, are designed to ensure that Site monitoring requirements are representative of storm water discharges from the Site.

A data-screening process similar to that used to propose revisions to the High Priority Site list was employed to evaluate all available shallow soil data. The evaluation process consisted of an initial screening to determine constituents potentially present as a result of Site-related activities. Constituents identified as potentially Site-related by the initial screening were then evaluated in more detail to identify whether they were likely to be Site-related. Tables 7 and 8 contain the summary of this data evaluation. The evaluation processes for inorganic and organic chemicals are described below.

10.4.1 Inorganic Chemical Data

The concentrations of naturally occurring constituents in shallow soil samples were compared with the applicable soil background concentrations in Inorganic and Radionuclide Background Data for Soils, Canyon Sediments, and Bandelier Tuff at Los Alamos National Laboratory. These soil BVs were based on samples collected from areas undisturbed by Laboratory operations. Soil BVs were determined to be representative of typical surficial material on mesa tops, hill slopes, and canyon bottoms as well as imported fill materials. The data presented in the background data report include the minimum, median, maximum, and mean standard deviation and UTL for each constituent. The evaluation of shallow soils for the updated Site narratives included in this renewal application was based upon the applicable maximum BVs.

Initially, the concentration of each inorganic constituent was compared with the Laboratory's soil BV for that constituent. If less than 5% of the sample results for that constituent were greater than the BV, the constituent was determined to be present at background concentrations and was not evaluated further. Although samples in the upper 3 ft may have been collected in media other than soil (e.g., tuff), comparisons were made with soil BVs because soil is more representative of material that could be eroded by storm water runoff. If 5% or more of the results were greater than the soil BV, the constituent was determined to potentially be present above background and the results were compared with the maximum concentration for that constituent in the Laboratory's soil background data set. Comparisons were made with maximum background concentrations because the BVs represent the 95% UTL of the background data, and "background" concentrations above BV exist, although at a low probability. The results of the evaluation include the maximum detected concentration as a multiple of the maximum background. These results are presented in Table 7.

These data were also compared with residential SSLs. SSLs alone do not represent cleanup standards and do not trigger the need for a response action or define "unacceptable" levels of contamination in soil. Residential SSLs are used to identify concentrations below which there is generally no need for concern. The latest New Mexico guidance for SSLs is the Risk Assessment Guidance for Site Investigations and Remediation (NMED, February 2012, updated in June 2012). NMED SSLs are based on a 1E-05 target risk for carcinogens, or a hazard quotient of 1 for noncarcinogens.

The inorganic constituents carried through this initial screening, as well as those present in storm water samples above TALs, were then evaluated further to identify those likely to be Site-related. If a constituent does not have a TAL (i.e., there is no water-quality standard), however, it was not evaluated further. This evaluation considered several factors:

• <u>Site history</u>: If there was no known or potential historical use of the constituent, the constituent was generally identified as being non-Site-related. However, if there were frequent detections above maximum background, the constituent was identified as Site-related unless there is another potential source (e.g., an upgradient Site with known historical use).

- <u>Frequency of detection</u>: If a constituent was detected only infrequently above maximum background, it was generally identified as "equivalent to background," even though there may have been potential historical use. In these cases, infrequent, isolated detections above maximum background were assumed to result in impacts to storm water similar to background concentrations. That is, the contribution of potential Site-related contamination to the total concentration in storm water runoff would be minor.
- <u>Magnitude of detection</u>: Constituents detected at concentrations greatly above maximum background were generally identified as Site-related significant industrial materials. However, if there were only one or two detections at high concentrations out of a large number of samples otherwise below BV, the results were identified as outliers and non-Site-related.
- <u>Geographic distribution</u>: Investigation samples are generally collected at the potential source of a release and along potential transport pathways. The geographic distribution of detections above maximum background was reviewed to determine if the results were consistent with the conceptual model of release from the Site. If the pattern of detections was consistent with the conceptual model, the constituent was identified as a Site-related significant industrial material even if not greatly elevated above maximum background. However, if high concentrations were not detected near potential source areas or were only detected at locations distant from the Site that could have been impacted by other potential sources, the constituent was identified as non-Site-related.

10.4.2 Organic Chemical Data

The Laboratory does not have background data for organic chemicals. Therefore, all detected organic chemicals, including PCBs, were initially identified as potential Site-related contaminants. Concentrations of detected organic chemicals were compared with residential SSLs and 10% of residential SSLs. Comparisons with residential SSLs were made to indicate chemicals present at concentrations that might be indicative of significant industrial materials. Comparisons with 10% of residential SSLs were made to indicate chemicals present at concentrations that could require corrective action under the RCRA Consent Order (i.e., constituents present at less than 10% of the residential SSL generally would not require additional sampling or cleanup under the RCRA Consent Order). The results of the evaluation include the maximum detected concentration as a multiple of the SSL and 10% of the SSL, the number of results greater than the SSL and 10% of the SSL out of the total number of samples, and the percentage of samples having results greater than SSL and 10% of the SSL. These results are presented in Table 8. The organic constituents carried through this initial screening, as well as those present in storm water samples above TALs, were then evaluated further to identify those likely to be Site-related. This evaluation considered the same factors as described above in Section 10.3 for removing Sites from the High Priority list in Part I.E.4(a).

10.4.3 Proposed Changes to Appendix B

Appendix B in the attached redline strikeout of the Individual Permit shows the proposed changes to monitoring constituents based upon the data-screening process described above. If available soil data for a Site were inadequate, no changes were proposed to the monitoring list. In addition, if a Site-related monitoring constituent was inadvertently omitted under the current Individual Permit (e.g., HE from a firing site), the constituent was added to Appendix B for that Site. The data supporting these proposed changes are summarized in Tables 7 and 8.

10.5 Total Retention

The current IP does not define design criteria for total retention. Without a design basis the co-Permittees have not been able to use total retention as a tool for the completion of corrective action. The proposed 3-year 24-hour (1.19 to 1.79 in. of precipitation; dependent upon location of the Site) design storm was chosen to be both conservative and technically achievable. Total retention of the 3-year, 24-hour storm event represents a storm water capture volume that exceeds guidance provided by the Energy Independence Security Act and regulations implemented by leading Region 6 municipalities in the field of storm water quality. Despite the statistical annual risk of exceedance of the 3-year, 24-hour storm, only 13 storms in the 62-year period of record (1952 to 2013) have exceeded the 3-year, 24-hour storm. Research has demonstrated that increasing the capture volume (beyond basic water quality goals) is not correlated to an increase in removal efficiencies of targeted constituents.

10.6 Sampling Locations

As stated previously, the Individual Permit treats a Site as an "industrial activity" that creates a "point source" and directs the Permittees to monitor storm water releases from Sites at SMA sampling points. An SMA is a single drainage area within a subwatershed and can include more than one Site. At the time the current Individual Permit was drafted, this subwatershed sampling approach was assumed to be representative of the point-source releases from the Site or Sites within the SMA.

Substantial new information collected since the Sites and SMAs were selected for the current Permit demonstrates that this assumption was frequently incorrect. Although the most common TAL exceedances are for aluminum, gross alpha, copper, zinc, and PCBs, RCRA Consent Order shallow soil data show that these constituents were not released from historical activities at the majority of the Sites. The findings of the PCB Background Report clearly show that Sites with no Site-related sources of PCBs may exceed the TAL for total PCBs solely from nonpoint atmospheric and/or developed landscape PCB contributions. The Background Metals Report confirms that Bandelier Tuff is the primary source of aluminum and gross-alpha TAL exceedances in undeveloped watersheds. The Background Metals Report also confirms that nonpoint runoff from developed areas is a major source of copper and zinc TAL exceedances.

Available storm water and shallow soil data for each Site were carefully reviewed to prepare this renewal application. If a Site was determined to have Site-related significant industrial materials exposed to storm water, the representativeness of the current SMA sampler location was evaluated.

To determine the representativeness of a current sampler location the shallow soil sample results for constituents that exceeded one or more TALs and are Site-related significant industrial materials were plotted on the original SMA map. The results are expressed as the ratio of the soil sample result to 10% of the applicable residential SSL. Once these soil results were plotted on the SMA map, each Site was evaluated to determine if

- a representative number of the plotted results were currently within the SMA boundary and
- the current boundary minimized the impact of non-Site related nonpoint run on contributions.

If necessary, the SMA boundary was adjusted to best represent potential contributions from Site-related significant industrial materials. In most cases, this involved either enlarging or reducing the size of the current SMA boundary to capture Site-related significant industrial materials. In other cases this required moving the SMA boundary entirely to a more representative watershed. And finally, in some instances, where a Site was located within a multiple SMAs, a new (additional) SMA with a new SMA sampler location were proposed to better represent contributions from the Site that had associated significant

industrial materials that exceeded the TAL. In these examples the original SMA boundary was not modified and would continue to represent contributions from other Sites.

The current monitoring locations and SMA boundaries are shown on the maps provided in Section III of Form 2F. The proposed additional monitoring locations for 14 Sites are shown along with the current monitoring location on maps in "Proposed Changes," Volume 1. In addition, the Site boundaries (from the current RCRA Consent Order administrative record) are also shown for completeness.

10.7 Other Changes

In addition to the changes above, the Permittees have identified other nonsubstantive changes in Table A in the redline-strikeout version of the Individual Permit. The following summarizes these changes:

- Organizational:
 - Section E was reorganized to specifically delineate the type of actions that constitute Completion of Corrective Action. With the exception of the addition of NMED-approved Investigation Reports, the changes denoted in this section were non-substantive.
 - Section E.5 was moved to "Other Conditions" under Section I and organized into discrete headers to facilitate understanding this section and compliance. Section E.5 has been difficult to understand because it sets forth "other sampling requirements" that are unrelated to "Corrective Action" under Section E and includes additional requirements not related to sampling (i.e., No Exposure).
- Nonsubstantive changes (e.g., permit citations were renumbered and typographical errors were corrected).

10.8 Administrative Changes

A number of administrative changes have been identified since the effective date of the current Permit. These changes, which are shown in the redline-strikeout version of Appendix A, are briefly summarized below:

- In an effort to be more representative of the locations of the Sites under this Permit, Sites are no longer grouped by SMA but are listed individually as "outfalls." The Sites consist of a variety of shapes and areas and are represented geographically as points (e.g., a release point) and polygons (e.g., a drainage line or a firing site). The centroid of each Site boundary was calculated using geographic information system software for those Sites that occupied an area. The centroid is the geometric mean of the shape, which allows a discrete latitude and longitude to be calculated per Site. This new Site location is provided in NPDES Form 2F, Section I.
- On December 20, 2012, the Laboratory received approval from NMED to split SWMU 32-002(b) into two separate SWMUs: SWMU 32-002(b1) and SWMU 32-002(b2). The Individual Permit associates former Site 32-002(b) with the drainage designated by LA-SMA-5.361 and Permitted Feature L017. The newly designated Sites will continue to be associated with the same SMA and permitted feature. The Site designation of 32-002(b) was retired.

Two typographical errors were identified:

- A typographical error in the Individual Permit Appendix B incorrectly identifies Site 46-004(e2) as part of CDB-SMA-0.55. This Site is within the drainage area of CDB-SMA-0.25.
- Review of the SWMUs and AOCs within the area of W-SMA-7 has identified that Site 16-026(h) was incorrectly associated with industrial materials to be monitored at the SMA. The Site intended for monitoring is 16-029(e).

10.9 Sites Not Requiring Coverage under the Individual Permit

The co-Permittees are seeking coverage under the renewed Permit for some, but not all, Sites covered by the current Individual Permit. At the time the current Permit was issued, it was not entirely clear whether all covered Sites actually were discharging storm water associated with industrial activity, as defined under 40 CFR 122.26(b)(14), or storm water that was causing or contributing to a violation of a water-guality standard or significantly contributing pollutants to waters of the United States, as described in 40 CFR 122.26(a)(1)(v). Data and information available at the time the Individual Permit was drafted supported the assumption that most of the Sites could qualify as requiring NPDES Permit coverage for one or more of these reasons. Accordingly, pursuant to the FFCA, dated February 3, 2005, the co-Permittees agreed to implement an extensive program of control measures and storm water sampling, which carried over into the current Individual Permit, to better characterize and manage discharges associated with these Sites. At the same time, the co-Permittees continued to carry out the extensive corrective action obligations embodied in the RCRA Consent Order, which included extensive soil sampling associated with many of the Sites. All of these activities performed pursuant to the Individual Permit and the Consent Order, together with the supporting storm water studies pertaining to PCBs, metals, and radioactivity discussed above (see Section 8.3), have produced substantial new information that for many Sites negates the assumptions that originally supported the decision to seek NPDES permit coverage.

Based on this extensive, new information, it is now clear that a number of Sites are not discharging storm water associated with industrial activity, storm water that causes or contributes to water-quality standards exceedances, or storm water that significantly contributes pollutants to waters of the United States. The co-Permittees do not have a duty to apply for NPDES Permit coverage with respect to such Sites, and have elected not to seek coverage pursuant to this renewal application. As discussed in Section 10.1, NMED's approval of the final investigation report for an aggregate area, technical area, or canyon is a key regulatory decision point because it documents whether or not an individual Site poses a risk to human health or the environment based upon current and reasonably foreseeable future use. The co-Permittees believe that NMED's approval of the investigation report and the associated risk assessment provides the documentation necessary to demonstrate that a Site does not have any significant industrial materials exposed to storm water if it satisfies residential risk. The co-Permittees have identified 67 Sites that are currently known not to have significant industrial materials exposed to storm water based upon this standard. The Sites the co-Permittees propose to remove from coverage in this renewal application are listed in Table 16. This table also provides references to the relevant reports and NMED actions.

Figure 1 Regional location of the Laboratory

Figure 2 Location of the Laboratory and surrounding landholdings

Figure 3 Observed precipitation for the continental United States for September 10 to September 17, 2013 (Source: NOAA)

Figure 4 Observed precipitation for New Mexico and Colorado for September 10 to September 17, 2013 (Source: NOAA)

Figure 5 Total precipitation for each month of 2011, 2012, and up to October 2013 (Laboratory meteorological tower data averaged over the Laboratory). Mean and percentiles are based on data from 1992 to 2010.

Figure 6 Organic results from the samples collected during September 12 and 13, 2013, storm event. Open circles are nondetects; many values lie below 0.01 on the vertical axis.

Bold font indicates result>TAL; italic font indicates undetected results; "-" is used if no analytical results were available.

Figure 7 Inorganic results from the samples collected during September 12 and 13, 2013, storm event. Open circles are nondetects; many values lie below 0.01 on the vertical axis.

Figure 8 Permit compliance road map

*Counts of unique Sites in each stage are presented.

Figure 9 Permit compliance status as of December 31, 2013

Figure 10 Box plots of base flow and storm runoff PCB concentrations for various drainages in the upper Rio Grande system

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Los Alamos/Pueblo	Rendija Canyon	R-SMA-0.5	C-00-020	Rendija Canyon
		R-SMA-1	C-00-041	
		R-SMA-1.95	00-015	
		R-SMA-2.05	00-011(c)	Rendija Canyon/Cabra Canyon
		R-SMA-2.3	00-011(e)	Rendija Canyon
		R-SMA-2.5	00-011(a)	
	Bayo Canyon	B-SMA-0.5	10-001(a)	Bayo Canyon
			10-001(b)	
			10-001(c)	
			10-001(d)	
			10-004(a)	
			10-004(b)	
			10-008	
			10-009	
		B-SMA-1	00-011(d)	
	Pueblo Canyon	ACID-SMA-1.05	00-030(g)	Pueblo Canyon/Acid Canyon
		ACID-SMA-2	01-002(b)-00	
			45-001	
			45-002	
			45-004	
		ACID-SMA-2.01	00-030(f)	
		ACID-SMA-2.1	01-002(b)-00	
		P-SMA-0.3	00-018(b)	Pueblo Canyon
		P-SMA-1	73-001(a)	
			73-004(d)	
		P-SMA-2	73-002	
			73-006	
		P-SMA-2.15	31-001	
		P-SMA-2.2	00-019	Pueblo Canyon/ Graduation Canyon
		P-SMA-3.05	00-018(a)	Pueblo Canyon
	Los Alamos Canyon	LA-SMA-0.85	03-055(c)	Los Alamos Canyon
		LA-SMA-0.9	00-017	
			C-00-044	
		LA-SMA-1	00-017	
			C-00-044	
		LA-SMA-1.1	43-001(b2)	
		LA-SMA-1.25	C-43-001	

 Table 1

 Site Organization by Watershed, Canyon, and SMA

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Los Alamos/Pueblo	Los Alamos Canyon	LA-SMA-2.1	01-001(f)	Los Alamos Canyon
		LA-SMA-2.3	01-001(b)	
		LA-SMA-3.1	01-001(e)	
			01-003(a)	
		LA-SMA-3.9	01-001(g)	
			01-006(a)	
		LA-SMA-4.1	01-003(b)	
			01-006(b)	
		LA-SMA-4.2	01-001(c)	
			01-006(c)	
			01-006(d)	
		LA-SMA-5.01	01-001(d)	
			01-006(h)	
		LA-SMA-5.02	01-003(e)	
		LA-SMA-5.2	01-003(d)	
		LA-SMA-5.31	41-002(c)	
		LA-SMA-5.33	32-004	
		LA-SMA-5.35	C-41-004	
		LA-SMA-5.361	32-002(b1)	
			32-002b2	
		LA-SMA-5.362	32-003	
		LA-SMA-5.51	02-003(a)	
			02-003(e)	
			02-004(a)	
			02-005	
			02-006(b)	
			02-006(c)	
			02-006(d)	
			02-006(e)	
			02-008(a)	
			02-009(b)	
			02-011(a)	
			02-011(b)	
			02-011(c)	
			02-011(d)	
		LA-SMA-5.52	02-003(b)	
			02-007	
			02-008(c)	
		LA-SMA-5.53	02-009(a)	

Table 1 (continued) Site Organization by Watershed, (Canyon, and SMA
---	-----------------

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Los Alamos/Pueblo	Los Alamos Canyon	LA-SMA-5.54	02-009(c)	Los Alamos Canyon
		LA-SMA-5.91	21-009	Los Alamos Canyon/BV Canyon
			21-021	
			21-023(c)	
			21-027(d)	
		LA-SMA-5.92	21-013(b)	
			21-013(g)	
			21-018(a)	
			21-021	
		LA-SMA-6.25	21-021	Los Alamos Canyon
			21-024(d)	
			21-027(c)	
		LA-SMA-6.27	21-021	
			21-027(c)	
		LA-SMA-6.3	21-006(b)	
		LA-SMA-6.31	21-027(a)	
		LA-SMA-6.32	21-021	
		LA-SMA-6.34	21-021	
			21-022(h)	
		LA-SMA-6.36	21-021	
			21-024(a)	
		LA-SMA-6.38	21-021	
			21-024(c)	
		LA-SMA-6.395	21-021	
			21-024(j)	
		LA-SMA-6.5	21-021	
			21-024(i)	
		LA-SMA-9	26-001	
			26-002(a)	
			26-002(b)	
			26-003	
		LA-SMA-10.11	53-002(a)	
		LA-SMA-10.12	53-008	
	DP Canyon	DP-SMA-0.3	21-029	DP Canyon
		DP-SMA-0.4	21-021	
		DP-SMA-0.6	21-021	
			21-024(I)	
		DP-SMA-1	21-011(k)	
			21-021	

Table 1 (continued) Site Organization by Watershed,	Canyon, and SMA
---	-----------------

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Los Alamos/Pueblo	DP Canyon	DP-SMA-2	21-021	DP Canyon
			21-024(h)	
		DP-SMA-2.35	21-021	
			21-024(n)	
		DP-SMA-3	21-013(c)	
			21-021	
		DP-SMA-4	21-021	
Sandia	Sandia Canyon	S-SMA-0.25	03-013(a)	Sandia Canyon
			03-052(f)	
		S-SMA-1.1	03-029	
		S-SMA-2	03-012(b)	
			03-045(b)	
			03-045(c)	
			03-056(c)	
		S-SMA-2.01	03-052(b)	
		S-SMA-2.8	03-014(c2)	
		S-SMA-3.51	03-009(i)	
		S-SMA-3.52	03-021	
		S-SMA-3.53	03-014(b2)	
		S-SMA-3.6	60-007(b)	
		S-SMA-3.7	53-012(e)	
		S-SMA-3.71	53-001(a)	
		S-SMA-3.72	53-001(b)	
		S-SMA-3.95	20-002(a)	
		S-SMA-4.1	53-014	
		S-SMA-4.5	20-002(d)	
		S-SMA-5	20-002(c)	
		S-SMA-5.2	20-003(c)	
		S-SMA-5.5	20-005	
		S-SMA-6	72-001	
Mortandad	Cañada del Buey	CDB-SMA-0.15	04-003(a)	Cañada del Buey
			04-004	
		CDB-SMA-0.25	46-004(c2)	
			46-004(e2)	
		CDB-SMA-0.55	46-004(g)]
			46-004(m)]
			46-004(s)]
			46-006(f)]

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Mortandad	Cañada del Buey	CDB-SMA-1	46-003(c)	Cañada del Buey /SWSC Canyon
			46-004(d2)	
			46-004(f)	
			46-004(t)	
			46-004(w)	
			46-008(g)	
			46-009(a)	
			C-46-001	
		CDB-SMA-1.15	46-004(b)	Cañada del Buey
			46-004(y)	
			46-004(z)	
			46-006(d)	
		CDB-SMA-1.35	46-004(a2)	
			46-004(u)	
			46-004(v)	
			46-004(x)	
			46-006(d)	
			46-008(f)	
		CDB-SMA-1.54	46-004(h)	
			46-004(q)	
			46-006(d)	
		CDB-SMA-1.55	46-003(e)	
		CDB-SMA-1.65	46-003(b)	Cañada del Buey /SWSC Canyon
		CDB-SMA-4	54-017	Cañada del Buey
			54-018	
			54-020	
	Mortandad Canyon	M-SMA-1	03-050(a)	Mortandad Canyon
			03-054(e)	
		M-SMA-1.2	03-049(a)	
		M-SMA-1.21	03-049(e)	
		M-SMA-1.22	03-045(h)	
		M-SMA-3	48-001	
			48-005	
			48-007(c)	
		M-SMA-3.1	48-001	
			48-007(b)	
		M-SMA-3.5	48-001	
			48-003	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Mortandad	Mortandad Canyon	M-SMA-4	48-001	Mortandad Canyon/ Effluent Canyon
			48-005	
			48-007(a)	
			48-007(d)	
			48-010	
		M-SMA-5	42-001(a)	
			42-001(b)	
			42-001(c)	
			42-002(a)	
			42-002(b)	
		M-SMA-6	35-016(h)	
		M-SMA-7	35-016(g)	
		M-SMA-7.9	50-006(d)	
		M-SMA-9.1	35-016(f)	Mortandad Canyon
		M-SMA-10	35-008	
			35-014(e)	
		M-SMA-10.01	35-016(e)	
		M-SMA-10.3	35-014(e2)	
			35-016(i)	
		M-SMA-11.1	35-016(o)	
		M-SMA-12	35-016(p)	
		M-SMA-12.5	05-005(b)	
			05-006(c)	
		M-SMA-12.6	05-004	
		M-SMA-12.7	05-002	
			05-005(a)	
			05-006(b)	
			05-006(e)	
		M-SMA-12.8	05-001(a)	
			05-002	
		M-SMA-12.9	05-001(b)	
			05-002	
		M-SMA-12.92	00-001	
		M-SMA-13	05-001(c)	
	Ten Site Canyon	Pratt-SMA-1.05	35-003(h)	Ten Site Canyon
			35-003(p)	
			35-003(r)	
			35-004(h)	
			35-009(d)	
			35-016(k)	

Table 1 (continued) Site Organization by Watershed,	Canyon, and SMA
---	-----------------

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Mortandad	Ten Site Canyon	Pratt-SMA-1.05	35-016(l)	Ten Site Canyon
			35-016(m)	
		T-SMA-1	50-006(a)	
			50-009	
		T-SMA-2.5	35-014(g3)	
		T-SMA-2.85	35-014(g)	
			35-016(n)	
		T-SMA-3	35-016(b)	
		T-SMA-4	35-004(a)	
			35-009(a)	
			35-016(c)	
			35-016(d)	
		T-SMA-5	35-004(a)	
			35-009(a)	
			35-016(a)	
			35-016(q)	
		T-SMA-6.8	35-010(e)	
		T-SMA-7	04-003(b)	
		T-SMA-7.1	04-001	
			04-002	
Pajarito	Twomile Canyon	2M-SMA-1	03-010(a)	Twomile Canyon
		2M-SMA-1.42	06-001(a)	
		2M-SMA-1.43	22-014(a)	
			22-015(a)	
		2M-SMA-1.44	06-001(b)	
		2M-SMA-1.45	06-006	
		2M-SMA-1.5	22-014(b)	
		2M-SMA-1.65	40-005	
		2M-SMA-1.67	06-003(h)	
		2M-SMA-1.7	03-055(a)	
		2M-SMA-1.8	03-001(k)	
		2M-SMA-1.9	03-003(a)	
		2M-SMA-2	03-050(d)	
			03-054(b)	
		2M-SMA-2.2	03-003(k)	
		2M-SMA-3	07-001(a)	
			07-001(b)	
			07-001(c)	
			07-001(d)	
		2M-SMA-2.5	40-001(c)	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Pajarito	Threemile Canyon	3M-SMA-0.2	15-010(b)	Threemile Canyon
		3M-SMA-0.4	15-006(b)	
		3M-SMA-0.5	15-006(c)	
			15-009(c)	
		3M-SMA-0.6	15-008(b)	
		3M-SMA-2.6	36-008	
			C-36-003	
		3M-SMA-4	18-002(b)	
			18-003(c)	
			18-010(f)	
	Pajarito Canyon	PJ-SMA-1.05	09-013	Pajarito Canyon
		PJ-SMA-2	09-009	
		PJ-SMA-3.05	09-004(o)	
		PJ-SMA-4.05	09-004(g)	
		PJ-SMA-5	22-015(c)	
		PJ-SMA-5.1	22-010(b)	
			22-016	
		PJ-SMA-6	40-010	
		PJ-SMA-7	40-006(c)	
		PJ-SMA-8	40-006(b)	
		PJ-SMA-9	40-009	
		PJ-SMA-10	40-006(a)	
		PJ-SMA-11	40-003(a)	
		PJ-SMA-11.1	40-003(b)	
		PJ-SMA-13	18-002(a)	
		PJ-SMA-13.7	18-010(b)	
		PJ-SMA-14	54-004	
		PJ-SMA-14.2	18-012(b)	
		PJ-SMA-14.3	18-003(e)	
		PJ-SMA-14.4	18-010(d)	
		PJ-SMA-14.6	18-010(e)	
		PJ-SMA-14.8	18-012(a)	
		PJ-SMA-16	27-002	
		PJ-SMA-17	54-018	
		PJ-SMA-18	54-014(d)	
			54-017	
		PJ-SMA-19	54-013(b)	
			54-017	
			54-020	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Pajarito	Pajarito Canyon	PJ-SMA-20	54-017	Pajarito Canyon
		STRM-SMA-1.05	08-009(f)	Pajarito Canyon/Starmer's Gulch
		STRM-SMA-1.5	08-009(d)	
		STRM-SMA-4.2	09-008(b)	
		STRM-SMA-5.05	09-013	
Water/	Cañon de Valle	CDV-SMA-1.2	16-017(b)-99	Cañon de Valle
Cañon de Valle			16-029(k)	
		CDV-SMA-1.3	16-017(a)-99	
			16-026(m)	
		CDV-SMA-1.4	16-020	
			16-026(I)	
			16-028(c)	
			16-030(c)	
		CDV-SMA-1.45	16-026(i)	
		CDV-SMA-1.7	16-019	
		CDV-SMA-2	16-021(c)	
		CDV-SMA-2.3	13-001	
			13-002	
			16-003(n)	
			16-003(o)	
			16-029(h)	
			16-031(h)	
		CDV-SMA-2.41	16-018	
		CDV-SMA-2.42	16-010(b)	
		CDV-SMA-2.5	16-010(c)	
			16-010(d)	
			16-028(a)	
		CDV-SMA-2.51	16-010(i)	
		CDV-SMA-3	14-009	
		CDV-SMA-4	14-010	
		CDV-SMA-6.01	14-001(g)	
			14-006	
		CDV-SMA-6.02	14-002(c)	
			14-002(d)	
			14-002(e)	
		CDV-SMA-7	15-008(d)	
		CDV-SMA-8	15-011(c)	
		CDV-SMA-8.5	15-014(a)	
		CDV-SMA-9.05	15-007(b)	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Water/	Fence Canyon	F-SMA-2	36-004(c)	Fence Canyon
Cañon de Valle	Potrillo Canyon	PT-SMA-0.5	15-009(e)	Potrillo Canyon
			C-15-004	
		PT-SMA-1	15-004(f)	
			15-008(a)	
		PT-SMA-1.7	15-006(a)	
		PT-SMA-2	15-008(f)	
			36-003(b)	
			36-004(e)	
		PT-SMA-2.01	C-36-001	
			C-36-006(e)	
		PT-SMA-3	36-004(a)	
			36-006	
		PT-SMA-4.2	36-004(d)	
	Water Canyon	W-SMA-1	16-017(j)-99	Water Canyon
			16-026(c2)	
			16-026(v)	
		W-SMA-1.5	16-026(b2)	
			16-028(d)	
		W-SMA-2.05	16-028(e)	
		W-SMA-3.5	16-026(y)	
		W-SMA-4.1	16-003(a)	
		W-SMA-5	16-001(e)	Water Canyon/S-Site Canyon
			16-003(f)	
			16-026(b)	
			16-026(c)	
			16-026(d)	
			16-026(e)	
		W-SMA-6	11-001(c)	Water Canyon
		W-SMA-7	16-029(e)	
		W-SMA-7.8	16-031(a)	
		W-SMA-7.9	16-006(c)	
		W-SMA-8	16-016(g)	
			16-028(b)	
		W-SMA-8.7	13-001	
			13-002	
			16-004(a)	
			16-026(j2)	
			16-029(h)	
			16-035	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Water/	Water Canyon	W-SMA-8.71	16-004(c)	Water Canyon
Cañon de Valle		W-SMA-9.05	16-030(g)	
		W-SMA-9.5	11-012(c)	Water Canyon/S-Site Canyon
		W-SMA-9.7	11-011(a)	
			11-011(b)	
		W-SMA-9.8	11-005(c)	
		W-SMA-9.9	11-006(b)	
		W-SMA-10	11-002	
			11-003(b)	
			11-005(a)	
			11-005(b)	
			11-006(c)	
			11-006(d)	
			11-011(d)	
		W-SMA-11.7	49-008(c)	Water Canyon
		W-SMA-12.05	49-001(g)	
		W-SMA-14.1	15-004(h)	
			15-014(l)	
		W-SMA-15.1	49-005(a)	
Ancho	Ancho Canyon	A-SMA-1.1	39-004(a)	North Ancho Canyon
			39-004(d)	
		A-SMA-2	39-004(b)	
			39-004(e)	
		A-SMA-2.5	39-010	
		A-SMA-2.7	39-002(c)	
			39-008	
		A-SMA-2.8	39-001(b)	
		A-SMA-3	39-002(b)	
			39-004(c)	
		A-SMA-3.5	39-006(a)	South Ancho Canyon
		A-SMA-4	33-010(d)	
		A-SMA-6	33-004(k)	
			33-007(a)	
			33-010(a)	
Chaquehui	Chaquehui Canyon	CHQ-SMA-0.5	33-004(g)	Chaquehui Canyon
			33-007(c)	
			33-009	
		CHQ-SMA-1.01	33-002(d)	

Table 1 (continued) Site Organ	nization by Watershed, Canyo	n, and SMA
--------------------------------	------------------------------	------------

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Chaquehui	Chaquehui Canyon	CHQ-SMA-1.02	33-004(h)	Chaquehui Canyon
			33-008(c)	
			33-011(d)	
			33-015	
		CHQ-SMA-1.03	33-008(c)	
			33-012(a)	
			33-017	
			C-33-001	
			C-33-003	
		CHQ-SMA-2	33-004(d)	
			33-007(c)	
			C-33-003	
		CHQ-SMA-3.05	33-010(f)	
		CHQ-SMA-4	33-011(e)	
		CHQ-SMA-4.1	33-016	
		CHQ-SMA-4.5	33-011(b)	
		CHQ-SMA-5.05	33-007(b)	
		CHQ-SMA-6	33-004(j)	
			33-006(a)	
			33-007(b)	
			33-010(c)	
			33-010(g)	
			33-010(h)	
			33-014	
		CHQ-SMA-7.1	33-010(g)	

	9/10	/2013	9/11/	2013	9/12/2013-	-9/13/2013	9/14/2013-	-9/15/2013
Met Towers	Precipitation (in.)	Return Period (yr)						
TA-06	1.35	3	0.10	<1	5.07	>1000	0.36	<1
TA-49	1.40	2	0.08	<1	3.94	200	1.85	5
TA-53	1.21	3	0.05	<1	3.70	>1000	0.49	<1
TA-54	1.37	4	0.02	<1	4.28	>1000	1.02	1
NCOMM	1.40	2	0.09	<1	4.49	>1000	0.35	<1
Laboratory Average	1.35	3	0.07	<1	4.30	>1000	0.81	1

 Table 2

 Total Precipitation at Each of the Laboratory Meteorological Towers

SWMU Count	Site ID	SMA ID	Aggregate Area
Los Alamos/Puebl	0		
1	00-011(a)	R-SMA-2.5	Gauje/Barrancas/Rendija
2	00-011(c)	R-SMA-2.05	Gauje/Barrancas/Rendija
3	00-011(d)	B-SMA-1	Gauje/Barrancas/Rendija
4	00-011(e)	R-SMA-2.3	Gauje/Barrancas/Rendija
5	00-015	R-SMA-1.95	Gauje/Barrancas/Rendija
6	00-017	LA-SMA-0.9	Upper Los Alamos
	00-017	LA-SMA-1	Upper Los Alamos
7	00-018(a)	P-SMA-3.05	Pueblo
8	00-018(b)	P-SMA-0.3	Pueblo
9	00-019	P-SMA-2.2	Pueblo
10	00-030(f)	ACID-SMA-2.01	Pueblo
11	00-030(g)	ACID-SMA-1.05	Pueblo
12	C-00-020	R-SMA-0.5	Gauje/Barrancas/Rendija
13	C-00-041	R-SMA-1	Gauje/Barrancas/Rendija
14	C-00-044	LA-SMA-0.9	Upper Los Alamos
	C-00-044	LA-SMA-1	Upper Los Alamos
15	01-001(b)	LA-SMA-2.3	Upper Los Alamos
16	01-001(c)	LA-SMA-4.2	Upper Los Alamos
17	01-001(d)	LA-SMA-5.01	Upper Los Alamos
18	01-001(e)	LA-SMA-3.1	Upper Los Alamos
19	01-001(f)	LA-SMA-2.1	Upper Los Alamos
20	01-001(g)	LA-SMA-3.9	Upper Los Alamos
21	01-002(b)-00	ACID-SMA-2	Pueblo
	01-002(b)-00	ACID-SMA-2.1	Pueblo
22	01-003(a)	LA-SMA-3.1	Upper Los Alamos
23	01-003(b)	LA-SMA-4.1	Upper Los Alamos
24	01-003(d)	LA-SMA-5.2	Upper Los Alamos
25	01-003(e)	LA-SMA-5.02	Upper Los Alamos
26	01-006(a)	LA-SMA-3.9	Upper Los Alamos
27	01-006(b)	LA-SMA-4.1	Upper Los Alamos
28	01-006(c)	LA-SMA-4.2	Upper Los Alamos
29	01-006(d)	LA-SMA-4.2	Upper Los Alamos
30	01-006(h)	LA-SMA-5.01	Upper Los Alamos
31	02-003(a)	LA-SMA-5.51	Middle Los Alamos
32	02-003(b)	LA-SMA-5.52	Middle Los Alamos
33	02-003(e)	LA-SMA-5.51	Middle Los Alamos

Table 3Individual Permit Sites by Aggregate Area

SWMU Count	Site ID	SMA ID	Aggregate Area
34	02-004(a)	LA-SMA-5.51	Middle Los Alamos
35	02-005	LA-SMA-5.51	Middle Los Alamos
36	02-006(b)	LA-SMA-5.51	Middle Los Alamos
37	02-006(c)	LA-SMA-5.51	Middle Los Alamos
38	02-006(d)	LA-SMA-5.51	Middle Los Alamos
39	02-006(e)	LA-SMA-5.51	Middle Los Alamos
40	02-007	LA-SMA-5.52	Middle Los Alamos
41	02-008(a)	LA-SMA-5.51	Middle Los Alamos
42	02-008(c)	LA-SMA-5.52	Middle Los Alamos
43	02-009(a)	LA-SMA-5.53	Middle Los Alamos
44	02-009(b)	LA-SMA-5.51	Middle Los Alamos
45	02-009(c)	LA-SMA-5.54	Middle Los Alamos
46	02-011(a)	LA-SMA-5.51	Middle Los Alamos
47	02-011(b)	LA-SMA-5.51	Middle Los Alamos
48	02-011(c)	LA-SMA-5.51	Middle Los Alamos
49	02-011(d)	LA-SMA-5.51	Middle Los Alamos
50	03-055(c)	LA-SMA-0.85	Upper Los Alamos
51	10-001(a)	B-SMA-0.5	Вауо
52	10-001(b)	B-SMA-0.5	Вауо
53	10-001(c)	B-SMA-0.5	Вауо
54	10-001(d)	B-SMA-0.5	Вауо
55	10-004(a)	B-SMA-0.5	Вауо
56	10-004(b)	B-SMA-0.5	Вауо
57	10-008	B-SMA-0.5	Вауо
58	10-009	B-SMA-0.5	Вауо
59	21-006(b)	LA-SMA-6.3	DP
60	21-009	LA-SMA-5.91	DP
61	21-011(k)	DP-SMA-1	DP
62	21-013(b)	LA-SMA-5.92	DP
63	21-013(c)	DP-SMA-3	DP
64	21-013(g)	LA-SMA-5.92	DP
65	21-018(a)	LA-SMA-5.92	DP
66	21-021	DP-SMA-0.4	DP
	21-021	DP-SMA-0.6	DP
	21-021	DP-SMA-1	DP
	21-021	DP-SMA-2	DP
	21-021	DP-SMA-2.35	DP
	21-021	DP-SMA-3	DP
	21-021	DP-SMA-4	DP

Table 3 (continued	Individual	Permit	Sites by	Aggregate	Area
				0.000.07		

SWMU Count	Site ID	SMA ID	Aggregate Area
66	21-021	LA-SMA-5.91	DP
	21-021	LA-SMA-5.92	DP
	21-021	LA-SMA-6.25	DP
	21-021	LA-SMA-6.27	DP
	21-021	LA-SMA-6.32	DP
	21-021	LA-SMA-6.34	DP
	21-021	LA-SMA-6.36	DP
	21-021	LA-SMA-6.38	DP
	21-021	LA-SMA-6.395	DP
	21-021	LA-SMA-6.5	DP
67	21-022(h)	LA-SMA-6.34	DP
68	21-023(c)	LA-SMA-5.91	DP
69	21-024(a)	LA-SMA-6.36	DP
70	21-024(c)	LA-SMA-6.38	DP
71	21-024(d)	LA-SMA-6.25	DP
72	21-024(h)	DP-SMA-2	DP
73	21-024(i)	LA-SMA-6.5	DP
74	21-024(j)	LA-SMA-6.395	DP
75	21-024(I)	DP-SMA-0.6	DP
76	21-024(n)	DP-SMA-2.35	DP
77	21-027(a)	LA-SMA-6.31	DP
78	21-027(c)	LA-SMA-6.25	DP
	21-027(c)	LA-SMA-6.27	DP
79	21-027(d)	LA-SMA-5.91	DP
80	21-029	DP-SMA-0.3	DP
81	26-001	LA-SMA-9	Middle Los Alamos
82	26-002(a)	LA-SMA-9	Middle Los Alamos
83	26-002(b)	LA-SMA-9	Middle Los Alamos
84	26-003	LA-SMA-9	Middle Los Alamos
85	31-001	P-SMA-2.15	Pueblo
86	32-002(b)	LA-SMA-5.361	Upper Los Alamos
87	32-003	LA-SMA-5.362	Upper Los Alamos
88	32-004	LA-SMA-5.33	Upper Los Alamos
89	41-002(c)	LA-SMA-5.31	Upper Los Alamos
90	C-41-004	LA-SMA-5.35	Upper Los Alamos
91	43-001(b2)	LA-SMA-1.1	Upper Los Alamos
92	C-43-001	LA-SMA-1.25	Upper Los Alamos
93	45-001	ACID-SMA-2	Pueblo
94	45-002	ACID-SMA-2	Pueblo

T I I A () ()		
Table 3 (continued)) Individual Permit Sites	by Aggregate Area

SWMU Count	Site ID	SMA ID	Aggregate Area
95	45-004	ACID-SMA-2	Pueblo
96	53-002(a)	LA-SMA-10.11	Lower Sandia
97	53-008	LA-SMA-10.12	Lower Sandia
98	73-001(a)	P-SMA-1	Pueblo
99	73-002	P-SMA-2	Pueblo
100	73-004(d)	P-SMA-1	Pueblo
101	73-006	P-SMA-2	Pueblo
Sandia			
1	03-009(i)	S-SMA-3.51	Upper Sandia
2	03-012(b)	S-SMA-2	Upper Sandia
3	03-013(a)	S-SMA-0.25	Upper Sandia
4	03-014(b2)	S-SMA-3.53	Upper Sandia
5	03-014(c2)	S-SMA-2.8	Upper Sandia
6	03-021	S-SMA-3.52	Upper Sandia
7	03-029	S-SMA-1.1	Upper Sandia
8	03-045(b)	S-SMA-2	Upper Sandia
9	03-045(c)	S-SMA-2	Upper Sandia
10	03-052(b)	S-SMA-2.01	Upper Sandia
11	03-052(f)	S-SMA-0.25	Upper Sandia
12	03-056(c)	S-SMA-2	Upper Sandia
13	20-002(a)	S-SMA-3.95	Lower Sandia
14	20-002(c)	S-SMA-5	Lower Sandia
15	20-002(d)	S-SMA-4.5	Lower Sandia
16	20-003(c)	S-SMA-5.2	Lower Sandia
17	20-005	S-SMA-5.5	Lower Sandia
18	53-001(a)	S-SMA-3.71	Lower Sandia
19	53-001(b)	S-SMA-3.72	Lower Sandia
20	53-012(e)	S-SMA-3.7	Lower Sandia
21	53-014	S-SMA-4.1	Lower Sandia
22	60-007(b)	S-SMA-3.6	Upper Sandia
23	72-001	S-SMA-6	Lower Sandia
Mortandad			
1	00-001	M-SMA-12.92	Middle Mortandad/Ten Site
2	03-045(h)	M-SMA-1.22	Upper Mortandad
3	03-049(a)	M-SMA-1.2	Upper Mortandad
4	03-049(e)	M-SMA-1.21	Upper Mortandad
5	03-050(a)	M-SMA-1	Twomile
6	03-054(e)	M-SMA-1	Upper Mortandad
7	04-001	T-SMA-7.1	Middle Mortandad/Ten Site

Table 3 (continued	Individual	Permit	Sites by	Aggregate	Area
				0.000.07		

SWMU Count	Site ID	SMA ID	Aggregate Area
8	04-002	T-SMA-7.1	Middle Mortandad/Ten Site
9	04-003(a)	CDB-SMA-0.15	Upper Cañada del Buey
10	04-003(b)	T-SMA-7	Middle Mortandad/Ten Site
11	04-004	CDB-SMA-0.15	Upper Cañada del Buey
12	05-001(a)	M-SMA-12.8	Middle Mortandad/Ten Site
13	05-001(b)	M-SMA-12.9	Middle Mortandad/Ten Site
14	05-001(c)	M-SMA-13	Lower Mortandad/Cedro
15	05-002	M-SMA-12.7	Middle Mortandad/Ten Site
	05-002	M-SMA-12.8	Middle Mortandad/Ten Site
	05-002	M-SMA-12.9	Middle Mortandad/Ten Site
16	05-004	M-SMA-12.6	Lower Mortandad/Cedro
17	05-005(a)	M-SMA-12.7	Middle Mortandad/Ten Site
18	05-005(b)	M-SMA-12.5	Lower Mortandad/Cedro
19	05-006(b)	M-SMA-12.7	Middle Mortandad/Ten Site
20	05-006(c)	M-SMA-12.5	Lower Mortandad/Cedro
21	05-006(e)	M-SMA-12.7	Middle Mortandad/Ten Site
22	35-003(h)	Pratt-SMA-1.05	Middle Mortandad/Ten Site
23	35-003(p)	Pratt-SMA-1.05	Middle Mortandad/Ten Site
24	35-003(r)	Pratt-SMA-1.05	Middle Mortandad/Ten Site
25	35-004(a)	T-SMA-4	Middle Mortandad/Ten Site
	35-004(a)	T-SMA-5	Middle Mortandad/Ten Site
26	35-004(h)	Pratt-SMA-1.05	Middle Mortandad/Ten Site
27	35-008	M-SMA-10	Middle Mortandad/Ten Site
28	35-009(a)	T-SMA-4	Middle Mortandad/Ten Site
	35-009(a)	T-SMA-5	Middle Mortandad/Ten Site
29	35-009(d)	Pratt-SMA-1.05	Middle Mortandad/Ten Site
30	35-010(e)	T-SMA-6.8	Middle Mortandad/Ten Site
31	35-014(e)	M-SMA-10	Middle Mortandad/Ten Site
32	35-014(e2)	M-SMA-10.3	Middle Mortandad/Ten Site
33	35-014(g)	T-SMA-2.85	Middle Mortandad/Ten Site
34	35-014(g3)	T-SMA-2.5	Middle Mortandad/Ten Site
35	35-016(a)	T-SMA-5	Middle Mortandad/Ten Site
36	35-016(b)	T-SMA-3	Middle Mortandad/Ten Site
37	35-016(c)	T-SMA-4	Middle Mortandad/Ten Site
38	35-016(d)	T-SMA-4	Middle Mortandad/Ten Site
39	35-016(e)	M-SMA-10.01	Middle Mortandad/Ten Site
40	35-016(f)	M-SMA-9.1	Middle Mortandad/Ten Site
41	35-016(g)	M-SMA-7	Middle Mortandad/Ten Site
42	35-016(h)	M-SMA-6	Middle Mortandad/Ten Site

Table 3 (continued) Individual Permit Sites by Aggregate Are
--

SWMU Count	Site ID	SMA ID	Aggregate Area
43	35-016(i)	M-SMA-10.3	Middle Mortandad/Ten Site
44	35-016(k)	Pratt-SMA-1.05	Middle Mortandad/Ten Site
45	35-016(I)	Pratt-SMA-1.05	Middle Mortandad/Ten Site
46	35-016(m)	Pratt-SMA-1.05	Middle Mortandad/Ten Site
47	35-016(n)	T-SMA-2.85	Middle Mortandad/Ten Site
48	35-016(o)	M-SMA-11.1	Middle Mortandad/Ten Site
49	35-016(p)	M-SMA-12	Middle Mortandad/Ten Site
50	35-016(q)	T-SMA-5	Middle Mortandad/Ten Site
51	42-001(a)	M-SMA-5	Upper Mortandad
52	42-001(b)	M-SMA-5	Upper Mortandad
53	42-001(c)	M-SMA-5	Upper Mortandad
54	42-002(a)	M-SMA-5	Upper Mortandad
55	42-002(b)	M-SMA-5	Upper Mortandad
56	46-003(b)	CDB-SMA-1.65	Upper Cañada del Buey
57	46-003(c)	CDB-SMA-1	Upper Cañada del Buey
58	46-003(e)	CDB-SMA-1.55	Upper Cañada del Buey
59	46-004(a2)	CDB-SMA-1.35	Upper Cañada del Buey
60	46-004(b)	CDB-SMA-1.15	Upper Cañada del Buey
61	46-004(c2)	CDB-SMA-0.25	Upper Cañada del Buey
62	46-004(d2)	CDB-SMA-1	Upper Cañada del Buey
63	46-004(e2)	CDB-SMA-0.55	Upper Cañada del Buey
64	46-004(f)	CDB-SMA-1	Upper Cañada del Buey
65	46-004(g)	CDB-SMA-0.55	Upper Cañada del Buey
66	46-004(h)	CDB-SMA-1.54	Upper Cañada del Buey
67	46-004(m)	CDB-SMA-0.55	Upper Cañada del Buey
68	46-004(q)	CDB-SMA-1.54	Upper Cañada del Buey
69	46-004(s)	CDB-SMA-0.55	Upper Cañada del Buey
70	46-004(t)	CDB-SMA-1	Upper Cañada del Buey
71	46-004(u)	CDB-SMA-1.35	Upper Cañada del Buey
72	46-004(v)	CDB-SMA-1.35	Upper Cañada del Buey
73	46-004(w)	CDB-SMA-1	Upper Cañada del Buey
74	46-004(x)	CDB-SMA-1.35	Upper Cañada del Buey
75	46-004(y)	CDB-SMA-1.15	Upper Cañada del Buey
76	46-004(z)	CDB-SMA-1.15	Upper Cañada del Buey
77	46-006(d)	CDB-SMA-1.15	Upper Cañada del Buey
	46-006(d)	CDB-SMA-1.35	Upper Cañada del Buey
	46-006(d)	CDB-SMA-1.54	Upper Cañada del Buey
78	46-006(f)	CDB-SMA-0.55	Upper Cañada del Buey
79	46-008(f)	CDB-SMA-1.35	Upper Cañada del Buey

Table 2 (continued)	Individual Barmit	Sitos by Aggreg	oto Aroo
Table 3 (continued)) individual Permit	Sites by Aggreg	ate Area

SWMU Count	Site ID	SMA ID	Aggregate Area
80	46-008(g)	CDB-SMA-1	Upper Cañada del Buey
81	46-009(a)	CDB-SMA-1	Upper Cañada del Buey
82	C-46-001	CDB-SMA-1	Upper Cañada del Buey
83	48-001	M-SMA-3	Upper Mortandad
	48-001	M-SMA-3.1	Upper Mortandad
	48-001	M-SMA-3.5	Upper Mortandad
	48-001	M-SMA-4	Upper Mortandad
84	48-003	M-SMA-3.5	Upper Mortandad
85	48-005	M-SMA-3	Upper Mortandad
	48-005	M-SMA-4	Upper Mortandad
86	48-007(a)	M-SMA-4	Upper Mortandad
87	48-007(b)	M-SMA-3.1	Upper Mortandad
88	48-007(c)	M-SMA-3	Upper Mortandad
89	48-007(d)	M-SMA-4	Upper Mortandad
90	48-010	M-SMA-4	Upper Mortandad
91	50-006(a)	T-SMA-1	Upper Mortandad
92	50-006(d)	M-SMA-7.9	Upper Mortandad
93	50-009	T-SMA-1	Upper Mortandad
94	54-017	CDB-SMA-4	Lower Pajarito
	54-017	PJ-SMA-18	Lower Pajarito
	54-017	PJ-SMA-19	Lower Pajarito
	54-017	PJ-SMA-20	Lower Pajarito
95	54-018	CDB-SMA-4	Lower Pajarito
	54-018	PJ-SMA-17	Lower Pajarito
96	54-020	CDB-SMA-4	Lower Pajarito
	54-020	PJ-SMA-19	Lower Pajarito
Pajarito			
1	03-001(k)	2M-SMA-1.8	Twomile
2	03-003(a)	2M-SMA-1.9	Twomile
3	03-003(k)	2M-SMA-2.2	Twomile
4	03-010(a)	2M-SMA-1	Twomile
5	03-050(d)	2M-SMA-2	Twomile
6	03-054(b)	2M-SMA-2	Twomile
7	03-055(a)	2M-SMA-1.7	Twomile
8	06-001(a)	2M-SMA-1.42	Twomile
9	06-001(b)	2M-SMA-1.44	Twomile
10	06-003(h)	2M-SMA-1.67	Twomile
11	06-006	2M-SMA-1.45	Twomile
12	07-001(a)	2M-SMA-3	Twomile

SWMU Count	Site ID	SMA ID	Aggregate Area
13	07-001(b)	2M-SMA-3	Twomile
14	07-001(c)	2M-SMA-3	Twomile
15	07-001(d)	2M-SMA-3	Twomile
16	08-009(d)	STRM-SMA-1.5	Starmer/Upper Pajarito
17	08-009(f)	STRM-SMA-1.05	Starmer/Upper Pajarito
18	09-004(g)	PJ-SMA-4.05	Starmer/Upper Pajarito
19	09-004(o)	PJ-SMA-3.05	Starmer/Upper Pajarito
20	09-008(b)	STRM-SMA-4.2	Starmer/Upper Pajarito
21	09-009	PJ-SMA-2	Starmer/Upper Pajarito
22	09-013	PJ-SMA-1.05	Starmer/Upper Pajarito
	09-013	STRM-SMA-5.05	Starmer/Upper Pajarito
23	15-006(b)	3M-SMA-0.4	Threemile
24	15-006(c)	3M-SMA-0.5	Threemile
25	15-008(b)	3M-SMA-0.6	Threemile
26	15-009(c)	3M-SMA-0.5	Threemile
27	15-010(b)	3M-SMA-0.2	Threemile
28	18-002(a)	PJ-SMA-13	Lower Pajarito
29	18-002(b)	3M-SMA-4	Lower Pajarito
30	18-003(c)	3M-SMA-4	Lower Pajarito
31	18-003(e)	PJ-SMA-14.3	Lower Pajarito
32	18-010(b)	PJ-SMA-13.7	Lower Pajarito
33	18-010(d)	PJ-SMA-14.4	Lower Pajarito
34	18-010(e)	PJ-SMA-14.6	Lower Pajarito
35	18-010(f)	3M-SMA-4	Lower Pajarito
36	18-012(a)	PJ-SMA-14.8	Lower Pajarito
37	18-012(b)	PJ-SMA-14.2	Lower Pajarito
38	22-014(a)	2M-SMA-1.43	Twomile
39	22-014(b)	2M-SMA-1.5	Twomile
40	22-015(a)	2M-SMA-1.43	Twomile
41	22-015(c)	PJ-SMA-5	Starmer/Upper Pajarito
42	22-016	PJ-SMA-5.1	Starmer/Upper Pajarito
43	27-002	PJ-SMA-16	Lower Pajarito
44	36-008	3M-SMA-2.6	Threemile
45	C-36-003	3M-SMA-2.6	Threemile
46	40-001(c)	2M-SMA-2.5	Starmer/Upper Pajarito
47	40-003(a)	PJ-SMA-11	Starmer/Upper Pajarito
48	40-003(b)	PJ-SMA-11.1	Starmer/Upper Pajarito
49	40-005	2M-SMA-1.65	Twomile
50	40-006(a)	PJ-SMA-10	Starmer/Upper Pajarito

SWMU Count	Site ID	SMA ID	Aggregate Area
51	40-006(b)	PJ-SMA-8	Starmer/Upper Pajarito
52	40-006(c)	PJ-SMA-7	Starmer/Upper Pajarito
53	40-009	PJ-SMA-9	Starmer/Upper Pajarito
54	40-010	PJ-SMA-6	Starmer/Upper Pajarito
55	54-004	PJ-SMA-14	Middle Cañada del Buey
56	54-013(b)	PJ-SMA-19	Lower Pajarito
57	54-014(d)	PJ-SMA-18	Lower Pajarito
58	54-017	CDB-SMA-4	Lower Pajarito
	54-017	PJ-SMA-18	Lower Pajarito
	54-017	PJ-SMA-19	Lower Pajarito
	54-017	PJ-SMA-20	Lower Pajarito
59	54-018	CDB-SMA-4	Lower Pajarito
	54-018	PJ-SMA-17	Lower Pajarito
60	54-020	CDB-SMA-4	Lower Pajarito
	54-020	PJ-SMA-19	Lower Pajarito
Water/Cañon de Va	alle		
1	11-001(c)	W-SMA-6	Upper Water
2	11-002	W-SMA-10	S-Site
3	11-003(b)	W-SMA-10	S-Site
4	11-005(a)	W-SMA-10	S-Site
5	11-005(b)	W-SMA-10	S-Site
6	11-005(c)	W-SMA-9.8	S-Site
7	11-006(b)	W-SMA-9.9	S-Site
8	11-006(c)	W-SMA-10	S-Site
9	11-006(d)	W-SMA-10	S-Site
10	11-011(a)	W-SMA-9.7	S-Site
11	11-011(b)	W-SMA-9.7	S-Site
12	11-011(d)	W-SMA-10	S-Site
13	11-012(c)	W-SMA-9.5	S-Site
14	13-001	CDV-SMA-2.3	S-Site
	13-001	W-SMA-8.7	S-Site
15	13-002	CDV-SMA-2.3	S-Site
	13-002	W-SMA-8.7	S-Site
16	14-001(g)	CDV-SMA-6.01	Cañon de Valle
17	14-002(d)	CDV-SMA-6.02	Cañon de Valle
18	14-002(e)	CDV-SMA-6.02	Cañon de Valle
19	14-006	CDV-SMA-6.01	Cañon de Valle
20	14-009	CDV-SMA-3	Cañon de Valle
21	14-010	CDV-SMA-4	Cañon de Valle

SWMU Count	Site ID	SMA ID	Aggregate Area
22	15-004(f)	PT-SMA-1	Potrillo/Fence
23	15-004(h)	W-SMA-14.1	Lower Water/Indio
24	15-006(a)	PT-SMA-1.7	Potrillo/Fence
25	15-007(b)	CDV-SMA-9.05	Cañon de Valle
26	15-008(a)	PT-SMA-1	Potrillo/Fence
27	15-008(d)	CDV-SMA-7	Cañon de Valle
28	15-008(f)	PT-SMA-2	Potrillo/Fence
29	15-009(e)	PT-SMA-0.5	Potrillo/Fence
30	15-011(c)	CDV-SMA-8	Cañon de Valle
31	15-014(a)	CDV-SMA-8.5	Cañon de Valle
32	15-014(I)	W-SMA-14.1	Lower Water/Indio
33	C-15-004	PT-SMA-0.5	Potrillo/Fence
34	16-001(e)	W-SMA-5	S-Site
35	16-003(a)	W-SMA-4.1	S-Site
36	16-003(f)	W-SMA-5	S-Site
37	16-003(n)	CDV-SMA-2.3	Cañon de Valle
38	16-003(o)	CDV-SMA-2.3	Cañon de Valle
39	16-004(a)	W-SMA-8.7	S-Site
40	16-004(c)	W-SMA-8.71	S-Site
41	16-006(c)	W-SMA-7.9	Upper Water
42	16-010(b)	CDV-SMA-2.42	Cañon de Valle
43	16-010(c)	CDV-SMA-2.5	Cañon de Valle
44	16-010(d)	CDV-SMA-2.5	Cañon de Valle
45	16-010(i)	CDV-SMA-2.51	Cañon de Valle
46	16-016(g)	W-SMA-8	Upper Water
47	16-017(a)-99	CDV-SMA-1.3	Cañon de Valle
48	16-017(b)-99	CDV-SMA-1.2	Cañon de Valle
49	16-017(j)-99	W-SMA-1	Upper Water
50	16-018	CDV-SMA-2.41	Cañon de Valle
51	16-019	CDV-SMA-1.7	Cañon de Valle
52	16-020	CDV-SMA-1.4	Cañon de Valle
53	16-021(c)	CDV-SMA-2	Cañon de Valle
54	16-026(b)	W-SMA-5	S-Site
55	16-026(b2)	W-SMA-1.5	Upper Water
56	16-026(c)	W-SMA-5	S-Site
57	16-026(c2)	W-SMA-1	Upper Water
58	16-026(d)	W-SMA-5	S-Site
59	16-026(e)	W-SMA-5	S-Site
60	16-026(h2)	W-SMA-7	Upper Water

SWMU Count	Site ID	SMA ID	Aggregate Area
61	16-026(i)	CDV-SMA-1.45	Cañon de Valle
62	16-026(j2)	W-SMA-8.7	Cañon de Valle
63	16-026(I)	CDV-SMA-1.4	Cañon de Valle
64	16-026(m)	CDV-SMA-1.3	Cañon de Valle
65	16-026(v)	W-SMA-1	Upper Water
66	16-026(y)	W-SMA-3.5	Upper Water
67	16-028(a)	CDV-SMA-2.5	Cañon de Valle
68	16-028(b)	W-SMA-8	Upper Water
69	16-028(c)	CDV-SMA-1.4	Cañon de Valle
70	16-028(d)	W-SMA-1.5	Upper Water
71	16-028(e)	W-SMA-2.05	Upper Water
72	16-029(h)	CDV-SMA-2.3	S-Site
	16-029(h)	W-SMA-8.7	S-Site
73	16-029(k)	CDV-SMA-1.2	Cañon de Valle
74	16-030(c)	CDV-SMA-1.4	Cañon de Valle
75	16-030(g)	W-SMA-9.05	Upper Water
76	16-031(a)	W-SMA-7.8	Upper Water
77	16-031(h)	CDV-SMA-2.3	S-Site
78	16-035	W-SMA-8.7	S-Site
79	36-003(b)	PT-SMA-2	Potrillo/Fence
80	36-004(a)	PT-SMA-3	Potrillo/Fence
81	36-004(c)	F-SMA-2	Potrillo/Fence
82	36-004(d)	PT-SMA-4.2	Potrillo/Fence
83	36-004(e)	PT-SMA-2	Potrillo/Fence
84	36-006	PT-SMA-3	Potrillo/Fence
85	C-36-001	PT-SMA-2.01	Potrillo/Fence
86	C-36-006(e)	PT-SMA-2.01	Potrillo/Fence
87	49-001(g)	W-SMA-12.05	North Ancho
88	49-005(a)	W-SMA-15.1	North Ancho
89	49-008(c)	W-SMA-11.7	North Ancho
Ancho	·		
1	33-004(k)	A-SMA-6	South Ancho
2	33-007(a)	A-SMA-6	South Ancho
3	33-010(a)	A-SMA-6	South Ancho
4	33-010(d)	A-SMA-4	South Ancho
5	39-001(b)	A-SMA-2.8	North Ancho
6	39-002(b)	A-SMA-3	North Ancho
7	39-002(c)	A-SMA-2.7	North Ancho
8	39-004(a)	A-SMA-1.1	North Ancho

SWMU Count	Site ID	SMA ID	Aggregate Area
9	39-004(b)	A-SMA-2	North Ancho
10	39-004(c)	A-SMA-3	North Ancho
11	39-004(d)	A-SMA-1.1	North Ancho
12	39-004(e)	A-SMA-2	North Ancho
13	39-006(a)	A-SMA-3.5	North Ancho
14	39-008	A-SMA-2.7	North Ancho
15	39-010	A-SMA-2.5	North Ancho
Chaquehui			
1	33-002(d)	CHQ-SMA-1.01	Chaquehui
2	33-004(d)	CHQ-SMA-2	Chaquehui
3	33-004(g)	CHQ-SMA-0.5	Chaquehui
4	33-004(h)	CHQ-SMA-1.02	Chaquehui
5	33-004(j)	CHQ-SMA-6	Chaquehui
6	33-006(a)	CHQ-SMA-6	Chaquehui
7	33-007(b)	CHQ-SMA-5.05	Chaquehui
	33-007(b)	CHQ-SMA-6	Chaquehui
8	33-007(c)	CHQ-SMA-0.5	Chaquehui
	33-007(c)	CHQ-SMA-2	Chaquehui
9	33-008(c)	CHQ-SMA-1.02	Chaquehui
	33-008(c)	CHQ-SMA-1.03	Chaquehui
10	33-009	CHQ-SMA-0.5	Chaquehui
11	33-010(c)	CHQ-SMA-6	Chaquehui
12	33-010(f)	CHQ-SMA-3.05	Chaquehui
13	33-010(g)	CHQ-SMA-6	Chaquehui
	33-010(g)	CHQ-SMA-7.1	Chaquehui
14	33-010(h)	CHQ-SMA-6	Chaquehui
15	33-011(b)	CHQ-SMA-4.5	Chaquehui
16	33-011(d)	CHQ-SMA-1.02	Chaquehui
17	33-011(e)	CHQ-SMA-4	Chaquehui
18	33-012(a)	CHQ-SMA-1.03	Chaquehui
19	33-014	CHQ-SMA-6	Chaquehui
20	33-015	CHQ-SMA-1.02	Chaquehui
21	33-016	CHQ-SMA-4.1	Chaquehui
22	33-017	CHQ-SMA-1.03	Chaquehui
23	C-33-001	CHQ-SMA-1.03	Chaquehui
24	C-33-003	CHQ-SMA-1.03	Chaquehui
	C-33-003	CHQ-SMA-2	Chaquehui

Table 3 (continued	Individual	Permit	Sites by	Aggregate	Area
				0.000.07		

Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
R001	R-SMA-0.5	16-Dec-10	3-Aug-12	12-Sep-12	C-00-020	MPS	CACompD ^a	29-Nov-12	b	29-Nov-12
R002	R-SMA-1	16-May-11	19-Aug-11	13-Oct-11	C-00-041	MPS	CAI ^c	In Planning	—	—
R003	R-SMA-1.95	16-Dec-10	19-Aug-11	1-May-12	00-015	MPS	CAI	In Planning	—	—
R004	R-SMA-2.05	1-Dec-10	In Process	_	00-011(c)	MPS	—	_	—	—
R005	R-SMA-2.3	1-Dec-10	14-Jun-13	<tal<sup>d</tal<sup>	00-011(e)	MPS	—	_	—	—
R006	R-SMA-2.5	16-Dec-10	In Process	_	00-011(a)	MPS	_	_	—	—
B001	B-SMA-0.5	16-Dec-10	13-Sep-13	30-Oct-13	10-001(a)	MPS	CAI	In Planning	—	—
					10-001(b)	MPS	CAI	In Planning	—	—
					10-001(c)	MPS	CAI	In Planning	—	—
					10-001(d)	MPS	CAI	In Planning	—	—
					10-004(a)	MPS	CAI	In Planning	—	—
					10-004(b)	MPS	CAI	In Planning	—	—
					10-008	MPS	CAI	In Planning	—	—
					10-009	MPS	CAI	In Planning	—	—
B002	B-SMA-1	16-Dec-10	13-Sep-13	22-Oct-13	00-011(d)	MPS	CAI	In Planning	—	—
P001	ACID-SMA-1.05	1-Dec-10	21-Aug-11	<tal< td=""><td>00-030(g)</td><td>MPS</td><td>—</td><td>—</td><td>—</td><td>—</td></tal<>	00-030(g)	MPS	—	—	—	—
P002	ACID-SMA-2	1-Dec-10	19-Aug-11	3-Nov-11	01-002(b)-00	MPS	CAI	In Planning	—	
					45-001	MPS	CACompD	7-Mar-13	—	7-Mar-13
					45-002	MPS	CACompD	7-Mar-13	—	7-Mar-13
					45-004	MPS	CACompD	7-Mar-13	—	7-Mar-13
P002A	ACID-SMA-2.01	16-Dec-10	In Process	_	00-030(f)	MPS	_	_	_	_
P003	ACID-SMA-2.1	1-Dec-10	3-Aug-12	7-Sep-12	01-002(b)-00	MPS	CAI	In Planning	—	—
P004	P-SMA-0.3	16-Dec-10	25-Jul-13	5-Sep-13	00-018(b)	MPS	CACompD	16-Sep-13	_	16-Sep-13

 Table 4

 Site-Specific Compliance Status

Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
P005	P-SMA-1	1-Dec-10	In Process	—	73-001(a)	HPS	_	_	—	—
					73-004(d)	HPS	_	_	—	—
P006	P-SMA-2	1-Dec-10	In Process	_	73-002	MPS	_	_	—	—
					73-006	MPS	_	—	—	—
P007	P-SMA-2.15	16-Dec-10	In Process		31-001	MPS	_	_	—	—
P008	P-SMA-2.2	16-May-11	In Process	_	00-019	HPS	_	_	—	—
P009	P-SMA-3.05	16-Dec-10	13-Sep-13	22-Oct-13	00-018(a)	HPS	CAI	In Planning	—	—
L001	LA-SMA-0.85	1-Dec-10	14-Aug-11	7-Oct-11	03-055(c)	MPS	CAM5 ^e	23-Oct-12	In Process	—
				24-Jun-13	03-055(c)	MPS	CAI2 ^f	In Planning	—	—
L002	LA-SMA-0.9	16-Dec-10	In Process		00-017	MPS	_	_	—	—
					C-00-044	MPS	_	_	—	—
L003	LA-SMA-1	16-Dec-10	19-Aug-11	30-Apr-12	00-017	MPS	CAM5	27-Nov-12	In Process	—
					C-00-044	MPS	CAM5	27-Nov-12	In Process	—
L004	LA-SMA-1.1	16-Dec-10	19-Aug-11	11-Oct-11	43-001(b2)	MPS	CACompD	29-Nov-12	—	29-Nov-12
L005	LA-SMA-1.25	1-Dec-10	28-Aug-11	27-Oct-11	C-43-001	MPS	CAM5	30-Aug-12	In Process	—
				15-Nov-12	C-43-001	MPS	CAI2	In Planning	—	—
L006	LA-SMA-2.1	16-May-11	13-Sep-13	3-Nov-13	01-001(f)	HPS	CAI	In Planning	—	—
L007	LA-SMA-2.3	16-Dec-10	21-Aug-11	1-May-12	01-001(b)	MPS	CACompD	29-Nov-12	—	29-Nov-12
L008	LA-SMA-3.1	1-Dec-10	In Process		01-001(e)	HPS	_	_	—	—
					01-003(a)	HPS	_	_	—	—
L009	LA-SMA-3.9	16-Dec-10	In Process		01-001(g)	MPS	_	_	—	—
					01-006(a)	MPS	_	_	—	—
L010	LA-SMA-4.1	1-Dec-10	4-Sep-11	8-Nov-11	01-003(b)	MPS	CAI	In Planning	—	_
					01-006(b)	MPS	CAI	In Planning	_	_

Table 4 (continued) Site-Specific Compliance Status

			Table 4	l (continued	d) Site-Specific C	Compliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
L011	LA-SMA-4.2	1-Dec-10	In Process	_	01-001(c)	MPS		_	—	—
					01-006(c)	MPS	_	_	—	—
					01-006(d)	MPS	_	_	—	—
L012	LA-SMA-5.01	16-Dec-10	In Process	_	01-001(d)	HPS	_	_	—	—
					01-006(h)	HPS	_	_	—	—
L012A	LA-SMA-5.02	16-May-11	19-Aug-11	25-Oct-11	01-003(e)	HPS	CACompD	29-Nov-12	—	29-Nov-12
L013	LA-SMA-5.2	16-May-11	In Process	—	01-003(d)	MPS	_	_	—	—
L015	LA-SMA-5.31	16-Dec-10	19-Aug-11	30-Apr-12	41-002(c)	MPS	CAM5	27-Jul-12	In Process	—
L016	LA-SMA-5.33	16-Dec-10	21-Aug-11	30-Apr-12	32-004	MPS	CACompD	7-Mar-13	—	7-Mar-13
L014	LA-SMA-5.35	1-Dec-10	7-Sep-11	27-Oct-11	C-41-004	MPS	CAM5	27-Nov-12	In Process	—
L017	LA-SMA-5.361	28-Apr-11	In Process	—	32-002(b1) 32-002(b)	MPS	_	_	—	—
					32-002(b2) 32-002(b)	MPS	_	_	—	—
L017A	LA-SMA-5.362	28-Apr-11	In Process	_	32-003	MPS	_	_	—	—
L018	LA-SMA-5.51	28-Apr-11	12-Jul-13	21-Aug-13	02-003(a)	HPS	CAI	In Planning	—	—
					02-003(e)	HPS	CAI	In Planning	—	—
					02-004(a)	HPS	CAI	In Planning	—	—
					02-005	HPS	CAI	In Planning	—	—
					02-006(b)	HPS	CAI	In Planning	—	—
					02-006(c)	HPS	CAI	In Planning	—	—
					02-006(d)	HPS	CAI	In Planning	—	—
					02-006(e)	HPS	CAI	In Planning	—	—
					02-008(a)	HPS	CAI	In Planning	—	—
					02-009(b)	HPS	CAI	In Planning	—	—
					02-011(a)	HPS	CAI	In Planning	_	_

			Table 4	(continue	d) Site-Specific Co	ompliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
L018	LA-SMA-5.51	28-Apr-11	12-Jul-13	21-Aug-13	02-011(b)	HPS	CAI	In Planning	—	—
					02-011(c)	HPS	CAI	In Planning	—	—
					02-011(d)	HPS	CAI	In Planning	—	—
L018A	LA-SMA-5.52	28-Apr-11	In Process	_	02-003(b)	HPS	—	—	—	—
					02-007	HPS	_	_	—	—
					02-008(c)	HPS	_	_	—	—
L018B	LA-SMA-5.53	28-Apr-11	In Process		02-009(a)	HPS	_	_	—	—
L018C	LA-SMA-5.54	28-Apr-11	13-Sep-13	3-Nov-13	02-009(c)	HPS	CAI	In Planning	—	—
L019	LA-SMA-5.91	1-Dec-10	7-Sep-11	31-Oct-11	21-009	MPS	CAM5	8-Jul-13	In Process	—
					21-021	MPS	CAM5	8-Jul-13	In Process	—
					21-023(c)	MPS	CACompD	29-Nov-12	—	29-Nov-12
					21-027(d)	MPS	CAM5	8-Jul-13	In Process	—
L019A	LA-SMA-5.92	1-Dec-10	12-Jul-13	27-Aug-13	21-013(b)	MPS	CAI	In Planning	—	—
					21-013(g)	MPS	CAI	In Planning	—	—
					21-018(a)	MPS	CAI	In Planning	—	—
					21-021	MPS	CAI	In Planning	—	—
L020	LA-SMA-6.25	1-Dec-10	In Process		21-021	MPS	_	_	—	—
					21-024(d)	MPS	_	_	—	—
					21-027(c)	MPS	_	_	—	—
L021	LA-SMA-6.27	1-Dec-10	In Process		21-021	MPS	_	_	_	_
					21-027(c)	MPS	_	_	_	_
L022	LA-SMA-6.3	16-Dec-10	In Process	—	21-006(b)	MPS	_	—	—	—
L022A	LA-SMA-6.31	16-Dec-10	In Process	—	21-027(a)	MPS	 _	—	—	_
L023	LA-SMA-6.32	16-Dec-10	In Process		21-021	MPS	_		_	—

March 2014

				(.,					
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
L024	LA-SMA-6.34	16-Dec-10	In Process		21-021	MPS	_		—	—
					21-022(h)	MPS	_	_	—	—
L025	LA-SMA-6.36	16-Dec-10	In Process	_	21-021	MPS	_	_	—	—
					21-024(a)	MPS	_		—	—
L026	LA-SMA-6.38	16-Dec-10	In Process		21-021	MPS	_	_	—	—
					21-024(c)	MPS	_	_	—	—
L027	LA-SMA-6.395	16-Dec-10	13-Sep-13	25-Oct-13	21-021	MPS	CAI	In Planning	—	—
					21-024(j)	MPS	CAI	In Planning	—	—
L028	LA-SMA-6.5	16-Dec-10	In Process		21-021	MPS	_	_	—	—
					21-024(i)	HPS	_	_		—
L029	LA-SMA-9	28-Apr-11	In Process	_	26-001	MPS	_	_		_
					26-002(a)	MPS	_	_	—	—
					26-002(b)	MPS	_	_		—
					26-003	MPS	_	_	—	—
L030	LA-SMA-10.11	16-Dec-10	In Process		53-002(a)	MPS	_	_	—	—
L030A	LA-SMA-10.12	16-May-11	1-Sep-11	1-May-12	53-008	MPS	CAM5	30-Nov-12	In Process	—
D001	DP-SMA-0.3	28-Apr-11	19-Aug-11	1-May-12	21-029	MPS	CAM5	8-Jul-13	In Process	—
				30-Oct-13	21-029	MPS	CAI2	In Planning	—	—
D002	DP-SMA-0.4	16-Dec-10	13-Sep-13	26-Oct-13	21-021	MPS	CAI	In Planning		—
D003	DP-SMA-0.6	28-Apr-11	In Process		21-021	MPS	_	_	—	—
					21-024(l)	MPS	_	_	—	—
D004	DP-SMA-1	16-Dec-10	In Process		21-011(k)	MPS	_		—	—
					21-021	MPS	_	_	—	—
D005	DP-SMA-2	1-Dec-10	In Process	_	21-021	MPS	_	_	_	_
					21-024(h)	MPS	_	_	—	—

Table 4 (continued) Site-Specific Compliance Status

			Table 4	(continued	d) Site-Specific C	Compliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
D006	DP-SMA-2.35	16-Dec-10	13-Sep-13	30-Oct-13	21-021	MPS	CAI	In Planning	—	
					21-024(n)	MPS	CAI	In Planning	—	
D007	DP-SMA-3	11-Feb-11	29-Jul-11	1-May-12	21-013(c)	MPS	CAM5	30-Aug-12	In Process	
					21-021	MPS	CAM5	30-Aug-12	In Process	
D008	DP-SMA-4	16-Dec-10	In Process		21-021	MPS	_	_	—	
S001	S-SMA-0.25	1-Dec-10	15-Aug-11	20-Oct-11	03-013(a)	HPS	AltCompR ^g	30-Apr-13	—	—
					03-052(f)	HPS	AltCompR	30-Apr-13	—	—
S002	S-SMA-1.1	16-May-11	4-Sep-11	2-Nov-11	03-029	HPS	FM ^h	23-Sep-13	In Process	—
S003	S-SMA-2	1-Dec-10	13-Aug-11	20-Oct-11	03-012(b)	HPS	CAM3 ⁱ	8-Jul-13	In Process	—
					03-045(b)	HPS	CAM3	8-Jul-13	In Process	_
					03-045(c)	HPS	CAM3	8-Jul-13	In Process	
					03-056(c)	HPS	CACompD	29-Nov-12	—	29-Nov-12
				10-Sep-13	03-012(b)	HPS	CAI2	10-Sep-13	—	_
					03-045(b)	HPS	CAI2	10-Sep-13	—	
					03-045(c)	HPS	CAI2	10-Sep-13	—	_
					03-056(c)	HPS	CACompD	29-Nov-12	—	29-Nov-12
					03-012(b)	HPS	FM	23-Sep-13	—	
					03-045(b)	HPS	AltCompR	30-Apr-13	—	_
					03-045(c)	HPS	AltCompR	30-Apr-13	—	_
					03-056(c)	HPS	AltCompR	30-Apr-13	—	_
S003A	S-SMA-2.01	16-Dec-10	7-Sep-11	2-Nov-11	03-052(b)	HPS	CAM3	27-Nov-12	In Process	_
					03-052(b)	HPS	FM	23-Sep-13	In Process	_
S004	S-SMA-2.8	16-Dec-10	In Process	—	03-014(c2)	MPS	_	_	—	_
S005	S-SMA-3.51	16-Dec-10	In Process	_	03-009(i)	HPS	_	_	_	_
S005A	S-SMA-3.52	16-Dec-10	In Process	—	03-021	HPS	—	—	—	—
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
----------------------	--------------	---------------------------------	---	---------------------------------------	----------------	----------	----------------------------------	---------------------------------------	--	---------------------------------------
S005B	S-SMA-3.53	16-Dec-10	4-Aug-11	30-Apr-12	03-014(b2)	HPS	CAM3	2-May-13	In Process	—
					03-014(b2)	HPS	FM	23-Sep-13	In Process	—
S006	S-SMA-3.6	1-Dec-10	13-Aug-11	20-Oct-11	60-007(b)	HPS	CAM3	27-Nov-12	In Process	_
				13-Aug-13	60-007(b)	HPS	CAI2	In Planning	—	—
S007	S-SMA-3.7	16-Dec-10	In Process		53-012(e)	MPS	_	_	—	—
S008	S-SMA-3.71	16-Dec-10	In Process	_	53-001(a)	MPS	_	_	—	—
S009	S-SMA-3.72	16-Dec-10	In Process		53-001(b)	MPS		_	—	—
S010	S-SMA-3.95	16-May-11	13-Sep-13	25-Oct-13	20-002(a)	MPS	CAI	In Planning	—	—
S011	S-SMA-4.1	16-Dec-10	1-Sep-11	2-Nov-11	53-014	HPS	CACompD	20-Aug-13	—	20-Aug-13
S012	S-SMA-4.5	16-May-11	In Process		20-002(d)	MPS		_	—	—
S013	S-SMA-5	16-May-11	In Process	_	20-002(c)	HPS	_	_	—	—
S014	S-SMA-5.2	16-Dec-10	In Process	—	20-003(c)	MPS	—	_	—	—
S015	S-SMA-5.5	16-May-11	In Process	—	20-005	MPS		—	—	—
S016	S-SMA-6	16-May-11	19-Aug-11	2-Nov-11	72-001	HPS	CAI	In Planning	—	—
C001	CDB-SMA-0.15	1-Dec-10	In Process	—	04-003(a)	MPS	—	_	—	—
					04-004	MPS		—	—	—
C002	CDB-SMA-0.25	1-Dec-10	1-Sep-11	2-Nov-11	46-004(c2)	MPS	CAM5	19-Jul-12	In Process	—
					46-004(e2)	MPS	CAM5	19-Jul-12	In Process	—
				22-Oct-13	46-004(c2)	MPS	CAI2	In Planning	—	—
					46-004(e2)	MPS	CAI2	In Planning	—	—
C003	CDB-SMA-0.55	12-Jan-11	13-Sep-13	25-Oct-13	46-004(g)	MPS	CAI	In Planning	—	—
					46-004(m)	MPS	CAI	In Planning	—	—
					46-004(s)	MPS	CAI	In Planning	_	—
					46-006(f)	MPS	CAI	In Planning		_

Table 4 (continued) Site-Specific Compliance Status

			Table 4	l (continue)	d) Site-Specific C	Compliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
C004	CDB-SMA-1	12-Jan-11	7-Sep-11	30-Apr-12	46-003(c)	MPS	CAM5	30-Jul-12	In Process	_
					46-004(d2)	MPS	CAM5	30-Jul-12	In Process	_
					46-004(f)	MPS	CAM5	30-Jul-12	In Process	_
					46-004(t)	MPS	CAM5	30-Jul-12	In Process	
					46-004(w)	MPS	CAM5	30-Jul-12	In Process	
					46-008(g)	MPS	CAM5	30-Jul-12	In Process	_
					46-009(a)	MPS	CAM5	30-Jul-12	In Process	_
					C-46-001	MPS	CACompD	30-Jul-12	In Process	29-Nov-12
C005	CDB-SMA-1.15	1-Dec-10	In Process	_	46-004(b)	MPS	_	_	—	_
					46-004(y)	MPS		_	—	_
					46-004(z)	MPS	—	_	—	_
					46-006(d)	MPS	—	_	—	_
C006	CDB-SMA-1.35	1-Dec-10	In Process	_	46-004(a2)	MPS	_	—	—	—
					46-004(u)	MPS	—	_	—	_
					46-004(v)	MPS	—	_	—	_
					46-004(x)	MPS	_	—	—	—
					46-006(d)	MPS	_	_	—	—
					46-008(f)	MPS	—	_	—	_
C007	CDB-SMA-1.54	1-Dec-10	In Process	_	46-004(h)	MPS	_	—	—	—
					46-004(q)	MPS	_	_	—	—
					46-006(d)	MPS	_	_	—	—
C008	CDB-SMA-1.55	1-Dec-10	In Process		46-003(e)	MPS	_	_	_	_
C009	CDB-SMA-1.65	1-Dec-10	In Process		46-003(b)	MPS	_	_	_	_

			Table 4	(continued	d) Site-Specific (Compliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
C010	CDB-SMA-4	16-Dec-10	25-Jul-13	27-Aug-13	54-017	HPS	CAI	In Planning	_	
					54-018	HPS	CAI	In Planning	—	_
					54-020	HPS	CAI	In Planning	—	_
M001	M-SMA-1	1-Dec-10	7-Sep-11	2-Nov-11	03-050(a)	MPS	CAM5	27-Nov-12	In Process	_
					03-054(e)	MPS	CAM5	27-Nov-12	In Process	_
				13-Aug-13	03-050(a)	MPS	CAI2	In Planning	—	_
					03-054(e)	MPS	CAI2	In Planning	—	_
M002	M-SMA-1.2	16-Dec-10	13-Sep-13	30-Oct-13	03-049(a)	MPS	CAI	In Planning	—	_
M002A	M-SMA-1.21	16-Dec-10	In Process	_	03-049(e)	MPS	_	_	—	_
M002B	M-SMA-1.22	11-Feb-11	15-Sep-11	1-May-12	03-045(h)	MPS	CAM5	2-May-13	In Process	_
M003	M-SMA-3	16-May-11	12-Jul-13	13-Aug-13	48-001	MPS	CAI	In Planning	—	_
					48-005	MPS	CAI	In Planning	—	_
					48-007(c)	MPS	CAI	In Planning	—	_
M004	M-SMA-3.1	16-Dec-10	In Process	_	48-001	MPS	_	_	—	_
					48-007(b)	MPS	_	_	—	_
M005	M-SMA-3.5	16-May-11	In Process	—	48-001	MPS	_	_	—	_
					48-003	HPS	_	_	—	_
M006	M-SMA-4	1-Dec-10	19-Aug-11	31-Oct-11	48-001	MPS	CAI	In Planning	—	_
					48-005	MPS	CAI	In Planning	—	
					48-007(a)	MPS	CACompD	29-Nov-12	—	29-Nov-12
					48-007(d)	MPS	CACompD	29-Nov-12	—	29-Nov-12
					48-010	MPS	CACompD	29-Nov-12	 _	29-Nov-12

Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
M007	M-SMA-5	16-May-11	In Process	—	42-001(a)	MPS	_	—	_	—
					42-001(b)	MPS	—	—		_
					42-001(c)	MPS	_	_	—	—
					42-002(a)	MPS	_		—	—
					42-002(b)	MPS	_	_	—	—
M008	M-SMA-6	16-Dec-10	12-Oct-12	15-Nov-12	35-016(h)	MPS	CAI	In Planning	—	—
M009	M-SMA-7	16-Dec-10	7-Jul-12	22-Aug-12	35-016(g)	MPS	CAI	In Planning	—	—
M010	M-SMA-7.9	16-Dec-10	13-Sep-13	25-Oct-13	50-006(d)	HPS	CAI	In Planning	—	—
M011	M-SMA-9.1	11-Feb-11	In Process		35-016(f)	MPS	_	_	—	—
M012	M-SMA-10	16-Dec-10	30-Jun-13	13-Aug-13	35-008	MPS	CAI	In Planning	—	—
					35-014(e)	MPS	CAI	In Planning	—	—
M012A	M-SMA-10.01	16-Dec-10	15-Sep-11	15-Nov-11	35-016(e)	MPS	CAM5	25-Sep-12	In Process	_
M013	M-SMA-10.3	16-May-11	19-Aug-11	24-Oct-11	35-014(e2)	HPS	CACompD	30-Oct-13	—	30-Oct-13
					35-016(i)	HPS	CACompD	30-Oct-13	—	30-Oct-13
M014	M-SMA-11.1	16-Dec-10	In Process	_	35-016(o)	MPS	_	_	—	_
M015	M-SMA-12	28-Apr-11	In Process	—	35-016(p)	MPS	—	_	—	—
M016	M-SMA-12.5	1-Dec-10	In Process	_	05-005(b)	MPS	_	_	—	—
					05-006(c)	MPS	_	_	_	<u> </u>
M017	M-SMA-12.6	16-May-11	13-Sep-13	22-Oct-13	05-004	MPS	CAI	In Planning	—	—
M018	M-SMA-12.7	16-Dec-10	In Process	_	05-002	MPS	_	_	—	
					05-005(a)	MPS	_	_	—	<u> </u>
					05-006(b)	MPS	—	_	—	—
					05-006(e)	MPS	_	_	—	—
M019	M-SMA-12.8	16-Dec-10	In Process	_	05-001(a)	MPS	_	_	_	
					05-002	MPS	_		_	_

Table 4 (continued) Site-Specific Compliance Status

			Table 4	(continued	d) Site-Specific Co	mpliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
M020	M-SMA-12.9	16-Dec-10	In Process	—	05-001(b)	MPS	_	_	—	_
					05-002	MPS	_	_	—	
M021	M-SMA-12.92	1-Dec-10	In Process	—	00-001	MPS	—	—	—	_
M022	M-SMA-13	16-Dec-10	13-Sep-13	<tal< td=""><td>05-001(c)</td><td>MPS</td><td>—</td><td>_</td><td>—</td><td></td></tal<>	05-001(c)	MPS	—	_	—	
T001	Pratt-SMA-1.05	16-Dec-10	13-Sep-13	30-Oct-13	35-003(h)	HPS	CAI	In Planning	—	_
					35-003(p)	HPS	CAI	In Planning	—	
					35-003(r)	HPS	CAI	In Planning	—	
					35-004(h)	HPS	CAI	In Planning	—	
					35-009(d)	HPS	CAI	In Planning	—	
					35-016(k)	HPS	CAI	In Planning	—	_
					35-016(l)	HPS	CAI	In Planning	—	_
					35-016(m)	HPS	CAI	In Planning	—	_
T002	T-SMA-1	16-Dec-10	15-Aug-11	21-Oct-11	50-006(a)	HPS	CAI	In Planning	—	_
					50-009	HPS	CAI	In Planning	—	_
				—	50-006(a)	HPS	FM	23-Sep-13	—	_
				_	50-009	HPS	CACompC ^j	31-Oct-13	—	31-Oct-13
T003	T-SMA-2.5	16-Dec-10	In Process		35-014(g3)	MPS	_	_	—	_
T004	T-SMA-2.85	16-Dec-10	12-Jul-13	21-Aug-13	35-014(g)	MPS	CAI	In Planning	—	_
					35-016(n)	MPS	CAI	In Planning	—	_
T005	T-SMA-3	16-Dec-10	10-Sep-12	19-Oct-12	35-016(b)	MPS	CAI	In Planning	—	_
T006	T-SMA-4	16-Dec-10	13-Sep-13	25-Oct-13	35-004(a)	MPS	CAI	In Planning	—	_
					35-009(a)	MPS	CAI	In Planning	—	_
					35-016(c)	MPS	CAI	In Planning	_	
					35-016(d)	MPS	CAI	In Planning		

March 2014

Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
T007	T-SMA-5	16-Dec-10	In Process	—	35-004(a)	MPS	—	—	_	—
					35-009(a)	MPS	—	—		_
					35-016(a)	MPS	_	_	—	—
					35-016(q)	MPS	_	_	—	_
T008	T-SMA-6.8	16-Dec-10	In Process		35-010(e)	MPS	_	_	—	—
Т009	T-SMA-7	16-Dec-10	In Process	_	04-003(b)	MPS	_	_	—	_
T010	T-SMA-7.1	16-Dec-10	In Process	_	04-001	MPS	_	_	—	_
					04-002	MPS	_	_	—	_
E001	2M-SMA-1	1-Dec-10	20-Aug-11	18-Oct-11	03-010(a)	MPS	CAM5	20-Jul-12	In Process	_
				19-Oct-12	03-010(a)	MPS	CAI2	In Planning	—	—
E002	2M-SMA-1.42	12-Jan-11	15-Sep-11	10-Nov-11	06-001(a)	MPS	CAM5	27-Jun-12	In Process	—
E003	2M-SMA-1.43	1-Dec-10	12-Jul-13	21-Aug-13	22-014(a)	MPS	CAI	In Planning	—	_
					22-015(a)	MPS	CAI	In Planning	—	—
E004	2M-SMA-1.44	12-Jan-11	21-Aug-11	30-Apr-12	06-001(b)	MPS	CAM5	27-Jun-12	In Process	_
E005	2M-SMA-1.45	12-Jan-11	7-Sep-11	1-May-12	06-006	MPS	CAM5	20-Aug-12	In Process	—
E006	2M-SMA-1.5	1-Dec-10	In Process	—	22-014(b)	MPS			—	_
E007	2M-SMA-1.65	12-Jan-11	21-Aug-11	1-May-12	40-005	MPS	CAM5	19-Jul-12	In Process	—
E008	2M-SMA-1.67	28-Apr-11	15-Sep-11	—	06-003(h)	MPS	—	—	_	_
E009	2M-SMA-1.7	12-Jan-11	9-Sep-11	3-Nov-11	03-055(a)	MPS	CAM5	27-Jul-12	In Process	—
E010	2M-SMA-1.8	12-Jan-11	9-Sep-11	3-Nov-11	03-001(k)	MPS	CAI	In Planning	—	—
E011	2M-SMA-1.9	12-Jan-11	11-Jul-12	23-Aug-12	03-003(a)	MPS	CAI	In Planning	_	—
E012	2M-SMA-2	12-Jan-11	4-Sep-11	3-Nov-11	03-050(d)	MPS	CAM5	2-May-13	In Process	_
					03-054(b)	MPS	CAM5	2-May-13	In Process	_
				24-Sep-13	03-050(d)	MPS	CAI2	In Planning	_	_
					03-054(b)	MPS	CAI2	In Planning	_	—

Table 4 (continued) Site-Specific Compliance Status

		1	1	```	· ·	·				
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
E013	2M-SMA-2.2	1-Dec-10	4-Sep-11	3-Nov-11	03-003(k)	MPS	CAI	In Planning	—	—
E014	2M-SMA-3	12-Jan-11	12-Jul-13	16-Aug-13	07-001(a)	MPS	CAI	In Planning	—	
					07-001(b)	MPS	CAI	In Planning	—	—
					07-001(c)	MPS	CAI	In Planning	—	
					07-001(d)	MPS	CAI	In Planning	—	—
E015	2M-SMA-2.5	12-Jan-11	9-Sep-12	<tal< td=""><td>40-001(c)</td><td>MPS</td><td>_</td><td>—</td><td>—</td><td>_</td></tal<>	40-001(c)	MPS	_	—	—	_
H001	3M-SMA-0.2	1-Dec-10	In Process	—	15-010(b)	MPS	—	—	—	_
H002	3M-SMA-0.4	12-Jan-11	12-Jul-13	27-Aug-13	15-006(b)	MPS	CAI	In Planning	—	
H003	3M-SMA-0.5	12-Jan-11	In Process	—	15-006(c)	MPS	—	_	—	
					15-009(c)	MPS	—	_	—	—
H004	3M-SMA-0.6	12-Jan-11	In Process	_	15-008(b)	MPS	_	_	—	_
H005	3M-SMA-2.6	28-Apr-11	In Process	—	36-008	MPS	—	_	—	
					C-36-003	MPS	—	_	—	
H006	3M-SMA-4	12-Jan-11	In Process	—	18-002(b)	MPS	—	_	—	
					18-003(c)	MPS	_	_	—	_
					18-010(f)	MPS	—	—	—	—
J001	PJ-SMA-1.05	1-Dec-10	13-Sep-13	3-Nov-13	09-013	MPS	CAI	In Planning	—	_
J002	PJ-SMA-2	1-Dec-10	In Process	—	09-009	MPS	_	—	—	—
J003	PJ-SMA-3.05	11-Feb-11	19-Aug-11	30-Apr-12	09-004(o)	MPS	CAM5	18-Jul-12	In Process	_
J004	PJ-SMA-4.05	1-Dec-10	13-Sep-13	30-Oct-13	09-004(g)	MPS	CAI	In Planning	—	
J005	PJ-SMA-5	1-Dec-10	12-Oct-12	15-Nov-12	22-015(c)	MPS	CAI	In Planning	—	
J006	PJ-SMA-5.1	12-Jan-11	7-Sep-11	31-Oct-11	22-010(b)	MPS	CAM5	18-Jul-12	In Process	_
					22-016	MPS	CAM5	18-Jul-12	In Process	
J007	PJ-SMA-6	1-Dec-10	In Process	_	40-010	MPS	_	_	_	
J008	PJ-SMA-7	1-Dec-10	In Process	_	40-006(c)	MPS	_	_	—	

r		r		-		-				.
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
J009	PJ-SMA-8	1-Dec-10	In Process	_	40-006(b)	MPS		_	—	—
J010	PJ-SMA-9	1-Dec-10	In Process	_	40-009	MPS	_	_	—	—
J012	PJ-SMA-10	12-Jan-11	In Process	_	40-006(a)	MPS	_	_	—	—
J013	PJ-SMA-11	12-Jan-11	13-Sep-13	30-Oct-13	40-003(a)	MPS	CAI	In Planning	—	—
J014	PJ-SMA-11.1	12-Jan-11	13-Sep-13	30-Oct-13	40-003(b)	MPS	CAI	In Planning	—	—
J015	PJ-SMA-13	28-Apr-11	In Process	—	18-002(a)	MPS	_	_	—	—
J016	PJ-SMA-13.7	12-Jan-11	1-Sep-11	1-May-12	18-010(b)	MPS	CAM5	8-Jul-13	In Process	—
J017	PJ-SMA-14	28-Apr-11	In Process	—	54-004	MPS	_	_	—	—
J018	PJ-SMA-14.2	1-Dec-10	In Process	—	18-012(b)	MPS	_	_	—	—
J019	PJ-SMA-14.3	1-Dec-10	In Process	—	18-003(e)	MPS	—	_	—	—
J020	PJ-SMA-14.4	28-Apr-11	In Process	_	18-010(d)	MPS	_	_	—	—
J021	PJ-SMA-14.6	1-Dec-10	In Process	_	18-010(e)	MPS	_	_	—	—
J022	PJ-SMA-14.8	12-Jan-11	18-Aug-11	<tal< td=""><td>18-012(a)</td><td>MPS</td><td>_</td><td>_</td><td>—</td><td>—</td></tal<>	18-012(a)	MPS	_	_	—	—
J023	PJ-SMA-16	1-Dec-10	8-Aug-13	<tal< td=""><td>27-002</td><td>MPS</td><td>_</td><td>_</td><td>—</td><td>—</td></tal<>	27-002	MPS	_	_	—	—
J024	PJ-SMA-17	1-Dec-10	25-Jul-13	5-Sep-13	54-018	HPS	CAI	In Planning	—	—
J026	PJ-SMA-18	1-Dec-10	25-Jul-13	3-Sep-13	54-014(d)	MPS	CAI	In Planning	—	—
					54-017	HPS	CAI	In Planning	—	—
J025	PJ-SMA-19	1-Dec-10	8-Aug-13	12-Sep-13	54-013(b)	HPS	CAI	In Planning	—	—
					54-017	HPS	CAI	In Planning	—	—
					54-020	HPS	CAI	In Planning	—	—
J027	PJ-SMA-20	16-Dec-10	29-Jul-11	1-May-12	54-017	HPS	CACompC	25-Oct-13	—	25-Oct-13
J028	STRM-SMA-1.05	1-Dec-10	26-Aug-11	17-Oct-11	08-009(f)	MPS	CAM5	2-May-13	In Process	—
				10-Sep-13	08-009(f)	MPS	CAI2	In Planning	—	—
J029	STRM-SMA-1.5	1-Dec-10	11-Jul-12	27-Aug-12	08-009(d)	MPS	CAM5	8-Jul-13	In Process	—
J030	STRM-SMA-4.2	1-Dec-10	9-Sep-11	10-Nov-11	09-008(b)	MPS	CAM5	21-Aug-12	In Process	—

			Table 4	(continued	I) Site-Specific Cor	npliance	Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
J031	STRM-SMA-5.05	1-Dec-10	21-Aug-11	31-Oct-11	09-013	MPS	CAM5	27-Jun-12	In Process	_
V001	CDV-SMA-1.2	12-Jan-11	12-Sep-13	<tal< td=""><td>16-017(b)-99</td><td>MPS</td><td>—</td><td>_</td><td>—</td><td>—</td></tal<>	16-017(b)-99	MPS	—	_	—	—
					16-029(k)	MPS	—	_	—	—
V002	CDV-SMA-1.3	12-Jan-11	13-Sep-13	25-Oct-13	16-017(a)-99	MPS	CAI	In Planning	—	_
					16-026(m)	MPS	CAI	In Planning	—	—
V003	CDV-SMA-1.4	12-Jan-11	10-Sep-12	18-Oct-12	16-020	MPS	CAI	In Planning	—	_
					16-026(I)	MPS	CAI	In Planning	—	_
					16-028(c)	MPS	CAI	In Planning	—	—
					16-030(c)	MPS	CACompD	29-Nov-12	—	29-Nov-12
V004	CDV-SMA-1.45	12-Jan-11	21-Aug-11	30-Apr-12	16-026(i)	MPS	CAM5	18-Jul-12	In Process	—
V005	CDV-SMA-1.7	12-Jan-11	13-Sep-13	25-Oct-13	16-019	MPS	CAI	In Planning	—	—
V006	CDV-SMA-2	16-May-11	12-Jul-13	20-Aug-13	16-021(c)	MPS	CAI	In Planning	—	_
V007	CDV-SMA-2.3	12-Jan-11	In Process	—	13-001	MPS	—	—	—	
					13-002	MPS	—	_	—	
					16-003(n)	MPS	—	_	—	
					16-003(o)	MPS	—	_	—	
					16-029(h)	MPS	—	_	—	
					16-031(h)	MPS	—	_	—	
V008	CDV-SMA-2.41	12-Jan-11	21-Aug-11	1-May-12	16-018	MPS	CAI	In Planning	—	
V008A	CDV-SMA-2.42	12-Jan-11	12-Jul-13	26-Aug-13	16-010(b)	MPS	CAI	In Planning	—	
V009	CDV-SMA-2.5	12-Jan-11	26-Jul-13	<tal< td=""><td>16-010(c)</td><td>MPS</td><td>—</td><td>_</td><td>—</td><td></td></tal<>	16-010(c)	MPS	—	_	—	
					16-010(d)	MPS	—	_	—	
					16-028(a)	MPS	_	_	_	
V009A	CDV-SMA-2.51	12-Jan-11	13-Sep-13	25-Oct-13	16-010(i)	MPS	CAI	In Planning	_	
V010	CDV-SMA-3	11-Feb-11	21-Aug-11	30-Apr-12	14-009	MPS	CAM5	18-Jul-12	In Process	_

			Table 4	(continued	d) Site-Specific C	Compliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
V011	CDV-SMA-4	11-Feb-11	In Process	—	14-010	MPS	_	_	—	_
V012	CDV-SMA-6.01	11-Feb-11	In Process	_	14-001(g)	MPS	_	_	—	_
					14-006	MPS	_	—	—	_
V012A	CDV-SMA-6.02	11-Feb-11	1-Sep-11	31-Oct-11	14-002(c)	MPS	CAM5	18-Jul-12	In Process	—
					14-002(d)	MPS	CAM5	18-Jul-12	In Process	_
					14-002(e)	MPS	CAM5	18-Jul-12	In Process	—
V013	CDV-SMA-7	12-Jan-11	13-Sep-13	30-Oct-13	15-008(d)	MPS	CAI	In Planning	—	—
V014	CDV-SMA-8	12-Jan-11	In Process	—	15-011(c)	MPS	_	_	—	—
V015	CDV-SMA-8.5	12-Jan-11	In Process	—	15-014(a)	MPS	_	—	—	—
V016	CDV-SMA-9.05	12-Jan-11	In Process	—	15-007(b)	MPS	—	—	—	—
F001	F-SMA-2	12-Jan-11	15-Aug-11	1-May-12	36-004(c)	MPS	CAI	In Planning	—	—
1001	PT-SMA-0.5	28-Apr-11	1-Sep-11	1-May-12	15-009(e)	MPS	CAM5	27-Nov-12	In Process	—
					C-15-004	MPS	CAM5	27-Nov-12	In Process	—
1002	PT-SMA-1	28-Apr-11	1-Sep-11	30-Apr-12	15-004(f)	MPS	CAM5	3-Aug-12	In Process	—
					15-008(a)	MPS	CAM5	3-Aug-12	In Process	_
1003	PT-SMA-1.7	28-Apr-11	10-Sep-12	18-Oct-12	15-006(a)	MPS	CAI	In Planning	—	—
1004	PT-SMA-2	28-Apr-11	In Process	—	15-008(f)	MPS	_	_	—	_
					36-003(b)	MPS	_	_	—	_
					36-004(e)	MPS	_	_	—	_
1004A	PT-SMA-2.01	28-Apr-11	18-Aug-11	30-Apr-12	C-36-001	MPS	CAM5	3-Aug-12	In Process	_
					C-36-006(e)	MPS	CAM5	3-Aug-12	In Process	_
1005	PT-SMA-3	1-Dec-10	In Process	_	36-004(a)	MPS	_	_	—	_
					36-006	MPS	_	_	_	_
1007	PT-SMA-4.2	1-Dec-10	In Process	_	36-004(d)	MPS		_		

			Table 4	(continued	d) Site-Specific (Compliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
W001	W-SMA-1	1-Dec-10	9-Sep-11	8-Nov-11	16-017(j)-99	MPS	CAM5	2-May-13	In Process	—
					16-026(c2)	MPS	CAM5	2-May-13	In Process	—
					16-026(v)	MPS	CAM5	2-May-13	In Process	—
W002	W-SMA-1.5	12-Jan-11	1-Sep-11	8-Nov-11	16-026(b2)	MPS	CAM5	25-Sep-12	In Process	—
					16-028(d)	MPS	CAM5	25-Sep-12	In Process	—
W003	W-SMA-2.05	12-Jan-11	21-Aug-11	1-May-12	16-028(e)	MPS	CAM5	25-Sep-12	In Process	—
W004	W-SMA-3.5	12-Jan-11	In Process	—	16-026(y)	MPS		_	—	—
W005	W-SMA-4.1	12-Jan-11	In Process		16-003(a)	MPS	_	_	—	—
W006	W-SMA-5	12-Jan-11	3-Jul-12	18-Sep-12	16-001(e)	MPS	CAI	In Planning	—	—
					16-003(f)	MPS	CAI	In Planning	—	—
					16-026(b)	MPS	CAI	In Planning	—	—
					16-026(c)	MPS	CAI	In Planning	—	—
					16-026(d)	MPS	CAI	In Planning	—	—
					16-026(e)	MPS	CAI	In Planning	—	—
W007	W-SMA-6	12-Jan-11	In Process	_	11-001(c)	MPS	_	_	—	—
W008	W-SMA-7	12-Jan-11	In Process	_	16-029(e) 16-026(h2)	MPS	—	_	—	—
W009	W-SMA-7.8	12-Jan-11	In Process		16-031(a)	MPS	_	_	—	—
W010	W-SMA-7.9	12-Jan-11	In Process	—	16-006(c)	MPS	—	_	—	—
W011	W-SMA-8	12-Jan-11	12-Sep-13	25-Oct-13	16-016(g)	MPS	CAI	In Planning	_	—
					16-028(b)	MPS	CAI	In Planning	_	_

			Table 4	l (continue	d) Site-Specific Co	ompliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
W012	W-SMA-8.7	12-Jan-11	12-Sep-13	25-Oct-13	13-001	MPS	CAI	In Planning	—	_
					13-002	MPS	CAI	In Planning	—	_
					16-004(a)	MPS	CAI	In Planning	—	_
					16-026(j2)	MPS	CAI	In Planning	—	_
					16-029(h)	MPS	CAI	In Planning	—	_
					16-035	MPS	CAI	In Planning	—	_
W012A	W-SMA-8.71	12-Jan-11	21-Aug-11	1-May-12	16-004(c)	MPS	CAM5	27-Nov-12	In Process	_
W013	W-SMA-9.05	12-Jan-11	13-Sep-13	<tal< td=""><td>16-030(g)</td><td>MPS</td><td>_</td><td>_</td><td>—</td><td>_</td></tal<>	16-030(g)	MPS	_	_	—	_
W014	W-SMA-9.5	1-Dec-10	In Process	_	11-012(c)	MPS	_	_	—	_
W015	W-SMA-9.7	12-Jan-11	13-Sep-13	30-Oct-13	11-011(a)	MPS	CAI	In Planning	—	_
					11-011(b)	MPS	CAI	In Planning	—	_
W016	W-SMA-9.8	12-Jan-11	In Process	_	11-005(c)	MPS	_	_	—	_
W017	W-SMA-9.9	12-Jan-11	21-Aug-11	30-Apr-12	11-006(b)	MPS	CAM5	27-Jun-12	In Process	_
W018	W-SMA-10	12-Jan-11	21-Aug-11	1-May-12	11-002	MPS	CAM5	23-Aug-12	In Process	_
					11-003(b)	MPS	CAM5	23-Aug-12	In Process	_
					11-005(a)	MPS	CAM5	23-Aug-12	In Process	—
					11-005(b)	MPS	CAM5	23-Aug-12	In Process	_
					11-006(c)	MPS	CAM5	23-Aug-12	In Process	_
					11-006(d)	MPS	CAM5	23-Aug-12	In Process	—
					11-011(d)	MPS	CAM5	23-Aug-12	In Process	_
W019	W-SMA-11.7	12-Jan-11	1-Sep-11	1-May-12	49-008(c)	MPS	CAM5	23-Oct-12	In Process	_
W020	W-SMA-12.05	12-Jan-11	In Process	—	49-001(g)	MPS	_	_	—	—
W021	W-SMA-14.1	28-Apr-11	18-Aug-11	17-Oct-11	15-004(h)	MPS	CAM5	25-Sep-12	In Process	
					15-014(l)	MPS	CAM5	25-Sep-12	In Process	_

Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
W022	W-SMA-15.1	12-Jan-11	1-Sep-11	1-May-12	49-005(a)	MPS	CAM5	23-Oct-12	In Process	—
A001	A-SMA-1.1	1-Dec-10	In Process	—	39-004(a)	MPS	—	_	—	—
					39-004(d)	MPS	_	_	—	—
A002	A-SMA-2	11-Feb-11	12-Sep-13	22-Oct-13	39-004(b)	MPS	CAI	In Planning	—	—
					39-004(e)	MPS	CAI	In Planning	—	—
A003	A-SMA-2.5	11-Feb-11	In Process	_	39-010	MPS	_	_	—	—
A004	A-SMA-2.7	11-Feb-11	4-Sep-11	27-Oct-11	39-002(c)	MPS	CACompD	29-Nov-12	—	29-Nov-12
					39-008	MPS	CAM5	23-Aug-12	In Process	—
A005	A-SMA-2.8	11-Feb-11	In Process	_	39-001(b)	MPS	_	—	—	—
A006	A-SMA-3	1-Dec-10	25-Jul-13	29-Aug-13	39-002(b)	MPS	CAI	In Planning	—	—
					39-004(c)	MPS	CAI	In Planning	—	—
A007	A-SMA-3.5	11-Feb-11	25-Jul-13	<tal< td=""><td>39-006(a)</td><td>MPS</td><td>_</td><td>—</td><td>—</td><td>—</td></tal<>	39-006(a)	MPS	_	—	—	—
A008	A-SMA-4	11-Feb-11	In Process	_	33-010(d)	MPS	—	—	—	—
A009	A-SMA-6	11-Feb-11	4-Aug-13	4-Sep-13	33-004(k)	MPS	CAI	In Planning	—	—
					33-007(a)	MPS	CAI	In Planning	—	—
					33-010(a)	MPS	CAI	In Planning	—	—
Q001	CHQ-SMA-0.5	11-Feb-11	In Process		33-004(g)	MPS	_	_	—	—
					33-007(c)	MPS	_	_	—	—
					33-009	MPS	_	—	—	—
Q002	CHQ-SMA-1.01	11-Feb-11	In Process	_	33-002(d)	MPS	_	_	_	_

			Table 4	(continued	d) Site-Specific C	ompliance	e Status			
Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
Q002A	CHQ-SMA-1.02	11-Feb-11	21-Aug-11	1-May-12	33-004(h)	MPS	CAM5	24-Oct-12	In Process	—
					33-008(c)	MPS	CAM5	24-Oct-12	In Process	—
					33-011(d)	MPS	CAM5	24-Oct-12	In Process	—
					33-015	MPS	CAM5	24-Oct-12	In Process	—
				3-Nov-13	33-004(h)	MPS	CAI2	In Planning	_	—
					33-008(c)	MPS	CAI2	In Planning	—	—
					33-011(d)	MPS	CAI2	In Planning	—	—
					33-015	MPS	CAI2	In Planning	—	_
Q002B	CHQ-SMA-1.03	11-Feb-11	4-Jul-12	27-Aug-12	33-008(c)	MPS	CAI	In Planning	—	—
					33-012(a)	MPS	CAI	In Planning	—	_
					33-017	MPS	CAI	In Planning	—	—
					C-33-001	MPS	CAI	In Planning	_	—
					C-33-003	MPS	CAI	In Planning		_
Q003	CHQ-SMA-2	11-Feb-11	4-Jul-12	27-Aug-12	33-004(d)	MPS	CAI	In Planning	—	_
					33-007(c)	MPS	CAI	In Planning		_
					C-33-003	MPS	CAI	In Planning		
Q004	CHQ-SMA-3.05	11-Feb-11	10-Sep-13	23-Oct-13	33-010(f)	MPS	CAI	In Planning	—	_
Q005	CHQ-SMA-4	11-Feb-11	In Process		33-011(e)	MPS	—	—		_
Q006	CHQ-SMA-4.1	11-Feb-11	13-Sep-13	22-Oct-13	33-016	MPS	CAI	In Planning	_	
Q007	CHQ-SMA-4.5	11-Feb-11	25-Jul-13	5-Sep-13	33-011(b)	MPS	CAI	In Planning	_	—
Q008	CHQ-SMA-5.05	1-Dec-10	In Process	_	33-007(b)	MPS	_		<u> </u>	

Permitted Feature	SMA	Certify Baseline Controls	Completion of Baseline Monitoring	Initiation of Corrective Action	Site Number	Priority	Corrective Action Response	Corrective Action Certification	Completion of Enhanced Control Monitoring	Completion of Corrective Action
Q009	CHQ-SMA-6	11-Feb-11	25-Jul-13	29-Aug-13	33-004(j)	MPS	CAI	In Planning		—
					33-006(a)	MPS	CAI	In Planning	_	_
					33-007(b)	MPS	CAI	In Planning	_	_
					33-010(c)	MPS	CAI	In Planning	_	_
					33-010(g)	MPS	CAI	In Planning	_	_
					33-010(h)	MPS	CAI	In Planning	_	_
					33-014	MPS	CAI	In Planning		_
Q010	CHQ-SMA-7.1	11-Feb-11	In Process	_	33-010(g)	MPS				

^a CACompD = Corrective action is complete under the Permit with a certificate of completion under NMED's Consent Order.

^b — = Corrective action has not been initiated.

^c CAI = Corrective action is initiated after a TAL exceedance is observed during baseline monitoring.

 d <TAL = All baseline confirmation monitoring results are less than TALs

^e CAM5 = Monitoring following installation of enhanced control measures at SMAs associated with Moderate Priority Sites.

^f CAI2 = Corrective action is re-initiated after a TAL exceedance is observed during monitoring following installation of enhanced control measures.

^g AltCompR = Alternative compliance requested.

^h FM =.Force majeure requested to extend the deadline for completion of corrective action.

ⁱ CAM3 = Monitoring following installation of enhanced control measures at SMAs associated with High Priority Sites.

^j CACompC = Corrective action is complete under the Permit with a certification of no exposure.

8<u>4</u>

	Site	Status		Site	Status		Site	Status
1	00-018(a)	CoC	22	02-009(b)	ECA	43	35-003(r)	CoC
2	00-019	NS	23	02-009(c)	AC	44	35-004(h)	CoC
3	01-001(d)	NS	24	02-011(a)	ECA	45	35-009(d)	CoC
4	01-001(e)	NS/CoC	25	02-011(b)	ECA	46	35-014(e2)	CoC
5	01-001(f)	ECA	26	02-011(c)	ECA	47	35-016(i)	CoC
6	01-003(a)	NS	27	02-011(d)	ECA	48	35-016(k)	CoC
7	01-003(e)	CoC	28	03-009(i)	NS	49	35-016(l)	CoC
8	01-006(h)	NS	29	03-012(b)	AC	50	35-016(m)	CoC
9	02-003(a)	ECA	30	03-013(a)	AC	51	48-003	NS
10	02-003(b)	NS	31	03-014(b2)	EC	52	50-006(a)	COC
11	02-003(e)	ECA	32	03-021	NS	53	50-006(d)	AC
12	02-004(a)	ECA	33	03-029	EC	54	50-009	NE
13	02-005	ECA	34	03-045(b)	AC	55	53-014	CoC
14	02-006(b)	ECA	35	03-045(c)	AC	56	54-013(b)	NE
15	02-006(c)	ECA	36	03-052(b)	AC	57	54-017	NE
16	02-006(d)	ECA	37	03-052(f)	AC	58	54-018	NE
17	02-006(e)	ECA	38	03-056(c)	AC/CoC	59	54-020	NE
18	02-007	NS	39	20-002(c)	NS	60	60-007(b)	CoC
19	02-008(a)	ECA	40	21-024(i)	NS	61	72-001	PMR
20	02-008(c)	NS	41	35-003(h)	CoC	62	73-001(a)	NS
21	02-009(a)	NS	42	35-003(p)	CoC	63	73-004(d)	NS

Table 5 High Priority Sites

Notes: NS = No sample collected; AC = alternative compliance request; NE = no exposure; PMR = Permit modification request; EC = enhanced control installed (no confirmation sample); CoC = Certificate of Completion (received or requested); ECA = Evaluating corrective action alternatives (screening process).

Table 6Summary of Individual Permit Compliance Status

Compliance Phase	Number of SMAs	Number of Sites*	Milestone	Status as of December 31, 2013
Baseline Control Measures Installation	250	408	April 30, 2011	Baseline control measure installation and implementation were completed on schedule.
Baseline Control Measures Certification	250	408	May 30, 2011	Baseline control measure certification was completed on schedule.
Baseline Monitoring	250	408	October 31, 2011 April 30, 2012	Baseline monitoring ended on the milestone dates.
Baseline Monitoring Extended	111	162	As applicable	Baseline monitoring is extended until one confirmation sample can be collected.
Baseline Confirmation Complete	10	13	October 31, 2013 October 31, 2015	No TAL exceedances were observed at three Moderate Priority Sites.
Corrective Action Initiated	129	245	As applicable	See Section 4 of the Annual Report for details on the criteria used to determine which SMAs require corrective action.
Enhanced Control Monitoring	39	68	As applicable	Corrective action is being planned at 79 SMAs associated with 166 Sites in 2014.
Corrective Action Complete	2	7	October 13, 2013	Corrective action has been completed at seven High Priority Sites.
	8	15	October 13, 2015	Corrective action has been completed at 15 Moderate Priority Sites.
Alternative Compliance	2	5	As applicable	Alternative compliance for five High Priority Sites was requested before October 31, 2013.
Deletion of Site	0	0	As applicable	Deletion of Site from the Permit has not been requested.

* The number of Sites may add up to more than 405 (the number of permitted Sites) or 406 (the number of NMED-recognized Sites) because some Sites are assigned to more than one SMA in different compliance phases.

Key to Information Presented in Table 7

The following describes the information contained in each column of Table 7.

SMA – This column identifies the SMA associated with the Site.

Site – This column identifies the Site (i.e., SWMU or AOC) being evaluated. In some cases, a Site was investigated as part of a consolidated unit consisting of multiple Sites, and the soil data were associated with the consolidated unit rather than the individual Sites. In these cases, the table first identifies the consolidated unit that is the source of the data and then the individual Site under the Individual Permit (e.g., "04-001-99|04-001"). Similarly, data from investigation of one Site may be used to evaluate another Site if the Sites are overlapping. If a Site is evaluated using the data from a different but overlapping Site, the table first identifies the Site having data and then the Site being evaluated [e.g., "02-006(c)|02-006(d)"].

Aggregate Area – This column identifies the Consent Order aggregate area the Site is located within. Aggregate areas are geographic areas within which SWMUs and AOCs are grouped for purposes of investigation.

Inorganic Constituents Detected above Maximum Background – These two columns present the results of comparisons of the concentrations of inorganic constituents detected in samples collected within 3 ft of the surface with the maximum concentration for each constituent in the Laboratory's background data set for soil. Results are presented only for those constituents having at least 5% of detected values greater than the soil BV for that constituent. The first column presents the results for those constituents having TALs in the IP, and the second column presents the results for these constituents not having TALs. The results are presented for each constituent as follows:

(ratio of maximum detected concentration to maximum background concentration | number of detects above the maximum background concentration out of number of results | percentage of total samples detected above maximum background concentration)

Constituents listed in green in the first column are those that were also detected in storm water samples but at concentrations less than TALs. Constituents listed in red are those that were also detected in storm water but at concentrations equal to or greater than TALs.

Inorganic Constituents Detected above Residential SSLs – These two columns present the results of comparisons of the concentrations of inorganic constituents detected in samples collected within 3 ft of the surface with the residential SSL for each constituent. The results are presented for each constituents detected at concentrations greater than the residential SSL. The first column presents the results for those constituents having TALs in the Individual Permit, and the second column presents the results for these constituents having no TALs. The results are presented for each constituent as follows:

(ratio of maximum detected concentration to residential SSL | number of detects above the residential SSL out of number of results | percentage of total samples detected above residential SSL)

Constituents listed in green are those that were also detected in storm water samples but at concentrations less than TALs. Constituents listed in red are those that were also detected in storm water but at concentrations equal to or greater than TALs.

Inorganic Constituents Detected above of 10% Residential SSLs – These two columns present the results of comparisons of the concentrations of inorganic constituents detected in samples collected within 3 ft of the surface with 10% of the residential SSL for each constituent. The results are presented for those constituents detected at concentrations greater than 10% of the residential SSLs but less than or equal to the residential SSL. The first column presents the results for those constituents having TALs in the Individual Permit, and the second column presents the results for these constituents not having TALs. The results are presented for each constituent as follows: ratio of maximum detected concentration to 10% of residential SSL | number of detects above 10% of the residential SSL. Constituents listed in green are those that were also detected in storm water samples but at concentrations less than TALs. Constituents listed in red are those that were also detected in storm water but at concentrations equal to or greater than TALs.

Storm Water Analytes Exceeding TALs – This column identifies those constituents detected in storm water at concentrations exceeding TALs.

Site-Related Constituents – These two columns present the results of the evaluation of the soil data to determine whether the inorganic constituent is likely to be present in shallow soil as a result of Site-related activities. This evaluation is made for all constituents identified in previous columns (i.e., detected above maximum background concentrations [Columns 4–5], detected above residential SSLs [Columns 6-7], detected above 10% of residential SSLs [Columns 8-9], and/or detected above TALs in storm water samples [Column 10]). This determination is based on an evaluation of the frequency, magnitude, and spatial distribution of detections, as described in Section 10.3. The first column identifies those constituents evaluated and determined to be Site-related, and the second column identifies those determined not to be Site-related.

Potential Significant Industrial Materials – This column identifies those constituents determined to be potentially present as significant industrial materials. Potential significant industrial materials are those detected at concentrations greater than 10% of the residential SSL (Columns 6–9) and identified as Site-related constituents (Column 11).

			Inorganic Constituents Detect	ed Above Maximum Background	Inorganic Constituents Dete	ected Above Residential SSLs	Inorganic Constituents Detected Ab	ove 10% of Residential SSLs		Constitu	uents Site Related?	
SMA	Site	Aggregate Area	TAL List	Non-TAL List	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	Yes	No ¹	Potential Significant Industrial Materials
LA-SMA-5.51	02-006(c) 02-006(d)	Middle LA Aggregate Area	Copper (0.94 0 of 7 0%); Mercury (13.6 7 of						Mercury	Mercury	Chromium - B1; Copper -	
2M-SMA-2	03-052(a)-00 03-054(b)	Twomile Canyon	[/100%); 2inc (0.79[0 of 7[0%) Antimory (1.2]2 of 18]11%); Arsenic (0.92[0 of 18]0%); Cadmium (0.62[0 of 18]0%); Chromium (1.68]2 of 18]11%); Cobalt (0.99[0 of 18]0%); Copper (15.88]17 of 18]94%); Lead (6]14 of 18]78%); Mercury (1.8]2 of 18]11%); Nickel (1.52]1 of 18]5.6%); Silver (] of 18]0%); Zinc (10.93]17 of 18]94%)	Beryllium (0.78 0 of 18 0%)	Arsenic (2.2 1 of 18 5.6%)		Cobalt (0.41 15 of 18 83%); Lead (0.42 13 of 18 72%)		Copper; Zinc	Chromium; Copper; Lead; Zinc	B5; ZINC - B5 Antimony - B5; Arsenic - B5; Beryllium - B5; Cadmium - B5; Cobalt - B5; Mercury - B5; Nickel - B5; Silver - B5	Lead
T-SMA-7.1	04-001-99 04-001	Middle Mortandad/Ten Site Canyons	Copper (1.78 5 of 25 20%)								Copper - A1	
T-SMA-7.1	04-001-99 04-002	Middle Mortandad/Ten Site Canyons	Copper (1.78 5 of 25 20%)								Copper - A1	
M-SMA-12.8	05-001(a)-99 05-001(a)	Middle Mortandad/Ten Site Canyons	Cadmium (1.23]2 of 42]4.8%); Copper (93.75]11 of 42]26%); Lead (37.14 10 of 42]24%); Zinc (1.87]2 of 42]4.8%)	Barium (1.9 2 of 42 4.8%)	Lead (2.6 2 of 42 4.8%)		Copper (0.48 3 of 42 7.1%)			Barium; Copper; Lead	Cadmium - B5; Zinc - B5	Copper; Lead
M-SMA-12.9	05-001(a)-99 05-001(b)	Middle Mortandad/Ten Site Canyons	Cadmium (1.23 2 of 42 4.8%); Copper (93.75 11 of 42 26%); Lead (37.14 10 of 42 24%); Zinc (1.87 2 of 42 4.8%)	Barium (1.9 2 of 42 4.8%)	Lead (2.6 2 of 42 4.8%)		Copper (0.48 3 of 42 7.1%)			Barium; Copper; Lead	Cadmium - B5; Zinc - B5	Copper; Lead
M-SMA-12.7; M-SMA- 12.8; M-SMA-12.9	05-001(a)-99 05-002	Middle Mortandad/Ten Site Canyons	Cadmium (1.23 2 of 42 4.8%); Copper (93.75 11 of 42 26%); Lead (37.14 10 of 42 24%); Zinc (1.87 2 of 42 4.8%)	Barium (1.9 2 of 42 4.8%)	Lead (2.6 2 of 42 4.8%)		Copper (0.48 3 of 42 7.1%)			Barium; Copper; Lead	Cadmium - B5; Zinc - B5	Copper; Lead
M-SMA-12.7	05-005(a)-00 05-005(a)	Middle Mortandad/Ten Site Canyons	Cadmium (0.69 0 of 13 0%); Copper (1.97 3 of 13 23%); Lead (1.22 2 of 13 15%); Mercury (4 1 of 13 7.7%)	/						Copper	Cadmium - B5; Lead - B5; Mercury - B8	
M-SMA-12.7	05-005(a)-00 05-006(b)	Middle Mortandad/Ten Site Canyons	Cadmium (0.69 0 of 13 0%); Copper (1.97 3 of 13 23%); Lead (1.22 2 of 13 15%); Mercury (4 1 of 13 7.7%)	/						Copper	Cadmium - B5; Lead - B5; Mercury - B8	
M-SMA-12.7	05-005(a)-00 05-006(e)	Middle Mortandad/Ten Site Canyons	Cadmium (0.69 0 of 13 0%); Copper (1.97 3 of 13 23%); Lead (1.22 2 of 13 15%); Mercury (4 1 of 13 7.7%)	/						Copper	Cadmium - B5; Lead - B5; Mercury - B8	
B-SMA-0.5	10-001(a)-99 10-001(a)	Bayo Canyon	Cadmium (0.65 0 of 125 0%)	Molybdenum (of 13 0%); Uranium (2.25 27 of 89 30%)							Cadmium - B5; Molybdenum - A1; Uranium - C2	
B-SMA-0.5	10-001(a)-99 10-001(b)	Bayo Canyon	Cadmium (0.65 0 of 125 0%)	Molybdenum (of 13 0%); Uranium (2.25 27 of 89 30%)							Cadmium - B5; Molybdenum - A1; Uranium - C2	
B-SMA-0.5	10-001(a)-99 10-001(c)	Bayo Canyon	Cadmium (0.65 0 of 125 0%)	Molybdenum (of 13 0%); Uranium (2.25 27 of 89 30%)							Cadmium - B5; Molybdenum - A1; Uranium - C2	
B-SMA-0.5	10-001(a)-99 10-001(d)	Bayo Canyon	Cadmium (0.65 0 of 125 0%)	Molybdenum (of 13 0%); Uranium (2.25 27 of 89 30%)							Cadmium - B5; Molybdenum - A1; Uranium - C2	
B-SMA-0.5	10-001(a)-99 10-008	Bayo Canyon	Cadmium (0.65 0 of 125 0%)	Molybdenum (of 13 0%); Uranium (2.25 27 of 89 30%)							Cadmium - B5; Molybdenum - A1; Uranium - C2	
B-SMA-0.5	10-002(a)-99 10-004(b)	Bayo Canyon	Antimony (12.2 1 of 18 5.6%); Arsenic (1.05 1 of 18 5.6%); Cadmium (0.35 0 of 18 0%); Copper (0.97 0 of 18 0%); Zinc (0.68 0 of 18 0%);	Uranium (1.72 3 of 15 20%)	Arsenic (2.5 1 of 18 5.6%)		Antimony (0.39 1 of 18 5.6%)				Antimony - A1; Arsenic - B5; Cadmium - B5; Copper - B5; Uranium - C2: Zinc - B5	
B-SMA-0.5	10-009 and C-10-001 10-009	Bayo Canyon		Molybdenum (of 1 0%)							Molybdenum - A1	
CDV-SMA-2.3; W-SMA- 8.7	13-001 16-035	S-Site Aggregate Area	Copper (1.07 1 of 29 3.4%); Lead (8.36 3 of 29 10%); Zinc (1.29 3 of 29 10%)	Fluoride (of 29 0%); Nitrate (of 29 0%); Perchlorate (of 29 0%)			Lead (0.58 3 of 29 10%)				Aluminum - B5; Copper - B5: Fluoride - C2; Lead - B8; Nitrate - B5; Perchlorate - C2; Zinc-B5	
CDV-SMA-3	14-002(a)-99 14-009	Canon de Valle Aggregate Area TA-14	Aluminum (0.68)0 of 6)0%); Chromium (0.58)(of 6)0%); Nickel (0.59)0 of 6)0%); Silver () of 6)0%); Thallium (1 0 of 6)0%); Zinc (0.73)0 of 6)0%)	Barium (2.1 2 of 6 33%); Beryllium (0.53 0 of 6 0%); Iron (0.61 0 of 6 0%)	f Thailium (1.3 2 of 6 33%)		Aluminum (0.54 3 of 6 50%)	Iron (0.4 6 of 6 100%)			Aluminum - B5; Barium - B5 ; Beryllium - B1; Chromium - B5; Iron - B5; Nickel - B5; Silver - B1; Thallium - B5; Zinc - B5	
CDV-SMA-3	14-009	Canon de Valle Aggregate Area TA-14	Copper (4.86 6 of 31 19%); Lead (2.15 10 of 31 32%); Mercury (6.29 5 of 31 16%); Nickel (1.74 1 of 31 3.2%); Selenium (1.65 13 of 31 42%); Thallium (1.1 1 of 31 3.2%); Zinc (0.77 0 of 31 0%)	Nitrate (of 31 0%)	Thallium (1.4 2 of 31 6.5%)		Lead (0.15 4 of 31 13%)			Copper; Lead; Mercury;	Iron - B5; Nickel -B5; Nitrate - B5; Selenium - A1; Thallium - B5; Zinc - B5	Lead
CDV-SMA-4	14-002(a)-99 14-010	Canon de Valle Aggregate Area TA-14	Aluminum (0.68)0 of 6)0%); Chromium (0.58)0 of 6)0%); Nickel (0.59)0 of 6)0%); Silver () of 6)0%); Thallium (1 0 of 6)0%); Zinc (0.73)0 of 6)0%)	D Barium (2.1 2 of 6 33%); Beryllium (0.53 0 of 6 0%); Iron (0.61 0 of 6 0%)	f Thallium (1.3 2 of 6 33%)		Aluminum (0.54 3 of 6 50%)	lron (0.4 6 of 6 100%)			Aluminum - B5; Barium - B5 ; Beryllium - B1; Chromium - B5; Iron - B5; Nickel - B5; Silver - B1; Thallium - B5; Zinc - B5	
CDV-SMA-4	14-010	Canon de Valle Aggregate Area TA-14	Copper (3.34 2 of 10 20%); Lead (2.31 3 of 10 30%); Selenium (1.41 2 of 10 20%); Silver (1 of 10 00%); Zinc (1.17 1 of 10 10%)	Nitrate (of 10 0%)			Lead (0.16 3 of 10 30%)			Copper; Lead;	Nitrate - B5; Selenium - B5; Silver - B5; Zinc - B2	Lead
CDV-SMA-6.02	14-002(c)	Canon de Valle Aggregate Area TA-14	Cadmium (0.17]0 of 8]0%); Lead (1.5]3 of 8]38%); Selenium (1]0 of 8]0%); Zinc (6.83]2 of 8]25%)	Nitrate (of 8 0%); Perchlorate (of 8 0%)			Lead (0.1 1 of 8 12%)				Cadmium - B5; Lead - B5; Nitrate - B5; Perchlorate - C2; Selenium - B5; Zinc - A1	
CDV-SMA-6.02	14-002(c)-99 14-002(d)	Canon de Valle Aggregate Area TA-14		Uranium (1.91 2 of 3 67%)						-	Uranium - C2	
CDV-SMA-6.02	14-002(c)-99 14-002(e)	Canon de Valle Aggregate Area TA-14		Uranium (1.91 2 of 3 67%)					+		Uranium - C2	
PT-SMA-1.7	15-003 15-006(a)	Potrillo/Fence Aggregate Area	Selenium (1.88 1 of 10 10%)	Barium (1.17 1 of 10 10%); Beryllium (0.48 0)						Barium - B5; Beryllium -	
PT-SMA-2.01	15-003IC-36-001	Potrillo/Fence Aggregate Area	Selenium (1.88 1 of 10 10%)	of 10 0%) Barium (1,17 1 of 10 10%): Bervllium (0.48 0)						B5; Selenium - B5 Barium - B5: Bervllium -	
			(of 10 0%)							B5; Selenium - B5	

			Inorganic Constituents Detected	ed Above Maximum Background	Inorganic Constituents Detected	Above Residential SSLs	Inorganic Constituents Detected Ab	ove 10% of Residential SSLs		Constitu	uents Site Related?	
SMA	Site	Annual Area	TALLint	Non TAL List		Non TAL List	TALLint	Non TAL List	Stormwater Analytes	S Yes	Na ¹	Potential Significant
PT-SMA-1	15-004(f)-99 15-004(f)	Potrillo/Fence Aggregate Area	TAL LIST	Barium (0.77 0 of 1 0%)		NOII-I AL LIST		NON-TAL LIST	Aluminum; Copper;	Barium;	Aluminum B5	industrial materials
PT-SMA-1	15-004(f)	Potrillo/Fence Aggregate Area	Antimony (17.5]7 of 123[5.7%); Cadmium (4.96]4 of 123[3.3%); Chromium (0.97]0 of 123]0%); Copper (515.62]37 of 123]30%); Lead (13.39]14 of 123]11%); Mercury (23]15 of 123[12%); Nickel (1.98]1 of 123]0.81%); Selenium (2.12]28 of 123]23%); Zinc (9.48]7 of 123]5.7%)	Barium (2.03)6 of 123 4.9%); Beryllium (10.66 5 of 123 4.1%)	Copper (2.6 3 of 123 2.4%)	Uranium (12 2 of 19 11%)	Antimony (0.56)4 of 123)3.3%); Cadmium (0.18)2 of 123)1.6%); Lead (0.94)10 of 123)8.1%)	Beryllium (0.27 4 of 123 3.3%)	Aluminum; Copper; Zinc	Barium, Beryllium Cadmium; Copper, Lead, Mercury	; Aluminum - B5; Antimony - A1; Chromium - B5; Copper; Nickel - B5; Selenium - A1; Uranium - C2; Zinc - B8	Cadmium; Copper; Lead
PT-SMA-1	15-004(f)-99 15-008(a)	Potrillo/Fence Aggregate Area		Barium (0.77 0 of 1 0%)					Aluminum; Copper; Zinc	Barium; Copper;	Aluminum - B5; Zinc - B8	
PT-SMA-1	15-008(a)	Potrillo/Fence Aggregate Area	Antimony (2.5 5 of 25 20%); Cadmium (0.42 0 of 25 0%); Copper (482.5 13 of 25 52%); Lead (2.08 5 of 25 20%); Mercury (14 21 of 25 84%); Selenium (1.76 5 of 25 20%); Zinc (4.09 3 of 25 12%)	Barium (2.03)2 of 25 8%); Beryllium (0.73)0 (25 0%); Nitrate (of 24 0%); Perchlorate (o 24 0%); Uranium (783.33 1 of 1 100%)	of Copper (2.5 1 of 25 4%) f	Uranium (12 1 of 1 100%)	Lead (0.15 2 of 25 8%)		Aluminum; Copper; Zinc	Barium; Copper; Lead; Mercury; Uranium ;Zinc	Aluminum - B5; Antimony - A1; Beryllium - B5; Cadmium - B5; Nitrate - B5; Perchlorate - C2; Selenium - A1	Copper; Lead
CDV-SMA-2.3	16-003(n)-99 16-003(n)	S-Site Aggregate Area	Arsenic (1.38)1 of 15[6.7%); Cadmium (0.42]0 of 15[0%); Cobati (8.8)1 of 15[6.7%); Copper (3.91]3 of 15[20%); Lead (4.79]3 of 15[20%); Mercury (2.62]2 of 15[13%); Zinc (3.03]2 of 15[13%)	Barium (14.41 5 of 15 33%); Fluoride (of 6 0%); Nitrate (of 6 0%); Perchlorate (of 6 0%); Uranium (1.83 1 of 15 6.7%)	Arsenic (3.3 3 of 15 20%); Cobalt (3.6 1 o 15 6.7%)		Lead (0.34 2 of 15 13%)	Barium (0.38 2 of 15 13%)		Barium; Copper	Arsenic - B5; Cadmium - B5; Cobalt - B8; Fluoride - A1; Lead - B8; Mercury - B5; Nitrate - B5; Perchlorate - C2; Uranium B5; Zinc - B8	Barium
W-SMA-8.7	16-026(j2) and 16-029(f) 16- 026(j2)	S-Site Aggregate Area	Cadmium (0.19 0 of 22 0%); Cobalt (19.58 2 of 22 9.1%); Copper (6.25 2 of 22 9.1%); Lead (2.55 3 of 22 14%); Selenium (2.19 2 of 20 10%); Silver (of 22 0%); Zinc (2.97 2 of 22 9.1%)		Cobalt (8.1 1 of 22 4.5%)		Lead (0.18 1 of 22 4.5%)		Aluminum		Aluminum - B5; Cadmium - B5; Cobalt - B8; Copper - B8; Lead - B5; Selenium - A1; Silver - B8; Zinc - B5	-
CDV-SMA-1.4	16-026(I)-00 16-026(I)	Cañon de Valle	Aluminum (0.48 0 of 4 0%); Chromium (1.05 1 of 4 25%); Lead (15.61 1 of 4 25%); Nickel (0.59 0 of 4 0%)		Lead (1.1 1 of 4 25%)		Aluminum (0.38 4 of 4 100%)		Silver	Lead;	Aluminum - B5; Chromium - B5; - B5; Silver - B5	Lead
CDV-SMA-1.4	16-026(I)-00 16-028(c)	Cañon de Valle	Aluminum (0.48 0 of 4 0%); Chromium (1.05 1 of 4 25%); Lead (15.61 1 of 4 25%); Nickel (0.59)0 of 4 0%)		Lead (1.1 1 of 4 25%)		Aluminum (0.38 4 of 4 100%)		Silver	Lead;	Aluminum - B5; Chromium - B5; - B5; Silver - B5	Lead
LA-SMA-6.3	21-006©-99 21-006(b)	DP Site Aggregate Area	Antimony (1.33)1 of 19 5.3%); Cadmium (0.53)0 of 19 0%); Copper (1.2 2 of 20 10%); Lead (1.23 2 of 19 11%); Mercury (2 1 of 19 5.3%); Selenium (2.09 3 of 19 16%); Zinc (18.41 1 of 19 5.3%)								Antimony - B5; Cadmium - B5; Copper - B5; Lead - B5; Mercury - B5; Selenium - A1; Zinc - B8	
LA-SMA-6.34	21-022(h)-99 21-022(h)	DP Site Aggregate Area	Cadmium (2.31 1 of 25 4%); Chromium (9.75 1 of 25 4%); Copper (15.56 6 of 25 24%); Lead (140.71 5 of 25 20%); Mercury (19.2 8 of 25 32%); Silver (of 25 0%); Zinc (15.89 6 of 25 24%)	,	Lead (9.8 1 of 25 4%)		Silver (0.12 1 of 25 4%)			Chromium; Copper; Lead; Mercury; Silver; Zinc	Cadmium - B8	Lead; Silver
LA-SMA-5.91	21-023(c) 21-027(d)	DP Site Aggregate Area	Cadmium (0.46 0 of 58 0%); Chromium (1.32 1 of 58 1.7%); Lead (1.55 4 of 58 6.9%); Mercury (10.6 16 of 55 29%); Silver (of 58 0%); Zinc (1.39 1 of 58 1.7%)	Lithium (of 3 0%); Nitrate (of 52 0%); Perchlorate (of 42 0%); Strontium (of 3 0%); Uranium (1.74 3 of 3 100%)			Lead (0.11 1 of 58 1.7%)			Mercury; Silver	Cadmium - B5; Chromium B5; Lead - B5; Nitrate - B5; Perchlorate - C2; Uranium - B5; Zinc - B5	-
DP-SMA-0.6	21-024(I)-99 21-024(I)	DP Site Aggregate Area	Cadmium (0.38 0 of 38 0%); Copper (2.28 2 of 38 5.3%); Lead (17.43 8 of 39 21%); Selenium (0.94 0 of 40 0%); Zinc (7.31 8 of 39 21%)		Lead (1.2 1 of 39 2.6%)					Lead; Zinc	Cadmium - B5; Copper - B5; Selenium - B5	Lead
LA-SMA-6.38	21-024©, 21-003-99 21-024(4	c) DP Site Aggregate Area	Chromium (1.09 1 of 120 0.83%); Copper (3.2 9 of 120 7.5%); Lead (2.15 8 of 120 6.7%); Mercury (37.7 20 of 121 17%); Selenium (2.48 11 of 120 9.2%); Zinc (2.48 7 of 122 5.7%)	Nitrate (of 122 0%); Perchlorate (of 120 0%); Uranium (7.28 10 of 121 8.3%)			Lead (0.15 3 of 120 2.5%); Mercury (0.16 2 of 121 1.7%)	Uranium (0.11 2 of 121 1.7%)		Mercury	Chromium - B5; Copper - B5; Lead - B5; Nitrate - B5; Perchlorate - C2; - A1; Uranium - C2; Zinc - B5	Mercury
LA-SMA-9	26-001 26-002(a)	Middle LA Aggregate Area	Cyanide (Total) (of 42 0%); Selenium (8.88 45 of 55 82%)								Cyanide (Total) - B5; Selenium - A1	
LA-SMA-9	26-001 26-002(b)	Middle LA Aggregate Area	Cyanide (Total) (of 42 0%); Selenium (8.88 45 of 55 82%)								Cyanide (Total) - B5; Selenium - A1	
LA-SMA-9	26-001 26-003	Middle LA Aggregate Area	Cyanide (Total) (of 42 0%); Selenium (8.88 45 of 55 82%)								Cyanide (Total) - B5; Selenium - A1	
Pratt-SMA-1.05	35-003(a)-99 35-003(h)	Middle Mortandad/Ten Site Canyons	Boron (of 2 0%); Chromium (6 1 of 14 7.1%) Lead (1.36 1 of 14 7.1%); Mercury (20 3 of 14 21%); Nickel (8.48 1 of 14 7.1%); Zinc (0.91 0 of 14 0%)				Nickel (0.16 1 of 14 7.1%)		Aluminum; Mercury	Mercury	Aluminum - B1; Boron - A1/S1; Chromium - B8; Lead - B5; Nickel - B8; Zinc - B5	
Pratt-SMA-1.05	35-003(a)-99 35-003(p)	Middle Mortandad/Ten Site Canyons	Boron (of 2 0%); Chromium (6 1 of 14 7.1%) Lead (1.36 1 of 14 7.1%); Mercury (20 3 of 14 21%); Nickel (8.48 1 of 14 7.1%); Zinc (0.911 of 14 0%)	:			Nickel (0.16 1 of 14 7.1%)		Aluminum; Mercury	Mercury	Aluminum - B1; Boron - A1/S1; Chromium - B8; Lead - B5; Nickel - B8; Zinc - B5	
Pratt-SMA-1.05	35-003(d)-00 35-003(r)	Middle Mortandad/Ten Site Canyons	Boron (] of 10[0%); Cadmium (0.81]0 of 20[0%); Mercury (16]11 of 18]61%); Zinc (0.73]0 of 18]0%)	Fluoride (of 1 0%); Strontium (of 2 0%); Uranium (0.53 0 of 9 0%)					Aluminum; Mercury	Mercury	Aluminum - B1; Boron - A1; Cadmium - B5; Fluoride - A1/S1; Zinc -	
M-SMA-10	35-008-00 35-008	Middle Mortandad/Ten Site Canyons	Zinc (1.12 1 of 35 2.9%)	Beryllium (0.66 0 of 37 0%); Strontium (of							Beryllium - B5; Zinc - B5	
M-SMA-10	35-008-00 35-014(e)	Middle Mortandad/Ten Site Canyons	Zinc (1.12 1 of 35 2.9%)	Beryllium (0.66 0 of 37 0%); Strontium (of 20%)							Beryllium - B5; Zinc - B5	
M-SMA-10.01	35-008-00 35-016(e)	Middle Mortandad/Ten Site Canyons	Chromium (1.19 1 of 50 2%); Lead (1.34 1 of 50 2%); Zinc (1.32 2 of 48 4.2%)	Beryllium (0.66]0 of 37 0%); Lithium (of 2 0%)					Copper		Beryllium - B5; Chromium - B5; Copper - B5; Lead - B5; Lithium - C2; Zinc - B5	-
T-SMA-6.8	35-010(a)-99 35-010(e)	Middle Mortandad/Ten Site Canyons	Chromium (1.56 2 of 19 11%); Mercury (1.3 1 of 19 5.3%); Nickel (0.9 0 of 19 0%); Silver (of 19 0%)							Chromium; Silver	Mercury - B5; Nickel - B5	

			Inorganic Constituents Detected Above Maximum Background	Inorganic Constituents Detecte	d Above Residential SSLs	Inorganic Constituents Detected Abo	ve 10% of Residential SSLs		Constitu	ents Site Related?	
SMA	Site	Aggregate Area	TALList Non-TALList	TAI List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes	Yes	No ¹	Potential Significant
T-SMA-2.85	35-014(g)-00 35-014(g)	Middle Mortandad/Ten Site Canyons	Antimony (1.2 1 of 17 5.9%); Cadmium			Cobalt (0.48 14 of 17 82%); Lead (0.23 1 of		Copper	Copper; Lead;	Antimony - B5; Cadmium -	Lead
			(5.50) 01 (7)(5%), Chromotor (10.7) 01 (17)0%); Cobalt (1.16) (17)(5.9%); Copper (5.52)3 of 17 18%); Lead (3.29)2 of 17 12%); Mercury (2.07)1 of 17 5.9%); Zinc (9.96)5 of 17 29%)			17 [3.3%]			Zinc	- B5; Mercury - B5	
T-SMA-2.85	35-014(g)-00 35-016(n)	Middle Mortandad/Ten Site Canyons	Antimony (1.2 1 of 17 5.9%); Cadmium (0.88 0 of 17 0%); Chromium (0.7 0 of 17 0%); Cobalt (1.16 1 of 17 5.9%); Copper (5.52 3 of 17 18%); Lead (3.29 2 of 17 12%); Mercury (2.07 1 of 17 5.9%); Zinc (9.96 5 of 17 29%)			Cobalt (0.48 14 of 17 82%); Lead (0.23 1 of 17 5.9%)		Copper	Copper; Lead; Zinc	Antimony - B5; Cadmium - B5; Chromium - B5; Cobalt - B5; Mercury - B5	Lead
T-SMA-5	35-016(a)-00 35-016(a)	Middle Mortandad/Ten Site Canyons	Cadmium (0.38)0 of 13)0%); Chromium (0.65)0 of 13)0%); Copper (5.26)5 of 13)38%); Lead (1.3)2 of 13)15%); Mercury (1.65)3 of 13)23%); Zinc (5.13)6 of 13)46%)						Copper; Lead; Zinc	Cadmium - B5; Chromium - B5; Mercury - B5	
T-SMA-5	35-016(a)-00 35-016(q)	Middle Mortandad/Ten Site Canyons	Cadmium (0.38 0 of 13 0%); Chromium (0.65 0 of 13 0%); Copper (5.26 5 of 13 38%); Lead (1.3 2 of 13 15%); Mercury (1.65 3 of 13 23%); Zinc (5.13 6 of 13 46%)						Copper; Lead; Zinc	Cadmium - B5; Chromium - B5; Mercury - B5	
T-SMA-4	35-016(c)-00 35-016(c)	Middle Mortandad/Ten Site Canyons	Chromium (1.55/2 of 23/8.7%); Copper (2.25/3 of 23/13%); Lead (2.09/2 of 23/8.7%); Mercury (27/7 of 23/30%); Nickel (0.96/0 of 23/0%); Zinc (1.46/4 of 23/17%)			Lead (0.15 1 of 23 4.3%); Mercury (0.11 1 of 23 4.3%)		Copper; Mercury		Chromium - B5; Copper - A1; Lead - B5; Mercury - A1; Nickel - B5; Zinc - A1	
T-SMA-4	35-016(c)-00 35-016(d)	Middle Mortandad/Ten Site Canyons	Chromium (1.55/2 of 23/8.7%); Copper (2.25/3 of 23/13%); Lead (2.09/2 of 23/8.7%); Mercury (27/7 of 23/30%); Nickel (0.96/0 of 23/0%); Zinc (1.46/4 of 23/17%)			Lead (0.15 1 of 23 4.3%); Mercury (0.11 1 of 23 4.3%)		Copper; Mercury	Mercury;	Chromium - B5; Copper - A1; Lead - B5; Nickel - B5; Zinc - A1	Mercury
M-SMA-10.3	35-016(i)-00 35-014(e2)	Middle Mortandad/Ten Site Canyons	Chromium (1.82 1 of 13 7.7%); Lead (0.94 0 of 13 0%); Mercury (7.45 1 of 13 7.7%)					Aluminum; Copper; Zinc		Aluminum - B1; Chromium - B8; Copper - B1; Lead - B5; Mercury - B8; Zinc - B1	
M-SMA-10.3	35-016(i)-00 35-016(i)	Middle Mortandad/Ten Site Canyons	Chromium (1.82)1 of 13 7.7%); Lead (0.94 0 of 13 0%); Mercury (7.45 1 of 13 7.7%)					Aluminum; Copper; Zinc		Aluminum - B1; Chromium - B8; Copper - B1; Lead - B5; Mercury - B8; Zinc - B1	
Pratt-SMA-1.05	35-016(k)-00 35-016(k)	Middle Mortandad/Ten Site Canyons	Cadmium (0.46[0 of 9]0%); Copper (3.38]1 of 9]11%); Lead (1.04]1 of 9]11%); Mercury (10.4]1 of 9]11%); Zinc (7.59]4 of 9]44%)					Aluminum; Mercury	Zinc	Aluminum - B1; Cadmium - B5; Copper - B5; Lead - B5; Mercury - A1/B8	
Pratt-SMA-1.05	35-016(k)-00 35-016(l)	Middle Mortandad/Ten Site Canyons	Cadmium (0.46 0 of 9 0%); Copper (3.38 1 of 9 11%); Lead (1.04 1 of 9 11%); Mercury (10.4 1 of 9 11%); Zinc (7.59 4 of 9 44%)					Aluminum; Mercury	Zinc	Aluminum - B1; Cadmium - B5; Copper - B5; Lead - B5; Mercury - A1/B8	
A-SMA-1.1	39-004(d) 39-004(a)	North Ancho Aggregate Area	Cadmium (2.92 1 of 50 2%); Copper (4850 9 Beryllium (2.3 3 of 50 6%); Nitrate (of 4 0%) of 50 18%); Lead (11.43]7 of 50 14%); Perchlorate (of 4 0%); Uranium (776.67 41 Mercury (68 16 of 50 32%); Zinc (9.14 1 of 50 2%) of 46 89%)); Copper (25 2 of 50 4%)	Uranium (12 4 of 46 8.7%)	Cadmium (0.11 1 of 50 2%); Lead (0.8 5 of 50 10%); Mercury (0.29 3 of 50 6%)			Copper; Lead; Mercury; Uranium	Beryllium - B8; Cadmium - B8; Nitrate - B5; Perchlorate - C2; Zinc - B8	Copper; Lead; Mercury; Uranium
M-SMA-5	42-001(a)-99 42-001(a)	Upper Mortandad Aggregate Area	Chromium (1.44 1 of 45 2.2%); Zinc (2.09 3 of Nitrate (of 45 0%); Perchlorate (of 45 0%) 45 6.7%)							Antimony - B1; Cadmium - B1; Chromium - B5; Mercury - B5; Nitrate - B5; Perchlorate -C2; Selenium - B1; Zinc - B5	
M-SMA-5	42-001(a)-99 42-001(b)	Upper Mortandad Aggregate Area	Chromium (1.44 1 of 45 2.2%); Zinc (2.09 3 of Nitrate (of 45 0%); Perchlorate (of 45 0%) 45 6.7%)							Antimony - B1; Cadmium - B1; Chromium - B5; Mercury - B5; Nitrate - B5; Perchlorate -C2 ; Selenium - B1; Zinc - B5	
M-SMA-5	42-001(a)-99 42-001(c)	Upper Mortandad Aggregate Area	Chromium (1.44 1 of 45 2.2%); Zinc (2.09 3 of Nitrate (of 45 0%); Perchlorate (of 45 0%) 45 6.7%)							Antimony - B1; Cadmium - B1; Chromium - B5; Mercury - B5; Nitrate - B5; Perchlorate -C2 ; Selenium - B1; Zinc - B5	
M-SMA-5	42-001(a)-99 42-002(a)	Upper Mortandad Aggregate Area	Chromium (1.44 1 of 45 2.2%); Zinc (2.09 3 of Nitrate (of 45 0%); Perchlorate (of 45 0%) 45 6.7%)							Antimony - B1; Cadmium - B1; Chromium - B5; Mercury - B5; Nitrate - B5; Perchlorate -C2 ; Selenium - B1; Zinc - B5	
M-SMA-5	42-001(a)-99 42-002(b)	Upper Mortandad Aggregate Area	Chromium (1.44 1 of 45 2.2%); Zinc (2.09 3 of Nitrate (of 45 0%); Perchlorate (of 45 0%) 45 6.7%)							Antimony - B1; Cadmium - B1; Chromium - B5; Mercury - B5; Nitrate - B5; Perchlorate -C2 ; Selenium - B1; Zinc - B5	
ACID-SMA-2; ACID-SMA- 2.1	45-001-00 01-002(b)-00	Pueblo Canyon	Copper (1.38 2 of 33 6.1%); Lead (1.39 3 of 33 9.1%); Mercury (15.7 7 of 33 21%); Silver (of 33 0%); Zinc (1.17 2 of 33 6.1%)						Mercury; Silver	Copper - B5; Lead - B5; Nitrate -B5 ; Perchlorate - C2; Zinc - B5	

			Inorganic Constituents Detecte	d Above Maximum Background	Inorganic Constituents Detec	cted Above Residential SSLs	Inorganic Constituents Detected Ab	ove 10% of Residential SSLs		Constitu	ents Site Related?	
SMA	Site	Aggregate Area	TAL List	Non-TAL List	TAL List	Non-TAL List	TAI List	Non-TAL List	Stormwater Analytes	e Yes	No ¹	Potential Significant
ACID-SMA-2	45-001-00 45-001	Pueblo Canyon	Copper (1.38]2 of 33[6.1%); Lead (1.39]3 of 33]9.1%); Mercury (15.7]7 of 33]21%); Silver (of 33]0%); Zinc (1.17]2 of 33]6.1%)	Nitrate (of 31 0%); Perchlorate (of 31 0%)					Aluminum	Mercury; Silver	Aluminum - B2; Copper - B5; Lead - B5; Nitrate -B5 ; Perchlorate - C2; Zinc - B5	
ACID-SMA-2	45-001-00 45-002	Pueblo Canyon	Copper (1.38 2 of 33 6.1%); Lead (1.39 3 of 33 9.1%); Mercury (15.7 7 of 33 21%); Silver (of 33 0%); Zinc (1.17 2 of 33 6.1%)	Nitrate (of 31 0%); Perchlorate (of 31 0%)					Aluminum	Mercury; Silver	Aluminum - B2; Copper - B5; Lead - B5; Nitrate -B5 ; Perchlorate - C2; Zinc - B5	
ACID-SMA-2	45-001-00 45-004	Pueblo Canyon	Copper (1.38 2 of 33 6.1%); Lead (1.39 3 of 33 9.1%); Mercury (15.7 7 of 33 21%); Silver (of 33 0%); Zinc (1.17 2 of 33 6.1%)	Nitrate (of 31 0%); Perchlorate (of 31 0%)					Aluminum	Mercury; Silver	Aluminum - B2; Copper - B5; Lead - B5; Nitrate -B5 ; Perchlorate - C2; Zinc -	
CDB-SMA-1	46-004(r) 46-004(w)	Upper Canada del Buey Aggregate Area	Cadmium (0.42]0 of 2[0%); Copper (6.75]2 of 2 100%); Cyanide (Total) (of 2[0%); Lead (2.62]2 of 2 100%); Mercury (3.44]2 of 2 100%); Silver (of 2 0%); Zinc (5.48]2 of 2 100%)				Lead (0.18 2 of 2 100%)		Aluminum; Copper	Copper; Lead; Zinc	Aluminum - B1; Cadmium - B5; Cyanide - B5; Mercury - B5; Silver - B5	Lead
M-SMA-4	48-007(a)-00 48-007(a)	Upper Mortandad Aggregate Area	Chromium (29.59 13 of 31 42%); Copper (11.06 13 of 31 42%); Cyanide (Total) (of 19 0%); Lead (1.25]2 of 31 6.5%); Mercury (2 3 of 33 9.1%); Nickel (1.07 1 of 31 3.2%); Zinc (1.85 4 of 31 13%)	Chromium hexavalent ion (of 19 0%); Nitrate (of 19 0%); Perchlorate (of 19 0%)	2	Chromium hexavalent ion (2.9 1 of 19 5.3%)			Copper	Chromium; Copper	Chromium hexavalent ion - C2; Cyanide - B2; Lead - B5; Mercury - B5; Nickel - B5; Nitrate - B5; Perchlorate - C2; Zinc - B5	
M-SMA-4	48-007(a)-00 48-007(d)	Upper Mortandad Aggregate Area	Chromium (29.59 13 of 31 42%); Copper (11.06 13 of 31 42%); Cyanide (Total) (of 19]0%); Lead (1.25]2 of 31 6.5%); Mercury (2 3 of 33]9.1%); Nickel (1.07 1 of 31 3.2%); Zinc (1.85 4 of 31 13%)	Chromium hexavalent ion (of 19 0%); Nitrate (of 19 0%); Perchlorate (of 19 0%)	2	Chromium hexavalent ion (2.9 1 of 19 5.3%)			Copper	Chromium; Copper	Chromium hexavalent ion - C2; Cyanide - B2; Lead - B5; Mercury - B5; Nickel - B5;); Nitrate - B5; Perchlorate - C2; Zinc - B5	
M-SMA-4	48-007(a)-00 48-010	Upper Mortandad Aggregate Area	Chromium (29.59 13 of 31 42%); Copper (11.06 13 of 31 42%); Cyanide (Total) (of 19]0%); Lead (1.25[2 of 31 6.5%); Mercury (2]3 of 33]9.1%); Nickel (1.07 1 of 31 3.2%); Zinc (1.85 4 of 31 13%)	Chromium hexavalent ion (of 19 0%); Nitrate (of 19 0%); Perchlorate (of 19 0%)	2	Chromium hexavalent ion (2.9 1 of 19 5.3%)			Copper	Chromium; Copper	Chromium hexavalent ion - C2; Cyanide - B2; Lead - B5; Mercury - B5; Nickel - B5; Nitrate - B5; Perchlorate - C2; Zinc - B5	
LA-SMA-10.11	53-002(a)-99 53-002(a)	Lower Sandia Canyon	Lead (1.93 5 of 47 11%)				Lead (0.14 2 of 47 4.3%)				Lead - B5	
LA-SMA-10.11	53-002(a)	Lower Sandia Canyon	Zinc (0.84 0 of 37 0%)								Zinc - B5	
PJ-SMA-19	54-017, 54-018, 54-020, 54- 014(d) 54-013(b)(54-013(b)	Lower Pajarito Canyon	Cadmium (0.46 0 of 56 0%)						Aluminum; Mercury		Cadmium - B5	
PJ-SMA-18	54-017, 54-018, 54-020, 54- 014(d), 54-013(b) 54-014(d)	Lower Pajarito Canyon	Cadmium (0.46 0 of 56 0%)								Cadmium - B5	
CDB-SMA-4; PJ-SMA- 18; PJ-SMA-19; PJ-SMA 20	54-017, 54-018, 54-020, 54- 014(d), 54-013(b) 54-017	Lower Pajarito Canyon	Cadmium (0.46 0 of 56 0%)								Cadmium - B5	
CDB-SMA-4; PJ-SMA-17	54-017, 54-018, 54-020, 54- 014(d), 54-013(b) 54-018	Lower Pajarito Canyon	Cadmium (0.46 0 of 56 0%)								Cadmium - B5	
CDB-SMA-4; PJ-SMA-19	54-017, 54-018, 54-020, 54-	Lower Pajarito Canyon	Cadmium (0.46 0 of 56 0%)								Cadmium - B5	
DT ONLA O OL	014(d), 54-013(b) 54-020											
PT-SMA-2.01 R-SMA-2.5	C-36-006(e) C-36-001	Potrillo/Fence Aggregate Area	Chromium (0.7210 of 11210%): Cobalt (1.7416				Cobalt (0.72)107 of 112(96%)	Manganese (0.83)111 of			Chromium - B5: Cobalt -	
17-0MA-2.0	00-011(a)	Guaje/Darrancas/Kenuija Ganyons	of 112 5.4%); Zinc (0.84 0 of 112 0%)				Cobar (0.72/107 01 112/3076)	112 99%)			B5; Manganese - B5; Zinc - B5	
B-SMA-1	00-011(d)	Guaje/Barrancas/Rendija Canyons	Lead (1.7 2 of 42 4.8%); Zinc (0.68 0 of 42 0%)	Perchlorate (of 42 0%)			Lead (0.12 1 of 42 2.4%)				Lead - B5; Perchlorate - C2: Zinc - B5:	
R-SMA-2.3	00-011(e)	Guaje/Barrancas/Rendija Canyons	42[070]	Perchlorate (of 116 0%)							Perchlorate - C2	
LA-SMA-0.9; LA-SMA-1	00-017	Upper Los Alamos Canyon	Cadmium (0.19 0 of 10 0%); Lead (16.07 10 of 16 62%); Silver (of 10 0%)	Nitrate (of 6 0%)	Lead (1.1 1 of 16 6.2%)				Aluminum		Aluminum - B7; Cadmium - B5; Lead - A1; Nitrate - B5; Silver -B5;	
P-SMA-3.05	00-018(a)	Pueblo Canyon	Cadmium (0.96[0 of 40]0%); Copper (9.06]13 of 40]32%); Lead (8.96]10 of 40]25%); Mercury (26]20 of 40]50%); Selenium (6.35]10 of 40]25%); Silver (I of 40]0%); Thallium (1.1]1 of 40]2.5%); Zinc (4.29]13 of 40]32%)	Nitrate (of 28 0%); Perchlorate (of 28 0%)	Thallium (1.4 3 of 40 7.5%)		Lead (0.63)6 of 40 15%); Mercury (0.11 1 of 40 2.5%)		Copper	Copper; Lead; Mercury; Selenium; Silver; Zinc	Cadmium - B5; Nitrate - B5; Perchlorate - C2; Thallium-B5;	Lead; Mercury
P-SMA-0.3	00-018(b)	Pueblo Canyon	Copper (3.46 1 of 7 14%); Mercury (4.92 1 of 7 14%); Silver (of 7 0%); Zinc (1.5 1 of 7 14%)	Iron (0.6 0 of 7 0%); Nitrate (of 6 0%)				lron (0.4 4 of 7 57%)	Copper; Mercury; Selenium		Copper - B1; Iron - B1; Mercury - B1; Nitrate - B5; Selenium - B1; Silver - B1; Zinc - B1	
ACID-SMA-2.01	00-030(f)	Pueblo Canyon	Cadmium (0.16 0 of 12 0%); Copper (1.32 1 of 12 8.3%); Lead (1.61 2 of 12 17%); Mercury (3.18 1 of 12 8.3%); Zinc (0.94 0 of 12 0%)	Manganese (1.05 1 of 12 8.3%); Nitrate (of 12 0%); Perchlorate (of 11 0%)			Lead (0.11 1 of 12 8.3%)	Manganese (0.62 12 of 12 100%)			Cadmium - B5; Copper - B5; Lead - B5; Manganese - B5; Mercury - B5; Nitrate - B5; Perchlorate - C2; Zinc - B5;	
ACID-SMA-1.05	00-030(g)	Pueblo Canyon	Antimony (1.6]3 of 16]19%); Cadmium (0.22]0 of 16]0%); Copper (1.29]1 of 16]6.2%); Lead (4.14]10 of 16]62%); Mercury (13]4 of 16]25%); Silver (] of 16]0%); Zinc (2.01]7 of 16]44%)				Lead (0.29 10 of 16 62%)			Lead; Mercury; Zinc	Antimony - A1; Cadmium - B5; Copper - B5; Silver - B8	Lead
LA-SMA-2.3	01-001(b)	Upper Los Alamos Canyon	Cadmium (3.12]2 of 17 12%); Chromium (1.14]1 of 17 5.9%); Copper (3.21]2 of 17 12%); Lead (0.82]0 of 17 0%); Mercury (2.15]1 of 17 5.9%); Nickel (0.7]0 of 17 0%); Silver (of 17 0%); Zinc (0.79]0 of 17 0%)	Nitrate (of 17 0%); Perchlorate (of 17 0%)			Cadmium (0.12 1 of 17 5.9%)				Cadmium - B5; Chromium - B5; Copper - B8; Lead - B5; Mercury - B5; Nickel - B5; Nitrate - B5; Perchlorate - C2; Silver - A1. Zing - B5	
LA-SMA-4.2	01-001(c)	Upper Los Alamos Canyon	Mercury (3.42 1 of 8 12%)	Nitrate (of 8 0%); Perchlorate (of 8 0%)						1	Mercury - B5; Nitrate - B5; Perchlorate - C2	

			Inorganic Constituents Detect	ed Above Maximum Background	Inorganic Constituents Detected	Above Residential SSLs	Inorganic Constituents Detected Ab	ove 10% of Residential SSLs		Constitu	uents Site Related?	
SMA	Site	Aggregate Area	TAL List	Non-TAL List	TAI List	Non-TAL List	TAI List	Non-TAL List	Stormwater Analytes	Yes	No ¹	Potential Significant
LA-SMA-5.01	01-001(d)	Upper Los Alamos Canyon	Cadmium (0.27)0 of 152(0%); Chromium (1.34)8 of 152[5.3%); Copper (2.63)12 of 152[7.9%); Lead (1.6)12 of 152[7.9%); Mercury (43.1)56 of 152[37%); Nickel (0.68)0 of 152[0%); Silver (of 152[0%); Zinc (1.18)8 of 100]8%)	Nitrate (of 152 0%); Perchlorate (of 152 0%)			Lead (0.11 4 of 152 2.6%); Mercury (0.18 16 of 152 11%)			Lead; Mercury	Cadmium - B5; Chromium - B5; Copper - B5; Nickel - B5; Nitrate - B5; Perchlorate - C2; Silver - A1; Zinc - B5;	Lead; Mercury
LA-SMA-3.1	01-001(e)	Upper Los Alamos Canyon										
LA-SMA-2.1	01-001(f)	Upper Los Alamos Canyon	Antimony (1.1/2 of 38[5.3%); Cadmium (0.73]0 of 38[0%); Chromium (2.03]2 of 38[5.3%); Lead (2.52]1 of 38]2.6%); Nickel (1.16[1 of 38]2.6%); Zinc (1.35]2 of 38[5.3%)	Nitrate (of 38 0%)			Lead (0.18 1 of 38 2.6%)		Copper		Antimony - B5; Cadmium - B5; Chromium - B5; Copper - B5; Lead - B5; Nickel - B5; Nitrate - B5; Zinc - B5	
LA-SMA-3.9	01-001(g)	Upper Los Alamos Canyon	Chromium (0.69 0 of 6 0%)	Nitrate (of 6 0%); Perchlorate (of 6 0%)							Chromium - B5; Nitrate - B5	
LA-SMA-3.1	01-003(a)	Upper Los Alamos Canyon	Chromium (0.74 0 of 27 0%); Lead (1.57 4 of 27 15%); Mercury (3.1 6 of 27 22%); Zinc (1.22 2 of 27 7.4%)	Nitrate (of 27 0%)			Lead (0.11 1 of 27 3.7%)			Lead	Chromium - B5; Mercury - B5; Nitrate - B5; Zinc - B5	Lead
LA-SMA-4.1	01-003(b)	Upper Los Alamos Canyon	Lead (1.02 1 of 9 11%); Zinc (0.68 0 of 9 0%)	Nitrate (of 9 0%); Perchlorate (of 9 0%)					Copper	Arsenic	Lead - B5; Nitrate - B5; Perchlorate - C2; Zinc - B5	
LA-SMA-5.2	01-003(d)	Upper Los Alamos Canyon	Antimony (129 5 of 12 42%); Cadmium (0.42 0 of 12 0%); Lead (5.86 2 of 12 17%); Zinc (5.28 2 of 12 17%)	Barium (0.83 0 of 12 0%); Nitrate (of 12 0%) Perchlorate (of 12 0%)); Antimony (4.1 1 of 12 8.3%)		Lead (0.41 2 of 12 17%)			Antimony; Lead	Barium - A1; Cadmium - B5; Nitrate - B5; Perchlorate - C2; Zinc - B8	Antimony; Lead
LA-SMA-5.02	01-003(e)	Upper Los Alamos Canyon	Chromium (0.6)0 of 14(0%); Copper (0.97)0 o 14(0%); Lead (1.09)2 of 14(14%); Mercury (1.29)2 of 14(14%); Zinc (0.85)0 of 14(0%)	f Beryllium (0.63 0 of 14 0%); Nitrate (of 14 0%); Perchlorate (of 14 0%)					Copper		Beryllium - B5; Chromium - B2; Copper - B2; Lead - B5; Mercury - B5; Nitrate - B5; Perchlorate - C2; Zinc - B5	
LA-SMA-3.9	01-006(a)	Upper Los Alamos Canyon	Lead (1.53 1 of 16 6.2%); Mercury (2.03 1 of 16 6.2%); Zinc (0.7 0 of 11 0%)				Lead (0.11 1 of 16 6.2%)				Lead - B5; Mercury - B5; Zinc - B5	
LA-SMA-4.1	01-006(b)	Upper Los Alamos Canyon	Cyanide (Total) (of 3 0%)	Nitrate (of 3 0%)					Copper		Copper - B2; Cyanide - B5; Nitrate - B5	
LA-SMA-4.2	01-006(c)	Upper Los Alamos Canyon	Chromium (0.8 0 of 6 0%); Cobalt (0.93 0 of 6 0%); Lead (2.43 3 of 6 50%); Nickel (0.54 0 of 6 0%); Zinc (1.02 3 of 6 50%)	Manganese (0.69 0 of 6 0%); Nitrate (of 6 0%); Perchlorate (of 6 0%)			Cobalt (0.38 3 of 6 50%); Lead (0.17 3 of 6 50%)	Manganese (0.41 3 of 6 50%)			Chromium - B5; Cobalt - B5; Lead - B5; Nickel - B5; Manganese - B5; Nitrate - B5; Perchlorate - C2; Zinc - B5:	
LA-SMA-4.2	01-006(d)	Upper Los Alamos Canyon	Mercury (1.22 3 of 3 100%)								Mercury - B5	
LA-SMA-5.01	01-006(h)	Upper Los Alamos Canyon	Cadmium (0.27/0 of 152/0%); Chromium (1.34)8 of 152/5.3%); Copper (2.63)12 of 152/7.9%); Lead (1.6)12 of 152/7.9%); Mercury (43.1)56 of 152/37%); Nickel (0.68)0 of 152/0%); Silver (I of 152/0%); Zinc (1.18)8 of 100 8%)	Nitrate (of 152 0%); Perchlorate (of 152 0%)			Lead (0.11 4 of 152 2.6%); Mercury (0.18 16 of 152 11%)			Lead; Mercury	Cadmium - B5; Chromium - B5; Copper - B5; Nickel - B5; Nitrate - B5; Perchlorate - C2; Silver - A1; Zinc - B5;	Lead; Mercury
LA-SMA-5.51	02-003(a)	Middle LA Aggregate Area	Cadmium (0.86 0 of 12 0%); Copper (4.81 1 of 12 8.3%); Mercury (11.8 7 of 12 58%); Zind (2.25 1 of 12 8.3%)	Nitrate (of 9 0%); Perchlorate (of 9 0%)					Mercury		Cadmium - B5; Copper - B8; Mercury - A1; Nitrate - B5; Perchlorate - C2; Zinc - B5	
LA-SMA-5.52	02-003(b)	Middle LA Aggregate Area	Mercury (4.43 1 of 5 20%); Zinc (0.77 0 of 5 0%)	Nitrate (of 5 0%)							Chromium B1; Mercury - B8; Nitrate - B5; Zinc - B5	
LA-SMA-5.51	02-003(e)	Middle LA Aggregate Area	Mercury (25.8 2 of 5 40%); Zinc (0.78 0 of 5 0%)	Nitrate (of 4 0%); Perchlorate (of 4 0%)			Mercury (0.11 1 of 5 20%)		Mercury		Chromium - B1; Mercury - B1; Nitrate - B5; Perchlorate - C2; Zinc - B5	
LA-SMA-5.51	02-004(a)	Middle LA Aggregate Area	Cadmium (5.69/1 of 32]3.1%); Chromium (1.23/1 of 32]3.1%); Cyanide (Total) (] of 32]0%); Lead (1.56/1 of 32]3.1%); Mercury (82]30 of 32]94%); Selenium (6.65]12 of 32]38%); Zinc (1.2/1 of 32]3.1%)				Cadmium (0.21 1 of 32 3.1%); Lead (0.11 1 of 32 3.1%); Mercury (0.35 6 of 32 19%)		Mercury	Mercury; Selenium;	Cadmium - B8; Chromium - B5; Cyanide - B5; Lead - B5; Zinc - B5	Mercury
LA-SMA-5.51	02-005	Middle LA Aggregate Area	Lead (2.38]3 of 40 7.5%); Selenium (4.92 13 of 40 32%); Zinc (2.17 1 of 40 2.5%)	Chromium hexavalent ion (of 24 0%); Nitrate (of 23 0%); Perchlorate (of 23 0%)	e		Lead (0.17 3 of 40 7.5%)	Chromium hexavalent ion (0.36 4 of 24 17%)	Mercury		Chromium - B1; Hexavalent Chromium - C2; Lead - A1; Mercury - B8; Nitrate - B5; Perchlorate - C2; Selenium - A1; Zinc - B5	
LA-SMA-5.51	02-006(b)	Middle LA Aggregate Area	Cadmium (0.77]0 of 19]0%); Lead (1.11 1 of 19]5.3%); Mercury (60.4 19 of 19]100%); Silver (of 19]0%); Zinc (1.85 2 of 19]11%)	Nitrate (of 17 0%); Perchlorate (of 19 0%)			Mercury (0.26 2 of 19 11%)		Mercury	Mercury	Cadmium - B1; Lead - B5; Nitrate - B5; Perchlorate - C2; Silver - B1; Zinc - B5	Mercury
LA-SMA-5.51	02-006(c)	Middle LA Aggregate Area	Copper (0.94 0 of 7 0%); Mercury (13.6 7 of 7 100%); Zinc (0.79 0 of 7 0%)						Mercury		Chromium - B1; Copper - B5; Mercury - A1; Zinc - B5	
LA-SMA-5.51	02-006(e)	Middle LA Aggregate Area	Chromium (1.32 1 of 15 6.7%); Lead (3.93 1 of 15 6.7%); Mercury (43.4 15 of 15 100%); Silver (of 15 0%); Zinc (4.24 4 of 15 27%)	Chromium hexavalent ion (of 12 0%); Nitrate (of 12 0%); Perchlorate (of 15 0%)	e		Lead (0.28 1 of 15 6.7%); Mercury (0.18 4 of 15 27%)		Mercury	Mercury;	Chromium - B5; Hexavalent Chromium - C2; Lead - B8; Nitrate - B5; Perchlorate - C2; Silver - B5; Zinc - B8	Mercury
LA-SMA-5.52	02-007	Middle LA Aggregate Area		Nitrate (of 6 0%); Perchlorate (of 6 0%)							Chromium - B1; Mercury - B1; Nitrate - B5; Perchlorate - C2	
LA-SMA-5.51	02-008(a)	Middle LA Aggregate Area	Chromium (1.11/2 of 6)33%); Copper (1.21)1 of 6)17%); Cyanide (Total) (of 5)0%); Lead (2.06)1 of 6)17%); Silver (of 6)0%); Zinc (0.93)0 of 6)0%)	Nitrate (of 5 0%)			Lead (0.14 1 of 6 17%)		Mercury		Chromium - B5; Copper - B5; Cyanide (Total) - B5; Lead - B8; Mercury - B1; Nitrate - B5; Silver - B5; Zinc - B5	

			Inorganic Constituents Detected	ed Above Maximum Background	Inorganic Constituents Detec	ted Above Residential SSLs	Inorganic Constituents Detected A	bove 10% of Residential SSLs		Constitu	uents Site Related?	
SMA	Site	Aggregate Area	TAL List	Non-TAL List	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	s Yes	No ¹	Potential Significant Industrial Materials
LA-SMA-5.52	02-008(c)	Middle LA Aggregate Area	Copper (1.41/2 of 6(33%); Mercury (34.6(3 of 6(50%); Selenium (1.63(3 of 6(50%); Silver () of 6(0%); Zinc (0.86(0 of 6(0%)	Nitrate (of 4 0%); Perchlorate (of 6 0%)			Mercury (0.15 1 of 6 17%)			Mercury	Chromium - B2; Copper - B5; Nitrate - B5; Perchlorate - C2; Selenium - A1; Silver - B5; Zipo, B5	Mercury
LA-SMA-5.53	02-009(a)	Middle LA Aggregate Area	Selenium (41.47 32 of 51 63%); Zinc (1.59 5 of 51 9.8%)				Selenium (0.18 1 of 51 2%)				Chromium - B1; Mercury - B5; Selenium - A1; Zinc -	
LA-SMA-5.51	02-009(b)	Middle LA Aggregate Area	Cadmium (0.19 0 of 17 0%); Cyanide (Total) (of 17 0%); Mercury (12.7 6 of 17 35%); Zinc (0.93 0 of 17 0%)						Mercury		Cadmium - B5; Chromium - B1; Cyanide - B5; Mercury - A1; Zinc - B5	
LA-SMA-5.54	02-009(c)	Middle LA Aggregate Area	Cadmium (0.17 0 of 28 0%); Lead (1.11 1 of 28 3.6%); Mercury (11.3 6 of 28 21%); Zinc (1.02 1 of 28 3.6%)	Barium (1.55)1 of 28 3.6%); Chromium hexavalent ion (of 26 0%); Nitrate (of 26 0%); Perchlorate (of 26 0%)				Chromium hexavalent ion (0.45 4 of 26 15%)			Barium - B5; Cadmium - B1; Chromium - B1; Hexavalent Chromium - C2; Lead - B5; Mercury - A1; Nitrate - B5; Perchlorate - C2; Zinc - B5	
LA-SMA-5.51	02-011(a)	Middle LA Aggregate Area	Cadmium (0.24)0 of 44)0%); Copper (3.25)2 of 44)4.5%); Lead (3.29)3 of 44)6.8%); Mercury (65.7)32 of 44)73%); Silver () of 44)0%); Zinc (12.11)11 of 44)25%)				Lead (0.23)2 of 44(4.5%); Mercury (0.28)5 of 44(11%)	Chromium hexavalent ion (0.23) of 25 12%)	Mercury	Mercury	Chromium - B5; Hexavalent Chromium - C2; Lead - B5; Zinc - B8	Mercury
LA-SMA-5.51	02-011(b)	Middle LA Aggregate Area	Lead (0.83 0 of 8 0%); Mercury (4.61 3 of 8 38%); Zinc (0.93 0 of 8 0%)	Chromium hexavalent ion (of 6 0%); Nitrate (of 6 0%); Uranium (1.9 1 of 2 50%)				Chromium hexavalent ion (0.23) of 6 50%)	Mercury		Chromium - B1; Hexavalent Chromium - C2; Lead - B5; Mercury - A1; Nitrate - B5; Zinc - B5	
LA-SMA-5.51	02-011(c)	Middle LA Aggregate Area	Zinc (0.86 0 of 1 0%)						Mercury		Chromium - B1, Mercury - B1, Zinc - B5	
LA-SMA-5.51	02-011(d)	Middle LA Aggregate Area	Arsenic (0.94 0 of 4 0%); Cadmium (0.27 0 of 4 0%); Chromium (6.58 3 of 4 75%); Copper (2.56 3 of 4 75%); Lead (1.59 2 of 4 50%); Silver (of 4 0%); Zinc (2.52 4 of 4 100%)		Arsenic (2.2 1 of 4 25%)		Lead (0.11 1 of 4 25%)	Chromium hexavalent ion (0.26]1 of 2 50%)	Mercury	Chromium; Copper; Lead; Zinc	Arsenic - B5; Cadmium - B5; Hexavalent Chromium - C2; Mercury - B1; Silver - B5; Zinc	Chromium; Lead
S-SMA-3.51	03-009(i)	Upper Sandia Aggregate Area	Antimony (2.44 1 of 4 25%); Boron (of 4 0%); Cyanide (Total) (of 4 0%)								Antimony - B5; Barium - B5; Boron - B2; Chromium -B5; Cobalt - B5; Copper - B5; Cyanide - B5; Lead - B5; Nickel - B5; Selenium - B2; Vanadium - B5	
S-SMA-2	03-012(b)	Upper Sandia Aggregate Area	Boron (of 4 0%); Chromium (4.29 3 of 47 6.4%); Silver (of 47 0%); Zinc (1.92 4 of 47 8.5%)	Chromium hexavalent ion (of 11 0%)					Copper; Zinc	Chromium; Hexavalent chromium; Zinc	Antimony - B2; Boron - B2; Copper - B5; Silver - A1	
S-SMA-3.53	03-014(b2)	Upper Sandia Aggregate Area	Cyanide (Total) (of 10 0%); Lead (1.33 1 of 10 10%); Zinc (1.09 1 of 10 10%)	Perchlorate (of 10 0%)					Aluminum; Copper		Aluminum - B2; Antimony - B2; Copper - B2; Cyanide - B5; Lead - B5; Perchlorate - C2; Selenium - B2; Zinc - B5	
S-SMA-2.8	03-014(c2)	Upper Sandia Aggregate Area	Boron (] of 16]0%); Cadmium (0.42]0 of 16]0%); Chromium (0.94]0 of 16]0%); Copper (2.02]6 of 16]38%); Cyanide (Total) (] of 16]0%); Lead (1.09]1 of 16]6.2%); Mercury (8.47]12 of 16]75%); Nickel (0.64]0 of 16]0%); Silver (] of 16]0%); Zinc (1.18]2 of 16]12%)				Cyanide (Total) (0.64 2 of 16 12%)			Copper; Cyanide; Mercury; Silver	Antimony - B2; Boron - B2; Cadmium - B5; Chromium - B5; Copper - B5; Lead - B5; Nickel - B5; Perchlorate - C2; Selenium - B5; Zinc - B5	Cyanide
S-SMA-3.52	03-021	Upper Sandia Aggregate Area	Antimony (1.24 1 of 20 5%); Boron (of 12 0%); Chromium (2.77 2 of 20 10%); Lead (12.79 8 of 20 40%); Thallium (2.1 3 of 20 15%); Zinc (2.56 1 of 20 5%)		Thallium (2.7 3 of 20 15%)		Lead (0.9 4 of 20 20%)			Lead; Thallium	Antimony - B5; Barium - B2; Boron - B2; Chromium - B5; Nickel - B5; Selenium - B2; Zinc - B5	Lead; Thallium
S-SMA-1.1	03-029	Upper Sandia Aggregate Area	Arsenic (0.94 0 of 6 0%); Boron (of 6 0%); Chromium (0.6 0 of 6 0%); Copper (2.53 2 of 6 33%)		Arsenic (2.2 2 of 6 33%)			Iron (0.64 6 of 6 100%)	Copper		Antimony - B2; Arsenic - B5; Boron - B2; Chromium - B5; Copper - A1; Iron - B5; Selenium - B2	
S-SMA-2	03-045(b)	Upper Sandia Aggregate Area	Mercury (1.59 1 of 2 50%); Silver (of 2 0%); Zinc (0.71 0 of 2 0%)						Copper; Zinc		Antimony - B2; Copper - B2; Mercury - B5; Silver - B1: Zinc - B5	
S-SMA-2	03-045(c)	Upper Sandia Aggregate Area	Boron (of 2 0%); Zinc (0.67 0 of 2 0%)						Copper; Zinc		Antimony - B2; Boron - B2; Copper - B2; Zinc - B5	
M-SMA-1.22	03-045(h)	Upper Mortandad Aggregate Area		Chromium hexavalent ion (of 1 0%); Nitrate (of 1 0%)					Aluminum; Copper		Aluminum - B5; Antimony - B5; Arsenic - B2; Barium - B5; Beryllium - B5; Chromium - B5; Chromium hexavalent ion - C2; Copper - B5; Iron - B5; Lead - B5; Nickel - B5; Nitrate - B5; Perchlorate - C2; Selenium -B2; Vanadium - B5; Zinc - B5	

			Inorganic Constituents Detector	ed Above Maximum Background	Inorganic Constituents Detected	Above Residential SSLs	Inorganic Constituents Detected At	ove 10% of Residential SSLs		Constitu	ents Site Related?	
SMA	Site	Aggregate Area	TAL List	Non-TAL List	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	Yes	No ¹	Potential Significant Industrial Materials
M-SMA-1.2	03-049(a)	Upper Mortandad Aggregate Area	Cadmium (0.42 0 of 32 0%); Chromium (12.74 16 of 32 50%); Cobalt (1.55 2 of 32 6.2%); Copper (41.44 17 of 32 53%); Lead (5.57 11 of 32 34%); Nickel (2.01 5 of 32 16%); Silver (of 32 0%); Zinc (7.47 16 of 32 50%)	Chromium hexavalent ion (of 32 0%); Manganese (1.04 2 of 32 6.2%); Nitrate (of 24 0%); Perchlorate (of 24 0%)			Cobalt (0.64)9 of 32)28%); Copper (0.21)3 of 32)9.4%); Lead (0.39)5 of 32)16%)	Chromium hexavalent ion (0.94 4 of 32 12%); Manganese (0.61 26 of 32 81%)	Arsenic; Copper	Chromium; Cobalt; Copper; Lead; Nickel; Zinc;	Antimony - B2; Arsenic - B5; Cadmium - B5; Chromium hexavalent ion (C2); Maganese - B5; Nitrate - B5; Perchlorate - C2; Selenium -B5; Silver - B5; Thallium -B5	Chromium; Cobalt; Copper; Lead
M-SMA-1.21	03-049(e)	Upper Mortandad Aggregate Area	Antimony (4.72)4 of 28)14%); Arsenic (8.85)3 of 28)11%); Cadmium (0.77)0 of 28)0%); Chromium (1.91)1 of 28)3.6%); Copper (11.06)8 of 28)29%); Lead (2.59)2 of 28)7.1%); Zinc (8.36)11 of 28)39%)	Chromium hexavalent ion (of 24 0%); Nitrate (of 24 0%)	Arsenic (21 4 of 28 14%)		Antimony (0.15 1 of 28 3.6%); Lead (0.18 of 28 3.6%)			Antimony; Arsenic; Chromium; Copper; Lead; Zinc	Cadmium - B5; Chromium hexavalent ion - C2; Nickel - B5; Selenium - B5	Antimony; Lead
S-SMA-2.01	03-052(b)	Upper Sandia Aggregate Area	Boron (of 16 0%); Lead (2.29 2 of 26 7.7%); Zinc (2.01 1 of 26 3.8%)				Lead (0.16 2 of 26 7.7%)		Aluminum; Copper	Cobalt; Lead;	Aluminum - B5; Antimony - B1; Barium - B5; Beryllium - B5; Copper - B5; Zinc - B5	Lead
S-SMA-0.25	03-052(f)	Upper Sandia Aggregate Area	Boron (of 14 0%); Cadmium (0.16 0 of 14 0%); Chromium (1.84 1 of 14 7.1%); Copper (1.7 5 of 14 36%); Cyanide (Total) (of 14 0%); Lead (2.02 7 of 14 50%); Zinc (2.65 9 of 14 64%)	Perchlorate (of 14 0%)			Cyanide (Total) (0.27 1 of 14 7.1%); Lead (0.14 3 of 14 21%)		Copper; Zinc	Copper; Cyanide; Lead; Zinc	Boron - A1; Cadmium - B5; Chromium - B8; Perchlorate - C2	Cyanide; Lead
M-SMA-1	03-054(e)	Upper Mortandad Aggregate Area	Cyanide (Total) (of 14 0%); Zinc (1.51 5 of 14 36%)						Copper; Zinc		Antimony - B2; Cadmium - B2; Chromium - B5; Copper - B5; Cyanide - B2; Selenium - B2; Zinc - A1	
LA-SMA-0.85	03-055(c)	Upper Los Alamos Canyon	Copper (0.94 0 of 17 0%); Cyanide (Total) (of 17 0%); Lead (1.29 1 of 17 5.9%); Zinc (3.66 0 of 17 5.3%)	Nitrate (of 17 0%)					Copper; Zinc		Cyanide - A1; Copper - B5; Lead - B5; Zinc - A1	
S-SMA-2	03-056(c)	Upper Sandia Aggregate Area	(1.30) 61 (1) (2013) (1.31) (1.31) (1.32) (1.32) (1.32) (1.32) (1.32) (1.32) (1.32) (1.32) (1.32) (1.32) (1.32) (1.32) (1.32) (1.32) (1.31)	Beryllium (0.73 0 of 13 0%)	Arsenic (28 2 of 13 15%); Cobalt (1.3 1 of 13 7.7%)		Lead (0.1 1 of 13 7.7%)		Copper; Zinc		Arsenic - B8; Cadmium - B5; Cobalt - B8; Copper - B5; Lead - B5; Mercury - B5; Nickel - B5; Silver - B5; Zinc - B5	
CDB-SMA-0.15	04-003(a)	Upper Canada del Buey Aggregate Area									Mercury-B2, Perchlorate-	
CDB-SMA-0.15	04-004	Upper Canada del Buey Aggregate Area	Lead (2.28 3 of 36 8.3%); Zinc (1.16 3 of	Barium (0.87 0 of 36 0%)			Lead (0.16 1 of 36 2.8%)				Barium-B5; Lead-B5; Zinc-	
M-SMA-13	05-001(c)	Lower Mortandad/Cedro Canyons	Copper (58.81 5 of 31 16%)	Barium (4.95 2 of 31 6.5%)			Copper (0.3 1 of 31 3.2%)	Barium (0.13 1 of 31 3.2%)		Barium; Copper	85	Barium; Copper
M-SMA-12.6	05-004	Lower Mortandad/Cedro Canyons		Nitrate (of 19 0%); Perchlorate (of 19 0%)							Nitrate-B5; Perchlorate-C2	
M-SMA-12.5	05-005(b)	Lower Mortandad/Cedro Canyons	Chromium (1.26 1 of 33 3%)	Nitrate (of 24 0%); Perchlorate (of 26 0%)							Chromium - B5; Nitrate- B5: Perchlorate - C2	
M-SMA-12.5	05-006(c)	Lower Mortandad/Cedro Canyons	Antimony (2.3 6 of 29 21%); Chromium (5.12 1 of 29 3.4%); Copper (19.81 4 of 29 14%); Lead (12.04 7 of 35 20%); Nickel (3.08 1 of 29 3.4%); Zinc (0.78 0 of 29 0%)	Nitrate (of 18 0%)			Copper (0.1 1 of 29 3.4%); Lead (0.84 6 of 35 17%)			Copper; Lead	Antimony - A1; Chromium - B8; Nitrate - B5; Nickel - B5; Zinc-B8	Copper; Lead
B-SMA-0.5	10-004(a)	Bayo Canyon	Antimony (13.7 1 of 5 20%); Silver (of 5 0%)	Uranium (0.62 0 of 5 0%)			Antimony (0.44 1 of 5 20%)				Antimony - A1; Silver - B5; Uranium - B7	
W-SMA-10	11-005(a)	S-Site Aggregate Area	Antimony (3.98 1 of 9 11%); Chromium (5.18 2 of 9 22%); Copper (2.16 1 of 9 11%); Cyanide (Total) (of 9 0%); Lead (7.93 1 of 9 11%); Mercury (3.62 2 of 9 22%); Silver (of 9 0%); Zinc (0.99 0 of 9 0%)	Fluoride (of 9 0%); Nitrate (of 9 0%)			Antimony (0.13 1 of 9 11%); Lead (0.56 1 of 9 11%); Silver (0.15 2 of 9 22%)				Antimony - B5; Chromium - B8; Copper - B5; Fluoride - A1; Lead - B8; Mercury - B5; Nitrate - B5; Zinc-B5	
W-SMA-10	11-005(b)	S-Site Aggregate Area	Chromium (0.56 0 of 8 0%); Cyanide (Total) (of 8 0%); Silver (of 8 0%); Zinc (0.83 0 of 8 0%)	Barium (0.97 0 of 8 0%); Fluoride (of 8 0%); Nitrate (of 8 0%); Perchlorate (of 8 0%)							Barium - B5; Chromium - B5; Cyanide - B5, Fluoride C2; Nitrate - B5; Perchlorate - C2; Silver - B5; Zinc - B5	
W-SMA-9.8	11-005(c)	S-Site Aggregate Area	Cadmium (0.34 0 of 13 0%); Copper (2.12 4 of 13 31%); Lead (1.21 2 of 13 15%); Mercury (2.53 1 of 13 7.7%); Zinc (1.5 1 of 13 7.7%)	Fluoride (of 13 0%); Nitrate (of 13 0%); Perchlorate (of 13 0%)							Cadmium - B5; Copper - B5, Fluoride - C2; Lead - B5; Mercury - B5; Nitrate - B5; Perchlorate - C2; Zinc- B5;	
W-SMA-9.9	11-006(b)	S-Site Aggregate Area	Antimony (1.16 1 of 23 4.3%); Cyanide (Total) (of 22 0%); Zinc (1.17 1 of 23 4.3%)	Fluoride (of 22 0%); Nitrate (of 22 0%); Uranium (0.79 0 of 1 0%)			Cyanide (Total) (0.1 1 of 22 4.5%)		Aluminum		Antimony - B5; Cyanide - B8; Fluoride - C2; Nitrate - B5; Perchlorate - C2; Uranium - B5; Zinc - B5	
W-SMA-10	11-006(c)	S-Site Aggregate Area	Chromium (0.62 0 of 22 0%)	Fluoride (of 20 0%); Nitrate (of 20 0%); Uranium (0.53 0 of 2 0%)							Chromium - B5; Fluoride - C2; Nitrate - B5; Perchlorate - C2; Uranium B5	
W-SMA-10	11-006(d)	S-Site Aggregate Area	Copper (1.22 1 of 10 10%); Cyanide (Total) (of 8 0%); Zinc (0.66 0 of 10 0%)	Fluoride (of 8 0%); Nitrate (of 8 0%); Perchlorate (of 8 0%); Uranium (0.78 0 of 2 0%)							Copper - B5; Cyanide - B5; Fluoride - C2; Nitrate - B5; Perchlorate - C2; Uranium B5; Zinc - B1;	
W-SMA-9.7	11-011(a)	S-Site Aggregate Area	Cadmium (0.31 0 of 11 0%); Chromium (0.82 0 of 11 0%); Copper (6.02 4 of 11 36%); Mercury (5.9 4 of 11 36%); Zinc (4.07 1 of 11 9.1%)						Copper	Mercury	Cadmium - B5; Chromium- B2; Copper - B8; Zinc -B8	
W-SMA-9.7	11-011(b)	S-Site Aggregate Area	Cobalt (1.71 2 of 11 18%); Copper (4.65 2 of 11 18%); Mercury (3.11 2 of 11 18%); Zinc (0.73 0 of 11 0%)	Fluoride (of 11 0%); Nitrate (of 11 0%); Perchlorate (of 11 0%)			Cobalt (0.7 6 of 11 55%)		Copper	Copper	Cobalt - B5; Fluoride - C2; Mercury - B5; Nitrate - B5; Perchlorate - C2; Zinc - B5	

			Inorganic Constituents Detected	ed Above Maximum Background	Inorganic Constituents Detected	Above Residential SSLs	Inorganic Constituents Detected Al	oove 10% of Residential SSLs		Constit	tuents Site Related?	
SMA	Site	Aggregate Area	TAL List	Non-TAL List	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analyte	s Yes	No ¹	Potential Significant Industrial Materials
W-SMA-10	11-011(d)	S-Site Aggregate Area	Cadmium (0.19]0 of 5]0%); Copper (1.85]4 of 5 80%); Lead (0.82 0 of 5 0%); Zinc (0.7 0 of 5 0%)	Fluoride (of 5[0%); Nitrate (of 5]0%); Perchlorate (of 5[0%)							Cadmium - B5; Copper - B5; Fluoride - C2, Lead - B5: Nitrate - B5; Perchlorate - C2; Zinc - B{	5
CDV-SMA-2.3; W-SMA- 8.7	13-001	S-Site Aggregate Area	Copper (1.07 1 of 29 3.4%); Lead (8.36 3 of 29 10%); Zinc (1.29 3 of 29 10%)	Fluoride (of 29 0%); Nitrate (of 29 0%); Perchlorate (of 29 0%)			Lead (0.58 3 of 29 10%)		Aluminum		Aluminum - B5; Copper - B5: Fluoride - C2; Lead - B8; Nitrate - B5; Perchlorate - C2; Zinc-B5	
CDV-SMA-2.3; W-SMA- 8.7	13-002	S-Site Aggregate Area	Lead (1.02 1 of 8 12%); Mercury (2.29 1 of 8 12%)	Fluoride (of 8 0%); Nitrate (of 8 0%); Perchlorate (of 8 0%)					Aluminum		Aluminum - B2; Fluoride - C2; Lead - B5; Mercury - B5; Nitrate - B5; Perchlorate - C2	
CDV-SMA-6.01	14-001(g)	Canon de Valle Aggregate Area TA-14	Lead (2.06 2 of 30 6.7%); Selenium (1.94 15 of 30 50%)	Nitrate (of 30 0%); Perchlorate (of 30 0%)			Lead (0.14 1 of 30 3.3%)				Lead - B5; Nitrate - B5; Perchlorate - C2; Selenium - A1	
CDV-SMA-6.01	14-006	Canon de Valle Aggregate Area TA-14	Cadmium (0.17]0 of 11[0%); Copper (5.16]3 of 11[27%); Cyanide (Total) (of 11[0%); Lead (5.5]3 of 11[27%); Mercury (2.34]1 of 11[9.1%); Selenium (1.82]8 of 11[73%); Zinc (2 2 of 11118%)	Nitrate (of 11 0%); Perchlorate (of 11 0%)			Lead (0.38 2 of 11 18%)			Copper; Lead; Zinc	Cadmium - B5; Cyanide - B1; Mercury - B5; Nitrate - B5; Perchlorate - C2; Selenium - A1	Lead
CDV-SMA-9.05	15-007(b)	Cañon de Valle	Cadmium (0.46 0 of 13 0%); Copper (7.94 10 of 13 77%); Lead (1.89 4 of 13 31%); Mercury (17 6 of 13 46%); Silver (of 13 0%)	Beryllium (0.91 0 of 13 0%) /		Uranium (1.5 1 of 13 7.7%)	Lead (0.13 1 of 13 7.7%)			Copper; Lead; Mercury	Beryllium - B5, Cadmium - B5; Silver - B8; Uranium - C2	Lead
3M-SMA-0.6	15-008(b)	Threemile Aggregate Area	Antimony (256)31 of 170)18%); Cadmium (3.07)1 of 170)0.59%); Chromium (1.53)2 of 170)1.2%); Cobalt (1.8]7 of 170)4.1%); Copper (2275)81 of 170)48%); Lead (4928.57)60 of 170)35%); Silver (of 170)0%); Zinc (176 16)7 of 170)4 1%)	Beryllium (12.03/26 of 170/15%); Perchlorate (of 162(0%); Uranium (183.06/116 of 170/68%) ;	Antimony (8.2 1 of 170 0.59%); Copper (12 2 of 170 1.2%); Lead (340 9 of 170 5.3%)	Uranium (2.8 14 of 170 8.2%)	Cadmium (0.11 1 of 170 0.59%); Cobalt (0.74 122 of 170 72%); Zinc (0.57 1 of 170 0.59%)	Beryllium (0.3 5 of 170 2.9%)		Antimony; Beryllium; Copper; Lead;	Cadmium - B5; Chromium B5; Cobalt - B5; Perchlorate - C2; Silver - B5; Uranium - C2; Zinc - B8	Antimony; Beryllium; Copper; Lead;
PT-SMA-2	15-008(f)	Potrillo/Fence Aggregate Area	Mercury (1.86 11 of 20 55%); Selenium (1.29 4 of 20 20%)	Nitrate (of 20 0%); Perchlorate (of 20 0%)							Mercury - B5, Nitrate - B5, Perchlorate - C2; Selenium - A1	
3M-SMA-0.5	15-009(c)	Threemile Aggregate Area	Chromium (0.65 0 of 37 0%)	Nitrate (of 28 0%); Perchlorate (of 28 0%); Uranium (2.44 8 of 28 29%)						-	Chromium - B5; Nitrate - B5; Perchlorate -C2 ; Uranium - C2	
PT-SMA-0.5	15-009(e)	Potrillo/Fence Aggregate Area	Antimony (8.6)2 of 14 14%); Cadmium (0.32)0 of 14 0%); Copper (0.98)0 of 14 0%); Lead (4.82)1 of 14 7.1%); Selenium (1.12)2 of 14 14%); Silver (of 14 0%); Zinc (0.94)0 of 14 0%)	Nitrate (of 6 0%); Uranium (5.25 1 of 8 12%)			Antimony (0.27 2 of 14 14%); Lead (0.34 1 of 14 7.1%)		Aluminum; Copper		Antimony - A1: Cadmium - B5; Copper - B5; Lead - B8; Nitrate - B5; Selenium A1; Silver - A1; Uranium - C2; Zinc - B5	-
3M-SMA-0.2	15-010(b)	Threemile Aggregate Area	Copper (1.06 1 of 17 5.9%); Cyanide (Total) (of 17 0%); Mercury (6.88 5 of 17 29%); Zinc (0.97 0 of 17 0%)	Nitrate (of 17 0%); Perchlorate (of 17 0%); Uranium (3.69 4 of 17 24%)							Copper - B5; Cyanide (Total) - B1; Mercury - B5; Nitrate -B5; Perchlorate - C2; Uranium -C2; Zinc - B5	
CDV-SMA-8	15-011(c)	Cañon de Valle	Mercury (1.75 1 of 4 25%)	Uranium (1.53 1 of 4 25%)							Mercury - B5; Uranium - B5	
CDV-SMA-8.5	15-014(a)	Cañon de Valle	Copper (1.09 1 of 6 17%); Nickel (0.65 0 of				Silver (0.27 1 of 5 20%)			Silver	Copper - B5; Nickel - B5	Silver
W-SMA-5	16-001(e)	S-Site Aggregate Area	Copper (1.74 1 of 4 25%); Mercury (21.3 4 of 4 100%); Zinc (0.89 0 of 4 0%)	Fluoride (of 4 0%); Nitrate (of 4 0%)					Copper	Mercury	Copper - B5; Fluoride - C2 Nitrate - B5; Zinc - B5) a 7
W-SMA-4.1	16-003(a)	Upper Water Canyon	Cadmium (0.4 0 of 9 0%); Copper (1.52 4 of 9 44%); Lead (1.03 1 of 9 11%); Zinc (4.5 7 of 0 72%)	Uranium (1.75 4 of 9 44%) f							Cadmium - B5; Copper - A1; Lead - B5; Uranium -	
W-SMA-5	16-003(f)	S-Site Aggregate Area	Cobalt (3.44 1 of 1 100%)	Fluoride (of 1 0%); Nitrate (of 1 0%)	Cobalt (1.4 1 of 1 100%)				Copper		Cobalt - B8; Copper - B2; Fluoride - C2; Nitrate - B5	
CDV-SMA-2.3	16-003(o)	S-Site Aggregate Area	Arsenic (7.34 10 of 112 8.9%); Cadmium (1.42 3 of 112 2.7%); Chromium (5.26 17 of 106 16%); Cobalt (28.95 10 of 112 8.9%); Copper (88.75 50 of 112 45%); Cyanide (Total) (of 44 0%); Lead (6.79 24 of 112 21%); Mercury (17.8 23 of 109 21%); Selenium (11.65 50 of 112 45%); Silver (of 112 0%); Vanadium (4.69 20 of 112 18%); Zinc (12.81 33 of 112 29%)	Barium (4.37 10 of 112 8.9%); Fluoride (of 37 0%); Nitrate (of 35 0%); Uranium (13.67 28 of 113 25%)	Arsenic (18 41 of 112 37%); Cobalt (12 6 of 112 5.4%)		Copper (0.45]7 of 112 6.2%); Lead (0.48 12 of 112 11%); Vanadium (0.68 34 of 112 30%)	Barium (0.11 1 of 112 0.89%); Uranium (0.21 1 of 113 0.88%)		Arsenic; Barium; Chromium; Cobalt; Copper; Lead; Mercury; Vanadium; Zinc	Cadmium - B5; Cyanide - B5; Fluoride - C2; Nitrate - B5; Perchlorate - C2; Selenium A1; Silver - B5; Uranium - C2	Arsenic; Barium; Cobalt; Copper; Lead; Vanadium
W-SMA-7.9	16-006(c)	Upper Water Canyon	Copper (1.57 2 of 7 29%); Lead (0.83 0 of 7 0%); Mercury (1.7 3 of 7 43%); Thallium (110 of 7 0%); Zinc (1 42 1 of 7 14%)	Barium (15.95 4 of 7 57%)	Thallium (1.3 1 of 7 14%)			Barium (0.42 3 of 7 43%)		Barium	Copper - A1; Lead - B5; Mercury - A1; Thallium - B5; Zinc - B5	Barium
CDV-SMA-2.51	16-010(i)	Cañon de Valle	Cadmium (0.37[0 of 16]0%); Copper (2.19]2 of 16]12%); Lead (3.13]6 of 16]38%); Mercury (8.9]5 of 16]31%); Zinc (2.2]3 of 16]19%)	Barium (2.15 5 of 16 31%); Uranium (3.14 7 / of 16 44%)			Lead (0.22 5 of 16 31%)			Barium; Lead; Mercury;	Cadmium - B5; Copper - B5; Cyanide - B1; Uranium - C2; Zinc - A1	Lead
CDV-SMA-1.7	16-019	Cañon de Valle	Boron (of 5[0%); Cobalt (3.18 10 of 60 17%); Copper (81.25 20 of 60 33%); Lead (15.39 17 of 60 28%); Nickel (10.52 2 of 60 3.3%); Silver (of 60 0%); Zinc (6.49 7 of 60 12%)	Barium (268.29 48 of 60 80%); Uranium (12.28 2 of 54 3.7%)	Cobalt (1.3 2 of 60 3.3%); Lead (1.1 1 of 60 1.7%)	Barium (7.1 10 of 60 17%)	Copper (0.42 2 of 60 3.3%); Nickel (0.2 1 of 60 1.7%); Silver (0.29 1 of 60 1.7%)	Uranium (0.19 2 of 54 3.7%)	Copper	Barium; Cobalt; Copper; Lead; Silver; Zinc	Aluminum - B5; Cyanide - B1; Iron B3; Nickel - B3; Uranium - C2	Barium; Cobalt; Copper; Lead; Silver
CDV-SMA-1.4	16-020	Cañon de Valle	Boron (of 1 0%); Cadmium (0.42 0 of 25 0%); Chromium (6.85 3 of 25 12%); Copper (4.12 6 of 25 24%); Lead (1.09 2 of 25 8%); Nickel (6.9 5 of 25 20%); Silver (of 25 0%); Zinc (0.78 0 of 25 0%)		Silver (1.8 7 of 25 28%)		Nickel (0.13 1 of 25 4%)		Silver	Chromium; Silver	r; Cadmium - B5; Copper - B5; Cyanide - B1; Lead - B5; Nickel - B1; Zinc - B5	Silver

			Inorganic Constituents Detecte	ed Above Maximum Background	Inorganic Constituents Deter	cted Above Residential SSLs	Inorganic Constituents Detected Ab	ove 10% of Residential SSLs		Constitu	uents Site Related?	
	01								Stormwater Analytes		N 1	Potential Significant
SMA CDV-SMA-2	Site 16-021(c)	Aggregate Area Cañon de Valle	TAL List Arsenic (1 0 of 14 0%); Silver (of 14 0%);	Non-TAL List Barium (20 12 of 14 86%)	TAL List Arsenic (2.4 5 of 14 36%)	Non-TAL List	TAL List	Non-TAL List Barium (0.53 7 of 14 50%);	Exceeding TALs	Yes Barium; Silver	No ' Arsenic - B1; Manganese -	Industrial Materials Barium
			Zinc (0.7 0 of 14 0%)					Manganese (0.65 13 of 14 93%)			B5; Zinc - B1	
W-SMA-5	16-026(b)	S-Site Aggregate Area		Barium (2.9 3 of 8 38%); Fluoride (of 3 0%); Nitrate (of 3 0%); Uranium (1.07 1 of 5 20%)					Copper	Barium	Fluoride - C2; Nitrate - B5; Uranium - B5	
W-SMA-5	16-026(c)	S-Site Aggregate Area	Cobalt (1.18 1 of 13 7.7%); Copper (2.62 2 of 13 15%); Lead (1.7 2 of 13 15%); Zinc (1.96 3 of 13 23%)	Barium (1.54 3 of 13 23%); Fluoride (of 4 0%); Manganese (0.81 0 of 13 0%); Nitrate (of 4 0%); Perchlorate (of 4 0%)			Cobalt (0.49 13 of 13 100%); Lead (0.12 1 of 13 7.7%)	Manganese (0.48 13 of 13 100%)	Copper	Barium	Cobalt - B5; Copper - B5; Fluoride - C2; Lead - A1; Manganese - B5; Nitrate- B5; Perchlorate - C2; Zinc - A1	
W-SMA-5	16-026(d)	S-Site Aggregate Area	Antimony (2.22 1 of 17 5.9%); Cadmium (0.17 0 of 17 0%); Chromium (1.1 1 of 17 5.9%); Copper (4.11 1 of 17 5.9%); Lead (2.85 2 of 17 12%); Mercury (1.67 1 of 17 5.9%); Zinc (3.34!4 of 17 24%)	Barium (1.49 1 of 17 5.9%)			Lead (0.2 2 of 17 12%)		Copper		Antimony - B5; Barium - B5; Cadmium - B5; Chromium - B5; Copper - B8; Lead - A1; Mercury - B5; Zinc - A1	
W-SMA-5	16-026(e)	S-Site Aggregate Area	Cadmium (0.2 0 of 19 0%); Copper (0.96 0 of 19 0%); Lead (1.85 3 of 19 16%); Zinc (6.28 5 of 19 26%)	Barium (3.46 6 of 19 32%)			Lead (0.13 1 of 19 5.3%)	Manganese (0.38 16 of 19 84%)	Copper	Barium	Cadmium - B5; Copper - B5; Lead - A1; Zinc - A1	
CDV-SMA-1.45	16-026(i)	Cañon de Valle	Cadmium (0.19 0 of 4 0%); Lead (0.88 0 of 4 0%); Zinc (0.78 0 of 4 0%)					lron (0.55 4 of 4 100%)			Barium - B1; Cadmium - B5; Iron - B5; Lead - B5; Zino - B5	
W-SMA-1	16-026(v)	Upper Water Canyon	Chromium (4.38)1 of 10(10%); Copper (25.75)7 of 10(70%); Lead (3.68)5 of 10(50%); Mercury (92)7 of 10(70%); Nickel (0.9)0 of 10(0%); Silver (of 10(0%); Zinc (4.25)5 of 10(50%)	Barium (0.77 0 of 10 0%); Beryllium (0.51 0 of 10 0%); Iron (1 1 of 10 10%); Uranium (1.07 3 of 10 30%)	f		Copper (0.13 1 of 10 10%); Lead (0.26 4 of 10 40%); Mercury (0.39 5 of 10 50%)	Iron (0.66 8 of 10 80%)	Aluminum	Copper; Lead; Mercury; Silver; Zinc	Aluminum - B5; Barium - B5; Beryllium - B5; Chromium - B5; Cyanide - B1; Iron - B5; Nickel - B5; Uranium - B5	Copper; Lead; Mercury
CDV-SMA-2.5	16-028(a)	Cañon de Valle	Copper (4.28 3 of 8 38%); Lead (2.74 1 of 8 12%); Nickel (0.57 0 of 8 0%); Zinc (2.25 2 of 8 25%)	Barium (4.32 3 of 8 38%); Uranium (1.28 1 of 8 12%)			Lead (0.19 1 of 8 12%)	Barium (0.11 1 of 8 12%)		Barium; Copper;	Cyanide - B5; Lead - B5; Nickel - B5; Uranium - C2; Zinc - A1	Barium
W-SMA-8	16-028(b)	Upper Water Canyon	Cadhium (0.65[0 of 1]0%); Chromium (1.45]1 of 1]100%); Cobalt (1.82]1 of 1]100%); Copper (29.5]1 of 1]100%); Lead (5.29]1 of 1]100%); Mercury (3.7]1 of 1]100%); Nickel (2.42[1 of 1]100%); Zinc (7.15]1 of 1]100%)	Uranium (0.79 0 of 1 0%)			Cobait (0.75 1 of 1 100%); Copper (0.15 1 of 1 100%); Lead (0.37 1 of 1 100%)		Aluminum; Copper	Aluminum; Barium; Cobalt; Chromium; Copper; Lead; Mercury; Nickel; Zinc	Cadmium - B5; Uranium - B5	Cobalt; Copper; Lead
W-SMA-2.05	16-028(e)	Upper Water Canyon	Chromium (14.14/2 of 11/18%); Mercury (1.22/3 of 11/27%)	Uranium (0.93 0 of 11 0%)					Aluminum	Chromium;	Aluminum - B5; Cyanide - B1; Mercury - B5; Uranium - B5	
CDV-SMA-2.3; W-SMA- 8.7	16-029(h)	S-Site Aggregate Area	Antimony (3.26 1 of 20 5%); Copper (2.86 4 of 20 20%); Lead (4.46 7 of 20 35%); Mercury (9.55 3 of 20 15%); Zinc (0.98 0 of 20 0%)				Antimony (0.1 1 of 20 5%); Lead (0.31 4 of 20 20%)		Aluminum		Aluminum-B5; Antimony - B5; Copper - A1; Lead - A1; Mercury - B5; Zinc - B5	
W-SMA-9.05	16-030(g)	Upper Water Canyon	Chromium (1.01 1 of 9 11%); Copper (4.56 3 of 9 33%); Lead (15.5 4 of 9 44%); Zinc (1.42)4 of 9 44%)	Barium (0.95 0 of 9 0%)	Lead (1.1 1 of 9 11%)					Copper; Lead;	Barium - B5; Chromium - B5; Zinc - A1	Lead
W-SMA-7.8	16-031(a)	Upper Water Canyon	Cadmium (1.46 1 of 1 100%); Copper (20.38 1 of 1 100%); Lead (1.76 1 of 1 100%); Zinc (7.76 1 of 1 100%)				Copper (0.1 1 of 1 100%); Lead (0.12 1 of 1 100%)			Cadmium; Copper; Lead; Zinc		Copper; Lead
CDV-SMA-2.3	16-031(h)	S-Site Aggregate Area	Antimony (2.5]1 of 5]20%); Cadmium (0.24]0 of 5]0%); Copper (1.77]2 of 5]40%); Lead (1.28]2 of 5]40%); Mercury (6.32]3 of 5]60%); Silver (] of 5]0%); Zinc (0.82]0 of 5]0%)								Antimony - B5; Cadmium - B5; Copper - B5; Lead - B5; Mercury - B5; Silver - B5; Zinc - B5	
3M-SMA-4	18-003(c)	Lower Pajarito Canyon	Cadmium (0.26 0 of 2 0%); Copper (1.03 1 of 2 50%); Lead (0.99 0 of 2 0%); Mercury (4.9 2 of 2 100%); Zinc (2.79 1 of 2 50%)							Zinc	Cadmium - B5; Copper - B5; Lead - B5; Mercury - A1	
S-SMA-3.95	20-002(a)	Lower Sandia Aggregate Area	Copper (1.13 2 of 18 11%); Selenium (1.04 1 of 18 5.6%); Zinc (0.96 0 of 18 0%)	Beryllium (0.98 0 of 18 0%); Nitrate (of 18 0%); Perchlorate (of 18 0%)							Beryllium - B5; Copper - B5; Nitrate - B5; Perchlorate - C2; Selenium - B5; Zinc - B5	
S-SMA-5	20-002(c)	Lower Sandia Aggregate Area	Antimony (1.12 1 of 8 12%); Chromium (1.66 6 of 8 75%); Lead (0.88 0 of 8 0%); Silver (of 8 0%); Zinc (1.06 4 of 8 50%)	Nitrate (of 8 0%); Perchlorate (of 8 0%)							Antimony - B5; Chromium - A1; Lead - B5; Nitrate - B5; Perchlorate - C2; Silver - B5; Zinc - B5	
S-SMA-4.5	20-002(d)	Lower Sandia Aggregate Area	Copper (1.79 1 of 8 12%); Zinc (0.83 0 of 8 0%)	Nitrate (of 8 0%); Perchlorate (of 8 0%)							Copper - B5; Nitrate - B5; Perchlorate - C2; Zinc - B2	
S-SMA-5.2	20-003(c)	Lower Sandia Aggregate Area	Zinc (0.7 0 of 8 0%)	Perchlorate (of 8 0%)							Perchlorate - C2; Zinc - B5	
S-SMA-5.5	20-005	Lower Sandia Aggregate Area		Nitrate (of 4 0%)							Nitrate - B5	
LA-SMA-5.91	21-009	טיי Site Aggregate Area	Cnromum (0.88)0 of 16(0%); Cyanide (Total) ((of 16(0%); Lead (1.38)1 of 16(6.2%); Nickel (0.59(0 of 16(0%); Selenium (7.18)16 of 16(100%); Zinc (1.5(1 of 16(6.2%)								Chromium - B5; Cyanide - B5; Lead - B5; Nickel - B5; Selenium - A1; Zinc -B5	
LA-SMA-5.92	21-013(b)	DP Site Aggregate Area	Cadmium (0.96 0 of 101 0%); Zinc (0.83 0 of 101 0%)	Nitrate (of 82 0%); Perchlorate (of 82 0%); Uranium (2.14 8 of 24 33%)					Copper; Mercury		Cadmium - B5; Copper - B5; Mercury - A1; Nitrate - B5; Perchlorate - C2; Zinc - B5	-
DP-SMA-3	21-013(c)	DP Site Aggregate Area	Mercury (24.9 3 of 46 6.5%); Selenium (3.61 12 of 48 25%)				Mercury (0.11 1 of 46 2.2%)		Aluminum; Copper		Aluiminum - B5; Copper - B2; Mercury - B8; Selenium - A1	

			Inorganic Constituents Detected Abo	Inorganic Constituents Detected Above Maximum Background		Above Residential SSLs	Inorganic Constituents Detected Ab	ove 10% of Residential SSLs		Constitu		
SMA	Site	Aggrogate Area		Non TAL List	TAL List	Non TAL List	TAL List	Non TAL List	Stormwater Analytes	Vac	No ¹	Potential Significant
LA-SMA-5.92	21-013(g)	DP Site Aggregate Area	Cadmium (0.27)0 of 12[0%); Chromium (0.76]0 of 12[0%); Lead (0.94]0 of 12[0%) Nitrate Uraniu	NOR-I AL LIST > (of 4 0%); Perchlorate (of 4 0%); m (2 3 of 10 30%)	TAL LIST	NON-I AL LIST	TAL LIST	NON-TAL LIST	Copper; Mercury	Tes	No Cadmium - B5; Chromium - B5; Copper - B5; Lead - B5; Mercury - A1; Nitrate - B5; Perchlorate - C2	industriai materiais
LA-SMA-5.92	21-018(a)	DP Site Aggregate Area	Antimony (1.12 1 of 10 10%); Cadmium (0.3 0 of 12 0%); Mercury (1.9 1 of 12 8.3%); Zinc (1.09 1 of 12 8.3%)						Copper; Mercury		Antimony - B1; Cadmium - B1; Copper - B5; Mercury - B5; Zinc - B5	
LA-SMA-5.91	21-023(c)	DP Site Aggregate Area	Cadmium (0.46)0 of 56)0%); Chromium Nitrate (1.32)1 of 56)1.8%); Lead (1.55)4 of 56)7.1%); Stronti Mercury (10.6)16 of 55)29%); Silver (] of 3 100 ^c 56)0%); Zinc (1.39)1 of 56)1.8%) 3 100 ^c 3 100 ^c	i(of 52 0%); Perchlorate (of 42 0%); ium (of 1 0%); Uranium (1.74 3 of %)			Lead (0.11 1 of 56 1.8%)			Mercury; Silver	Cadmium - B5; Chromium - B5; Lead - B5; Nitrate - B5; Perchlorate - C2; Uranium - B5; Zinc - B5	
LA-SMA-6.36	21-024(a)	DP Site Aggregate Area	Cadmium (0.21 0 of 31 0%); Copper (5.87 9 Nitrate of 31 29%); Lead (1.55 4 of 31 13%); Mercury Uraniu (7.98 11 of 31 35%); Zinc (1.63 4 of 31 13%)	i (of 31 0%); Perchlorate (of 31 0%); um (1.12 1 of 31 3.2%)			Lead (0.11 2 of 31 6.5%)			Copper; Mercury	Cadmium - B5; Lead - B5; Nitrate - B5; Perchlorate - C2 ; Uranium -B5 ; Zinc - B5	
LA-SMA-6.25	21-024(d)	DP Site Aggregate Area	Arsenic (1.27)2 of 36]5.6%); Cadmium (0.88)0 of 37]0%); Chromium (6.38)3 of 37]8.1%); Copper (35.94]11 of 37]30%); Cyanide (Total) (of 35]0%); Lead (3.64]11 of 37]30%); Mercury (15]11 of 37]30%); Nickel (2.43]1 of 29]3.4%); Selenium (5.71]4 of 36]11%); Silver (of 37]0%); Zinc (3.42]8 of 37]22%)		Arsenic (3 11 of 36 31%)		Copper (0.18 1 of 37 2.7%); Lead (0.26 8 of 37 22%)			Copper; Lead; Silver; Zinc	Arsenic - B5; Cadmium - B5; Cyanide - B5; mercury- B5; Chromium - B8; Nickel - B8; Selenium - A1	Copper; Lead
DP-SMA-2	21-024(h)	DP Site Aggregate Area	Cadmium (0.38)0 of 30]0%); Chromium (0.59)0 of 30]0%); Copper (2.29)4 of 30]13%); Cyanide (Total) (1 of 30]0%); Lead (3.13)5 of 30]17%); Mercury (22.8]10 of 30]33%); Silver (of 30]0%); Zinc (4.25]3 of 30]10%)				Lead (0.22 2 of 30 6.7%)			Mercury	Cadmium; Copper - B8; Chromium - B5; Cyanide - B5; Lead - B8; silver-B5; Zinc - B8	
LA-SMA-6.395	21-024(j)	DP Site Aggregate Area	Lead (1.3 2 of 26 7.7%); Selenium (6.82 6 of Nitrate 26 23%); Zinc (9.07 4 of 20 20%)	(of 26 0%); Perchlorate (of 26 0%)						Zinc	Lead - B5; Nitrate - B5; Perchlorate - C2; Selenium - A1	
DP-SMA-2.35	21-024(n)	DP Site Aggregate Area	Chromium (9.34 12 of 103 12%); Copper Nitrate (27.38 21 of 103 20%); Lead (13.18 10 of 103 9.7%); Zinc (12.12 28 of 104 27%) 102 0 ^c	 (of 102 0%); Perchlorate (of %) 			Copper (0.14 1 of 103 0.97%); Lead (0.92 6 of 103 5.8%)			Chromium; Copper; Lead; Zinc	Nitrate - B5; Perchlorate - C2	Copper; Lead
LA-SMA-6.31	21-027(a)	DP Site Aggregate Area	Antimony (1.8 1 of 14 7.1%); Cadmium (1.1 1 Nitrate of 26[3.8%); Chromium (15.37[14 of 29]48%); Stronti Copper (9.25[8 of 26]31%); Lead (2.04[6 of 27]22%); Mercury (5.98[6 of 27]22%); Selenium (2.41[6 of 26]23%); Zinc (9.25[9 of 27]33%)	; (of 26 0%); Perchlorate (of 26 0%); ium (of 26 0%)			Lead (0.14 3 of 27 11%)			Chromium; Copper; Lead; Zinc	Antimony - B5; Cadmium - B5; Mercury - B5; Nitrate - B5; Selenium - A1; Strontium - C2; Perchlorate - C2	Lead
LA-SMA-6.25; LA-SMA- 6.27	21-027(c)	DP Site Aggregate Area	Cadmium (0.28)0 of 30]0%); Chromium (1.43 1 of 30]3.3%); Copper (2.21 3 of 30]10%); Lead (4.29]10 of 32]31%); Mercury (3.7]2 of 30]6.7%); Zinc (3.06]5 of 30]17%)				Lead (0.3 7 of 32 22%)			Lead; Zinc	Cadmium B5; Chromium - B5; Copper - B5; Mercury - B5	Lead
PJ-SMA-5	22-015(c)	Starmer/Upper Pajarito Canyon	Antimony (10.8 1 of 11 9.1%); Arsenic (2.29)2 Chrom of 11 18%); Cadmium (53.46 7 of 11 64%); Chromium (16.11 8 of 11 73%); Cobalt (0.92)0 of 11 0%); Copper (718.75 11 of 11 100%); Lead (10.29 5 of 11 45%); Mercury (5.6 5 of 11 45%); Nickel (50 11 of 11 100%); Silver (] of 11 0%); Thallium (1.9 1 of 11 9.1%); Vanadium (1.55 1 of 11 9.1%); Zinc (2.83 4 of 11 36%)	ium hexavalent ion (of 6 0%); Iron 1 of 11 9.1%)	Arsenic (5.5 5 of 11 45%); Cadmium (2 1 of 11 9.1%); Copper (3.7 3 of 11 27%); Thallium (2.4 1 of 11 9.1%)		Antimony (0.35/1 of 11/9.1%); Cobalt (0.38/7 of 11/64%); Lead (0.72/4 of 11/36%); Nickel (0.93/4 of 11/36%); Silver (0.11/1 of 11/9.1%); Vanadium (0.22/2 of 11/18%)	iron (0.95 11 of 11 100%)	Copper	Arsenic; Cadmium; Chromium; Copper; Cyanide; Lead; Mercury; Nickel; Silver; Zinc	Antimony - A1; Cobalt - B5; Hexavalent Chromium - C2; Iron - A1; Thallium - B5; Vanadium - B5	Arsenic; Cadmium; Copper; Lead; Nickel; Silver
LA-SMA-9	26-001	Middle LA Aggregate Area	Cyanide (Total) (of 42 0%); Selenium (8 88 45 of 55 82%)							Selenium	Cyanide - B5	
P-SMA-2.15	31-001	Pueblo Canyon	Copper (2.56 1 of 11 9.1%); Lead (0.81 0 of 11 0%); Zinc (1.32 1 of 11 9.1%)								Copper - B8; Lead - B5; Zinc - B5	
LA-SMA-5.361	32-002(b)	not found	Cadmium (0.81)0 of 14(0%); Chromium (2.3)2 Manga of 14(14%); Copper (1.94)2 of 14(14%); Lead (7.86)9 of 15(60%); Mercury (480)10 of 13)77%); Silver ((of 14(0%); Thallium (1.3)2 of 19)11%); Zinc (2.52)2 of 14(14%)	anese (0.75 0 of 14 0%)	Mercury (2 2 of 13 15%); Thallium (1.7 2 of 19 11%)		Lead (0.55 6 of 15 40%)	Manganese (0.45 11 of 14 79%)		Chromium; Copper; Lead; Mercury; Silver; Zinc	Cadmium - B5; Manganese - B3; Thallium - B5	Lead; Mercury
LA-SMA-5.362	32-003	Upper Los Alamos Canyon	Lead (0.86 0 of 27 0%); Zinc (1.2 2 of								Lead - B5; Zinc - B5	
LA-SMA-5.33	32-004	Upper Los Alamos Canyon	Cadmium 0.42[0 of 11]0%); Chromium Nitrate Cadmium 0.42[0 of 11]0%); Copper (1.62]1 of 119.1%); Copper (1.62]1 of 11]9.1%); Lead (7.14]4 of 11]36%); Mercury (5.5]3 of 11]27%); Nickel (0.83[0 of 11]0%); Silver (] of 11]0%); Zinc (1.99]4 of 11]36%)	; (of 2 0%)			Lead (0.5 3 of 11 27%)				Cadmium - B5; Chromium - B5; Copper - B5; Lead - A1; Mercury -B5; Nickel - B5; Nitrate - B5; Silver - A2; Zinc - A1	
CHQ-SMA-5.05; CHQ- SMA-6	33-007(b)	Chaquehui Canyon	Cadmium (0.3]0 of 9]0%); Chromium (0.67]0 of 9]0%); Cobalt (1.08]1 of 9]11%); Copper (1.14]1 of 9]11%); Lead (2.45]1 of 9]11%); Nickel (0.6]0 of 9]0%); Thallium (1.8]1 of 9]11%)		Thailium (2.3 1 of 9 11%)		Cobait (0.45 4 of 9 44%); Lead (0.17 1 of 9 11%)		Copper		Cadmium - B5; Chromium - B5; Cobalt - B5; Copper - B5; Lead - A1; Nickel - B5; I Thallium - B5	

			Inorganic Constituents Detecto	ed Above Maximum Background	Inorganic Constituents Detected	Above Residential SSLs	Inorganic Constituents Detected Al	oove 10% of Residential SSLs		Constitu	ents Site Related?	
SMA	Site	Aggregate Area	TAL List	Non-TAL List	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	s Yes	No ¹	Potential Significant Industrial Materials
CHQ-SMA-1.02; CHQ- SMA-1.03	33-008(c)	Chaquehui Canyon	Antimony (28.2]9 of 19[47%); Arsenic (1.51]1 of 19[5.3%); Cadmium (53.46]8 of 19[42%); Chromium (8.14[6 of 19]32%); Cobalt (4.02]4 of 19[21%); Copper (1575]16 of 19[84%); Cyanide (Total) (1 of 19]0%); Lead (248.57]15 of 19[79%); Mercury (2720]15 of 19[79%); Nickel (62.76]8 of 19[42%); Selenium (2.12]1 of 19[5.3%); Silver (1 of 19]0%); Thallium (2.2]2 of 19[11%); Zinc (168.21]16 of 19[84%)	Barium (1.75 2 of 19 11%)	Arsenic (3.6)4 of 19)21%); Cadmium (2)1 of 19)5.3%); Cobalt (1.7)1 of 19)5.3%); Copper (8.1)3 of 19)16%); Lead (17)6 of 19)32%); Mercury (12)1 of 19)5.3%); Nickel (1.2)1 of 19)5.3%); Thallium (2.8)2 of 19)11%)	Iron (2.3]3 of 19]16%); Manganese (4.5]1 of 19]5.3%)	Antimony (0.9 6 of 19 32%); Silver (0.11 1 of 19 5.3%); Zinc (0.54 2 of 19 11%)	Uranium (0.57 3 of 19 16%)	Copper	Antimony; Cadmium; Chromium; Cobalt; Copper; Iiron; Lead; Manganese; Mercury; Nickel; Silver; Zinc	Arsenic - B5; Barium - A1; Cyanide - B1; Selenium - B5; Thallium - B5; Uranium - C2	Antimony; Cadmium; Cobalt; Copper; Lead; Manganese; Mercury; Silver; Zinc
CHQ-SMA-6	33-010(c)	Chaquehui Canyon	Copper (36.31 5 of 7 71%); Silver (of 7 0%)				Copper (0.19 2 of 7 29%)		Copper	Copper	Beryllium - B2; Silver - A1	Copper
CHQ-SMA-1.02	33-011(d)	Chaquehui Canyon	Lead (27.64 3 of 12 25%); Mercury (20 2 of		Lead (1.9 1 of 12 8.3%)				Copper	Lead; Mercury	Beryllium - B2; Copper -	Lead
T-SMA-4; T-SMA-5	35-009(a)	Middle Mortandad/Ten Site Canyons	Cadmium (0.33 0 of 9 0%); Copper (6.31 3 of 9 33%); Mercury (10.5 2 of 4 50%); Silver (of 9 0%); Zinc (1.28 1 of 4 25%)	Strontium (of 5 0%)					Copper; Mercury		B2; ZIRC - B5 Cadmium - B1; Copper - A1; Mercury - A1; Silver - A1; Zinc - B5	
Pratt-SMA-1.05	35-009(d)	Middle Mortandad/Ten Site Canyons		Strontium (of 1 0%)					Aluminum; Mercury		Aluminum - B1; Mercury - B1	
T-SMA-2.5 T-SMA-3	35-014(g3) 35-016(b)	Middle Mortandad/Ten Site Canyons Middle Mortandad/Ten Site Canyons	Zinc (1.2 2 of 12 17%) Lead (2.4 1 of 6 17%); Silver (of 6 0%); Zinc (1.14 1 of 6 17%)				Lead (0.17 1 of 6 17%)		Copper	Silver	Zinc - B5 Copper - B5; Lead - B8; Zinc - B5	
M-SMA-9.1	35-016(f)	Middle Mortandad/Ten Site Canyons	Thallium (1.2 1 of 9 11%); Zinc (0.72 0 of 9 0%)		Thallium (1.5 1 of 9 11%)						Thallium - B5; Zinc - B1	
M-SMA-7	35-016(g)	Upper Mortandad Aggregate Area	Antimony (4.22 2 of 21 9.5%); Chromium (1.17 1 of 21 4.8%); Thailium (1.1 1 of 21 4.8%); Zinc (4.3 3 of 21 14%)	Chromium hexavalent ion (of 21 0%)	Thailium (1.4 1 of 21 4.8%)	Chromium hexavalent ion (2 2 of 21 9.5%)	Antimony (0.13 1 of 21 4.8%)		Zinc	Chromium	Antimony - B5; Cadmium - B1; Chromium hexavalent ion - C2; Selenium - B1; Silver - B1; Thallium - B5; Zinc - A1	Chromium
M-SMA-6	35-016(h)	Upper Mortandad Aggregate Area	Chromium (1 23 1 of 23 4.3%); Copper (2.12 2 of 23 8.7%); Zinc (1.67 1 of 23 4.3%)					Chromium hexavalent ion (0.44 1 of 23 4.3%)	Copper	Chromium	Antimony - B1; Cadmium - B3; Chromium hexavalent ion - C2; Copper - B5; Nickel - B5; Selenium - B2	Chromium
Pratt-SMA-1.05	35-016(m)	Middle Mortandad/Ten Site Canyons							Aluminum; Mercury		Aluminum - B1; Mercury - B1	
M-SMA-11.1	35-016(0)	Middle Mortandad/Ten Site Canyons	Chromium (5.4 2 of 33 6.1%); Copper (1.44 2 of 33 6.1%); Mercury (3.6 3 of 32 9.4%); Nickel (3.79 1 of 33 3%); Zinc (0.89 0 of 330%)								Chromium - B8; Copper - B5; Mercury - B5; Nickel - B8; Zinc - B5	
M-SMA-12	35-016(p)	Middle Mortandad/Ten Site Canyons	Zinc (0.67 0 of 17 0%)								Zinc - B5	
PT-SMA-2 PT-SMA-3	36-003(b) 36-004(a)	Potrillo/Fence Aggregate Area	Copper (0.95)0 of 60%) Copper (1.44 1 of 2 50%); Selenium (1.12 1	Nitrate (of 6 0%) Nitrate (of 2 0%)							Copper - B5; Nitrate - B5 Copper - B5; Nitrate - B5;	
F-SMA-2	36-004(c)	Potrillo/Fence Aggregate Area	of 2 50%) Copper (1.95 4 of 14 29%); Lead (0.95 0 of 14 0%); Selenium (1.24 1 of 14 7.1%); Zinc (0.6000 of 14 0%)						Aluminum; Copper		Selenium - B5 Aluminum - B2; Copper - B5; Lead - B5; Selenium - B5; Zipo, B5	
PT-SMA-4.2	36-004(d)	Potrillo/Fence Aggregate Area	Selenium (1 0 of 25 0%)	Nitrate (of 18 0%); Perchlorate (of 18 0%)							Nitrate - B5; Perchlorate -	
PT-SMA-3	36-006	Potrillo/Fence Aggregate Area	Copper (196.25)8 of 28)29%); Lead (7.14)5 of 28)18%); Mercury (14.8)4 of 28)14%); Selenium (1.47)7 of 28)25%); Zinc (2.23)2 of 28)7.1%)		Copper (1 1 of 28 3.6%)		Lead (0.5 3 of 28 11%)			Copper, Lead, Zinc	Selenium - A1	Copper; Lead
3M-SMA-2.6	36-008	Threemile Aggregate Area	Cadmium (1.29)1 of 107)0.93%); Chromium (5.26)9 of 107)8.4%); Copper (304.38)18 of 107)17%); Cyanide (Total) (] of 107)0%); Leac (7.21)12 of 107)11%); Mercury (250)31 of 107)29%); Silver (] of 107)0%); Zinc (17.48)11 of 107(10%).	Nitrate (of 107 0%); Perchlorate (of 107 0%); Uranium (2.89 10 of 107 9.3%)	Copper (1.6 1 of 107 0.93%); Mercury (1.1 1 of 107 0.93%)		Lead (0.5)9 of 107 8.4%); Silver (0.89 7 of 107 6.5%)			Copper; Lead; Mercury; Silver	Cadmium - B5; Chromium B5; Cyanide - A1; Nitrate - B5; Perchlorate - C2; Uranium - C2; Zinc B5	-Copper; Lead; Mercury; Silver
A-SMA-2.7	39-002(c)	North Ancho Aggregate Area	Cadmium (0.37 0 of 10 0%); Copper (1.29 1 of 10 10%); Cyanide (Total) (of 10 0%); Lead (0.93 0 of 10 0%); Mercury (1.38 1 of 10 10%); Zinc (1.48 1 of 10 10%)	Nitrate (of 10 0%)					Copper		Cadmium - B5; Copper - B5; Cyanide (Total) - B5; Lead - B5; Mercury - B5; Nitrate - B5; Zinc - B5	
A-SMA-2	39-004(b)	North Ancho Aggregate Area	Copper (80.62 12 of 31 39%); Lead (3.64 4 of 31 13%); Mercury (441 18 of 31 58%); Zinc (7.77 3 of 31 9.7%)	Uranium (1240.28 25 of 31 81%)	Mercury (1.9 2 of 31 6.5%)	Uranium (19 6 of 31 19%)	Copper (0.41 3 of 31 9.7%); Lead (0.26 4 of 31 13%)		Aluminum; Copper	Copper;Lead; Mercury; Uranium; Zinc	Aluminum - B2	Copper;Lead; Mercury; Uranium
A-SMA-3	39-004(c)	North Ancho Aggregate Area	Copper (165 11 of 45 24%); Lead (34.93 6 of 45 13%); Zinc (2.42 4 of 45 8.9%)	Nitrate (of 4 0%); Uranium (9594.44 32 of 41 78%)	Lead (2.4 3 of 45 6.7%)	Uranium (150 1 of 41 2.4%)	Copper (0.84 3 of 45 6.7%)		Aluminum; Copper; Mercury; Selenium	Copper; Lead; Mercury;	Aluminum - B2; Nitrate - B5; Selenium -B1; Uranium - C2; Zinc - B5	Copper; Lead
A-SMA-1.1	39-004(d)	North Ancho Aggregate Area	Cadmium (2.92 1 of 50 2%); Copper (4850 9 of 50 18%); Lead (11.43 7 of 50 14%); Mercury (68 16 of 50 32%); Zinc (9.14 1 of 50 2%)	Beryllium (2.3 3 of 50 6%); Nitrate (of 4 0%); Perchlorate (of 4 0%); Uranium (776.67 41 of 46 89%)	Copper (25 2 of 50 4%)	Uranium (12 4 of 46 8.7%)	Cadmium (0.11 1 of 50 2%); Lead (0.8 5 o 50 10%); Mercury (0.29 3 of 50 6%)	f		Copper; Lead; Mercury; Uranium	Beryllium - B8; Cadmium - B8; Nitrate - B5; Perchlorate - C2; Zinc - B8	Copper; Lead; Mercury; Uranium
A-SMA-2	39-004(e)	North Ancho Aggregate Area	Antimony (12.8]3 of 39]7.7%); Cadmium (0.42)0 of 39]0%); Chromium (2.38]1 of 39]2.6%); Copper (517.5]14 of 39]36%); Lead (12.68]2 of 38]5.3%); Mercury (3.2]8 of 39]21%); Nickel (0.98]0 of 39]0%); Silver (] of 39]0%); Zinc (53.25]4 of 39]10%)	Uranium (1234.72 34 of 39 87%)	Copper (2.6 1 of 39 2.6%)	Uranium (19 7 of 39 18%)	Antimony (0.41 2 of 39 5.1%); Lead (0.89 of 38 2.6%); Zinc (0.17 1 of 39 2.6%)	1	Aluminum; Copper	Copper; Uranium	Aluminum - B2; Antimony - B5; Cadmium - B3; Chromium - B8; Lead - B8 Mercury - B5; Nickel - B5; Silver - B5; Zinc - B8	Copper; Uranium
A-SMA-3.5	39-006(a)	North Ancho Aggregate Area	Cyanide (Total) (of 16 0%); Mercury (6.69 1 of 16 6.2%); Silver (of 16 0%)	Nitrate (of 16 0%); Perchlorate (of 16 0%)			Cyanide (Total) (0.17 1 of 16 6.2%)				Cyanide - B5; Nitrate - B5; Mercury - B8; Perchlorate C2; Silver - B7	

			Inorganic Constituents Detecte	ed Above Maximum Background	Inorganic Constituents Detec	ted Above Residential SSLs	Inorganic Constituents Detected Ab	ove 10% of Residential SSLs		Constitu	ents Site Related?	
	0.4-	A							Stormwater Analytes	¥	N-1	Potential Significant
A-SMA-2.7	39-008	North Ancho Aggregate Area	Lead (67.14 6 of 48 12%); Silver (of 48 0%)	Non-TAL List Nitrate (of 30 0%); Uranium (6480.56 18 of	Lead (4.7 3 of 48 6.2%)	Uranium (99 4 of 18 22%)	Silver (0.26 1 of 48 2.1%)	NON-I AL LIST	Copper	Lead; Silver;	No Nitrate - B5	Lead; Silver; Uranium
A-SMA-2.5	39-010	North Ancho Aggregate Area	Copper (158.12 18 of 54 33%); Lead (2.21 7 of 54 13%); Mercury (24.7 21 of 54 39%); Zinc (1.83 2 of 54 3.7%)	18 100%) Beryllium (0.99 0 of 54 0%); Nitrate (of 54 0%); Perchlorate (of 54 0%)			Copper (0.81 3 of 54 5.6%); Lead (0.16 5 of 54 9.3%); Mercury (0.11 1 of 54 1.9%)			Uranium Copper; Mercury	Beryllium - B5; Lead - B5; Nitrate - B5; Perchlorate - C2; Zinc - B5	Copper; Mercury
PJ-SMA-10	40-006(a)	Starmer/Upper Pajarito Canyon	Cadmium (0.98 0 of 100 0%); Copper (962.5 46 of 100 46%); Lead (3.43 5 of 100 5%); Nickel (1.59 4 of 100 4%); Silver (of 10010%); Zinc (19.618 of 10018%)	Barium (1.83 2 of 100 2%); Manganese (1.16 1 of 100 1%); Uranium (5.03 34 of 99 34%)	Copper (4.9 1 of 100 1%)		Lead (0.24 2 of 100 2%)	Manganese (0.69 51 of 100 51%)		Barium; Copper; Zinc	Cadmium - B5; Lead - B5; Manganese - B5; Nickel - B5; Silver - A1; Uranium - C2	
PJ-SMA-9	40-009	Starmer/Upper Pajarito Canyon	Cadmium (8.46 1 of 15 6.7%); Copper (165.62 5 of 15 33%); Lead (6.89 3 of 16 19%); Zinc (18.01 5 of 15 33%)	Beryllium (0.84 0 of 15 0%); Uranium (1.13 1 of 16 6.2%)			Cadmium (0.31 1 of 15 6.7%); Copper (0.85 1 of 15 6.7%); Lead (0.48 2 of 16 12%)			Cadmium; Copper; Lead; Zinc	Beryllium - B5; Uranium - B5	Copper
LA-SMA-1.1	43-001(b2)	Upper Los Alamos Canyon	Cyanide (Total) (of 21 0%); Lead (4.18 8 of 21 38%); Zinc (1.95 8 of 21 38%)	Nitrate (of 21 0%)			Cyanide (Total) (0.15 1 of 21 4.8%); Lead (0.29 4 of 21 19%)		Copper; Cyanide (Total): Zinc	Cyanide; Lead; Zinc	Copper - B5; Nitrate - B5	Cyanide; Lead
CDB-SMA-1.65	46-003(b)	Upper Canada del Buey Aggregate Area		Perchlorate (of 2 0%)					(*****)		Perchlorate - C2	
CDB-SMA-1	46-003(c)	Upper Canada del Buey Aggregate Area	a	Nitrate (of 4 0%); Perchlorate (of 4 0%)					Aluminum; Copper	Nitrate	Aluminum - B2; Copper- B2; Mercury - B2; Perchlorate - C2	
CDB-SMA-1.55	46-003(e)	Upper Canada del Buey Aggregate Area	a Lead (3.61 1 of 4 25%); Mercury (112 3 of	Nitrate (of 4 0%); Perchlorate (of 4 0%)			Lead (0.25 1 of 4 25%); Mercury (0.48 1 of			Mercury	Lead - B5; Nitrate - B5;	Mercury
CDB-SMA-1.35	46-004(a2)	Upper Canada del Buey Aggregate Area	4/75%) a Copper (1.68/2 of 8/25%); Zinc (1.99/2 of	Perchlorate (of 8 0%)			4 25%)			Copper; Zinc	Mercury - B2; Perchlorate -	
CDB-SMA-1.15	46-004(b)	Upper Canada del Buey Aggregate Area	8 25%) a Copper (5.36 1 of 4 25%); Zinc (0.83 0 of	Cesium (of 4 0%)						Copper	C2 Zinc - B5	
CDB-SMA-0.25	46-004(c2)	Upper Canada del Buey Aggregate Area	4 0%) a Copper (2.84 5 of 22 23%); Lead (2.32 8 of	Cesium (of 22 0%); Lithium (of 22 0%);			Lead (0.16 4 of 22 18%)		Aluminum; Copper	Copper, Lead;	Aluminum - B2; Mercury -	Lead
			22 36%); Mercury (1.07 2 of 22 9.1%); Zinc (3.79 7 of 22 32%)	Nitrate (of 22 0%); Perchlorate (of 22 0%)						Zinc	B5; Nitrate - B5; Perchlorate - C2	
CDB-SMA-1	46-004(d2)	Upper Canada del Buey Aggregate Area	Copper (4.57 4 of 40 10%); Lead (8.39 2 of 40 5%); Mercury (14.3 6 of 40 15%); Zinc (1.59 3 of 40 7.5%)	Perchlorate (of 40 0%)			Lead (0.59 1 of 40 2.5%)		Aluminum; Copper		Aluminum - B2; Copper - A1; Lead - A1; Mercury - A1; Perchlorate - C2; Zinc -	Lead
CDB-SMA-0.25	46-004(e2)	Upper Canada del Buey Aggregate Area	a Chromium (0.56 0 of 6 0%); Copper (6.08 4 of 6 67%); Lead (3.68 3 of 6 50%); Zinc (1.26 1 of 6 17%)	f			Lead (0.26 2 of 6 33%)		Copper	Copper; Lead	Chromium - B5; Zinc - B5	Lead
CDB-SMA-1	46-004(f)	Upper Canada del Buey Aggregate Area	Cadmium (0.19 0 of 8 0%); Lead (1.55 2 of 8 25%); Zinc (1.09 1 of 8 12%)				Lead (0.11 2 of 8 25%)		Aluminum; Copper	Lead	Aluminum - B2; Cadmium - B5; Copper - B2; Mercury - B2; Zinc - B5	Lead
CDB-SMA-0.55	46-004(g)	Upper Canada del Buey Aggregate Area	Cadmium (1.3 1 of 16 6.2%); Chromium (0.61)0 of 16 0%); Copper (13.88 6 of 16 38%); Lead (2.71 3 of 16 19%); Mercury (40.4 8 of 16 50%); Nickel (1.27 1 of 16 6.2%); Silver (of 16 0%); Zinc (1.14 1 of	Perchlorate (of 16 0%)			Lead (0.19 1 of 16 6.2%); Mercury (0.17 2 of 16 12%)		Copper	Cadmium; Copper; Lead; Mercury; Silver	Chromium - B5; Nickel - B5; Perchlorate - C2; Zinc - B5	Lead; Mercury
CDB-SMA-1.54	46-004(h)	Upper Canada del Buey Aggregate Area	a Mercury (5.63 4 of 4 100%)	Perchlorate (of 4 0%)						Mercury	Perchlorate - C2	
CDB-SMA-0.55	46-004(m)	Upper Canada del Buey Aggregate Area	a Cadmium (0.17 0 of 19 0%); Copper (1.41 1 of 19 5.3%); Mercury (1.99 1 of 19 5.3%); Zinc (3.15 2 of 19 11%)	lron (0.97 0 of 19 0%); Manganese (0.62 0 of 19 0%)				Iron (0.64 18 of 19 95%); Manganese (0.37 18 of 19 95%)	Copper	Zinc	Cadmium - B5; Copper - B5; Iron - B5; Manganese - B5; Mercury - B5	
CDB-SMA-1.54	46-004(q)	Upper Canada del Buey Aggregate Area	a Cadmium (0.41 0 of 26 0%); Copper (2.39 4 of 26 15%); Lead (2.77 5 of 26 19%); Mercury (8240 10 of 26 38%); Zinc (1.89 3 of 26 12%)	Perchlorate (of 26 0%)	Mercury (35 2 of 26 7.7%)		Lead (0.19 2 of 26 7.7%)			Copper; Lead; Mercury; Zinc	Cadmium - B5; Perchlorate - C2	Lead; Mercury
CDB-SMA-0.55	46-004(s)	Upper Canada del Buey Aggregate Area	a Copper (30.25 3 of 4 75%); Mercury (11.2 2 of	f			Copper (0.15 1 of 4 25%)		Copper	Copper; Mercury		Copper
CDB-SMA-1	46-004(t)	Upper Canada del Buey Aggregate Area	a [00%) a Cadmium (0.22]0 of 16]0%); Chromium (0.65]0 of 16]0%); Copper (2.14]3 of 16]19%); Lead (2.1]2 of 16]12%); Mercury (1.85]3 of 16]19%); Zinc (4.42]1 of 16]6.2%)	Iron (0.84]0 of 16]0%); Perchlorate (of 16 0%)			Lead (0.15 1 of 16 6.2%)	Iron (0.55 16 of 16 100%)	Aluminum; Copper	Copper	Aluminum - B5; Cadmium - B5; Chromium - B5; Iron - B5; Lead - B5; Mercury - B5; Perchlorate - C2; Zinc - B5	
CDB-SMA-1.35	46-004(u)	Upper Canada del Buey Aggregate Area	a Zinc (0.93 0 of 20 0%)	Perchlorate (of 18 0%)							Perchlorate - C2; Zinc - B5	
CDB-SMA-1.35	46-004(v)	Upper Canada del Buey Aggregate Area	a Zinc (1.48 1 of 4 25%)	Perchlorate (of 4 0%)							Perchlorate - C2; Zinc - B5	
CDB-SMA-1.35	46-004(x)	Upper Canada del Buey Aggregate Area	a Copper (1.14 2 of 10 20%); Zinc (1.42 3 of 10 30%)	Perchlorate (of 10 0%)							Copper - B5; Mercury - B2; Perchlorate - C2; Zinc - A1	
CDB-SMA-1.15	46-004(y)	Upper Canada del Buey Aggregate Area	a Cadmium (0.4)0 of 16 0%); Chromium (0.56 0 of 16 0%); Copper (4.55 2 of 16 12%); Lead (1.18 2 of 16 12%); Mercury (48 6 of 16 38%); Zinc (6.53 6 of 16 38%)				Mercury (0.2 1 of 16 6.2%)	lron (0.49 16 of 16 100%)		Copper; Mercury; Zinc	Cadmium - B5; Chromium - B5; Iron - B5	Mercury
CDB-SMA-1.15	46-004(z)	Upper Canada del Buey Aggregate Area	a Copper (2.68 1 of 12 8.3%); Lead (1.82 1 of 12 8.3%); Mercury (14.1 3 of 12 25%); Zinc (2.511 of 12 8.3%)	Perchlorate (of 12 0%)	1		Lead (0.13 1 of 12 8.3%)			Copper; Lead; Mercury; Zinc	Perchlorate - C2	Lead
CDB-SMA-1.15; CDB- SMA-1.35; CDB-SMA- 1.54	46-006(d)	Upper Canada del Buey Aggregate Area	a Cadmium (0.29]0 of 36 0%); Copper (25.19 3 of 36 8.3%); Mercury (1150 5 of 36 14%); Zinc (3.34 4 of 36 11%)	Perchlorate (of 36 0%)	Mercury (4.9 1 of 36 2.8%)		Copper (0.13 1 of 36 2.8%)			Copper, Mercury, Zinc	Cadmium-B2, Perchlorate- C2	Copper; Mercury
CDB-SMA-0.55	46-006(f)	Upper Canada del Buey Aggregate Area	a Chromium (3.12 1 of 8 12%); Lead (0.84 0 of 8 0%); Mercury (1.21 1 of 8 12%); Zinc (0.7 0 of 8 0%)						Copper	Chromium	Copper-B2, Lead-B5, Mercury-B5, Zinc-B5	
CDB-SMA-1.35	46-008(f)	Upper Canada del Buey Aggregate Area	a Copper (1.42 1 of 14 7.1%); Zinc (0.92 0 of 14 0%)								Copper-B5, Zinc-B5	

			Inorganic Constituents Detect	d Above Maximum Background Inorganic Constituents Detected Above Residential SSLs Inorganic Constituents Detected Above 10% of Residential SSLs Constituent		uents Site Related?						
SMA	Site	Angrogate Area	TAL List	Non-TAL List	TAI List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes	Ves	No ¹	Potential Significant
CDB-SMA-1	46-008(g)	Upper Canada del Buey Aggregate Area	Antimony (2.05)1 of 14/7.1%); Cadmium (0.38)0 of 14 0%); Chromium (13.53)1 of 14/7.1%); Copper (4.34)1 of 14/7.1%); Lead (6.43)2 of 14 14%); Silver (of 14 0%); Zinc (2.33)3 of 14 21%)		TAL LIST	NOPPAL LIST	Lead (0.45 2 of 14 14%)		Aluminum; Copper	Antimony; Chromium; Copper; Lead; Silver; Zinc	Aluminum - B2; Cadmium - B5	Lead
CDB-SMA-1	46-009(a)	Upper Canada del Buey Aggregate Area	a Zinc (2.91 2 of 20 10%)	Nitrate (of 20 0%)					Aluminum; Copper		Aluminum - B2; Copper - B2; Nitrate - B5; Zinc - A1	
M-SMA-3; M-SMA-3.1; N SMA-3.5; M-SMA-4	M-48-001	Upper Mortandad Aggregate Area	Chromium (21.62 11 of 143 7.7%); Copper (11.06 17 of 143 12%); Lead (1.89 4 of 143 2.8%); Mercury (276 10 of 137 7.3%); Zinc (5.18 9 of 143 6.3%)	Chromium hexavalent ion (of 114 0%); Nitrate (of 129 0%); Perchlorate (of 129 0%)	Mercury (1.2 1 of 137 0.73%)	Chromium hexavalent ion (2.9 1 of 114 0.88%)	Lead (0.13 1 of 143 0.7%)		Copper		Antimony - B3; Barium - B2; Cadmium - B3; Chromium - A1; Chromium hexavalent ion -A1; Copper - A1; Lead - A1; Mercury - A1; Nitrate - B5; Perchlorate - C2; Selenium - B2; Silver - B3; Thallium - B2; Zinc - A1	
M-SMA-3.5	48-003	Upper Mortandad Aggregate Area	Zinc (0.93 0 of 46 0%)	Chromium hexavalent ion (of 36 0%); Nitrate (of 36 0%); Perchlorate (of 36 0%)				Chromium hexavalent ion (0.1 1 of 36 2.8%)			Antimony - B1; Cadmium - B1; Chromium - B2; Chromium hexavalent ion - C2; Cyanide (Total) - B1; Nitrate - B5; Perchlorate - C2; Selenium - B1; Zinc - B4	
M-SMA-3; M-SMA-4	48-005	Upper Mortandad Aggregate Area	Chromium (0.76 0 of 12 0%); Zinc (5.18 1 of 12 8.3%)	Nitrate (of 11 0%); Perchlorate (of 11 0%)					Copper		Chromium - B5; Copper - B2; Nitrate - B5; Perchlorate - C2; Zinc - A1	
M-SMA-3.1	48-007(b)	Upper Mortandad Aggregate Area	Chromium (1.11 1 of 23 4.3%); Copper (2.04 3 of 23 13%); Zinc (1.4 2 of 23 8.7%)	Nitrate (of 23 0%); Perchlorate (of 23 0%)						Copper; Zinc	Aluminum - B2; Antimony - B2; Cadmium - B1; Chromium - B5; Copper - B5; Nitrate - B5; Perchlorate - C2; Selenium - B1; Zinc - B5	
M-SMA-3	48-007(c)	Upper Mortandad Aggregate Area	Chromium (0.67 0 of 17 0%); Lead (1.02 1 of 17 5.9%); Silver (of 17 0%); Zinc (1.66 2 of 17 12%)					Iron (0.41 16 of 17 94%)			Antimony - B1; Cadmium - B1; Chromium - B5; Copper - B2; Iron - B5; Lead - B5;Perchlorate - C2; Selenium (B1); Silver - B5; Zinc - A1	
W-SMA-12.05	49-001(g)	TA-49 Sites Inside NES									<u> </u>	
W-SMA-15.1	49-005(a)	TA-49 Sites Outside NES	Zinc (5.91 5 of 72 6.9%)	Nitrate (of 6 0%); Uranium (0.7 0 of 2 0%)						Zinc	Nitrate - B5; Uranium - B5	
W-SMA-11.7	49-008(c)	TA-49 Sites Inside NES	Selenium (1.12 2 of 22 9.1%)	Perchlorate (of 6 0%); Uranium (2.32 3 of 16 19%)					Aluminum		Aluminum - B1; Perclorate - C2; Selenium - B5; Uranium - B5	
T-SMA-1	50-006(a)	Upper Mortandad Aggregate Area	Cadmium (0.65)0 of 73)0%); Chromium (1.01 1 of 73)1.4%); Zinc (1.08 1 of 8)12%)	Fluoride (of 8 0%); Nitrate (of 8 0%)					Copper; Zinc		Antimony - B1; Cadmium - B5; Chromium - B4; Copper - B1; Fluoride - B5; Nitrate - B5; Selenium - B2; Silver - B2; Zinc - B5	
M-SMA-7.9	50-006(d)	Upper Mortandad Aggregate Area	Mercury (1.27 1 of 15 6.7%); Zinc (0.66 0 of 15 0%)	Nitrate (of 15 0%); Perchlorate (of 15 0%)							Antimony - B2; Cadmium - B1; Mercury - B5; Nitrate - B5; Perchlorate - C2; Selenium - B1; Zinc - B5	
T-SMA-1	50-009	Upper Mortandad Aggregate Area	Selenium (3.64 15 of 59 25%)						Copper; Zinc		Copper - B1; Selenium -	
S-SMA-3.71	53-001(a)	Lower Sandia Aggregate Area	Chromium (2.55 1 of 25 4%)								Chromium - B8	
S-SMA-3.72	53-001(b)	Lower Sandia Canyon	Antimony (4.19 1 of 7 14%); Cadmium (0.64 0 of 7 0%); Copper (2.56 2 of 7 29%); Lead (2.54 2 of 7 29%); Silver (of 7 0%); Zinc (1.96 2 of 7 29%)	מ			Antimony (0.13 1 of 7 14%); Lead (0.18 2 of 7 29%)			Copper; Lead; Zinc	Antimony - A1; Cadmium - B5; Silver - B5	Lead
LA-SMA-10.12	53-008	Lower Sandia Aggregate Area	Chromium (4.11 1 of 34 2.9%); Cyanide (Total) (of 34 0%)				Cyanide (Total) (0.32 1 of 34 2.9%)				Chromium -B8; Cyanide - A1	
S-SMA-3.7	53-012(e)	Lower Sandia Aggregate Area	Antimony (2.3)5 of 15]33%); Cadmium (0.46)(of 15]0%); Chromium (0.64)(0 of 15]0%); Copper (16.69)5 of 15]3%); Cyanide (Total) (of 12]0%); Lead (1.38)2 of 15]13%); Mercury (2.7)1 of 15]6.7%); Nickel (0.93)0 of 15]0%); Silver (of 15]0%); Zinc (2.89)4 of 15]27%)							Copper; Zinc	Antimony - A1; Cadmium - B5; Chromium - B5; Cyanide - B8; Lead - B5; Mercury - B5; Nickel - B5; Silver - B5	
S-SMA-4.1 P.I-SMA-14	53-014 54-004	Lower Sandia Canyon Middle Cañada del Ruey									Lead - B5	
S-SMA-3.6	60-007(b)	Upper Sandia Aggregate Area	Zinc (1.72 4 of 20 20%)						Copper; Zinc	Zinc	Aluminum - B5; Antimony - B2; Barium - B5; Chromium - B5; Copper - B8; Selenium - B2	
S-SMA-6	72-001	Lower Sandia Aggregate Area							Aluminum; Copper		Aluminum - B2; Copper - B2	

			Inorganic Constituents Detect	ed Above Maximum Background	Inorganic Constituents Detecte	ed Above Residential SSLs	Inorganic Constituents Detected Ab	ove 10% of Residential SSLs		Constitu	ents Site Related?	
SMA	Site	Aggregate Area	TAL List	Non-TAL List	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	s Yes	No ¹	Potential Significant Industrial Materials
P-SMA-2	73-002	Pueblo Canyon	Copper (3.15/9 of 152/5.9%); Lead (8.29/22 of 144/15%); Silver (of 145/0%); Zinc (6.23/15 of 148/10%)	Nitrate (of 32 0%); Perchlorate (of 89 0%); Uranium (0.89 0 of 5 0%)			Lead (0.58 17 of 144 12%)			Lead; Silver; Zinc	Copper - B5; Nitrate - B5; Perclorate - C2; Uranium - B5	Lead
P-SMA-2	73-006	Pueblo Canyon	Aluminum (0.61)0 of 12(0%); Cadmium (1.31)2 of 12(17%); Chromium (0.65)0 of 12(0%); Cobalt (0.97)0 of 12(0%); Copper (5.19)4 of 12(33%); Lead (6.18)6 of 12(50%); Mercury (79)3 of 11(27%); Nickel (1.04)1 of 12(8.3%); Selenium (12)1 of 12(8.3%); Silver (1 of 12(0%); Thallium (0.85)0 of 12(0%); Vanadium (0.72)0 of 12(0%); Zinc (16.56)5 of 12(42%)		Thallium (1.1 1 of 12 8.3%)		Aluminum (0.48)9 of 12)75%); Cobalt (0.4)6 of 12)50%); Lead (0.43)5 of 12)42%); Mercury (0.34)1 of 11)9.1%); Vanadium (0.1)1 of 12)8.3%)	Iron (0.44 11 of 12 92%)		Copper; Lead; Mercury; Silver; Zinc	Aluminum - 85; Cadmium - B5; Chromium - 85; Coball - 81; Iron - 85; Nickel - 85; Selenium - 88; Thallium - B5; Vanadium - 85	
R-SMA-1	C-00-041	Guaje/Barrancas/Rendija Canyons	Lead (1.21 2 of 33 6.1%); Selenium (5.61 28 of 33 85%); Zinc (0.98 0 of 33 0%)						Aluminum; Zinc		Aluminum - B5; Lead - B5; Selenium - A1; Zinc - B5	
LA-SMA-0.9; LA-SMA-1	C-00-044	Upper Los Alamos Canyon	Lead (11.93 16 of 44 36%); Zinc (1.13 1 of 44 2.3%)				Lead (0.84 13 of 44 30%)		Aluminum	Lead	Aluminum - B2; Zinc - B5	Lead
PT-SMA-0.5	C-15-004	Potrillo/Fence Aggregate Area	Antimony (1 0 of 4 0%); Cadmium (0.77 0 of 4 0%); Copper (3.29 3 of 4 75%); Zinc (2.44 2 of 4 50%)						Aluminum; Copper		Aluminum - B2; Antimony - B5, Cadmium - B5; Copper - B5, Zinc - B5	
CHQ-SMA-1.03; CHQ- SMA-2	C-33-003	Chaquehui Canyon	Antimony (2 3 of 17 18%); Cobalt (1.25 1 of 17 5.9%); Copper (1.72 5 of 17 29%); Lead (1.24 1 of 17 5.9%); Nickel (1.53 4 of 17 24%); Selenium (2.88 2 of 17 12%)				Cobalt (0.52 11 of 17 65%)		Aluminum; Copper	Copper; Nickel	Aluminum - B2; Antimony - B5; Cobalt - B5; Lead - B5; Selenium - B8	
3M-SMA-2.6	C-36-003	Threemile Aggregate Area	Cadmium (1.29 1 of 16 6.2%); Chromium (5.26 6 of 16 38%); Copper (170 5 of 16 31%); Cyanide (Total) (of 16 0%); Lead (5.14 2 of 16 12%); Mercury (8.15 11 of 16 69%); Nickel (1.83 1 of 16 6.2%); Silver (of 16 0%); Zinc (17.48 3 of 16 19%)				Copper (0.87 1 of 16 6.2%); Lead (0.36 1 of 16 6.2%); Silver (0.89 7 of 16 44%)	Manganese (0.46 11 of 16 69%)		Chromium; Copper; Mercury; Lead; Nickel; Silver; Zinc	Cadmium - B5; Cyanide - A1	Copper; Lead; Silver
PT-SMA-2.01	C-36-006(e)	Potrillo/Fence Aggregate Area		Perchlorate (of 9 0%)							Perchlorate - C2	
LA-SMA-1.25	C-43-001	Upper Los Alamos Canyon	Cadmium (0.18[0 of 28]0%); Chromium (1.19]2 of 28]7.1%); Copper (3.25]4 of 28]14%); Cyanide (Total) (1 of 28]0%); Lead (7.21]6 of 28]21%); Mercury (3.08]14 of 28]50%); Silver (1 of 28]0%); Zinc (1.91]8 of 28]29%)	Nitrate (of 28 0%)			Lead (0.5)6 of 28 21%)		Copper; Zinc	Lead	Cadmium - B5; Chromium - B5; Copper - B5; Cyanide - B5; Mercury - B5; Nitrate - B5; Silver - B5; Zinc - A1	Lead
CDB-SMA-1	C-46-001	Upper Canada del Buey Aggregate Ar	ea						Aluminum; Copper		Aluminum-A1, Copper-A1, Mercury-B2	
Notes: ¹ The following codes indi A1 - Constituent not dete B1 - Constituent not dete B2 - Constituent detected B3 - Constituent above B B5 - Concentrations equi B7 - Detected at concent B8 - Elevated result is ou C2 - Constituent has no 1	cate the results of the evalu- ed to site history. cted, or constituent not dete l but less than BV. V but less than maximum b valent to background conce rations greater than BV, but tiler. /AL value.	uation of whether constituents are site-relate ected and detection limit is above BV. eackground concentration. entrations. t only at greater than 3 ft.	sd:		·							

Key to Information Presented in Table 8

The following describes the information contained in each column of Table 8.

SMA – This column identifies the SMA associated with the Site.

Site – This column identifies the Site (i.e., SWMU or AOC) being evaluated. In some cases, a Site was investigated as part of a consolidated unit consisting of multiple Sites, and the soil data were associated with the consolidated unit rather than the individual Sites. In these cases, the table first identifies the Consolidated Unit that is the source of the data and then the individual Site under the Individual Permit (e.g., "04-001-99|04-001"). Similarly, data from investigation of one Site may be used to evaluate another Site if the Sites are overlapping. If a Site is evaluated using the data from a different but overlapping Site, the table first identifies the Site having data and then the Site being evaluated [e.g., "02-006(c)|02-006(d)"].

Aggregate Area – This column identifies the Consent Order aggregate area the Site is located within. Aggregate areas are geographic areas within which SWMUs and AOCs are grouped for purposes of investigation.

Frequency of Detects – This column identifies the frequency of detection of organic constituents in samples collected within 3 ft of the surface at the Site. Results are presented for each constituent having at least one detected result. The results are presented for each constituent as follows: number of detections out of number of samples analyzed | percentage of samples with detected results. Constituents listed in green are those that were also detected in storm water samples but at concentrations less than TALs. Constituents listed in red are those that were also detected in storm water but at concentrations equal to or greater than TALs.

Organic Constituents Detected above Residential SSLs – These two columns present the results of comparisons of the concentrations of organic constituents detected in samples collected within 3 ft of the surface with the residential SSL for each constituent. The results are presented for each constituent detected at concentrations greater than the residential SSL. The first column presents the results for those constituents having TALs in the Individual Permit, and the second column presents the results for these constituents having no TALs. The results are presented for each constituent as follows:

(ratio of maximum detected concentration to residential SSL | number of detects above the residential SSL out of number of results | percentage of total samples detected above residential SSL)

Constituents listed in green are those that were also detected in storm water samples but at concentrations less than TALs. Constituents listed in red are those that were also detected in storm water but at concentrations equal to or greater than TALs.

Organic Constituents Detected above 10% of Residential SSLs – These two columns present the results of comparisons of the concentrations of organic constituents detected in samples collected within 3 ft of the surface with 10% of the residential SSL for each constituent. The results are presented for each constituent detected at a concentration greater than 10% of the residential SSLs but less than or equal to the residential SSL. The first column presents the results for those constituents having TALs in the Individual Permit, and the second column presents the results for these constituents not having TALs. The results are presented for each constituent as follows:

(ratio of maximum detected concentration to 10% of residential SSL | number of detects above 10% of the residential SSL out of number of results | percentage of total samples detected above 10% of the residential SSL)

Constituents listed in green are those that were also detected in storm water samples but at concentrations less than TALs. Constituents listed in red are those that were also detected in storm water but at concentrations equal to or greater than TALs.

Storm Water Analytes Exceeding TALs – This column identifies those constituents detected in storm water at concentrations exceeding TALs.

Site-Related Constituents – These two columns present the results of the evaluation of the soil data to determine whether the organic constituent is likely to be present in shallow soil as a result of Site-related activities. This evaluation is made for all constituents identified in previous columns (i.e., detected [Column 4], detected above residential SSLs [Columns 5–6], detected above 10% of residential SSLs [Columns 7–8], and/or detected above TALs in storm water samples [Column 9]). This determination is based on an evaluation of the frequency, magnitude, and spatial distribution of detections, as described in Section 10.3. The first column identifies those constituents evaluated and determined to be Site-related, and the second column identifies those determined not to be Site-related.

Potential Significant Industrial Materials – This column identifies those constituents determined to be potentially present as significant industrial materials. Potential significant industrial materials are those detected at concentrations greater than 10% of the residential SSL (Columns 5–8) and identified as Site-related constituents (Column 10).

	-	-		Table o Su	minary of Evaluation of Organic Data	In Shallow Soll Sa	ampies		-		
				Organic Constituents	Detected Above Residential SSLs 0	Organic Constituents De	etected Above 10% of Residential SSLs		Constitue	ents Site Related?	
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	Yes	No ¹	Potential Significant Industrial Materials
LA-SMA-5.51	02-006(c) 02-006(d)	Middle LA Aggregate Area	Acenaphthene (3 of 7 43%); Anthracene (4 of 7 57%); Aroclor-1254 (3 of 7 43%); Aroclor- 1260 (7 of 7 100%); Benzo(a)anthracene (3 of 7 43%); Benzo(a)pyrene (3 of 7 43%); Benzo(b)fluoranthene (6 of 7 86%); Benzo(g,h,i)perylene (3 of 7 43%); Benzo(k)fluoranthene (1 of 7 14%); Chrysene (6 of 7 66%); Fluoranthene (6 of 7 86%); Fluorene (3 of 7 43%); Indeno(1,2,3-cd)pyrene (2 of 7 29%); Methylnaphthalene[2-] (3 of 7 43%); Naphthalene (3 of 7 43%); Phenanthrene (6 of 7 86%); Pyrene (7 of 7 100%); TPH- DRO (2 of 2 100%)	Benzo(a)pyrene (1.6 1 of 7 14%)			Aroclor-1254 (0.11 1 of 7 14%); Benzo(a)anthracene (0.14/2 of 7 29%); Benzo(b)fluoranthene (0.25 3 of 7 43%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),i)perylene - A1; Benzo(b)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphtlalene[2] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
2M-SMA-2	03-052(a)-00 03-054(b)	Twomile Canyon	Acenaphthene (17 of 18]94%); Acenaphthylene (9 of 18]50%); Anthracene (17 of 18]94%); Berzo(a)anthracene (18 of 18]100%); Berzo(a)pyrene (18 of 18]100%); Berzo(b)fluoranthene (18 of 18]100%); Berzo(a,h,i)perylene (17 of 18]94%); Berzo(k)fluoranthene (18 of 18]100%); Berzoic Acid (3 of 18]17%); Bis(2- ethylhexyl)phthalate (4 of 18]22%); Butylberzylphthalate (2 of 18]11%); Chrysene (18 of 18]100%); Dibenz(a,h)anthracene (16 of 18]89%); Diberzofuran (17 of 18]94%); Dimethylphenol[2,4-] (2 of 18]11%); Di-n-octylphthalate (2 of 18]11%); Ethylbenzene (1 of 3]33%); Fluoranthene (18 of 18]100%); Fluorene (17 of 18]94%); Methylphenol[4-] (2 of 18]11%); Naphthalene (17 of 18]94%); Methylnaphthalene[2] (17 of 18]94%); Methylphenol[4-] (2 of 18]11%); Naphthalene (17 of 18]94%); Phenanthrene (18 of 18]100%); Fyrene (18 of 18]100%); TPH- DRO (15 of 18]83%); Trichloroethane[1,1,1-] (1 of 3]33%); Trichloroethene (1 of 3]33%); Xylene (Total) (1 of 3]33%)	Benzo(a)pyrene (1800 18 of 18 100%)	Benzo(a)anthracene (150)18 of 18 100%); Benzo(b)fluoranthene (150)18 of 18 100%); Benzo(b)fluoranthene (1317 of 18)94%); Chrysene (1.9]3 of 18)17%); Dibenz(a,h)anthracene (210)16 of 18)89%); Indeno(1.2,3-cd)pyrene (88)17 of 18)94%); Naphthalene (1.2)2 of 18 11%)		Dibenzofuran (0.31 9 of 18 50%); Fluoranthene (0.24 5 of 18 28%); Phenanthrene (0.23 5 of 18 28%); Pyrene (0.27 5 of 18 28%); TPH-DRO (0.27 0 of 18 0%)	Total PCB	Acenaphthene; Acenaphthylene; Anthracene; Benzo(a)pithracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(y,hi)perylene; Benzo(k)fluoranthene; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene- A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	Benzoic Acid - A1; ; Bis(2-ethylhexyl)phthalate - A1; Butylbenzylphthalate - A1; Dibenzofuran - A1; Dimethylphen2[4,4] - A1; Di-noctylphthalate - A1; Ethylbenzene - C1: Methylphenol[4,4] - TPH-DRO - C2; Trichloroethane[1,1,1-] - C1; Trichloroethene - C1; Xylene - C1	PAHs
T-SMA-7.1	04-001-99 04-001	Middle Mortandad/Ten Site Canyons	Acetone (1 of 3]33%); Benzoic Acid (13 of 19[68%); Bis(2-ethylhexyl)phthalate (4 of 19]21%); Dichloroethene[1,1-] (1 of 3]33%); Di-n-butylphthalate (4 of 19]21%); Fluoranthene (2 of 19]11%); Methylene Chloride (1 of 3]33%); Pyrene (1 of 19]5.3%)							Acetone - C1; Benzoic Acid - A1; Bis(2- ethylhexyl)phthalate - A1; Dichloroethene[1,1-] - C1; Di-n-butylphthalate - A1; Fluoranthene - A1; Methylene Chloride - C1: Pyrene - A1	
T-SMA-7.1	04-001-99 04-002	Middle Mortandad/Ten Site Canyons	Acetone (1 of 3]33%); Benzoic Acid (13 of 19]68%); Bis(2-ethylhexyl)phthalate (4 of 19]21%); Dichloroethene[1,1-] (1 of 3]33%); Di-n-butylphthalate (4 of 19]21%); Fluoranthene (2 of 19]11%); Methylene Chloride (1 of 3]33%); Pyrene (1 of 19]5.3%)							Acetone - C1; Benzoic Acid - A1; Bis(2- ethylhexyl)phthalate - A1; Dichloroethene[1,1-] - C1; Di-n-butylphthalate - A1; Fluoranthene - A1; Methylane Chloride - C1: Purcene - A1	
T-SMA-7	04-001-99 04-003(b)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 3)33%); Benzoic Acid (13 of 19 68%); Bis(2-ethylhexyl)phthalate (4 of 19 21%); Dichloroethene[1,1-] (1 of 3)33%); Di-n-butylphthalate (4 of 19 21%); Fluoranthene (2 of 19 11%); Methylene Chloride (1 of 3)33%); Pyrene (1 of 19)5.3%)							Acetone - C1; Benzoic Acid - A1; Bis(2- ethylhexyl)phthalate - A1; Fluoranthene - A1; Di-n-butylphthalate - A1; Fluoranthene - A1; Methylene Chloride - C1; Purgne - 41	
M-SMA-12.8	05-001(a)-99 05-001(a)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 7 14%); Bis(2-ethylhexyl)phthalate (2 of 24 8.3%); Fluoranthene (2 of 24 8.3%); Methylene Chloride (1 of 7 14%); Pyrene (2 of 24 8.3%); Toluene (1 of 7 14%); Trichlorofluoromethane (2 of 7 29%)							Acetone - C1; Bis(2-ethylhexyl)phthalate - A1; Fluoranthene - A1; Methylene Chloride - C1; Pyrene - A1; Toluene - C1; Trichlorofluoromethane - C1	
M-SMA-12.9	05-001(a)-99 05-001(b)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 7 14%): Bis(2-ethylhexyl)phthalate (2 of 24 8.3%); Fluoranthene (2 of 24 8.3%); Methylene Chloride (1 of 7 14%); Pyrene (2 of 24 8.3%); Toluene (1 of 7 14%); Trichlorofluoromethane (2 of 7 29%)							Acetone - C1; Bis(2-ethylhexyl)phthalate - A1; Fluoranthene - A1; Methylene Chloride - C1; Pyrene - A1; Toluene - C1; Trichlorofluoromethane - C1	
M-SMA-12.7; M-SMA- 12.8; M-SMA-12.9	- 05-001(a)-99 05-002	Middle Mortandad/Ten Site Canyons	Acetone (1 of 7 14%); Bis(2-ethylhexyl)phthalate (2 of 24 8.3%); Fluoranthene (2 of 24 8.3%); Methylene Chloride (1 of 7 14%); Pyrene (2 of 24 8.3%); Toluene (1 of 7 14%); Trichlorofluoromethane (2 of 7 29%)							Acetone - C1; Bis(2-ethylhexyl)phthalate - A1; Fluoranthene - A1; Methylene Chloride - C1; Pyrene - A1; Toluene - C1; Trichlorofluoromethane - C1	
M-SMA-12.7	05-005(a)-00 05-005(a)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 7]14%); Bis(2-ethylhexyl)phthalate (1 of 7]14%); Chrysene (1 of 7]14%); Fluoranthene (2 of 7]29%); Methylene Chloride (1 of 7]14%); Pyrene (2 of 7]29%); Toluene (1 of 7]14%); Trichlorofluoromethane (2 of 7]29%)							Acetone - C1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Methylene Chloride - C1; Pyrene - A1; Toluene - C1; Trichlorofluoromethane - C1	
M-SMA-12.7	05-005(a)-00 05-006(b)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 7[14%); Bis(2-ethylhexyl)phthalate (1 of 7[14%); Chrysene (1 of 7[14%); Fluoranthene (2 of 7[29%); Methylene Chloride (1 of 7[14%); Pyrene (2 of 7[29%); Toluene (1 of 7[14%); Trichlorofluoromethane (2 of 7[29%)							Acetone - C1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Methylene Chloride - C1; Pyrene - A1; Toluene - C1; Trichlorofluoromethane - C1	
M-SMA-12.7	05-005(a)-00 05-006(e)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 7 14%); Bis(2-ethylhexyl)phthalate (1 of 7 14%); Chrysene (1 of 7 14%); Fluoranthene (2 of 7 29%); Methylene Chloride (1 of 7 14%); Pyrene (2 of 7 29%); Toluene (1 of 7 14%); Trichlorofluoromethane (2 of 7 29%)							Acetone - C1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Methylene Chloride - C1; Pyrene - A1; Toluene - C1; Trichlorofluoromethane - C1	
B-SMA-0.5	10-001(a)-99 10-001(a)	Bayo Canyon	Acetone (4 of 53)7.5%); Diethylphthalate (4 of 59)6.8%); Ethylbenzene (6 of 53)11%); Isopropyltoluene[4-] (6 of 53)11%); Toluene (26 of 53)49%); Xylene (Total) (3 of 51)5.9%)							Acetone - C1; Diethylphthalate - A1; Ethylbenzene - C1; Isopropyltoluene[4-] - C1; Toluene - C1; Xylene (Total) - C1	
B-SMA-0.5	10-001(a)-99 10-001(b)	Bayo Canyon	Acetone (4 of 53)7.5%); Diethylphthalate (4 of 59)6.8%); Ethylbenzene (6 of 53)11%); Isopropyltoluene[4-] (6 of 53)11%); Toluene (26 of 53)49%); Xylene (Total) (3 of 51)5.9%)							Acetone - C1; Diethylphthalate - A1; Ethylbenzene - C1; Isopropyltoluene[4-] - C1; Toluene - C1; Xylene (Total) - C1	
B-SMA-0.5	10-001(a)-99 10-001(c)	Bayo Canyon	Acetone (4 of 53)7.5%); Diethylphthalate (4 of 59)6.8%); Ethylbenzene (6 of 53)11%); Isopropyltoluene[4-] (6 of 53)11%); Toluene (26 of 53)49%); Xylene (Total) (3 of 51)5.9%)							Acetone - C1; Diethylphthalate - A1; Ethylbenzene - C1; Isopropyltoluene[4-] - C1; Toluene - C1; Xylene (Total) - C1	
B-SMA-0.5	10-001(a)-99 10-001(d)	Bayo Canyon	Acetone (4 of 53/1.5%); Diemyipintrialate (4 of 59/6.8%); Ethyloenzene (6 of 53/11%); Isopropyltoluene[4-] (6 of 53/11%); Toluene (26 of 53/49%); Xylene (Total) (3 of 51/5.9%) Acetone (4 of 53/2.5%); Diethylobitolate (4 of 56/6.9%); Ethyloenzene (6 of 53/11%);							Acetone - C1; Dietnylphthalate - A1; Ethylbenzene - C1; Isopropyltoluene[4-] - C1; Toluene - C1; Xylene (Total) - C1	
B-SMA-0.5	10-002(a)-99(10-004/b)	Bayo Canyon	Isopropytioluene(4) (6 of 53)(11%); Toluene (26 of 53)(48%); Xylene (Total) (3 of 51)(5%) Bio/2000/00000000000000000000000000000000							C1; Isopropyltoluene[4-] - C1; Toluene - C1; Xylene (Total) - C1 Bis(2-ethylhexyl)phthalate - A1:	
B-3MR-0.3	10-002(a)-33[10-004(b)	Bayo Canyon	big/2-entymex/pannalate (1 of 15)0.7.76), big/benzyphthalate (1 of 15)0.7.76), ben- butylphthalate (2 of 15)13%)							Butylbenzylphthalate - A1; Di-n-butylphthalate - A1	
B-SMA-0.5	10-009 and C-10-001 10-	Bayo Canyon	Toluene (4 of 11 36%)							Toluene - C1	
CDV-SMA-2.3; W- SMA-8.7	13-001 16-035	S-Site Aggregate Area	Acenaphthene (5 of 29)17%); Anthracene (5 of 29)17%); Benzo(a)anthracene (11 of 29)38%); Benzo(a)pytene (9 of 29)31%); Benzo(b)fluoranthene (12 of 29)41%); Benzo(g),hi)perylene (6 of 29)21%); Benzo(k)fluoranthene (7 of 29)24%); Bis(2-ethylhexyl)phthalate (3 of 29)10%); Chrysene (11 of 29)38%); Dr-hottylphthalate (2 of 29)6.9%); Fluoranthene (11 of 29)38%); Dr-hottylphthalate (2 of 29)6.9%); Fluoranthene (10 of 29)34%); Pyrene (12 of 29)41%); TATB (7 of 29)24%)	Benzo(a)pyrene (1.3 1 of 29 3.4%)			Benzo(a)anthracene (0.1 1 of 29 3.4%); Benzo(b)fluoranthene (0.16 1 of 29 3.4%)		HMX, TATB	Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate - A1; Chrysene - A1; Di-n- butylphthalate - A1; Fluoranthene - A1; HMX (2 of 29(6.9%); Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1	
CDV-SMA-3	14-002(a)-99 14-009	Canon de Valle Aggregate Area TA-14	Amino-4,6-dinitrotoluene[2-] (1 of 14 7.1%); HMX (8 of 14 57%); Trinitrotoluene[2,4,6-] (4 of 14 29%)						Amino-4,6-dinitrotoluene[2-]; HMX; Trinitrotoluene[2,4,6-]		
CDV-SMA-3	14-009	Canon de Valle Aggregate Area TA-14	Acetone (6 of 14 43%); Benzo(a)anthracene (2 of 31 6.5%); Benzo(a)pyrene (2 of 31 6.5%); Benzo(b)fluoranthene (3 of 31 9.7%); Benzo(k)fluoranthene (2 of 31 6.5%); Chrysene (2 of 31 6.5%); Di-n-butylphthalate (5 of 31 16%); Fluoranthene (3 of 31 9.7%); HMX (14 of 31 45%); Phenanthrene (2 of 31 6.5%); Pyrene (3 of 31 9.7%); RDX (5 of 31 16%)		Ben 31 6	zo(a)pyrene (0.74 2 of 5%)	Benzo(b)fluoranthene (0.11 1 of 31 3.2%)		HMX; RDX	Acetone - C1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Di-n- butylphthaltet - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1	
CDV-SMA-4	14-002(a)-99 14-010	Canon de Valle Aggregate Area TA-14	Amino-4,6-dinitrotoluene[2-] (1 of 14 7.1%); HMX (8 of 14 57%); Trinitrotoluene[2,4,6-] (4 of 14 29%)						Amino-4,6-dinitrotoluene[2-]; HMX; Trinitrotoluene[2,4,6-]		
Table 8	Summary of Evaluation of Organic Data in Shallow Soil Samples										
----------	---	--									
l able 8	Summary of Evaluation of Organic Data in Shallow Soll Samples										

-					minary of Evaluation of organic be		ampieo				•
				Organic Constituents	Detected Above Residential SSLs	Organic Constituents D	etected Above 10% of Residential SSLs		Consti	tuents Site Related?	
SMA CDV-SMA-4	Site	Aggregate Area Canon de Valle Aggregate	Frequency of Detects Bis(2-ethylhexyl)phthalate (3 of 10 30%); Di-n-butylphthalate (1 of 10 10%); HMX (15 of	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	Yes HMX; RDX; Trinitrotoluene[2,4,6-]	No ¹ Bis(2-ethylhexyl)phthalate - A1; Di-n-butylphthalate -	Potential Significant Industrial Materials
CDV-SMA-6.02	14-002(c)	Canon de Valle Aggregate Area TA-14	Telg4%); KUX (1 of Teljc.2%); Inflitotouenel2,4,6-1 (3 of Telj14%) Acetone (1 of 617%); Dichlordorm (1 of 617%); Dichlorobenzene[1.4-] (1 of 14]7.1%); Dichloroethene[1.1-] (1 of 617%); Di-n-butyphthalate (2 of 8125%); Ethyblenzene (1 of 617%); HMX (1 of 812%); Methylene Chloride (2 of 6133%); RDX (1 of 812%); Toluene (1 of 617%); Trichlorofluoromethane (1 of 617%); Xylene (Total) (1 of 617%)						HMX; RDX	A1 Acetone - C1; Chloroform - C1; Dichlorobenzene[1,4-] - C1; Dichloroethene[1,1-] - C1; Dir-hutyphthitalta - A1; Ethylbenzene - C1; Methylene Chloride - C1; Toluene - C1; Trichlorofluoromethane - C1; Xylene (Total) - C1	
CDV-SMA-6.02	14-002(c)-99 14-002(d)	Canon de Valle Aggregate									
CDV-SMA-6.02	14-002(c)-99 14-002(e)	Canon de Valle Aggregate Area TA-14									
PT-SMA-1.7	15-003 15-006(a)	Potrillo/Fence Aggregate Are	 Acenaphthene (2 of 10 20%); Benzoic Acid (1 of 10 10%); Bis(2-ethylhexyl)phthalate (4 of 10 40%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (1 of 1 100%); Heptachlorodibenzodioxins (Total) (1 of 1 100%); Octachlorodibenzodioxin[1,2,3,4,6,7,8,9-] (1 of 1 100%) 							Acenaphthene - A1; Benzoic Acid - A1; Bis(2- ethylhexyl)phthalate - A1; Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxins (Total) - A1; Octachlorodibenzodioxins (7 a 8-1 - A 1	
PT-SMA-2.01	15-003 C-36-001	Potrillo/Fence Aggregate Are	 Acenaphthene (2 of 10 20%); Benzoic Acid (1 of 10 10%); Bis(2-ethylhexyl)phthalate (4 of 10 40%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (1 of 1 100%); Heptachlorodibenzodioxins (Total) (1 of 1 100%); Octachlorodibenzodioxin[1,2,3,4,6,7,8-] (1 of 1 100%) 							Acenaphthene - A1; Benzoic Acid - A1; Bis(2- ethylhexyl)phthalate - A1; Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] - A1; Octachlorodibenzodioxin[1,2,3,4,6,7,8,9-] - A1	
CDV-SMA-2.3	16-003(n)-99 16-003(n)	S-Site Aggregate Area	Acenaphthene (1 of 10 10%); Acetone (2 of 9 22%); Amino-2,6-dinitrotoluene[4-] (1 of 15[6.7%); Amino-4,6-dinitrotoluene[2-] (1 of 15[6.7%); Anthracene (3 of 10]30%); Benzo(3),Tuhracene (3 of 10]30%); Benzo(3),Tuhracene (5 of 10)50%); Benzo(3),Tuhracene (5 of 10)50%); Benzo(3),Tuhracene (2 of 10)20%); Benzo(4),Tuhracene (3 of 10)30%); Benzyl Alcohol (1 of 10110%); Bis(2-ethylhexyl)phthalate (3 of 10)30%); Butanon[2-] (1 of 9111%); Butylbenzylphthalate (1 of 10)10%); Chysene (4 of 10)40%); Dibenz(a,h)anthracene (1 of 10)10%); Chysene (4 of 10)40%); Dibenz(a,h)anthracene (1 of 10)10%); Chysene (4 of 10)40%); Dibenz(a,h)anthracene (1 of 10)10%); Chysene (4 of 10)10%); Chysene (4 of 10)10%); Chysene (4 of 10)10%); Fluoranthene (5 of 10)20%); HWX (5 of 15)3%); Indeno(1,2,3-cd)pyrene (4 of 10)40%); Nitrobenzene (1 of 915.3%); Phenanthrene (5 of 10)50%); Pyrene (6 of 10)60%); RDX (1 of 15)6.7%); TATB (1 of 6117%)	Benzo(a)pyrene (2.9 3 of 10 30%			Benzo(a)anthracene (0.22 1 of 10 10%); Benzo(b)fluoranthene (0.41]3 of 10 30%); Dibenz(a,h)anthracene (0.42 1 of 10 10%); HMX (0.16 1 of 15 6.7%); Indeno(1,2,3-cd)pyrene (0.15 1 of 10 10%)		Amino-2,6-dinitrotoluene[4-]; Amino-4,6- dinitrotoluene[2-]; Dinitrotoluene[2,4-]; HMX; Nitrobenzene; RDX; TATB	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Berza(a)anthracene - A1; Benzo(a)pyrene - A1; Berza(b)fluoranthene - A1; Benzo(a), I)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Benzy Alcohol - A1; Bis(2-ethylhexyl)phthalate - A1; Butanone[2-] - C1; Butylbenzylphthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Diethylphthalate - A1; Di-n-butylphthalate - A1; Di- noctylphthalate - A1; Di-n-butylphthalate - A1; IDi- noctylphthalate - A1; Pioranthene - A1; Piorene - A1; Pyrene - A1	HE
CDV-SMA-1.4	16-026(I)-00 16-026(I)	Cañon de Valle	Acenaphthene (2 of 4 50%); Acetone (3 of 4 75%); Anthracene (4 of 4 100%); Benzo(a)anthracene (4 of 4 100%); Benzo(a)pyrene (4 of 4 100%); Benzo(b)fluoranthene (4 of 4 100%); Benzo(b,1)perylene (1 of 4 25%); Bicz)-ethylhexylphthalate (1 of 4 25%); Chrysene (4 of 4 100%); Dibenzofuran (2 of 4 50%); Fluoranthene (4 of 4 100%); Fluorene (2 of 4 50%); Indeno(1,2,3-cd)pyrene (1 of 4 25%); Methylnaphthalene[2-] (2 of 4 50%); Naphthalene (4 of 4 100%); Phenanthrene (4 of 4 100%); Pyrene (4 of 4 100%)	Benzo(a)pyrene (20 2 of 4 50%)	Benzo(a)anthracene (1.6 1 of 4 25%); Benzo(b)fluoranthene (3.3 1 of 4 25%)		Indeno(1,2,3-cd)pyrene (0.26 1 of 4 25%)			Acenaphthene - A1; Acetone - C1; Anthracene - A1; Berzca(a)anthracene - A1; Berzca(a)pyrene - A1; Berzca(b)fluoranthene - A1; Berzca(b,h)perylene - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Dibenzofuran - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Deponsthere _ A1; Derone _ A1	
CDV-SMA-1.4	16-026(I)-00 16-028(c)	Cañon de Valle	Acenaphthene (2 of 4 50%); Acetone (3 of 4 75%); Anthracene (4 of 4 100%); Benzo(a)anthracene (4 of 4 100%); Benzo(a)pyrene (4 of 4 100%); Benzo(b)fluoranthene (4 of 4 100%); Benzo(b,1)perylene (1 of 4 25%); Bicz); Dynhalate (1 of 4 25%); Chrysene (4 of 4 100%); Dibenzofuran (2 of 4 50%); Fluoranthene (4 of 4 100%); Fluorene (2 of 4 50%); Indeno(1,2,3-cd)pyrene (1 of 4 25%); Methylnaphthalene[2-] (2 of 4 50%); Naphthalene (4 of 4 100%); Phenanthrene (4 of 4 100%); Pyrene (4 of 4 100%)	Benzo(a)pyrene (20 2 of 4 50%)	Benzo(a)anthracene (1.6 1 of 4 25%); Benzo(b)fluoranthene (3.3 1 of 4 25%)		Indeno(1,2,3-cd)pyrene (0.26 1 of 4 25%)			Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)n/uoranthene - A1; Benzo(a),b)perylene - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Dibenzofuran - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
LA-SMA-6.3	21-006©-99 21-006(b)	DP Site Aggregate Area	 Benzo(a)anthracene (1 of 19]5.3%); Benzo(a)pyrene (2 of 19]11%); Benzo(b)fluoranthene (4 of 19]21%); Benzo(g),hi)perylene (1 of 19]5.3%); Benzo(k)fluoranthene (4 of 19]21%); Benzo(g),hi)perylene (1 of 19]1%); Fluoranthene (6 of 19]32%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (1 of 1]100%); Heptachlorodibenzodioxins (Total) (1 of 1]100%); Heptachlorodibenzodioxin[1,2,3,4,7,8-] (1 of 1]100%); Heptachlorodibenzodioxins (Total) (1 of 1]100%); Heptachlorodibenzodioxins (Total) (1 of 1]100%); Heptachlorodibenzodioxin[1,2,3,4,7,8-] (1 of 1]100%); Heptachlorodibenzodioxin[1,2,3,4,7,8-] (1 of 1]100%); Heptachlorodibenzodioxin[1,2,3,7,8-] (1 of 1]100%); Hexachlorodibenzodioxins (Total) (1 of 1]100%); Pentachlorodibenzodioxins (Total) (1 of 1]100%); Pentachlorodibenz	Benzo(a)pyrene (6.4 1 of 19 5.3%)	Benzo(b)fluoranthene (1.2 1 of 19 5.3%); Indeno(1.2,3-cd)pyrene (1.5 1 of 19 5.3%)		Benzo(a)anthracene (0.66 1 of 19 5.3%)			Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),h)perylene - A1; Benzo(k)fluoranthene - A1; Bit2- ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Heptachlorodibenzodioxin (1,2,3,4,6,7,8] - A1; Heptachlorodibenzodioxin (1,2,3,4,6,7,8] - A1; Heptachlorodibenzodioxin (1,2,3,4,7,8,9] - A1; Hexachlorodibenzodioxin (1,2,3,4,6,7,8,9] - A1; Hexachlorodibenzodioxin (1,2,3,4,6,7,8,9] - A1; Hexachlorodibenzodioxin (1,2,3,4,6,7,8,9] - A1; Pentachlorodibenzodioxin (

				Table 8 Summary of Evaluation of Organic I	Data in Shallow Soil Samples			
				Organic Constituents Detected Above Residential SSLs	Organic Constituents Detected Above 10% of Residential SSLs	Stormustor	Cons	tituents Site Related?
SMA LA-SMA-6.34	Site 21-022(h)-99 21-022(h)	Aggregate Area DP Site Aggregate Area	Frequency of Detects Acenaphthene (6 of 25)24%); Anthracene (6 of 25)24%); Arcclor-1254 (1 of 1 100%); Aroclor-1260 (1 of 1 100%); Benzo(a)anthracene (7 of 25)28%); Benzo(a)pyrene (6 of 25)24%); Benzo(a)purper (1 of 25)40%); Benzo(a), i)perylene (6 of 25)24%); Benzo(a)purper (5 of 25)22%); Biol:2-ethylhexylphthalate (1 of 25)42%); Butylbenzylphthalate (2 of 25)8%); Carbazole (3 of 22)14%); Chrysene (9 of 25)36%); Dibenz(a), nahtracene (3 of 25)12%); Dibenzofuran (2 of 25)8%); Din-butylphthalate (2 of 25)8%); Fluoranthene (13 of 25)52%); Fluorene (6 of 25)24%); Heptachlorodibenzodivarin[1,2,3,4,6,7,8-] (1 of 1)100%); Heptachlorodibenzofuran[1,2,3,4,6,7,8-] (1 of 1)100%); Heptachlorodibenzodivarin[1,2,3,4,7,8] (1 of 1)100%); Heptachlorodibenzofurans (Total) (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,4,7,8] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,4,7,8] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,4,7,8] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,4,7,8] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,7,8,9] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,7,8,9] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,4,6,7,8] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,7,8,9] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,4,6,7,8,9] (1 of 1)100%); Methylene Chlorodibenzofuran[1,2,3,4,6,7,8] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,7,8,9] (1 of 1)100%); Rentachlorodibenzofuran[1,2,3,4,6,7,8] (1 of 1)100%); Rentachlorodibenzofuran[1,2,3,4,6,7,8,9] (1 of 1)100%); Rentachlorodibenzofuran[1,2,3,4,6,7,8] (1 of 1)100%); Hexachlorodibenzofuran[1,2,3,4,6,7,8,9] (1 of 1)100%); Catachlorodibenzofuran[1,2,3,4,6,7,8,9] (1 of 1)100%); <t< th=""><th>TAL List Non-TAL List Benzo(a)pyrene (40 5 of 25 20%) Benzo(a)anthracene (3.7 3 of 25 12%); Benzo(b)fluoranthene (5.1 3 of 25 12%); Dibenz(a,h)anthracene (5.9 2 of 25 8%); Indeno(1,2,3-cd)pyrene (3.4 3 of 25 12%)</th><th>TAL List Non-TAL List Benzo(k)fluoranthene (0.18)2 of 25)8%)</th><th>Analytes Exceeding TALS</th><th>Yes</th><th>No1 Potential Significant Industrial Materials Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pyrene - A1; Benzo(k)fluoranthene - A1; Bis(Z-ethylhexyl)phthalate - A1; Butylbenzylphthalate - A1; Butylbenzylphthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1; Di-hutylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Heptachlorodibenzodioxinf (1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxins (Total) - A1; Heptachlorodibenzofuran[1,2,3,4,7,8-] - A1; Heptachlorodibenzofuran[1,2,3,4,7,8-] - A1; Heptachlorodibenzofuran[1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran[1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran[1,2,3,4,6,7,8-] - A1; Pentachlorodibenzofuran[1,2,3,4,6,7,8-] - A1; Pentachlorodibenzo</th></t<>	TAL List Non-TAL List Benzo(a)pyrene (40 5 of 25 20%) Benzo(a)anthracene (3.7 3 of 25 12%); Benzo(b)fluoranthene (5.1 3 of 25 12%); Dibenz(a,h)anthracene (5.9 2 of 25 8%); Indeno(1,2,3-cd)pyrene (3.4 3 of 25 12%)	TAL List Non-TAL List Benzo(k)fluoranthene (0.18)2 of 25)8%)	Analytes Exceeding TALS	Yes	No1 Potential Significant Industrial Materials Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pyrene - A1; Benzo(k)fluoranthene - A1; Bis(Z-ethylhexyl)phthalate - A1; Butylbenzylphthalate - A1; Butylbenzylphthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1; Di-hutylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Heptachlorodibenzodioxinf (1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxins (Total) - A1; Heptachlorodibenzofuran[1,2,3,4,7,8-] - A1; Heptachlorodibenzofuran[1,2,3,4,7,8-] - A1; Heptachlorodibenzofuran[1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran[1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran[1,2,3,4,6,7,8-] - A1; Pentachlorodibenzofuran[1,2,3,4,6,7,8-] - A1; Pentachlorodibenzo
LA-SMA-5.91	21-023(c) 21-027(d)	DP Site Aggregate Area	Aroclor-1242 (1 of 13]7.7%); Aroclor-1254 (3 of 13]23%); Aroclor-1260 (7 of 13]54%); Benzo(b)fluoranthene (5 of 64]7.8%); Chrysene (5 of 64]7.8%); Fluoranthene (13 of 64]20%); Phenanthrene (5 of 64]7.8%); Pyrene (11 of 64]17%)					Aroclor-1242 - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(b)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1
LA-SMA-6.38	21-024©, 21-003-99 21- 024(c)	DP Site Aggregate Area	Acetone (8 of 83)9.6%); Aroclor-1254 (296 of 445)67%); Aroclor-1260 (393 of 445)88%); Chrysene (7 of 120)5.8%); Dichloroethene[1,1-] (8 of 83)9.6%); Ethylbenzene (6 of 83)7.2%); Fluoranthene (35 of 120)29%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (1 of 1)100%); Heptachlorodibenzodioxins (Total) (1 of 1)100%); Heptachlorodibenzofuran[1,2,3,4,6,7,8-] (1 of 1)100%); Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] (1 of 1)100%); Sotrachlorodibenzofuran[1,2,3,4,6,7,8,9-] (1 of 1)100%); Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] (1 of 1)100%		Aroclor-1254 (0.53)129 of 445[29%); Aroclor-1260 (0.43)120 of 445[27%)		Aroclor-1254; Aroclor-1260	Acetone - C1; Chrysene - A1; Dichloroethene[1,1-] - PCBs C1; Ethylbenzene - C1; Fluoranthene - A1; Heptachlorodibenzodioxins [Total) - A1; Heptachlorodibenzofuran[1,2,3,4,6,7,8-] - A1; Heptachlorodibenzofurans (Total) - A1; Heptachlorodibenzofurans (Total) - A1; Octachlorodibenzofurans (Total) - A1; Octachlorodibenzofurans (Total) - A1; Pentachlorodibenzofurans (Total) - A1; Phenanthrene - A1; Pyrene - A1; Styrene - C1; Toluene - C1; Trichlorotethene - C1; Xylene[1,3-
LA-SMA-9	26-001 26-002(a)	Middle LA Aggregate Area	Acetone (3 of 4017.5%): Aroclor-1260 (5 of 42112%): Fluoranthene (3 of 4217.1%): Toluene]+Xylene[1,4-] - C1 Acetone - C1: Aroclor-1260 - A1: (5 of 42/12%);
	26 001/26 002(b)	Middle LA Aggregate Area	(23 of 40 58%) (23 of 40 58%)					Fluoranthene - A1; Toluene - C1
LA-SMA-9	26-001 26-002(b)	Middle LA Aggregate Area	Acetone (3 of 40[7.5%), Arocio-1260 (5 of 42[12%), Protrainmene (3 of 42[7.1%), Forene (2 of 40[7.5%), Arocio-1260 (5 of 42[7.1%), Forene (3 of 42[7.1%), Torrene (3 of 42[7.1%), Torrene (3 of 40[7.5%), Arocio-1260 (5 of 42[12%), Francesco (2 of 40[7.5%), Francesco (2 of 40[7.5%), Arocio-1260 (5 of 40[7.5\%), Arocio-1260 (Activitie - C1; Arocioi-1200 - A1; (5 of 42 12%); Fluoranthene - A1; Toluene - C1
LA-SMA-9	26-001 26-003	Middle LA Aggregate Area	Acetone (3 of 40/7.5%), Arocior-1200 (5 of 42/12%); Pluorantinene (3 of 42/7.1%); Foluene (23 of 40/58%)			7		Acetone - C1; Arocior 1200 - A1; (5 of 42 12%); Fluoranthene - A1; Toluene - C1
Pratt-SMA-1.05	35-003(a)-99 35-003(h)	Middle Mortandad/Ten Site Canyons	Acetone (3 of 12)25%); Anthracene (1 of 15[6.7%); Aroclor-1260 (1 of 3)33%); Benzo(a)anthracene (1 of 15[6.7%); Bic2-ethylhexyl)phthalate (7 of 15[47%); Butanone[2-] (1 of 12]8.3%); Chrysene (1 of 15[6.7%); Fluoranthene (2 of 15]13%); Hexanone[2-] (1 of 12]8.3%); Methylene Chloride (2 of 12]17%); Pyrene (2 of 15]13%); Trichloroethene (3 of 12]25%); Trichlorofluoromethane (4 of 12]33%)			Total PCB		Acctone - C1; Anthracene - A1;Aroclor-1260 - A1; Benzo(a)anthracene - A1; Bis(2- ethylhexyl)phthalate - A1; Butanone[2-] - C1; Chrysene - A1; Fluoranthene - A1; Hexanone[2-] - C2; Methylene Chloride - C2; Pyrene - A1; Trichloroethene - C2; Trichlorofluoromethane - C2
Pratt-SMA-1.05	35-003(a)-99 35-003(p)	Middle Mortandad/Ten Site Canyons	Acetone (3 of 12 25%); Anthracene (1 of 15 6.7%); Aroclor-1260 (1 of 3)33%); Benzo(a)anthracene (1 of 15 6.7%); Bis(2-ethylhexyl)phthalate (7 of 15 47%); Butanone[2-] (1 of 12 8.3%); Chrysene (1 of 15 6.7%); Fluoranthene (2 of 15 13%); Hexanone[2-] (1 of 12 8.3%); Methylene Chloride (2 of 12 17%); Pyrene (2 of 15 13%); Trichloroethene (3 of 12 25%); Trichlorofluoromethane (4 of 12 33%)			Total PCB		Acetone - C1; Anthracene - A1;Aroclor-1260 - A1; Benzo(a)antracene - A1; Bis(2- ethylhexyl)phthalate - A1; Butanone[2-] - C1; Chrysene - A1; Fluoranthene - A1; Hexanone[2-] - C2; Methylene Chloride - C2; Pyrene - A1; Trichloroethene - C2; Trichlorofluoromethane - C2
Pratt-SMA-1.05	35-003(d)-00 35-003(r)	Middle Mortandad/Ten Site Canyons	Acenaphthene (3 of 20 15%); Anthracene (2 of 20 10%); Aroclor-1254 (3 of 21 14%); Aroclor-1260 (19 of 21 90%); Benzo(a)anthracene (3 of 20 15%); Benzo(a)pyrene (5 of 20 25%); Benzo(b)Huoranthene (4 of 20 20%); Benzo(a, b)perupene (2 of 20 10%); Benzo(k)Huoranthene (2 of 20 10%); Benzoic Acid (3 of 19 16%); Chrysene (8 of 20 40%); Dieldrin (1 of 10 10%); Endosulfan II (1 of 10 10%); Fluoranthene (13 of 20 65%); Fluorene (2 of 20 10%); Indeno(1,2,3-cd)pyrene (2 of 20 10%); Phenanthrene (8 of 20 40%); Pyrene (11 of 20 55%)	Benzo(a)pyrene (4.8 2 of 20 10%)	Aroclor-1260 (0.27)3 of 21 14%); Benzo(a)anthracene (0.54)2 of 20 10%); Benzo(b)fuloranthene (0.39)2 of 20 10%); Indeno(1,2,3-cd)pyrene (0.33)2 of 20 10%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - a1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fuoranthene - A1; Benzo(g,h;)peyrlene - A1; Benzo(k)fluoranthene - A1; Benzo(c Acid - A1; Chrysene - A1; Dieldrin - A1; Endosulfan II - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1
M-SMA-10	35-008-00 35-008	Middle Mortandad/Ten Site Canyons	Acetone (1 of 14 7.1%); Benzoic Acid (9 of 51 18%); Bis(2-ethylhexyl)phthalate (15 of 51 29%); Di-n-butylphthalate (6 of 51 12%); Fluoranthene (4 of 51 7.8%); Methylene Chloride (1 of 14 7.1%); Pyrene (4 of 51 7.8%); Toluene (6 of 14 43%); TPH-DRO (16 of 28 57%); TPH-TPH-LRO (21 of 25 84%); Trichlorof-1,2,2-trifluoroethane[1,1,2-] (1 of 12 8.3%); Trichlorofluoromethane (4 of 12 33%)					Acetone - C1; Benzoic Acid - A1; Bis(2- ethylhexyl)phthalate - A1; Di-n-butylphthalate - A1; Fluoranthene - A1; Methylene Chloride - C1; Pyrene - A1; Toluene - C1; TPH-DRO - C2; TPH-TPH-LRO - C2; Trichloro-1,2,2-trifluoroethane[1,1,2-] - C1; Trichlorofluoromethane - C1
M-SMA-10	35-008-00 35-014(e)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 14]7.1%); Benzoic Acid (9 of 51]18%); Bis(2-ethylhexyl)phthalate (15 of 51]29%); Di-n-butylphthalate (6 of 51]12%); Fluoranthene (4 of 51]7.8%); Methylene Chloride (1 of 14]7.1%); Pyrene (4 of 51]7.8%); Toluene (6 of 14]43%); TPH-DRO (16 of 28]67%); TPH-TPH-LRO (21 of 25]64%); Trichloro-1,2,2-trifluoroethane[1,1,2-] (1 of 12]8.3%); Trichlorofluoromethane (4 of 12]33%)					Acetone - C1; Benzoic Acid - A1; Bis(2- ethylhexyl)phthalate - A1; Di-n-butylphthalate - A1; Fluoranthene - A1; Methylene Chloride - C1; Pyrene - A1; Toluene - C1; TPH-DRO - C2; TPH-TPH-LRO - C2; Trichloro-1,2,2-trifluoroethane[1,1,2-] - C1; Trichlorofluoromethane - C1
M-SMA-10.01	35-008-00 35-016(e)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 17(5.9%); Benzoic Acid (9 of 53)17%); Bis(2-ethylhexyl)phthalate (15 of 53)28%); Di-n-butylphthalate (6 of 53)11%); Fluoranthene (4 of 53)7.5%); Methylene Chloride (1 of 17(5.9%); Pyrene (4 of 53)7.5%); Toluene (6 of 17)35%); Total PCB (3 of 7)43%); TPH-DRO (16 of 28)57%); TPH-TPH-LRO (21 of 25)84%); Trichloro-1,2,2-trifluoroethane[1,1,2-] (1 of 15)6.7%); Trichlorofluoromethane (4 of 15)27%)					Acetone - C1; Benzoic Acid - A1; Bis(2- ethylhexyl)phthalate - A1; Di-n-butylphthalate - B1; Fluoranthene - A1; Methylene Cholde - C1; Pyrene - A1; Toluene - C1; Total PCB - A1: TPH-DRO - C2; TPH-TPH-LRO - C2; Trichloro-1,2,2- trifluoroethane[1,1,2-] - C1; Trichlorofluoromethane - C1

March 2014

				Table 8 Su	mmary of Evaluation of Organic	Data in Shallow Soil Sar	mples				
				Organic Constituents	Detected Above Residential SSLs	Organic Constituents Det	ected Above 10% of Residential SSLs		Constitu	ents Site Related?	
	0114							Stormwater Analytes	No.	n .1	Potential Significant
T-SMA-6.8	35-010(a)-99 35-010(e)	Middle Mortandad/Ten Site	Bis(2-ethylhexyl)phthalate (4 of 18 22%); Di-n-butylphthalate (1 of 18 5.6%); Toluene (1 of	I AL LIST	NON-I AL LIST	I AL LIST	NON-I AL LIST	Exceeding TALS	Yes	No Bis(2-ethylhexyl)phthalate - A1; Di-n-butylphthalate -	Industrial Materials
T-SMA-2.85	35-014(g)-00 35-014(g)	Canyons Middle Mortandad/Ten Site Canyons	10(10%); Xylene (Total) (1 of 10(10%) Acetone (1 of 4/25%); Benzo(a)anthracene (1 of 16(6.2%); Benzo(a)pyrene (2 of 16(12%); Benzo(b)fluoranthene (2 of 16(12%); Benzo(g,h,i)perylene (1 of 16(6.2%); Benzo(k)fluoranthene (2 of 16(12%); Benzoic Acid (1 of 16(6.2%); Bis(2-ethylhexyl)phthalate (2 of 16(12%); Butanone(2) (1 of 4/25%); Chrysene (2 of 16(12%); Di-h-outylphthalate (1 of 16(6.2%); Di-h-octylphthalate (1 of 16(6.2%); Fluoranthene (2 of 16(12%); Isopropyltouner[4-1] (1 of 4/25%); Fluoranthene (1 of 16(6.2%); Pyrene (3 of 16(19%); Toluene (1 of 4/25%); TPH-DRO (6 of 6(100%)	Benzo(a)pyrene (1.1 1 of 16 6.2%)			Benzo(b)fluoranthene (0.14 1 of 16 6.2%)			A1; Toluene - C1; Xylene - C1 Acetone - C1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),hi)perylene - A1; Benzo(k)fluoranthene - A1; Benzo(a), Acid - A1; Bic/2-ethylhexyl)phthalate - A1; Butanone[2-] - C1; Chrysene - A1; Di-n- butylphthalate - A1; Di-n-cotylphthalate - A1; Fluoranthene - A1; Isopropyltoluene[4-] - C1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; TPH- DRO - C2	
T-SMA-2.85	35-014(g)-00 35-016(n)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 4 25%); Benzo(a)anthracene (1 of 16 6.2%); Benzo(a)pyrene (2 of 16 12%); Benzo(b)fluoranthene (2 of 16 12%); Benzoic Acid (1 of 16 6.2%); Benzo(k)fluoranthene (2 of 16 12%); Benzoic Acid (1 of 16 6.2%); Bis(2-ethylhexyl)phthalate (2 of 16 12%); Butanone[2-] (1 of 4 25%); Chrysene (2 of 16 12%); Di-n-butylphthalate (1 of 16 6.2%); Di-n-octylphthalate (1 of 16 6.2%); Fluoranthene (2 of 16 12%); Isopropyltouner[4-] (1 of 4 25%); Chranathrene (1 of 16 6.2%); Pyrene (3 of 16 19%); Toluene (1 of 4 25%); TPH-DRO (6 of 6 100%)	Benzo(a)pyrene (1.1 1 of 16 6.2%)			Benzo(b)fluoranthene (0.14 1 of 16 6.2%)			Acetone - C1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(b)fjper/jene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Butanone[2-] - C1; Chrysene - A1; Di-n- butylphthalate - A1; Di-n- butylphthalate - A1; Di-n- butylphthalate - A1; Di-n- phenanthrene - A1; Isopropyltoluene[4-] - C1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; TPH- DRO - C2	
T-SMA-5	35-016(a)-00 35-016(a)	Middle Mortandad/Ten Site Canyons	Acenaphthene (2 of 8)25%); Acetone (1 of 5)20%); Anthracene (2 of 8)25%); Aroclor-1254 (3 of 3)100%); Aroclor-1260 (3 of 3)100%); Benzo(a)pyrene (2 of 8)25%); Benzo(b)fluoranthene (2 of 8)25%); Benzo(k)fluoranthene (1 of 8)12%); Bis(2- ethyhhexyl)phthalate (2 of 8)25%); Chrysene (2 of 8)25%); Dibenzofuran (1 of 8)12%); Dichloroethene[1,1-] (1 of 5)20%); D-n-butylphthalate (4 of 8)50%); Fluoranthene (2 of 8)25%); Fluorene (2 of 8)25%); Isopropyltoluene[4-] (2 of 5)40%); Naphthalene (1 of 8)12%); Phenanthrene (2 of 8)25%); Pyrene (2 of 8)25%); Toluene (1 of 5)20%)			Benzo(a)pyrene (0.51 2 of 8 25%)				Acenaphthene - A1; Acetone - C1: Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Bis(2- ettylhexyl)phthalate - A1; Chrysene - A1; Dibenzofuran - A1; Dichloroethene[1,1] - C1; Di-n- butylphthalate - A1; Fluoranthene - A1; Ruorene - A1; Isoropyltoluene[4-] - C1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	
T-SMA-5	35-016(a)-00 35-016(q)	Middle Mortandad/Ten Site Canyons	Acenaphthene (2 of 8 25%); Acetone (1 of 5 20%); Anthracene (2 of 8 25%); Arocior-1254 (3 of 3 100%); Arocior-1260 (3 of 3 100%); Benzo(a)pyrene (2 of 8 25%); Benzo(b)fluoranthene (2 of 8 25%); Benzo(k)fluoranthene (1 of 8 12%); Bis(2- ethylhexyl)phthalate (2 of 8 25%); Chrysene (2 of 8 25%); Dibenzofuran (1 of 8 12%); Dichloroethene[1,1-] (1 of 5 20%); Di-n-butylphthalate (4 of 8 50%); Fluoranthene (2 of 8 25%); Fluorene (2 of 8 25%); Isopropyltoluene[4-] (2 of 5 40%); Naphthalene (1 of 8 12%); Phenanthrene (2 of 8 25%); Pyrene (2 of 8 25%); Toluene (1 of 5 20%)			Benzo(a)pyrene (0.51 2 of 8 25%)				Acenaphthene - A1; Acetone - C1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate - A1; Chysene - A1; Dibenzofuran - A1; Dichloroethene[1,1-] - C1; Di-n- butylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Isopropyltoluene[4-] - C1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	
T-SMA-4	35-016(c)-00 35-016(c)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 5]20%); Anthracene (1 of 17]5.9%); Benzo(a)anthracene (2 of 17]12%); Benzo(a)pyrene (1 of 17]5.9%); Benzo(b)fluoranthene (2 of 17]12%); Benzo(g),h)jperylene (1 of 17]5.9%); Benzo(k)fluoranthene (1 of 17]5.9%); Butylbenzytphthalate (1 of 17[5.9%); Chrysene (2 of 17]12%); Dibenz(a,h)anthracene (1 of 17]5.9%); Dichloroethene[1,1-] (1 of 5/20%); Fluoranthene (5 of 17]29%); Indeno(1,2,3-cd)pyrene (1 of 17]5.9%); Isopropyltonen[4-] (2 of 5]40%); Phenanthrene (2 of 17]12%); Pyrene (5 of 17]29%); Styrene (2 of 5]40%); Toluene (1 of 5]20%)	Benzo(a)pyrene (8.8 1 of 17 5.9%)	Benzo(a)anthracene (1.2 1 of 17 5.9%); Benzo(b)fluoranthene (1 1 of 17 5.9%); Dibenz(a,h)anthracene (3.1 1 of 17 5.9%)		Indeno(1,2,3-cd)pyrene (0.52 1 of 17 5.9%)			Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fuoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Butylbenzylphthalate - A1; Chrysene - A1; Dibenz(a)nathracene - A1; Dichloreothene[1,1-] - C1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Phenanthrene - A1; Pyrene - A1; Styrene - C1; Toluene - C1	
T-SMA-4	35-016(c)-00 35-016(d)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 5]20%); Anthracene (1 of 17]5.9%); Benzo(a)anthracene (2 of 17]12%); Benzo(a)pyrene (1 of 17]5.9%); Benzo(b)fluoranthene (2 of 17]12%); Benzo(g,h.))perylene (1 of 17]5.9%); Benzo(k)fluoranthene (1 of 17]5.9%); Butylbenzylphthalate (1 of 17]5.9%); Chrysene (2 of 17]125%); Dibenz(a,h)anthracene (1 of 17]5.9%); Dichloroethene[1,1-] (1 of 5]20%); Fluoranthene (5 of 17]29%); Indeno(1,2,3-cd)pyrene (1 of 17]5.9%); Isopropyltonen[4-] (2 of 5]40%); Phenanthrene (2 of 17]12%); Pyrene (5 of 17]29%); Styrene (2 of 5]40%); Toluene (1 of 5]20%)	Benzo(a)pyrene (8.8 1 of 17 5.9%)	Benzo(a)anthracene (1.2 1 of 17 5.9%); Benzo(b)fluoranthene (1 1 of 17 5.9%); Dibenz(a,h)anthracene (3.1 1 of 17 5.9%)		Indeno(1,2,3-cd)pyrene (0.52 1 of 17 5.9%)			Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Butylbenzylphthalate - A1; Chrysene - A1; Dibenz(a)nathracene - A1; Dichloreothene[1,1-] - C1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Phenanthrene - A1; Pyrene - A1; Styrene - C1; Toluene - C1	
M-SMA-10.3	35-016(i)-00 35-014(e2)	Middle Mortandad/Ten Site Canyons	Acenaphthene (2 of 13 15%); Anthracene (3 of 13 23%); Aroclor-1254 (1 of 13 7.7%); Aroclor-1260 (7 of 13 54%); Benzo(a)anthracene (1 of 13 7.7%); Benzo(a)pyrene (2 of 13 15%); Benzo(b)fluoranthene (2 of 13 15%); Benzo(c),Ju)pertylene (2 of 13 15%); Benzo(k)fluoranthene (1 of 13 7.7%); Benzoic Acid (1 of 13 7.7%); Bis[2- ethylhexylphthalate (2 of 13 15%); Chrysene (3 of 13 23%); Fluoranthene (7 of 13 54%); Fluorene (2 of 13 15%); Indeno(1,2,3-cd)pyrene (1 of 13 7.7%); Phenanthrene (3 of 13 23%); Pyrene (7 of 13 54%); TPH-DRO (2 of 2 100%)	Benzo(a)pyrene (2.2 1 of 13 7.7%)			Aroclor-1260 (0.2 1 of 13 7.7%); Benzo(a)anthracene (0.22 1 of 13 7.7%); Benzo(b)fluoranthene (0.34)2 of 13 15%); Indeno(1,2,3-cd)pyrene (0.41 1 of 13 7.7%)	Total PCB	Acenaphthene; Anthracene; Aroclor-1254; Aroclor-1260; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(d),hi)perylene; Benzo(H)fluoranthene; Chrysene; Fluoranthene; Fluorene; Indeno(1,2,3- cd)pyrene; Phenanthrene; Pyrene	Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; TPH-DRO - C2	PCBs; PAHs
M-SMA-10.3	35-016(i)-00 35-016(i)	Middle Mortandad/Ten Site Canyons	Acenaphthene (2 of 13 15%); Anthracene (3 of 13 23%); Aroclor-1254 (1 of 13 7.7%); Aroclor-1260 (7 of 13)54%); Benzo(a)anthracene (1 of 13 7.7%); Benzo(a)pyrene (2 of 13)15%); Benzo(b)fluoranthene (2 of 13)15%); Benzo(a,h,i)perylene (2 of 13)15%); Benzo(k)fluoranthene (1 of 13)7.7%); Benzoic Acid (1 of 13)7.7%); Bis(2- ethyhlexyl)phthalate (2 of 13)15%); Chrysene (3 of 13)23%); Fluoranthene (7 of 13)54%); Fluorene (2 of 13)15%); Indeno(1,2,3-cd)pyrene (1 of 13)7.7%); Benzonthene (3 of 13)23%); Pyrene (7 of 13)54%); TPH-DRO (2 of 2)100%)	Benzo(a)pyrene (2.2 1 of 13 7.7%)			Aroclor-1260 (0.2 1 of 13 7.7%); Benzo(a)anthracene (0.22 1 of 13 7.7%); Benzo(b)fluoranthene (0.34 2 of 13 15%); Indeno(1,2,3-cd)pyrene (0.41 1 of 13 7.7%)	Total PCB	Acenaphthene; Anthracene; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(b,fluoranthene; Benzo(k)fluoranthene; Chrysene; Fluoranthene; Fluorene; Indeno(1,2,3- cd)pyrene; Phenanthrene; Pyrene	Aroclor-1254 - A1; Aroclor-1260 - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; TPH-DRO - C2	PAHs
Pratt-SMA-1.05	35-016(k)-00 35-016(k)	Middle Mortandad/Ten Site Canyons	Acenaphthene (7 of 19 37%); Acenaphthylene (4 of 19 21%); Acetone (3 of 6 50%); Anthracene (8 of 19 42%); Aroclor-1254 (1 of 8 12%); Aroclor-1260 (7 of 8 88%); Benzo(a)anthracene (7 of 19 37%); Benzo(a)pyrene (10 of 19 53%); Benzo(a)fluoranthene (10 of 19 53%); Benzo(g,h,i)perylene (11 of 19 58%); Benzo(k)fluoranthene (10 of 19 53%); Bis(2-ethylhexyl)phthalate (4 of 9 44%); Fluoranthene (11 of 19 58%); Fluorene (11 of 19 58%); Iolenzofura (4 of 9 44%); Fluoranthene (11 of 19 58%); Fluorene (11 of 19 58%); Indeno(1,2,3-col)pyrene (9 of 19 47%); Methylnaphthalene[2-] (2 of 9 22%); Methylphenol[4-] (1 of 9 11%); Naphthalene (6 of 19 32%); Phenanthrene (11 of 19 58%); Pyrene (14 of 19 74%); Toluene (2 of 6 33%); TPH-TPH-LRO (4 of 4 100%); Trichloro-1,2,2-trifluoroethane[1,1,2-] (1 of 6 17%); Trichlorofluoromethane (2 of 6 33%)	Benzo(a)pyrene (20 7 of 19 37%)	Benzo(a)anthracene (2 2 of 19 11%); Benzo(b)fluoranthene (2.3)3 of 19 16%); Dibenz(a,h)anthracene (5.8)2 of 19 17%); Indeno(1,2,3-cd)pyrene (1.9 5 of 19 26%)		Aroclor-1260 (0.41 4 of 8 50%); Benzo(k)fluoranthene (0.16 3 of 19 16%)	Total PCB	Acenaphthene; Acenaphthylene; Anthracene; Benzo(a)purtene; Benzo(a)purene; Benzo(b)fluoranthene; Benzo(d)purene; Benzo(b)fluoranthene; Benzo(k)fluoranthene; Chrysene; Dibenz(a,h)anthracene; Fluoranthene; Fluorene; Indeno(1,2,3-cd)pyrene; Methylnaphthalene[2-]; Naphthalene; Phenanthrene; Pyrene	Acetone - C1; Aroclor-1254 - A1; Aroclor-1260 - A1; Bis(2-ethylhexyl)phthalate - A1; Dibenzofuran - A1; Methylhenol[4] - A1; Toluene - C1; TPH-DRO - C2; TPH-TPH-LRO - C2; Trichloro-1,2,2- trifluoroethane[1,1,2-] - C1; Trichlorofluoromethane - C1	PAHs

March 2014

				Table 8 Summary of Evaluation of Organic	Data in Shallow Soil Sa	amples				
				Organic Constituents Detected Above Residential SSLs	Organic Constituents De	etected Above 10% of Residential SSLs		Consti	tuents Site Related?	
							Stormwater Analytes		1	Potential Significant
SMA Pratt-SMA-1.05	Site 35-016(k)-00 35-016(l)	Aggregate Area Middle Mortandad/Ten Site Canyons	Frequency of Detects Acenaphthene (7 of 19[37%); Acenaphthylene (4 of 19[21%); Acetone (3 of 6]50%); Anthracene (8 of 19[42%); Aroclor-1254 (1 of 8]12%); Aroclor-1260 (7 of 8]88%); Benzo(a)anthracene (7 of 19[37%); Benzo(a)pyrene (10 of 19[53%); Benzo(b)fluoranthene (10 of 19[53%); Bis(2-ethylhexyl)phthalate (4 of 9]44%); Chrysene (12 of 19[63%); Dibenz(a,h)anthracene (3 of 19[16%); Dibenzofuran (4 of 9]44%); Chrysene (12 of 19[63%); Dibenz(a,h)anthracene (3 of 19[16%); Dibenzofuran (9 of 19]47%); Methylnaphthalene[2-] (2 of 9]22%); Methylphenol[4-] (1 of 9]11%); Naphthalene (6 of 19]32%); Phenanthrene (11 of 19[58%); Pyrene (14 of 19]74%); Toluene (2 of 6]33%); TPH-DRO (3 of 8]38%); TPH-TPH-LRO (4 of 6](33%); Trichloro-1,2,2-trifluoroethane[1,1,2-] (1 of 6]17%); Trichlorofluoromethane (2 of 6]33%)	TAL List Non-TAL List Benzo(a)pyrene (20 7 of 19 37%) Benzo(a)anthracene (2 2 of 19 11%); Benzo(b)fluoranthene (2.3 3 of 19 16%); Dibenz(a,h)anthracene (5.8 2 of 19 16%); Indeno(1,2,3-cd)pyrene (1.9 5 of 19 26%)	TAL List	Non-TAL List Aroctor-1260 (0.414) of 8150%); T Benzo(k)fluoranthene (0.16 3 of 19 16%)	Exceeding TALs	Yes Acenaphthene; Acenaphthylene; Anthracene; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(k)fluoranthene; Chrysene; Dibenz(a,h)anthracene; Fluoranthene; Fluorene; Indeno(1,2,3-cd)pyrene; Methylnaphthalene[2-]; Naphthalene; Phenanthrene; Pyrene	No ⁺ Acetone - C1; Arodor-1254 - A1; Aroclor-1260 - A1; Bis(2-ethylhexyl)phthalate - A1; Dibenzofuran - A1; Methylphenol[4] - A1; Toluene - C1; TPH-DRO C2; TPH-TPH-LRO - C2; Trichloro-12, 2- trifluoroethane[1,1,2-] - C1; Trichlorofluoromethane - C1	Industrial Materials PAHs -
A-SMA-1.1	39-004(d) 39-004(a)	North Ancho Aggregate Area	Aroclor-1260 (2 of 4 50%); HMX (4 of 42 9.5%); PETN (1 of 4 25%); RDX (3 of 42 7.1%); TATB (2 of 4 50%)		RDX (0.16 1 of 42 2.4%)	TATB (0.16 0 of 4 0%)		HMX; PETN; RDX; TATB	Aroclor-1260 - A1	HE
M-SMA-5	42-001(a)-99 42-001(a)	Upper Mortandad Aggregate Area	Acenaphthene (3 of 45)6.7%); Acetone (2 of 24)8.3%); Aroctor-1254 (9 of 45)20%); Aroctor- 1260 (30 of 45)67%); Benzo(a)anthracene (4 of 45)8.9%); Benzo(a)pyrene (6 of 45)13%); Benzo(b)fluoranthene (7 of 45)16%); Benzo(a),h)perylene (4 of 45)8.9%); Chrysene (6 of 45)13%); Fluoranthene (10 of 45)22%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (36 of 45)80%); Heptachlorodibenzodioxins (Total) (40 of 45)89%); Heptachlorodibenzofuran[1,2,3,4,6,7,8-] (27 of 45)60%); Heptachlorodibenzofuran[1,2,3,4,7,8,9-] (14 of 45)31%); Heptachlorodibenzodioxin[1,2,3,7,8,9-] (36 of 45)63%); Hexachlorodibenzodioxin[1,2,3,4,7,8,9-] (3 of 45)6.7%); Hexachlorodibenzodioxin[1,2,3,4,7,8,9-] (14 of 45)31%); Hexachlorodibenzodioxin[1,2,3,7,8,9-] (16 of 45)36%); Hexachlorodibenzodioxins (Total) (2 df 45)58%); Hexachlorodibenzofuran[1,2,3,4,7,8,9-] (14 of 45)31%); Hexachlorodibenzofuran[1,2,3,6,7,8-] (11 of 45)24%); Hexachlorodibenzofuran[2,3,4,7,8,9-] (14 of 45)36%); Hexachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)58%); Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)58%); Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)58%); Dotachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,6,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofurans (Totals) (25 of 45)56%); Phenanthrene (5 of 45)11%); Pyrene (9 of 45)20%); Tertachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)57%); Tetrachlorodibenzofurans (Totals) (16 of 45)36%)		Benzo(a)pyrene (0.58 5 of 45 11%)	Aroclor-1254 (0.16)1 of 45)2.2%); Aroclor-1260 (0.11)1 of 45)2.2%); Indeno(1,2,3-cc)pyrene (0.1)1 of 45)2.2%); Octachlorodibenzodioxin[1,2,3,4,6,7,8,9-] (0.1)0 of 45)0%); Pentachlorodibenzofuran[1,2,3,4,6,7,8,9-] (0.1)0 of 45)0%); Pentachlorodibenzofuran[2,3,4,7,8-] (0.1)0 of 45)0%); Pentachlorodibenzofuran[2,3,4,7,8-] (0.1)0 of 45)0%); Pentachlorodibenzofurans (Totals) (0.1)0 of 45)0%)			Acenaphthene - A1; Acetone - C1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Fluoranthene - A1; Heptachlorodibenzodioxin[1,2,3,4,6,7,8] - A1; Heptachlorodibenzodioxin [Total) - A1; Heptachlorodibenzodioxin [Total) - A1; Heptachlorodibenzodioxin [1,2,3,4,6,7,8] - A1; Heptachlorodibenzodioxin [1,2,3,4,7,8] - A1; Heptachlorodibenzodioxin [1,2,3,4,7,8] - A1; Heptachlorodibenzodioxin [1,2,3,4,7,8] - A1; Heptachlorodibenzodioxin [1,2,3,4,7,8] - A1; Hexachlorodibenzodioxin [1,2,3,4,7,8] - A1; Hexachlorodibenzodioxin [1,2,3,6,7,8] - A1; Hexachlorodibenzodioxin [1,2,3,4,6,7,8,9] - A1; Octachlorodibenzodioxin [1,2,3,4,6,7,8,9] - A1; Octachlorodibenzodioxin [2,3,4,6,7,8,9] - A1; Pentachlorodibenzodioxin [2,3,4,7,8] - A1; Pentachlorodibenzodioxin [3,3,4,7,8] - A1; Pentachlorodibenzofix [3,	
M-SMA-5	42-001(a)-99 42-001(b)	Upper Mortandad Aggregate Area	Acenaphthene (3 of 45)6.7%); Acetone (2 of 24)8.3%); Aroctor-1254 (9 of 45)20%); Aroctor- 1260 (30 of 45)67%); Benzo(a)anthracene (4 of 45)8.9%); Benzo(a)pyrene (6 of 45)13%); Benzo(b)fluoranthene (7 of 45)16%); Benzo(a),h)perylene (4 of 45)8.9%); Chrysene (6 of 45)13%); Fluoranthene (10 of 45)22%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (36 of 45)80%); Heptachlorodibenzodioxins (Total) (40 of 45)89%); Heptachlorodibenzofuran[1,2,3,4,6,7,8-] (27 of 45)60%); Heptachlorodibenzofuran[1,2,3,4,7,8,9-] (14 of 45)31%); Heptachlorodibenzodioxins (Total) (31 of 45)69%); Hexachlorodibenzodioxin[1,2,3,4,7,8] (3 of 45)6.7%); Hexachlorodibenzodioxin[1,2,3,4,7,8,9-] (14 of 45)31%); Hexachlorodibenzodioxin[1,2,3,4,7,8,9-] (16 of 45)36%); Hexachlorodibenzodioxins (Total) (26 of 45)58%); Hexachlorodibenzofuran[1,2,3,4,7,8,9-] (14 of 45)31%); Hexachlorodibenzofuran[1,2,3,6,7,8-] (11 of 45)24%); Hexachlorodibenzofuran[2,3,4,6,7,8-] (14 of 45)31%); Hexachlorodibenzofuran[1,2,3,4,6,7,8,9-] (44 of 45)39%); Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] (44 of 45)89%); Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] (26 of 45)58%); Pentachlorodibenzofurans (Total) (26 of 45)58%); Pentachlorodibenzofuxins (Total) (6 of 45)13%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (40 of 45)18%); Pentachlorodibenzofurans (Total) (26 of 45)58%); Pentachlorodibenzofuxins (Total) (6 of 45)13%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (40 of 45)18%); Pentachlorodibenzofurans (Total) (25 of 45)56%); Phenanthrene (5 of 45)11%); Pyrene (9 of 45)20%); Tertachlorodibenzofurans (Total) (3 of 45)6.7%); Tetrachlorodibenzofurans (Totals) (16 of 45)36%)		Benzo(a)pyrene (0.58 5 of 45 11%)	Aroclor-1254 (0.16)1 of 45)2.2%); Aroclor-1260 (0.11)1 of 45)2.2%); Indeno(1,2,3-cc)pyrene (0.1)1 of 45)2.2%); Octachlorodibenzodioxin[1,2,3,4,6,7,8,9-] (0.1)0 of 45)0%); Pentachlorodibenzofuran[1,2,3,4,6,7,8,9-] (0.10) of 45)0%); Pentachlorodibenzofuran[2,3,4,7,8-] (0.1)0 of 45)0%); Pentachlorodibenzofuran[2,3,4,7,8-] (0.1)0 of 45)0%); Pentachlorodibenzofurans (Totals) (0.1)0 of 45)0%)			Acenaphthene - A1; Acetone - C1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluorathene - A1; Benzo(a)pyrene - A1; Benzo(b)fluorathene - A1; Fluoranthene - A1; Heptachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Heptachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Heptachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Heptachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran(1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran(1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran(1,2,3,4,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Pentachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Pentachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Pentachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Pentachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Pentachlorodibenzodioxin(7,2,3,4,7,8-] - A1; Pentachlorodibenzofurans (Total) - A1;	
M-SMA-5	42-001(a)-99 42-001(c)	Upper Mortandad Aggregate Area	Acenaphthene (3 of 45)6.7%); Acetone (2 of 24)8.3%); Aroclor-1254 (9 of 45)20%); Aroclor- 1260 (30 of 45)67%); Benzo(a)anthracene (4 of 45)8.9%); Benzo(a)pyrene (6 of 45)13%); Benzo(b)fluoranthene (7 of 45)16%); Benzo(a),h)perylene (4 of 45)8.9%); Chrysene (6 of 45)13%); Fluoranthene (10 of 45)22%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (36 of 45)80%); Heptachlorodibenzodioxins (Total) (40 of 45)89%); Heptachlorodibenzofuran[1,2,3,4,6,7,8] (27 of 46)60%); Heptachlorodibenzofuran[1,2,3,4,7,8,9-] (14 of 45)31%); Heptachlorodibenzofurans (Total) (31 of 45)69%); Hexachlorodibenzodioxin[1,2,3,4,7,8,4] (3 of 45)6.7%); Hexachlorodibenzofuran[1,2,3,4,7,8,9-] (14 of 45)31%); Hexachlorodibenzofuran[1,2,3,7,8,9-] (16 of 45)63%); Hexachlorodibenzofuran[2,3,4,7,8] (14 of 45)58%); Hexachlorodibenzofuran[1,2,3,4,7,8,9-] (16 of 45)63%); Hexachlorodibenzofuran[1,2,3,6,7,8-] (11 of 45)24%); Hexachlorodibenzofuran[2,3,4,7,8,9-] (14 of 45)31%); Hexachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)58%); Hoxachlorodibenzofuran[1,2,3,6,7,8-] (11 of 45)24%); Hexachlorodibenzofuran[2,3,4,7,8,9-] (14 of 45)31%); Hexachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)58%); Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)58%); Dotachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)58%); Pentachlorodibenzofurans (Total) (25 of 45)56%); Phenanthrene (5 of 45)11%); Pyrene (9 of 45)20%); Tertachlorodibenzofuran[2,3,4,7,8,9-] (28 of 45)56,7%); Tetrachlorodibenzofurans (Totals) (16 of 45)36%)		Benzo(a)pyrene (0.58 5 of 45 11%)	Aroclor-1254 (0.16)1 of 45)2.2%); Aroclor-1260 (0.11)1 of 45)2.2%); Indeno(1,2,3-cc)pyrene (0.1)1 of 45)2.2%); Octachlorodibenzodioxin[1,2,3,4,6,7,8,9-] (0.1)0 of 45)0%); Pentachlorodibenzofuran[1,2,3,4,6,7,8,9-] (0.1)0 of 45)0%); Pentachlorodibenzofuran[2,3,4,7,8-] (0.1)0 of 45)0%); Pentachlorodibenzofuran[2,3,4,7,8-] (0.1)0 of 45)0%); Pentachlorodibenzofurans (Totals) (0.1)0 of 45)0%)			Acenaphthene - A1; Acetone - C1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Fluoranthene - A1; Heptachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxin(1,2,3,4,7,8) - A1; Heptachlorodibenzodioxin(1,2,3,4,7,8) - A1; Heptachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Heptachlorodibenzodioxin(1,2,3,4,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Hexachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Pentachlorodibenzodioxin(1,2,3,4,6,7,8-] - A1; Pen	

[1			10010 0 001	initially of Evaluation of organic		inpico	1			
				Organic Constituents	Detected Above Residential SSLs	Organic Constituents Det	tected Above 10% of Residential SSLs	Stormwater	Constitu	uents Site Related?	_
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Analytes Exceeding TALs	Yes	No ¹	Potential Significant Industrial Materials
N°-SHA-S	42-001(d)-33[42-002(d)	Area	 Rotenphilterie (30 44)61.7%, Rotektine (24)63.8%, Rotokine (23)643(23)8, Rotokine (24)63(23)8, Rotokine (25)63(23)8, Rotoki			45[11%)	Arocion-1234 (0. 101) of 43[2.2%); Indemo(1,2,3-cd)pyrene (0. 1]1 of 45[2.2%); Indemo(1,2,3-cd)pyrene (0. 1]1 of 45[2.2%); Octachlorodibenzodioxin[1,2,3,4,6,7,8,9-] (0.10) of 45[0%); Pentachlorodibenzodioxins (Total) (0.10) of 45[0%); Pentachlorodibenzofuran[2,3,4,7,8-] (0.10) of 45[0%); Pentachlorodibenzofurans (Totals) (0.10) of 45[0%)			Actination of the second secon	
M-SMA-5	42-001(a)-99 42-002(b)	Upper Mortandad Aggregate Area	Acenaphthene (3 of 45 6.7%); Acetone (2 of 24 8.3%); Aroclor-1254 (9 of 45 20%); Aroclor- 1260 (30 of 45 67%); Benzo(a)anthracene (4 of 45 8.9%); Benzo(a)pyrene (6 of 45 13%); Benzo(b)fluoranthene (7 of 45 16%); Benzo(a,h)peyrlene (4 of 45 8.9%); Chrysene (6 of 45 13%); Fluoranthene (10 of 45 22%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (36 of 45 80%); Heptachlorodibenzodioxins (Total) (40 of 45 89%); Heptachlorodibenzofurans (Total) (31 of 45 69%); Hevachlorodibenzodioxin[1,2,3,4,7,8-] (27 of 45 60%); Heptachlorodibenzofuran[1,2,3,4,7,8-] (14 of 45 31%); Heptachlorodibenzofurans (Total) (31 of 45 69%); Hevachlorodibenzodioxins (Total) (26 of 45 67%); Hexachlorodibenzodioxin[1,2,3,4,7,8-] (14 of 45 31%); Hexachlorodibenzofuran[1,2,3,7,8,9-] [(16 of 45)36%); Hevachlorodibenzodioxins (Total) (26 of 45 58%); Hexachlorodibenzofuran[1,2,3,4,6,7,8-] (14 of 45)31%); Hexachlorodibenzofuran[1,2,3,7,8,9-] (11 of 45)24%); Hevachlorodibenzofuran[2,3,4,7,8-] (14 of 45)31%); Hexachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)67%); Hexachlorodibenzofuran[1,2,3,6,7,8-] (11 of 45)24%); Hexachlorodibenzofuran[2,3,4,7,8] (14 of 45)31%); Detachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)67%); Detachlorodibenzofuran[1,2,3,6,7,8-] (16 of 45)1%); Pentachlorodibenzofuran[2,3,4,7,8] (14 of 45)31%); Detachlorodibenzofuran[1,2,3,4,6,7,8,9-] (28 of 45)62%); Detachlorodibenzofurans (Total) (6 of 45)1%); Pentachlorodibenzofuran[2,3,4,7,8] (18 of 45)18%); Pentachlorodibenzofurans (Total) (25 of 45)65%); Phenanthrene (5 of 45)11%); Pyrene (9 of 45)20%); Tetrachlorodibenzodioxins (Total) (3 of 45)6.7%); Tetrachlorodibenzofurans (Totals) (16 of 45)38%)			Benzo(a)pyrene (0.58 5 of 45 11%)	Aroclor-1254 (0.16]1 of 45[2.2%); Aroclor-1260 (0.11]1 of 45[2.2%); Indeno(1,2,3-cdp)yrene (0.1]1 of 45[2.2%); Octachiorodibenzodioxin[1,2,3,4,6,7,8,9-] (0.1]0 of 45[0%); Pentachlorodibenzofuran[1,2,3,4,6,7,8,9-] (0.1]0 of 45[0%); Pentachlorodibenzofuran[2,3,4,7,8-] (0.1]0 of 45[0%); Pentachlorodibenzofurans (Totals) (0.1]0 of 45[0%)			Acenaphthene - A1; Acetone - C1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Chrysene - A1; Fluoranthene - A1; Heptachlorodibenzodioxin[1,2,3,4,6,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,4,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,4,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,4,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,4,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,4,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,4,7,8] - A1; Hexachlorodibenzodioxin[1,2,3,4,7,8] - A1; Hexachlorodibenzodioxin[1,2,3,4,7,8] - A1; Hexachlorodibenzodioxin (Total) - A1; Hexachlorodibenzodioxins (Total) - A1; Pentachlorodibenzodioxins (Total) - A1; Pentachlorodibenzofixens (Total) - A1; Pentachlorodibenzofixens (Total) - A1;	
ACID-SMA-2; ACID- SMA-2.1	- 45-001-00 01-002(b)-00	Pueblo Canyon	Acenaphthene (4 of 28)14%); Acetone (3 of 25)12%); Anthracene (7 of 28)25%); Aroclor- 1242 (2 of 31)6.5%); Aroclor-1254 (13 of 31)42%); Aroclor-1260 (16 of 31)52%); Benzo(a)anthracene (3 of 28)11%); Benzo(a)pyrene (3 of 28)11%); Benzo(b)fluoranthene (6 of 28)21%); Benzoic Acid (2 of 26)7.7%); Bi3(2-ethylhexy)phthalate (2 of 26)7.7%); Chloroform (3 of 25)12%); Chrysene (8 of 28)29%); DDE[4,4'-] (4 of 26)15%); DDT[4,4'-] (4 of 26)15%); Diethylphthalate (2 of 26)7.7%); Fluoranthene (17 of 28)61%); Fluorene (4 of 28)14%); Isopropytoluene[4-] (2 of 25)8%); Methylnaphthalae[2] (4 of 22)[15%); Naphthalene (4 of 28)14%); Phenanthrene (14 of 28)50%); Pyrene (19 of 28)68%); Toluene (7 of 25)28%); Xylene[1,3-]+Xylene[1,4-] (3 of 25)12%)	Benzo(a)pyrene (1.1 1 of 28 3.6%)			Benzo(b)fluoranthene (0.19 2 of 28 7.1%)		Aroclor-1242; Aroclor-1254; Aroclor-1260	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzoic Acid - A1; Big(2 ethylhexyl)phthalate - A1; Chloroform - C1; Chrysene - A1; DDE[4.4 ⁻] - A1; DDT[4.4 ⁻] - A1; Diethylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Isopropyltoluene[4-] - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; Xylene[1,3-]+Xylene[1,4]] - C1	2.
ACID-SMA-2	45-001-00 45-001	Pueblo Canyon	Acenaphthene (4 of 28 14%); Acetone (3 of 25 12%); Anthracene (7 of 28 25%); Aroclor- 1242 (2 of 31 6.5%); Aroclor-1254 (13 of 31 42%); Aroclor-1260 (16 of 31 52%); Benzo(a)anthracene (3 of 28 11%); Benzo(a)pyrene (3 of 28 14%); Benzo(b)fluoranthene (6 of 28 21%); Benzoic Acid (2 of 26 7.7%); Bis(2-ethylhexyl)phthalate (2 of 26 7.7%); Chloroform (3 of 25 12%); Chrysene (8 of 28 29%); DDE[4,4 ⁻] (4 of 26 15%); DDT[4,4 ⁻] (4 of 26 15%); Diethylphthalate (2 of 26 7.7%); Fluoranthene (17 of 28 61%); Fluorene (4 of 28 14%); Isopropyltoluene[4-] (2 of 25 8%); Methylnaphthalene[2-] (4 of 26 15%); Naphthalene (4 of 28 14%); Phenanthrene (14 of 28 50%); Pyrene (19 of 28 68%); Toluene (7 of 25 28%); Xylene[1,3-]+Xylene[1,4-] (3 of 25 12%)	Benzo(a)pyrene (1.1 1 of 28 3.6%)			Benzo(b)fluoranthene (0.19 2 of 28 7.1%)	Total PCB	Aroclor-1242; Aroclor-1254; Aroclor-1260	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fuoranthene - A1; Benzo(a)dir - A1; Benzo ethylhexyl)phthalate - A1; Chloroform - C1; Chrysene - A1; DDE[4,4'] - A1; DDT[4,4'] - A1; Diethylphthalate - A1; Fluoranthene - A1; Fluorene A1; Isopropylloluene[4-] - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	; 2.
ACID-SMA-2	45-001-00 45-002	Pueblo Canyon	Acenaphthene (4 of 28 14%); Acetone (3 of 25 12%); Anthracene (7 of 28 25%); Aroclor- 1242 (2 of 31 6.5%); Aroclor-1254 (13 of 31 42%); Aroclor-1260 (16 of 31 52%); Benzo(a)anthracene (3 of 28 11%); Benzo(a)pyrene (3 of 28 14%); Benzo(b)fuoranthene (6 of 28 21%); Benzoic Acid (2 of 26 7.7%); Bis(2-ethylhexyl)phthalate (2 of 26 7.7%); Chloroform (3 of 25 12%); Chrysene (8 of 28 29%); DDE[4,4 ⁻] (4 of 26 15%); DDT[4,4 ⁻] (4 of 26 15%); Diethylphthalate (2 of 26 7.7%); Fluoranthene (17 of 26 61%); TDDT[4,4 ⁻] (4 of 26 15%); Diethylphthalate (2 of 25 8%); Methylnaphthalene[2-] (4 of 26 15%); Naphthalene (4 of 28 14%); Phenanthrene (14 of 28 50%); Pyrene (19 of 28 68%); Toluene (7 of 25 28%); Xylene[1,3-]+Xylene[1,4-] (3 of 25 12%)	Benzo(a)pyrene (1.1 1 of 28 3.6%)			Benzo(b)fluoranthene (0.19 2 of 28 7.1%)	Total PCB	Aroclor-1242; Aroclor-1254; Aroclor-1260	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fuoranthene - A1; Benzo(a)dir - A1; Benzo ethylhexyl)phthalate - A1; Chloroform - C1; Chrysene - A1; DDE[4,4'] - A1; DDT[4,4'] - A1; Diethylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Isopropyttoluene[4-] - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	2
ACID-SMA-2	45-001-00 45-004	Pueblo Canyon	Acenaphthene (4 of 28 14%); Acetone (3 of 25 12%); Anthracene (7 of 28 25%); Aroclor- 1242 (2 of 31 6.5%); Aroclor-1254 (13 of 31 42%); Aroclor-1260 (16 of 31 52%); Benzo(a)anthracene (3 of 28 11%); Benzo(a)pyrene (3 of 28 14%); Benzo(b)fuoranthene (6 of 28 21%); Benzoic Acid (2 of 26 7.7%); Bis(2-ethylhexyl)phthalate (2 of 26 7.7%); Chloroform (3 of 25 12%); Chrysene (8 of 28 29%); DDE[4,4-1] (4 of 26 15%); DDT[4,4-1] (4 of 26 15%); Dethylphthalate (2 of 26 7.7%); Fluoranthene (17 of 28 61%); TDDT[4,4-1] (4 of 26 15%); Diethylphthalate (2 of 26 7.7%); Hudrylnaphthalene[2-] (4 of 26 15%); NDT[4,4-1] (4 of 26 15%); Naphthalene (4 of 28 14%); Phenanthrene (14 of 28 50%); Pyrene (19 of 28 68%); Toluene (7 of 25 28%); Xylene[1,3-]+Xylene[1,4-] (3 of 25 12%)	Benzo(a)pyrene (1.1 1 of 28 3.6%)			Benzo(b)fluoranthene (0.19 2 of 28 7.1%)	Total PCB	Aroclor-1242; Aroclor-1254; Aroclor-1260	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzco[a)anthracene - A1; Benzco[a)pyrene - A1; Benzco[b]fuoranthene - A1; Benzcio (ad: A1; Bis(2 ethylhexyl)phthalate - A1; Chloroform - C1; Chrysene - A1; DDE[4,4 ⁻] - A1; DDT[4,4 ⁻] - A1; Diethylphthalate - A1; Fluorene - A1; Isopropyltoluene[4-] - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	-

					Summary of Evaluation of Organic	bata ili Shallow Soli Sa	anpies				
				Organic Constituer	nts Detected Above Residential SSLs	Organic Constituents De	etected Above 10% of Residential SSLs		Constit	uents Site Related?	
SMA	Site	Angregate Area	Frequency of Detects	TAL List	Non-TAL List	TAI List	Non-TAL List	Stormwater Analytes Exceeding TALs	Yes	No ¹	Potential Significant
CDB-SMA-1	46-004(r) 46-004(w)	Upper Canada del Buey Aggregate Area	Anthracene (2 of 2 100%); Benzo(a)anthracene (2 of 2 100%); Benzo(a)pyrene (2 of 2 100%); Benzo(b)fuoranthene (2 of 2 100%); Benzo(g),hi)penylene (2 of 2 100%); Diberz(g), Butylbenzylphthalate (1 of 2 50%); Diberz(g), Butylberz(g), But	Benzo(a)pyrene (1.6 2 of 2 10	0%) Dibenz(a,h)anthracene (1.7 1 of 2 50%)	Dieldrin (0.13)1 of 2 50%)	Benzo(a)anthracene (0.15]2 of 2 100%); Benzo(b)fluoranthene (0.16]2 of 2 100%); Indeno(1,2,3-cd)pyrene (0.2]2 of 2 100%)	Total PCB		Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),b)per/tene - A1; Benzo(b)fluoranthene - A1; Bis(2-ethylhexyl)phthalate - A1; Chlordane[gamma-] - A1; Chrysene - A1; DDD[4,4 ⁻] - A1; Dibenz(a,h)anthracene - A1; Dichloroethane[1,1-] - C1; Dichloroethene[1,1-] - C1; Dichloroethene[1,1-] - C1; Dichloroethene[1,1-] - C1; Dichloroethene[1,1-] - C1; Pluoranthene - A1; Endosulfan Sulfate - A1; Pruoranthene - A1; Chrosethane - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; Tetrachloroethene - C1; Trichloro- 1,2,2-trifluoroethane[1,1,2-] - C1; Trichloroethane[1,1,1-] - C1; Trichloroethene - C1	
M-SMA-4	48-007(a)-00 48-007(a)	Upper Mortandad Aggregate Area	Acenaphthene (9 of 31[29%); Anthracene (12 of 31[39%); Arcotor-1254 (4 of 5[80%); Arcotor-1260 (3 of 5[60%); Benzo(a)anthracene (18 of 31[56%); Benzo(a)pyrene (17 of 31[55%); Benzo(b)fluoranthene (17 of 31[55%); Benzo(g),i)perylene (10 of 31[32%); Benzo(k)fluoranthene (6 of 23]26%); Bis(2-ethylhexyl)phthalate (2 of 31[6.5%); Carbazole (of 12[8.3%); Chrysene (18 of 31[58%); Diberz(a),hantracene (3 of 31[9.7%); Huoranthene (19 of 31[61%); Fluorene (8 of 31[26%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (5 of 5]100%); Heptachlorodibenzodioxins (Total) (5 of 5]100%); Heptachlorodibenzoduran[1,2,3,4,7,8,9-] (3 of 5]60%); Heptachlorodibenzodurans (Total) (5 of 5]100%); Hexachlorodibenzodioxins (Total) (4 of 5]80%); Hexachlorodibenzoduran[1,2,3,4,7,8,9-] (4 of 5]80%); Hexachlorodibenzodioxin[1,2,3,6,7,8-] (4 of 5]80%); Hexachlorodibenzodioxins (1,2,3,4,7,8,9-] (4 of 5]80%); Hexachlorodibenzodioxins (1,2,3,7,8,9-] (4 of 5]80%); Hexachlorodibenzodioxins (1,2,3,7,8,9-] (1 of 5]80%); Hexachlorodibenzodioxins (2,3,4,6,7,8,9-] (1 of 5]80%); Hexachlorodibenzodioxin[1,2,3,4,6,7,8,9-] (3 of 5]60%); Hexachlorodibenzodioxins (1 of 31]32%); Methylnaphthalene[2-] (4 of 31 13%); Naphthalene (5 of 39)13%); Octachlorodibenzodioxins (Total) (5 of 5]100%); Octachlorodibenzodioxins (1 of 31]32%); Methylnaphthalene[2-] (4 of 31 13%); Naphthalene (5 of 39)13%); Octachlorodibenzodioxins (Total) (4 of 5]80%); Pentachlorodibenzodioxins (1,2,3,4,7,8,9-] (3 of 5]60%); Pentachlorodibenzodioxins (Total) (4 of 5]80%); Pyrene (19 of 3)[61%); Tetrachlorodibenzodioxins (Total) (3 of 5]60%); Pyrene (19 of 3)[61%); Tetrachlorodibenz	Benzo(a)pyrene (6.9 11 of 31 35%)	Benzo(b)fluoranthene (1 1 of 31 3.2%)		Benzo(a)anthracene (0.7112 of 31(39%); Dibenz(a,h)anthracene (0.48)3 of 31)9.7%); Indeno(1,2,3-cd)pyrene (0.36)6 of 31 19%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1 Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Bitzero(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Bitzero(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorene - A1; Heptachlorodibenzodixins (Total) - A1; Heptachlorodibenzodixins (Total) - A1; Heptachlorodibenzofurans (Total) - A1; Hexachlorodibenzodixins (Total) - A1; Hexachlorodibenzodixins (Total) - A1; Hexachlorodibenzodixins (Total) - A1; Hexachlorodibenzodixins (Total) - A1; Hexachlorodibenzofurans (Total) - A1; Pentachlorodibenzofurans (Total) - A1;	-
M-SMA-4	48-007(a)-00 48-007(d)	Upper Mortandad Aggregate Area	Acenaphthene (9 of 31 29%); Anthracene (12 of 31 39%); Aroclor-1254 (4 of 5 80%); Aroclor-1260 (3 of 5 60%); Benzo(a)anthracene (18 of 31 58%); Benzo(a)pyrene (17 of 31 55%); Benzo(b)fluoranthene (17 of 31 55%); Benzo(g),);perylene (10 of 31 52%); Benzo(b)fluoranthene (6 of 23 26%); Bis(2-ethylhexyl)phthalate (2 of 31 6.5%); Carbazole (0 f 218,3%); Chrysene (18 of 31 58%); Benzo(g),);perylene (10 of 31 32%); Benzo(k)fluoranthene (6 of 23 26%); Bis(2-ethylhexyl)phthalate (2 of 31 6.5%); Carbazole (0 f 218,3%); Chrysene (18 of 31 58%); Dibenz(a),hantracene (3 of 31 57%); Houranthene (19 of 31 61%); Fluorene (8 of 31 26%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (5 of 5 100%); Heptachlorodibenzodioxins (Total) (5 of 5 100%); Heptachlorodibenzodruan[1,2,3,4,7,8-] (5 of 5 100%); Hexachlorodibenzodruan[1,2,3,4,7,8-] (4 of 5 80%); Hexachlorodibenzodioxin[1,2,3,7,8,9-] (4 of 5 80%); Hexachlorodibenzodioxins (12,3,4,7,8-] (4 of 5 80%); Hexachlorodibenzodioxin[1,2,3,4,6,7,8-] (3 of 5 60%); Hexachlorodibenzodioxins (12,3,7,8,9-] (1 of 5 20%); Hexachlorodibenzodioxin[2,3,4,6,7,8-] (2 of 5 80%); Hexachlorodibenzodruan[1,2,3,4,6,7,8-] (3 of 5 60%); Hexachlorodibenzodioxins (1 of 31 32%); Methylnaphthalene[2-] (4 of 31 13%); Naphthalene (5 of 39 13%); Octachlorodibenzodioxins (Total) (5 of 5 100%); Pentachlorodibenzodioxins (Total) (4 of 5 80%); Pentachlorodibenzodiran[1,2,3,4,7,8-] (3 of 5 60%); Pentachlorodibenzodioxins (Total) (4 of 5 80%); Pentachlorodibenzodiran[1,2,3,7,8-] (3 of 5 60%); Hentachlorodibenzodiran[2,3,7,8-] (3 of 5 60%); Pentachlorodibenzodixins (Total) (4 of 5 80%); Pyrren (19 of 3 61%); Tetrachlorodibenzodixins (Total) (3 of 5 60%); Pyrren (19 of 3 61%); Tetrachlorodibenzodixins (Total) (3 of 5 60%); Pyrren (19 of 3 61%); Tetrachlorodibenzodixins (Total) (3 of 5 60%); Pyrren (19 of 3 61%); Tetrachlorodibenzodixins (Total) (3 of 5 60%); Pyrren (19 of 3 61%); Tetrachlorodibenzodixins (Total) (3 of 5 60%); Pyrren (19 of 3 61%); Tetrachlorodibenzodixins (Total) (3 of 5 60%); Pyrren (19 of 3 61%); Tetrachlo	Benzo(a)pyrene (6.9 11 of 31 35%)	Benzo(b)fluoranthene (1 1 of 31 3.2%)		Benzo(a)anthracene (0.7 12 of 31 39%); Dibenz(a,h)anthracene (0.48 3 of 31 9.7%). Indeno(1,2,3-cot)pyrene (0.36 6 of 31 19%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1 Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pyrene - A1; Benzo(k)fluoranthene - A1; Benzo(a)pyrene - A1; Benzo(k)fluoranthene - A1; Benzo(a),h)anthracene - A1; Fluoranthene - A1; Chrysene (18 of 31[58%) - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Heptachlorodibenzodixms (Total) - A1; Hexachlorodibenzodixms (Total) - A1; Hexachlorodibenzofuran(1,2,3,4,7,8) - A1; Hexachlorodibenzofuran(1,2,3,6,7,8) - A1; Hexachlorodibenzofuran(1,2,3,6,7,8) - A1; Hexachlorodibenzofuran(1,2,3,4,6,7,8) - A1; Hexachlorodibenzofuran(1,2,3,4,6,7,8) - A1; Hexachlorodibenzofuran(1,2,3,4,6,7,8) - A1; Hexachlorodibenzofuran(1,2,3,4,6,7,8) - A1; Naphthalene - A1; Octachlorodibenzofuran(1,2,3,4,6,7,8,9) - A1; Pentachlorodibenzofuran(1,2,3,4,6,7,8,9) - A1;	

-	1			Table 0 Sul	minary of Evaluation of Organic	c Data III Shahow Soli Sa	ampies				1
				Organic Constituents	Detected Above Residential SSLs	Organic Constituents D	etected Above 10% of Residential SSLs	Stormwater	Constitu	ents Site Related?	-
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Analytes Exceeding TALs	Yes	No ¹	Potential Significant Industrial Materials
M-SMA-4	48-007(a)-00 48-010	Upper Mortandad Aggregate Area	Acenaphthene (9 of 31[29%): Anthracene (12 of 31[39%): Arcolor-1254 (4 of 5[80%): Arcolor-1260 (3 of 5[60%): Benzo(a)anthracene (18 of 31[58%): Benzo(a)apyrene (17 of 31[55%): Benzo(b)fluoranthene (17 of 31[55%): Benzo(g,h.i)perylene (10 of 31[32%): Benzo(k)fluoranthene (6 of 23]26%): Bis(2-ethylhexyl)phthalate (2 of 31[6.7%); Carbazole (1 of 12[8.3%); Chrysene (18 of 31[58%): Dibenz(a),hantracene (3 of 31[9.7%); Fluoranthene (19 of 31[61%): Fluorene (8 of 31[26%): Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (5 of 5]100%): Heptachlorodibenzodioxins (Total) (5 of 5]100%): Heptachlorodibenzodruran[1,2,3,4,7,8,-] (3 of 5]60%); Heptachlorodibenzodrurans (Total) (5 of 5]100%): Hexachlorodibenzodioxins (Total) (4 of 5]80%); Hexachlorodibenzodrurans (Total) (5 of 5]100%): Hexachlorodibenzodioxins (Total) (4 of 5]80%); Hexachlorodibenzodrurans (Total) (5 of 5]100%): Hexachlorodibenzodioxins (Total) (4 of 5]80%); Hexachlorodibenzodruran[1,2,3,4,7,8,-] (4 of 5]80%); Hexachlorodibenzodruran[1,2,3,7,8,-] (4 of 5]80%); Hexachlorodibenzodruran[1,2,3,4,7,8,-] (4 of 5]80%); Hexachlorodibenzodruran[1,2,3,7,8,-] (4 of 5]80%); Hexachlorodibenzodruran[1,2,3,7,8,-] (5 of 5]100%); Hexachlorodibenzodruran[1,2,3,4,6,7,8,-] (5 of 5]100%); Hexachlorodibenzodruran[1,2,3,4,6,7,8,-] (5 of 5]100%); Hexachlorodibenzodruran[1,2,3,4,6,7,8,-] (5 of 5]100%); Naphtalene (5 of 39]13%); Octachlorodibenzodruran[2,3,4,6,7,8,-] (5 of 5]100%); Pentachlorodibenzodruran[2,3,4,6,7,8,-] (5 of 5]100%); Pentachlorodibenzodruran[2,3,4,7,8] (2 of 5]60%); Pentachlorodibenzodruran[2,3,4,7,8] (3 of 5]60%); Pentachlorodibenzodruran[2,3,7,8] (2 of 5]40%); Pentachlorodibenzodruran[2,3,4,7,8] (3 of 5]60%); Pentachlorodibenzodruran[2,3,7,8] (2 of 5]60%); Pentachlorodibenzodruran[2,3,4,7,8] (3 of 5]60%); Pentachlorodibenzodruran[2,3,7,8] (2 of 5]40%); Pentachlorod	Benzo(a)pyrene (6.9 11 of 31 35%)	Benzo(b)fluoranthene (1 1 of 31 3.2%)		Benzo(a)anthracene (0.7/12 of 31(39%); Dibenz(a,h)anthracene (0.48(3 of 31(9.7%); Indeno(1,2,3-cd)pyrene (0.36)6 of 31(19%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1 Benzo(a)pyrene - A1; Benzo(k)fluoranthene - A1; Benzo(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Bitz-Cytyberylene - A1; Benzo(k)fluoranthene - A1; Bitz-Cytyberylene - A1; Benzo(k)fluoranthene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorene - A1; Heptachlorodibenzodixins (Total) - A1; Hexachlorodibenzodixins (Total) - A1; Pentachlorodibenzodixins (Total) - A1; Pentachlorodibenzodixins (Total) - A1; Pentachlorodibenzodixins (Total) - A1;	
LA-SMA-10.11	53-002(a)-99 53-002(a)	Lower Sandia Canyon	Acetone (4 of 47 8.5%); Aroclor-1254 (21 of 47 45%); Aroclor-1260 (5 of 47 11%); Benzoic Acid (3 of 26 12%); D[2,4-] (1 of 3]33%); Dalapon (1 of 3]33%); DB[2,4-] (1 of 3]33%); DD[4,4-]) (6 of 27 25%); DD[4,4-] (4 of 27 15%); Dichlorobenzene[1,4-]) (6 of 73 8.2%); Isopropyltoluene[4-] (4 of 47 8.5%); Toluene (14 of 47 30%); Trichloroethene (4 of 47 8.5%)				Aroclor-1254 (0.15 1 of 47 2.1%)			Acetone - C1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzoic Acid - A1; D[2,4-] - A1; Dalapon - A1; DB[2,4-] - A1; DD[2,4-] - A1; DD[14,4-] - A1; Dichlorobenzene[1,4-] - C1; Isopropyltoluene[4-] - C1; Toluene - C1; Trichloroethene - C1	
LA-SMA-10.11	53-002(a)	Lower Sandia Canyon	Bis(2-ethylhexyl)phthalate (10 of 37 27%); Chloroethane (2 of 22 9.1%); Toluene (5 of 22 23%); Trichloroethene (5 of 22 23%)							Bis(2-ethylhexyl)phthalate - A1; Chloroethane - C1;	
PJ-SMA-19	54-017, 54-018, 54-020, 54-014(d), 54-013(b) 54- 013(b)	Lower Pajarito Canyon	Methoxychlor[4,4 ⁺] (13 of 56)23%)					Total PCB		Methoxychlor[4,4'-] - A1	
PJ-SMA-18	54-017, 54-018, 54-020, 54-014(d), 54-013(b) 54- 014(d)	Lower Pajarito Canyon	Methoxychlor[4,4'-] (13 of 56 23%)							Methoxychlor[4,4'-] - A1	
CDB-SMA-4; PJ-SMA- 18; PJ-SMA-19; PJ- SMA-20	54-017, 54-018, 54-020, 54-014(d), 54-013(b) 54- 017	Lower Pajarito Canyon	Methoxychlor[4,4'-] (13 of 56 23%)							Methoxychlor[4,4'-] - A1	
CDB-SMA-4; PJ-SMA- 17	54-017, 54-018, 54-020, 54-014(d), 54-013(b) 54-	Lower Pajarito Canyon	Methoxychlor[4,4'-] (13 of 56 23%)							Methoxychlor[4,4'-] - A1	
CDB-SMA-4; PJ-SMA- 19	018 54-017, 54-018, 54-020, 54-014(d), 54-013(b) 54- 020	Lower Pajarito Canyon	Methoxychlor[4,4'-] (13 of 56 23%)							Methoxychlor[4,4'-] - A1	
PT-SMA-2.01	C-36-006(e) C-36-001	Potrillo/Fence Aggregate Area	Acetone (1 of 1 100%); Methylene Chloride (1 of 1 100%); Toluene (1 of 1 100%)							Acetone - C1; Methylene Chloride - C1; Toluene -	
R-SMA-2.5	00-011(a)	Guaje/Barrancas/Rendija								none detected	
B-SMA-1	00-011(d)	Guaje/Barrancas/Rendija								none detected	
R-SMA-2.3	00-011(e)	Canyons Guaje/Barrancas/Rendija								none detected	
LA-SMA-0.9: LA-SMA-	00-017	Canyons Upper Los Alamos Canyon						Total PCB			
1 P-SMA-3.05	00-018(a)	Pueblo Canyon	Acetone (6 of 35 17%); Anthracene (5 of 36 14%); Aroclor-1254 (13 of 36 36%); Aroclor- 1260 (20 of 36 56%); Benzo(a)pyrene (4 of 36 11%); Benzo(b)fluoranthene (7 of 36 19%); Benzo(g,h,i)perylene (2 of 36 5.6%); Benzoic Acid (3 of 36 8.3%); Bis(2-ethylhexyl)phthalate (6 of 36 17%); Chlordane[ghah-] (3 of 18)8%); Chlordane[gamma-] (1 of 8 12%); Chloroaniline[4-1 (3 of 36 8.3%); Chrysene (9 of 36 25%); DDD[4.4-] (3 of 37 8.1%); DDE[4.4-] (4 of 37 11%); DDT[4.4-] (4 of 37 11%); Dichloroethene[1,1-] (6 of 35 17%); Dieldini (7 of 37 19%); Endosulfan Sulfate (1 of 8 12%); Ethylbenzene (5 of 33 14%); Fluoranthene (18 of 36 50%); Heptachlor Epoxide (3 of 37 8.1%); Indeno(1,2,3-cd)pyrene (2 of 36 5.6%); Isoproythoune[4-] (2 of 35 5.7%); MEHylene Chloride (9 of 35 26%); Phenanthrene (6 of 36 17%); Pyrene (14 of 36 39%); Styrene (2 of 35 5.7%); Toulene (11 of 35 31%); Xylene[1,2-] (6 of 23 26%); Xylene[1,3-]+Xylene[1,4-] (7 of 23 30%)			Benzo(a)pyrene (0.88 4 of 36 11%)	Aroclor-1254 (0.2 3 of 36]8.3%); Aroclor 1260 (0.1 1 of 36]2.8%); Benzo(b)fluoranthene (0.16 2 of 36 5.6%)	Total PCB	Aroclor-1254, Aroclor-1260; Chlordane[alpha-]; Chlordane[gamma-]; DDD[4,4-]; DDE[4,4-]; DDT[4,4-]; Dieldrin C1; Endosulfan Sulfate - C1; Heptachlor Epoxide	Acetone - C1; Anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzoic Acid- A1; Bis(2- ethylnexyl)phthalate - A1; Choroanline[4-] - A1; Chrysene - A1; Dichloroethene[1,1-] - C1; Ethylbenzene - C1; Fluoranthene - A1; Indeno(1,2,3 cd)pyrene - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; Styrene - C1; Toluene - C1; Xylene[1,2] J - C1; Xylene[1,3-]+Xylene[1,4-] - C1	PCBs
P-SMA-0.3	00-018(b)	Pueblo Canyon	Acetone (3 of 7 43%); Aroclor-1260 (3 of 7 43%); BHC[delta-] (1 of 1 100%); Chlordane[gamma-] (1 of 1 100%); Chloroaniline[4-] (1 of 7 14%); DDD[4,4'-] (1 of 7 14%); DDE[4,4'-] (1 of 7 14%); Dichlorobenzene[1,4-] (2 of 14]14%); Dieldrin (1 of 7 14%); Ethylbenzene (1 of 7 14%); Isopropylounene[4-] (1 of 7 14%); Methylene Chloride (1 of 7 14%); Toluene (4 of 7 57%); Xylene[1,2-] (1 of 6 17%); Xylene[1,3-]+Xylene[1,4-] (1 of 6 17%)							Acetone - C1; Aroclor-1260 - A1; BHC[delta-] - A1; Chlordane[gamma-] - A1; Chloroaniline[4-] - A1; DDD[4,4'-] - A1; DDE[4,4'-] - A1; Dichlorobenzene[1,4-] - C2; Dieldrin - A1; Ethylbenzene - C2; Isopropyltoluene[4-] - C2; Methylene Chloride - C2; Toluene - C2; Xylene[1,2-] - C2; Xylene[1,3-]+Xylene[1,4-] - C2	
ACID-SMA-2.01	00-030(f)	Pueblo Canyon	Acenaphthene (2 of 6]33%); Acetone (1 of 6]17%); Anthracene (3 of 6]50%); Aroclor-1260 (4 of 6]67%); Benzo(a)pyrene (3 of 6]50%); Benzo(b)fluoranthene (1 of 6]17%); Benzo(g,h.i)perylene (2 of 6]33%); Chrysene (2 of 6]33%); DDE[4,4'-] (4 of 6]67%); DDT[4,4'] (1 of 6]100%); Fluoranthene (3 of 6]50%); Fluorane (2 of 6]33%); Ideno(1,2,3-cd)pyrene (2 of 6]33%); Methylnaphthalene[2-] (1 of 6]17%); Naphthalene (1 of 6]17%); Phenanthrene (3 of 6]50%); Pyrene (3 of 6]50%); Toluene (2 of 6]33%)	Benzo(a)pyrene (2.5 2 of 6 33%)			Benzo(b)fluoranthene (0.5 1 of 6 17%); Indeno(1,2,3-cd)pyrene (0.17 1 of 6 17%)		DDE[4,4'-]; DDT[4,4'-]	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Aroclor-1260 - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	
ACID-SMA-1.05 LA-SMA-2.3	00-030(g) 01-001(b)	Pueblo Canyon Upper Los Alamos Canyon	Aroclor-1254 (1 of 16j6.2%); Aroclor-1260 (5 of 16j31%) Acetone (3 of 17 18%); Aroclor-1254 (4 of 17 24%); Isopropyltoluene[4-] (1 of 17 5.9%);				Aroclor-1254 (0.36 1 of 16 6.2%) Aroclor-1254 (0.12 1 of 17 5.9%)			Aroclor-1254 - A1; Aroclor-1260 - A1 Acetone - C1; Aroclor-1254-A1; 4-Isopropyltoluene -	
LA-SMA-4.2	01-001(c)	Upper Los Alamos Canyon	Methylene Chloride (8 of 17 47%) Arocior-1260 (1 of 8 12%); Di-n-butylphthalate (1 of 8 12%); Trimethylbenzene[1,2,4-] (1 of 8 12%) 8 12%)							C1; Methylene chloride - C1 Aroclor-1260 - A1; Di-n-butylphthalate - A1; Trimethylbenzene[1,2,4-] - C1	

				Table 8 Sur	mmary of Evaluation of Organic I	Data in Shallow Soil Sar	mples				
			Org	ganic Constituents I	Detected Above Residential SSLs	Organic Constituents Det	tected Above 10% of Residential SSLs			Constituents Site Related?	
								Stormwater Analytes			Potential Significant
SMA LA-SMA-5.01	Site 01-001(d)	Aggregate Area Upper Los Alamos Canyon	Frequency of Detects T Aroclor-1254 (24 of 152)16%); Aroclor-1260 (36 of 152)24%); Benzo(a)pyrene (8 of 152)54%); Charges (9 of 152)16%); Charges	TAL List	Non-TAL List	TAL List Benzo(a)pyrene (0.29 8 of	Non-TAL List Aroclor-1254 (0.53)8 of 152 5.3%); Arodor 1360 (0.16)2 of 450 5.3%);	Exceeding TALs	Yes	No ¹ Aroclor-1254 - A1; Aroclor-1260 - A1; Bogge(a)purgeo, A4, Dic() - A1;	Industrial Materials
			152(5.3%); Bis(2-ethylnexyl)phthalate (16 of 152(11%); Chrysene (8 of 152(5.3%); Di-h- butylphthalate (16 of 152(11%)			152 5.3%)	Aroclor-1260 (0.16 8 of 152 5.3%)			A1; Chrysene - A1; Di-n-butylphthalate - A1	
LA-SMA-3.1 LA-SMA-2.1	01-001(e) 01-001(f)	Upper Los Alamos Canyon	Toluene (1 of 3 33%) Acenaphthene (4 of 38 11%): Acetone (3 of 38 7.9%): Anthracene (10 of 38 26%): Aroclor- Benzo(a)ovre	rene (10 10 of	Aroclor-1254 (540/20 of 38/53%):		Benzo(a)anthracene (0.95/11.of		Aroclor-1254: Aroclor-1260	Toluene - C1 Acenaphthene - A1: Acetone - C1: Anthracene - A1	· PCBs
	0.00(,)		1254 (32 of 38)84%); Aractor-1260 (5 of 37)14%); Benzo(a)anthracene (17 of 38)45%); Benzo(a)pytene (17 of 38)45%); Benzo(b)fluoranthene (17 of 38)45%); Benzo(a),h;)perytene (14 of 38)37%); Benzo(k)fluoranthene (17 of 38)45%); Bis(2-ethythexy)phthalate (12 of 38)32%); Chrysene (17 of 38)45%); Dibenz(a,h)anthracene (8 of 38)21%); Fluoranthene (17 of 38)45%); Fluorene (5 of 38)13%); Indeno(1,2,3-cd)pyrene (12 of 38)32%); Methylene Chloride (13 of 38)34%); Phenanthrene (15 of 38)39%); Pyrene (17 of 38)45%)		Dibenz(a,h)anthracene (1.6)3 of 38 7.9%)		38/29%); Benzo(b)fluoranthene (0.95/11 of 38/29%); Benzo(b)fluoranthene (0.11/1 of 38/2.6%); Indeno(1.2,3- cd)pyrene (0.42/8 of 38/21%)			Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(c),hi)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1	
LA-SMA-3.9	01-001(g)	Upper Los Alamos Canyon	Aroclor-1260 (4 of 6 67%); Bis(2-ethylhexyl)phthalate (1 of 6 17%); Methylene Chloride (5 of							Aroclor-1260 - A1; bis(2-ethylhexyl)phthalate - A1;	
LA-SMA-3.1	01-003(a)	Upper Los Alamos Canyon	[0]53%) Accnaphthene (9 of 27](33%); Anthracene (12 of 27]44%); Aroclor-1254 (26 of 27]96%); Benzo(a)pyre Accnaphthene (9 of 27](33%); Anthracene (12 of 27]44%); Aroclor-1254 (26 of 27]96%); Benzo(a)pyre Accnaphthene (9 of 27](33%); Anthracene (17 of 27]65%); Benzo(a)pyrene (17 of 26]65%); Benzo(b)fluoranthene (19 of 27]70%); Bis/2 (a)pyrehe (18 of 27]67%); Benzo(k)fluoranthene (19 of 27]70%); Bis/2 (a)pyrehe (17 of 27]74%); Dibenz(a,h)anthracene (12 of 27]44%); Dibenz(a)pyrehe (17 of 27]45%); Dibenz(a)pyrehe (20 of 27]74%); Dibenz(a)pyrehe (12 of 27]44%); Pyrehe (9 of 27]33%); Indeno(1, 2, 3-cd)pyrene (17 of 27]63%); Phenanthrene (18 of 27]67%); Pyrene (22 of 27]81%)	rene (46 14 of	Benzo(a)anthracene (4.9)6 of 27 22%); Benzo(b)Huoranthene (6)8 of 27 30%); Dibenz(a,h)anthracene (11 9 of 27 33%); Indeno(1,2,3-cd)pyrene (3.2 4 of 27 15%)		Aroclor-1254 (0.87)14 of 27)52%); Benzo(k)fluoranthene (0.58)7 of 27)26%)		Aroclor-1254; Aroclor-1260	Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),h.i)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1	PCBs
LA-SMA-5.2	01-003(d)	Upper Los Alamos Canyon	Aroclor-1260 (1 of 12 8.3%); Bis(2-ethylhexyl)phthalate (1 of 12 8.3%); Toluene (2 of 12 17%)							Aroclor-1260 -A1; bis(2-ethylhexyl)phthalate - A1;	
LA-SMA-5.02	01-003(e)	Upper Los Alamos Canyon	12(17)/30 Recnaphtene (1 of 14 7.1%); Anthracene (1 of 14 7.1%); Arcolor-1254 (1 of 14 7.1%); Benzo(a)pyren Accenaphtene (1 of 14 7.1%); Anthracene (1 of 14 7.1%); Benzo(a)pyrene (3 of 14 21%); Benzo(b)fluoranthene (2 of 14 14%); Benzo(a)pyren (3 of 14 21%); Benzo(k)fluoranthene (3 of 14 21%); Bis(2-ethylhexyl)phthalate (3 of 14 21%); Benzo(a)pyren (3 of 14 21%); Benzo(a)pyren (3 of 14 21%); Benzo(k)fluoranthene (3 of 14 14%); Benzo(b)fluoranthene (2 of 14 14%); Benzo(b)fluoranthene (2 of 14 14%); Benzo(b)fluoranthene (2 of 14 14%); Benzo(k)fluoranthene (3 of 14 21%); Bis(2-ethylhexyl)phthalate (3 of 14 21%); But anone[2-] [1 of 14 7.1%); But anone[2-] [1 of 14]7.1%); Bis(2-ethylhexyl)phthalate (3 of 14 21%); Bis(2 of 14 36%); Indeno(1,2,3-cd)pyrene (1 of 14 7.1%); Isopropyltolucene[4-] (2 of 14 14%); Bis(2 of 14 29%); Bis(2 of 14 29%); Indeno(1,2,3-cd)pyrene (1 of 14 7.1%); Bisopyltolucene[4-] (2 of 14 14%); Bis(2 of 14 29%); Bis(2 of 14 29%); Propylbenzene[1] (1 of 14 7.1%); Bisopyltolucene (1 of 14 7.1%); Bisopyltolucene[1,2,4-] (1 of 14 7.1%); Tetrachloroethene (1 of 14 7.1%); Bisopyltolucene(1 of 14 7.1%); Bisopyltolucene[1,2,4-] (1 of 14 7	rene (1.6)1 of			Arocior-1254 (0.12 1 of 14 7.1%); Benzo(a)anthracene (0.16 1 of 14 7.1%); Benzo(b)fluoranthree (0.16 1 of 14 7.1%); Dibenz(a,h)anthracene (0.32 1 of 14 7.1%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(b)fluoranthene - A1; Bit2(-ethylhexyl)phthalate - A1; Butanone[2-] - C1; Butylebenzene[sec] - A1; Chloromethane - C1; Chrysene - A1; Di-benz(a,h)anthracene - A1; Dibenzofuran - A1; Di-n-butylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Isopropyltoluene[4-]-C1; Methylene Chloride - C1; Naphthalene - A1; Phenanthrene - A1; Propylbenzene[1-] - C1; Pyrene - A1; Styrene - C1; Tetrachioroethene - C1; Trimethylbenzene[1,3,5-] - C1	e
LA-SMA-3.9	01-006(a)	Upper Los Alamos Canyon	Acetone (1 of 16[6.2%); Aroclor-1260 (11 of 16[69%); Bis(2-ethylhexyl)phthalate (2 of 16[12%); Di-n-butylphthalate (2 of 16[12%); Methylene Chloride (7 of 16[44%)						Aroclor-1260	Acetone - C1; Bis(2-ethylhexyl)phthalate - A1; Di-n- butylphthalate - A1; Methylene Chloride - C1	-
LA-SMA-4.1	01-006(b)	Upper Los Alamos Canyon	Aroclor-1254 (2 of 8 25%); Aroclor-1260 (5 of 8 62%); Benzo(a)anthracene (2 of 8 25%); Benzo(a)pyrene (2 of 8 25%); Benzo(b)fluoranthene (3 of 8 38%); Benzo(g,h.i)perylene (2 of 8 25%); Benzo(k)fluoranthene (2 of 8 25%); Bis(2-ethylhexyl)phthalate (2 of 8 25%); Butylbenzylphthalate (2 of 8 25%); Chrysene (3 of 8 38%); Fluoranthene (3 of 8 38%); 4- Isopropyltoluene (1 of 8 12%), Phenanthrene (1 of 8 12%); Pyrene (3 of 8 38%); Trichlorofluormethane (1 of 8 12%)			Benzo(a)pyrene (0.3 1 of 3 33%)		Total PCB		Aroclor-1254- A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h.i)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate - A1; Butylbenzylphthalate - A1; Chrysene - A1; Fluoranthene - A1; 4- Isopropyltoluene - C1; Phenanthrene - A1; Pyrene A1; Trichlorofluoromethane - C1	-
LA-SMA-4.2	01-006(c)	Upper Los Alamos Canyon	Acenaphthene (3 of 6)50%); Anthracene (6 of 6)100%); Benzo(a)anthracene (6 of 6)100%); Benzo(a)pyree Benzo(a)pyrene (6 of 6)100%); Benzo(b)fluoranthene (3 of 6)50%); Benzo(g,h,i)perylene (3 of 6)50%); Benzo(k)fluoranthene (6 of 6)100%); Chrysene (6 of 6)100%); Dibenzofuran (3 of 6)50%); Fluoranthene (6 of 6)100%); Fluorene (3 of 6)50%); Indeno(1,2,3-cd)pyrene (3 of 6)50%); Methylene Chioride (3 of 6)50%); Methylanphtalene[2] (3 of 6)50%); Naphthalene (3 of 6)50%); Phenanthrene (6 of 6)100%); Pyrene (6 of 6)100%)	rene (2.5 3 of 6 50%)			Benzo(a)anthracene (0.28 3 of 6 50%); Benzo(b)fluoranthene (0.2 3 of 6 50%)			Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Dibenzofuran - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1.2.3-cd)pyrene - A1; Methylene Chloride - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
LA-SMA-4.2	01-006(d)	Upper Los Alamos Canyon	Fluoranthene (1 of 1 100%); Pyrene (1 of 1 100%)							Fluoranthene - A1; Pyrene - A1	
LA-SMA-5.01	01-006(h)	Upper Los Alamos Canyon	Arcolor-1254 (24 of 152)[16%); Arcolor-1260 (36 of 152)[24%); Benzo(a)pyrene (8 of 152)[5.3%); Bis(2-ethylhexyl)phthalate (16 of 152)[11%); Chrysene (8 of 152)[5.3%); Di-n- butylphthalate (16 of 152)[11%)			Benzo(a)pyrene (0.29 8 of 152 5.3%)	Aroclor-1254 (0.53 8 of 152 5.3%); Aroclor-1260 (0.16 8 of 152 5.3%)			Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)pyrene - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Di-n-butylphthalate - A1	
LA-SMA-5.51	02-003(a)	Middle LA Aggregate Area	Accnaphthene (1 of 8)12%); Anthracene (3 of 8)38%); Aroclor-1254 (4 of 8)50%); Aroclor- 1260 (5 of 8)62%); Benzo(a)anthracene (4 of 8)50%); Benzo(a)pyrene (3 of 8)38%); Benzo(b)fuloranthene (2 of 8)25%); Benzo(g,h,i)perylene (1 of 8)12%); Chrysene (5 of 8)62%); Fluoranthene (7 of 8)88%); Indeno(1,2,3-cd)pyrene (1 of 8)12%); Methylene Chloride (1 of 2)50%); Naphthalene (1 of 8)12%); Phenanthrene (6 of 8)75%); Pyrene (8 of 8)100%)			Benzo(a)pyrene (0.67 3 of 8 38%)	Aroclor-1254 (0.15)1 of 8)12%); Aroclor- 1260 (0.33)2 of 8)25%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-125 A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h)perylene - A1; Chrysene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylene Chloride - C1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	-
LA-SMA-5.52	02-003(b)	Middle LA Aggregate Area	Anthracene (3 of 5 60%); Aroclor-1254 (5 of 5 100%); Aroclor-1260 (5 of 5 100%); Benzo(a)anthracene (2 of 5 40%); Benzo(a)pyrene (2 of 5 40%); Benzo(b)fluoranthene (3 of 5 60%); Benzo(g,h,i)perylene (1 of 5 20%); Benzo(k)fluoranthene (2 of 5 40%); Chrysene (2 of 5 40%); Fluoranthene (4 of 5 80%); Fluorene (1 of 5 20%); Methylnaphthalene[2-] (1 of 5 20%); Pyrene (3 of 5 60%)			Benzo(a)pyrene (0.77 2 of 5 40%)	Aroclor-1254 (0.75[1 of 5]20%); Aroclor- 1260 (0.17]1 of 5]20%); Benzo(b)fluoranthene (0.11 1 of 5]20%)			Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene- A1; Benzo(a)pyrene - A1 Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Methylnaphthalene[2-] - A1; Pyrene - A1	
LA-SMA-5.51	02-003(e)	Middle LA Aggregate Area	Aroclor-1260 (3 of 4 75%); Benzo(a)anthracene (2 of 4 50%); Benzo(a)pyrene (3 of 4 75%); Benzo(b)fluoranthene (4 of 4 100%); Benzo(a),h)perylene (1 of 4 25%); Bis(2- ethylhexyl)phthalate (1 of 4 25%); Chysene (4 of 4 100%); Fluoranthene (4 of 4 100%); Indeno(1,2,3-cd)pyrene (1 of 4 25%); Phenanthrene (4 of 4 100%); Pyrene (4 of 4 100%)			Benzo(a)pyrene (0.68 3 of 4 75%)	Aroclor-1260 (0.28 1 of 4 25%)	Total PCB		Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene -A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)pervlene - A1; Bis(2- ethylhexyl)phthalate - A1/C2; Chrysene - A1; Fluoranthrene - A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1	

	1			Organic Constituent	rs Detected Above Residential SSI s	Organic Constituents D	etected Above 10% of Residential SSI s		Const	vituants Site Related?	
SMA	Site	Aggregate Area	Frequency of Detects	TAI List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	a Yes	No ¹	Potential Significant
LA-SMA-5.51	02-004(a)	Middle LA Aggregate Area	Acenaphthene (14 of 37]38%); Anthracene (20 of 37]54%); Aroclor-1254 (15 of 28]54%); Aroclor-1260 (26 of 28]93%); Benzo(a)anthracene (26 of 37]70%); Benzo(a)pyrene (23 of 37[62%); Benzo(b)fluoranthene (24 of 37]76%); Benzo(g),hi)perylene (18 of 37]49%); Benzo(k)fluoranthene (4 of 37]11%); Chrysene (27 of 37]73%); Fluoranthene (31 of 37]84%); Fluorene (12 of 37]32%); Indeno(1,2,3-cd)pyrene (16 of 37]43%); Methylnaphthalene[22] (6 of 32]19%); Naphthalene (10 of 37]27%); Phenanthrene (28 of 37]76%); Pyrene (31 of 37]84%); Tetrachlorodibenzofuran[2,3,7,8-] (8 of 9]89%)	Benzo(a)pyrene (6.1 11 of 37 30%)	Aroclor-1260 (1.1 1 of 28 3.6%)		Aroclor-1254 (0.59]7 of 28]25%); Benzo(a)anthracene (0.55]10 of 37[27%); Benzo(b)fuoranthene (0.93]15 of 37[41%); Indeno(1,2,3-cd)pyrene (0.28]6 of 37[16%)	Total PCB	Acenaphthene; Anthracene; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(b,fluoranthene; Chrysene; Benzo(k)fluoranthene; Chrysene; Fluoranthene; Fluorene; Indeno(1,2,3- cd)pyrene; Methylnaphthalene[2-]; Naphthalene; Phenanthrene; Pyrene	Aroclor-1254 - A1; Aroclor-1260 - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1	PAHs
LA-SMA-5.51	02-005	Middle LA Aggregate Area	Aroclor-1254 (11 of 35]31%); Aroclor-1260 (28 of 35]80%); Benzo(b)fluoranthene (2 of 3]67%); Fluoranthene (2 of 3]67%); Phenanthrene (1 of 3]33%); Pyrene (2 of 3]67%); Tolurene (1 of 11100%);		Aroclor-1260 (1.9 2 of 35 5.7%)		Aroclor-1254 (0.18 1 of 35 2.9%)	Total PCB		Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(b)fluoranthene - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	
LA-SMA-5.51	02-006(b)	Middle LA Aggregate Area	Acenaphthene (13 of 19[68%); Anthracene (16 of 19[84%); Aroclor-1254 (3 of 19[16%); Aroclor-1260 (19 of 19]100%); Berzc(a)anthracene (14 of 19]74%); Benzc(a)pyrene (18 of 19]95%); Benzc(b)flucoranthene (19 of 19]100%); Benzc(g),i)perpyiene (16 of 19]84%); Benzc(b)flucoranthene (5 of 19]26%); Carbon Disulfide (1 of 3]33%); Chrysene (19 of 19]100%); Dibenzofurantene (19 of 19]100%); Flucorene (13 of 19]68%); Indeno(1,2,3- cd)pyrene (18 of 19]95%); Methylnaphthalene[2-] (12 of 19]63%); Naphthalene (13 of 19]68%); Phenanthrene (18 of 19]95%); Pyrene (19 of 19]100%); Styrene (1 of 3]33%); Trichloroflucoromethane (1 of 3]33%)	Benzo(a)pyrene (10 11 of 19 58%)	Benzo(b)fluoranthene (1.4 3 of 19 16%)		Aroclor-1260 (0.45]3 of 19 16%); Benzo(a)anthracene (0.95 10 of 19 53%); Indeno(1.2,3-cd)pyrene (0.34 7 of 19 37%)	Total PCB	Acenaphthene; Anthracene; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(g,h,i)perylene; Benzo(k)fluoranthene; Chrysene; Fluoranthene; Fluorene; Indeno(1,2,3- cd)pyrene; Methylnaphthalene[2-]; Naphthalene; Phenanthrene; Pyrene	Aroclor-1254- A1; Aroclor-1260 - A1; Carbon Disulfide - C1; Dibenzofuran - A1/C2; Diethylphthalate - A1/C2; Din-butylphthalate - A1/C2; Styrene - C1; Trichlorofluoromethane - C1	PAHs
LA-SMA-5.51	02-006(c)	Middle LA Aggregate Area	Acenaphthene (3 of 7 43%); Anthracene (4 of 7 57%); Aroclor-1254 (3 of 7 43%); Aroclor- 1260 (7 of 7 100%); Benzo(a)anthracene (3 of 7 43%); Benzo(a)pyrene (3 of 7 43%); Benzo(b)fluoranthene (6 of 7 68%); Benzo(g,h.i)perylene (3 of 7 43%); Benzo(b)fluoranthene (1 of 7 14%); Chrysene (6 of 7 68%); Fluoranthene (6 of 7 68%); Fluorene (3 of 7 43%); Indeno(1,2,3-cd)pyrene (2 of 7 29%); Methylnaphthalene[2-] (3 of 7 43%); Naphthalene (3 of 7 43%); Phenanthrene (6 of 7 66%); Pyrene (7 of 7 100%)	Benzo(a)pyrene (1.6 1 of 7 14%))		Aroclor-1254 (0.11 1 of 7 14%); Benzo(a)anthracene (0.14 2 of 7 29%); Benzo(b)fluoranthene (0.25 3 of 7 43%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),i)perylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
LA-SMA-5.51	02-006(e)	Middle LA Aggregate Area	Acenaphthene (5 of 15]33%); Anthracene (11 of 15]73%); Aroclor-1242 (1 of 14]7.1%); Aroclor-1248 (1 of 14]7.1%); Aroclor-1254 (6 of 14]43%); Aroclor-1260 (11 of 14]73%); Benzo(a)anthracene (8 of 15]53%); Benzo(a)pyrene (13 of 15]87%); Benzo(b)fluoranthene (13 of 15]87%); Benzo(g,h,i)perylene (9 of 15]60%); Benzo(k)fluoranthene (2 1 of 15]1%); Bis(2-ethylhexyl)phthalate (1 of 15]6.7%); Chloroform (1 of 3]33%); Chrysene (13 of 15]87%); Dibenzofuran (1 of 15]6.7%); Fluoranthene (14 of 15]93%); Fluorene (5 of 15]33%); Indeno(1,2,3-cd)pyrene (9 of 15[60%); Methylnaphthalene[2] (4 of 15]27%); Naphthalene (3 of 15]20%); Phenanthrene (13 of 15]87%); Pyrene (14 of 15]93%)	Benzo(a)pyrene (4.2 6 of 15 40%	(k) Aroclor-1254 (1.2 1 of 14 7.1%)		Aroclor-1248 (0.18 1 of 14 7.1%); Benzo(a)anthracene (0.4 4 of 15 27%); Benzo(b)fluoranthene (0.6 7 of 15 47%); Indeno(1,2,3-cd)pyrene (0.25 3 of 15 20%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1242 A1; Aroclor-1248 - A1; Aroclor-1254 - A1; Aroclor- 1260 - A1; Benzo(a)anthracene - A1; Benzo(g)hi)perytene - A1; Benzo(b)fluoranthene - A1; Benzo(g)hi)perytene - A1; Benzo(k)fluoranthene (2 of 15j13%); Bis(2-ethylhexyl)phthalate - A1; Chloroform - C1; Chrysene - A1; Dibenzofuran - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	2 1; 1 :
LA-SMA-5.52	02-007	Middle LA Aggregate Area	Aroclor-1254 (5 of 6 83%); Aroclor-1260 (5 of 6 83%); Benzo(a)anthracene (1 of 6 17%); Benzo(a)pyrene (1 of 6 17%); Benzo(b)fluoranthene (1 of 6 17%); Fluoranthene (4 of 6 67%); Phenanthrene (2 of 6 33%); Pyrene (3 of 6 50%)		Aroclor-1254 (1.5 1 of 6 17%)		Aroclor-1260 (0.39 1 of 6 17%)			Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Fluoranthene - A1;	
LA-SMA-5.51	02-008(a)	Middle LA Aggregate Area	Acenaphthene (1 of 5/20%); Anthracene (2 of 5/40%); Aroclor-1254 (4 of 5/80%); Aroclor- 1260 (5 of 5/100%); Benzo(a)anthracene (3 of 5/60%); Benzo(a)pyrene (4 of 5/80%); Benzo(b)fluoranthene (4 of 5/80%); Benzo(g,h,i)perylene (1 of 5/20%); Benzo(b)fluoranthene (2 of 5/40%); Bis/2eth/lhexyl)phthatlate (1 of 5/20%); Chrysene (4 of 5/80%); Fluoranthene (4 of 5/80%); Fluorene (1 of 5/20%); Indeno(1,2,3-cd)pyrene (3 of 5/60%); Phenanthrene (3 of 5/60%); Pyrene (4 of 5/80%); Styrene (1 of 1/100%); Toluene (of 1/100%)			Benzo(a)pyrene (0.8 4 of 5 80%)	Aroclor-1254 (0.17/2 of 5)40%); Aroclor- 1260 (0.11 1 of 5)20%); Benzo(b)fluoranthene (0.11 1 of 5)20%)	Total PCB		Phenalithete - A1, A1, Fylette - A1 Acenaphthene - A1; Anthracene - A1; Aroclor-1254 A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),h)gerylene - A1; Benzo(b)fluoranthene - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Fluorene - A1; Pyrene - A1; Styrene - C1; Toluene - C1	;
LA-SMA-5.52	02-008(c)	Middle LA Aggregate Area	Acenaphthene (1 of 6 17%); Anthracene (2 of 6 33%); Aroclor-1254 (1 of 4 25%); Aroclor- 1260 (4 of 4 100%); Benzo(a)anthracene (3 of 6 50%); Benzo(a)pyrene (3 of 6 50%); Benzo(b)fluoranthene (3 of 6 50%); Benzo(g,h,i)perylene (2 of 6 33%); Chrysene (3 of 6 50%); Fluoranthene (5 of 6 63%); Fluorene (1 of 6 17%); Inden(1,2,3-cd)pyrene (3 of 6 50%); Methylnaphthalene[2-] (1 of 6 17%); Naphthalene (1 of 6 17%); Phenanthrene (4 of 6 67%); Pyrene (5 of 6 83%)	Benzo(a)pyrene (3.8 1 of 6 17%)	<u>)</u>		Benzo(a)anthracene (0.46 1 of 6 17%); Benzo(b)fluoranthene (0.74 2 of 6 33%); Indeno(1,2,3-cd)pyrene (0.1 1 of 6 17%)			Acenaphthene - A1; Anthracene - A1; Aroclor-1254 A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g)h.i)perylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Maphtalente[2] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
LA-SMA-5.53	02-009(a)	Middle LA Aggregate Area	Aroclor-1254 (8 of 43 19%); Aroclor-1260 (12 of 43 28%); Chloroform (2 of 20 10%); Fluoranthene (6 of 43 14%); Pyrene (5 of 43 12%); Toluene (17 of 20 85%)							Aroclor-1254 - A1; Aroclor-1260 - A1; Chloroform - C1; Fluoranthene - A1; Pyrene - A1; Toluene - C1	
LA-SMA-5.51	02-009(b)	Middle LA Aggregate Area	Acenaphthene (1 of 17 5.9%); Anthracene (4 of 17 24%); Aroclor-1248 (1 of 17 5.9%); Aroclor-1254 (8 of 17 47%); Aroclor-1260 (13 of 17 76%); Benzo(a)anthracene (9 of 17 53%); Benzo(a)prene (7 of 17 41%); Benzo(b)fluoranthene (1 of 17 65%); Benzo(g,h.i)perylene (5 of 17 29%); Benzo(k)fluoranthene (4 of 17 24%); Bis(2- ethylhexyl)phthalate (1 of 17 5.9%); Chrysene (11 of 17 65%); Di-h-butylphthalate (3 of 17 18%); Isopropylbenzene (1 of 417 25%); Fluorene (1 of 17 5.5%); Ideno1(1,2,3-cd)pyrene (6 of 17(15%); Isopropylbenzene (1 of 8 12%); Methylnaphthalene[2-] (1 of 17 5.9%); Phenanthrene (8 of 17 47%); Pyrene (15 of 17 88%); Toluene (2 of 8 25%)	Benzo(a)pyrene (1.3 1 of 17 5.9%)			Benzo(a)anthracene (0.16)2 of 17 12%); Benzo(b)fluoranthene (0.26)3 of 17 18%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1248 A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(g),hi)perylene - A1; Benzo(b)fluoranthene - A1; Benzo(g,hi)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhex))phthalate - A1; Chrysner - A1; Di-n- butylphthalate - A1; Chrysner - A1; Fluorantene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropylbenzene C1; Methylnaphthalene[2] - A1; Phenanthrene - A' Pyrene - A1; Toluene - C1	9- 1;
LA-SMA-5.54	02-009(c)	Middle LA Aggregate Area	Acenaphthene (7 of 27)26%); Anthracene (10 of 27)37%); Aroclor-1248 (1 of 19)5.3%); Aroclor-1254 (14 of 19)74%); Aroclor-1260 (16 of 19)84%); Benzo(a)anthracene (11 of 27)41%); Benzo(a)pyrene (10 of 27)37%); Benzo(b)fluoranthene (12 of 27)44%); Benzo(a),hi)perylene (6 of 27)22%); Benzo(k)fluoranthene (4 of 27)15%); Chrysene (13 of 27)44%); Fluoranthene (16 of 27)55%); Fluorene (7 of 27)26%); Indeno(1.2,3-cd)pyrene (6 of 27)22%); Methylnaphthalene[2-] (9 of 27)33%); Naphthalene (7 of 27)26%); Phenanthren (15 of 27)56%); Pyrene (15 of 27)55%)	Benzo(a)pyrene (1.5 3 of 27 11%	6)		Aroclor-1254 (0.11 1 of 19 5.3%); Benzo(a)anthracene (0.19 4 of 27 15%); Benzo(b)fluoranthene (0.26 6 of 27 22%)			Acenaphthene - A1; Anthracene - A1; Aroclor-1248 A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene (- A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h.i)perylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Horone - A1; Hoheno(1,2,3- cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	1

			-		contraction of Organic	Data in Chance Con Ca	inpics				
				Organic Constituen	ts Detected Above Residential SSLs	Organic Constituents De	etected Above 10% of Residential SSLs	Stormwater	Constitu	ents Site Related?	Potential Significant
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Exceeding TALs	Yes	No ¹	Industrial Materials
LA-SMA-5.51	02-011(a)	Middle LA Aggregate Area	Acenaphthene (13 of 41 32%); Anthracene (29 of 41 71%); Aroclor-1254 (32 of 55 58%); Aroclor-1260 (51 of 55 93%); Benzo(a)anthracene (31 of 41 75%); Benzo(a)pyrene (35 of 41 85%); Benzo(b)fluoranthene (35 of 41 85%); Benzo(g),h)perylene (24 of 41 59%); Benzo(b)fluoranthene (8 of 41 20%); Chrysene (38 of 41 93%); Dibenz(a,h)anthracene (4 of 41 9.8%); Di-buty(bhthatale (4 of 36 11%); Fluoranthene (38 of 41 93%); Fluoren (14 of 41 9.4%); Indeno(1,2,3-cd)pyrene (23 of 41 56%); Methylnaphthalene[2-] (5 of 36 14%); Naphthalene (10 of 41 24%); Phenanthrene (36 of 41 88%); Pyrene (38 of 41 93%); Tetrachlorodibenzofuran[2,3,7,8-] (8 of 9 89%); Toluene (1 of 3 33%)	Benzo(a)pyrene (10 13 of 41 32%)	Aroclor-1260 (13]2 of 55[3.6%); Benzo(a)anthracene (1 1 of 41]2.4%); Benzo(b)fluoranthene (1.4 1 of 41]2.4%)		Aroclor-1254 (0.3)8 of 55)15%); Dibenz(a,h)anthracene (0.5)3 of 4117.3%); Indeno(1,2,3-cd)pyrene (0.5)2 of 4114.9%); Tetrachlorodibenzofuran[2,3,7,8-] (0.39)1 of 9)11%)	Total PCB	Aroclor-1254; Aroclor-1260	Acenaphthene - A1; Anthracene - A1;Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(a)anthracene - A1; Benzo(g),hi)perylene - A1; Benzo(k)(fluoranthene - A1; Chrysene - A1; Dibenz(a),hanthracene - A1; Di-h-butylphthalate - A1/C2; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Huorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylinaphthalene [2-] - A1; Naphthalene - A1; Phenanthrene - A1; Potene A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Toluene - C1	PCBs
LA-SMA-5.51	02-011(b)	Middle LA Aggregate Area	Acenaphthene (1 of 6)17%); Anthracene (3 of 6)50%); Aroclor-1254 (6 of 6)100%); Aroclor- 1260 (5 of 6)83%); Benzo(a)anthracene (4 of 6)67%); Benzo(a)pyrene (3 of 6)50%); Benzo(b)fluoranthene (4 of 6)57%); Benzo(g,h,i)perylene (3 of 6)50%); Benzo(k)fluoranthene (4 of 6)57%); Fluorene (1 of 6)17%); Chrysene (3 of 6)50%); Fluoranthene (4 of 6)57%); Fluorene (1 of 6)17%); Indeno(1,2,3-cd)pyrene (3 of 6)50%); Methylnaphthalene(2-] (1 of 6)17%); Naphthalene (1 of 6)17%); Phenanthrene (3 of 6)50%); Pyrene (4 of 6)67%)			Benzo(a)pyrene (0.8 3 of 6 50%)	Aroclor-1254 (0.14/2 of 6/33%); Benzo(b)fluoranthene (0.11/2 of 6/33%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),hipper/lene - A1; Benzo(k)fluoranthene - A1; Bis(2-ethylhexyl)phthalate - A1/C2; Chysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
LA-SMA-5.51	02-011(c)	Middle LA Aggregate Area	Aroclor-1254 (1 of 1 100%); Aroclor-1260 (1 of 1 100%); Benzo(a)anthracene (1 of 1 100%); Fluoranthene (1 of 1 100%); Pyrene (1 of 1 100%); Tetrachlorodibenzodioxin[2,3,7,8-] (1 of 1 100%); Tetrachlorodibenzofuran[2,3,7,8-] (1 of 1 100%)					Total PCB		Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Fluoranthene - A1; Pyrene - A1; Tetrachlorodibenzodioxin[2,3,7,8-] -	
LA-SMA-5.51	02-011(d)	Middle LA Aggregate Area	Acenaphthene (1 of 2[50%); Anthracene (1 of 2[50%); Aroclor-1254 (2 of 2[100%); Aroclor- 1260 (2 of 2[100%); Benzo(a)anthracene (1 of 2[50%); Benzo(a)pyrene (1 of 2[50%); Benzo(b)fluoranthene (2 of 2[100%); Benzo(g,h,i)perylene (1 of 2[50%); Ichnysene (2 of 2[100%); Fluoranthene (2 of 2[100%); Fluorene (1 of 2[50%); Ichnysene (1 of 2[50%); Methylnaphthalene[2-] (1 of 2[50%); Naphthalene (1 of 2[50%); Phenanthrene (2 of 2[100%); Pyrene (2 of 2[100%)			Benzo(a)pyrene (0.7 1 of 2 50%)	Aroclor-1254 (0.11 1 of 2 50%)	Total PCB		A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1 Acenaphthene - A1; Antracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),hipper/lene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Methylinaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
S-SMA-3.51	03-009(i)	Upper Sandia Aggregate Area	Anthracene (2 of 4 50%); Aroclor-1254 (1 of 4 25%); Aroclor-1260 (2 of 4 50%);						Anthracene; Fluoranthene; Pyrene	Aroclor-1254 - A1; Aroclor-1260 - A1	
S-SMA-2	03-012(b)	Upper Sandia Aggregate Area	Fluoraintheire (2 of alg0%); Pyterie (1 of alg2%) Acenaphtheir (1 of alg0%); Antriacene (2 of 4[50%); Aroclor-1254 (7 of 9]78%); Aroclor- 1260 (8 of 9]88%); Benzo(a)antriacene (1 of 4[25%); Benzo(a)pytene (2 of 4[50%); Benzo(b)fluoranthene (4 of 4]100%); Benzo(g,h.i)perylene (3 of 4]75%); Chrysene (3 of 4]75%); Huoranthene (4 of 4]100%); Fluorene (1 of 4]25%); Indenco(1,2,3-cd)pytene (3 of 4]75%); Methylene Chloride (3 of 4]75%); Methylnaphthalene[2-] (1 of 4]25%); Naphthalene (1 of 4]25%); Phenanthrene (3 of 4]75%); Pyrene (4 of 4]100%)	Benzo(a)pyrene (1.6 1 of 4 25%	6) Aroclor-1260 (1.4 1 of 9 11%)		Aroclor-1254 (0.72 3 of 9 33%); Benzo(a)anthracene (0.19 1 of 4 25%); Benzo(b)fluoranthene (0.3 1 of 4 25%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),hi)perylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Methylene Chloride - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
S-SMA-3.53	03-014(b2)	Upper Sandia Aggregate Area	Acetone (3 of 10]30%); Aroclor-1254 (5 of 10]50%); Aroclor-1260 (5 of 10]50%); Benzo(a)pyrene (2 of 10]20%); Benzo(b)fluoranthene (1 of 10 10%); Benzo(k)fluoranthene (1 of 10]10%); Bis(2-ethylhexyl)phthalate (1 of 10]10%); Chrysene (2 of 10]20%); Fluoranthene (2 of 10]20%); Phenanthrene (2 of 10]20%); Pyrene (2 of 10]20%)			Benzo(a)pyrene (0.13 2 of 10 20%)		Total PCB		Acetone - C1; Aroclor-1254 - A1; ; Aroclor-1260 - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate - A1; Chysene - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1	
S-SMA-2.8	03-014(c2)	Upper Sandia Aggregate Area	Acetone (3 of 16 19%); Anthracene (2 of 16 12%); Aroclor-1248 (1 of 16 6.2%); Aroclor- 1254 (14 of 16 88%); Aroclor-1260 (14 of 16 88%); Benzo(a)anthracene (4 of 16 25%); Benzo(a)pyrene (4 of 16 25%); Benzo(b)fluoranthene (6 of 16)38%); Benzo(g,h.i)perylene (5 of 16)31%); Benzo(k)fluoranthene (3 of 16 19%); Butylbenzene[tert-] (1 of 16 6.2%); Chryssene (6 of 16)38%); Fluoranthene (8 of 16 50%); Indeno(1,2,3-cd)pyrene (5 of 16 31%); Isopropylbuene[4-] (1 of 16 6.2%); Phenanthrene (5 of 16 31%); Pyrene (9 of 16 56%); Toluene (1 of 16 6.2%)	Benzo(a)pyrene (1.2 1 of 16 6.2%)	Aroclor-1254 (6.1 2 of 16 12%); Aroclor- 1260 (2.7 1 of 16 6.2%)		Benzo(b)fluoranthene (0.15 1 of 16 6.2%)		Aroclor-1248; Aroclor-1254; Aroclor-1260	Acetone - C1; Anthracene - A1;Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Botzo(b)fluoranthene - Benzo(k)fluoranthene - A1; Butylbenzene[tert.] - A1; Chrysene - A1; Fluoranthene - A1; Indeno(1,2,3- cd)pyrene - A1; Isporpolytoluene[4]- A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	PCBs
S-SMA-3.52	03-021	Upper Sandia Aggregate Area	Acetone (1 of 13]7.7%); Aroclor-1254 (5 of 12]42%); Aroclor-1260 (5 of 12]42%); Benzo(b)fluoranthene (2 of 20]10%); Fluoranthene (4 of 20]20%); Phenanthrene (2 of 20]10%); Pyrene (4 of 20]20%)							Acetone - C1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(b)fluoranthene - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1	
S-SMA-1.1	03-029	Upper Sandia Aggregate Area	Aroclor-1254 (5 of 6 83%); Aroclor-1260 (5 of 6 83%); Benzo(a)anthracene (1 of 6 17%); Benzo(a)pyrene (1 of 6 17%); Benzo(b)fluoranthene (1 of 6 17%); Chrysene (1 of 6 17%); Fluoranthene (1 of 6 17%); Phenanthrene (1 of 6 17%); Pyrene (1 of 6 17%)			Benzo(a)pyrene (0.12 1 of 6 17%)		Total PCB	Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Chrysene; Fluoranthene; Phenanthrene; Pyrene	Aroclor-1254 - A1; Aroclor-1260 - A1	PAHs
S-SMA-2	03-045(b)	Upper Sandia Aggregate Area	Anthracene (1 of 2 50%); Aroclor-1254 (2 of 2 100%); Aroclor-1260 (2 of 2 100%); Benzo(a)pyrene (1 of 2 50%); Benzo(b)fluoranthene (2 of 2 100%); Benzo(g,h,i)perylene (2 of 2 100%); Chrysene (1 of 2 50%); Fluoranthene (2 of 2 100%); Indeno(1,2,3-cd)pyrene (2 of 2 100%); Methylene Chloride (1 of 2 50%); Phenanthrene (1 of 2 50%); Pyrene (2 of 2 100%)			Benzo(a)pyrene (0.38 1 of 2 50%)		Total PCB		Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h.i)perylene - A1; Chrysene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1	
S-SMA-2	03-045(c)	Upper Sandia Aggregate Area	Acenaphthene (1 of 2 50%); Anthracene (1 of 2 50%); Aroclor-1254 (2 of 2 100%); Aroclor- 1260 (2 of 2 100%); Benzo(a)anthracene (1 of 2 50%); Benzo(a)pyrene (1 of 2 50%); Benzo(b)fluoranthene (2 of 2 100%); Benzo(g,h,i)perylene (1 of 2 50%); Chrysene (2 of 2 100%); Fluoranthene (2 of 2 100%); Fluorene (1 of 2 50%); Indeno(1,2,3-cd)pyrene (1 of 2 50%); Methylene Chloride (2 of 2 100%); Methylnaphthalene[2-] (1 of 2 50%); Naphthalene (1 of 2 50%); Phenanthrene (2 of 2 100%); Pyrene (2 of 2 100%)	Benzo(a)pyrene (1.6 1 of 2 50%	 Aroclor-1260 (1.4 1 of 2 50%) 		Aroclor-1254 (0.72 2 of 2 100%); Benzo(a)anthracene (0.19 1 of 2 50%); Benzo(b)fluoranthene (0.3 1 of 2 50%)	Total PCB		Acenaphthene - A1; Anthracene - A1;Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a,h.i)perylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(12,3- cd)pyrene - A1;Methylene Chloride - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
M-SMA-1.22	03-045(h)	Upper Mortandad Aggregate Area	Acenaphthene (2 of 21 9.5%); Acetone (1 of 10 10%); Anthracene (6 of 21 29%); Arocior- 1254 (2 of 5 40%); Arocior-1260 (4 of 5 80%); Benzo(a)anthracene (13 of 21 62%); Benzo(a)pyrene (11 of 21 52%); Benzo(0)fluoranthene (13 of 21 62%); Benzo(a),h)perylene (9 of 21 43%); Benzoic Acid (3 of 21 14%); Chrysene (12 of 21 57%); Dibenz(a,h)anthracene (2 of 21 9.5%); Fluoranthene (14 of 21 67%); Didenz(a,h)anthracene (2 of 21 9.5%); Fluoranthene (14 of 21 67%); O of 21 43%); Phenanthrene (12 of 21 57%); Pyrene (14 of 21 67%); Tetrachlorodibenzofuran[2,3,7,8-] (2 of 5 40%)	Benzo(a)pyrene (1.1 2 of 21 9.5%)			Benzo(a)anthracene (0.1 1 of 21 4.8%); Benzo(b)fluoranthene (0.24 4 of 21 19%); Dibenz(a,h)anthracene (0.16 1 of 21 4.8%)			Acenaphthene - A1; Acetone - C1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(g)Ariperplene - A1; Benzo(b)fluoranthene - A1; Benzo(g)A,i)perylene - A1; Benzoic Acid - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1	

Table 8	Summary of	Evaluation of	Organic Data in	n Shallow Soil Samples
---------	------------	---------------	-----------------	------------------------

			Organic Constituents Detected Above Residential SSLs Organic Constituents Detected Above 10% of Residential SSLs			Constituents Site Related?					
								Stormwater			Potential Significant
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Exceeding TALs	Yes	No ¹	Industrial Materials
M-SMA-1.22	03-045(n)	Opper Mortandad Aggregate Area	Arocior-1254 (1 of 1 100%); Arocior-1250 (1 of 1 100%); Benzo(b)fiuorantnene (1 of 1 100%); Fluoranthene (1 of 1 100%); Phenanthrene (1 of 1 100%); Pyrene (1 of 1 100%); Tetrachlorodibenzofuran[2,3,7,8-] (1 of 1 100%)								
M-SMA-1.2	03-049(a)	Upper Mortandad Aggregate Area	Acenaphthene (6 of 24/25%); Acetone (1 of 14/7.1%); Anthracene (5 of 24/21%); Aroclor- 1254 (4 of 7(57%); Aroclor-1260 (6 of 7(86%); Benzo(a)anthracene (17 of 24/71%); Benzo(a)pyrene (17 of 24/17%); Benzo(b)fluoranthene (18 of 24/75%); Benzo(g,h.i)perylene (16 of 24/67%); Bis(2-ethylhexyl)phthalate (10 of 24/42%); Butanone[2-] (1 of 14/7.1%); Chrysene (17 of 24/17%); Dienza(A)hanthracene (5 of 24/21%); Fluoranthene (19 of 24/17%); Fluorene (5 of 24/21%); Indeno(1,2,3-cd)pyrene (16 of 24/67%); Methylene Chloride (2 of 14/14%); Phenanthrene (17 of 24/17%); Pyrene (18 of 24/75%); Tetrachlorodibenzodioxin(2,3,7,8-) (3 of 6)50%); Tetrachlorodibenzofuran[2,3,7,8-] (2 of 6)33%); Toluene (3 of 14/21%)	Benzo(a)pyrene (5.6 6 of 24 25%)	Benzo(b)fluoranthene (1.1 1 of 24 4.2%)		Benzo(a)anthracene (0.44/4 of 24/17%); Dibenz(a,h)anthracene (0.82/4 of 24/17%); Indeno(1,2,3-cd)pyrene (0.3/2 of 24/8.3%)			Acenaphthene - A1; Acetone - C1; Anthracene - A1; Arocior 1254 - A1; Arocior 1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Biscychyllexyllexhalate - A1; Butanone[2-] C1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- col)pyrene - A1; Metrylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; Tetrachlorodibenzodioxin[2,3,7,8-] - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Toluene - C1	
M-SMA-1.21	03-049(e)	Upper Mortandad Aggregate	Acenaphthene (10 of 24 42%); Acetone (1 of 12 8.3%); Anthracene (15 of 24 62%); Aroclor-	Benzo(a)pyrene (120 8 of	Benzo(a)anthracene (11 4 of 24 17%);		Aroclor-1260 (0.57 2 of 6 33%);			Acenaphthene - A1; Acetone - C1; Anthracene - A1;	
		Area	1260 (6 of 6]100%); Benzo(a)anthracene (17 of 24[71%); Benzo(a)pyrene (17 of 24[71%); Benzo(b)fuoranthene (20 of 24[83%); Benzo(g),hi)perylene (15 of 24[62%); Chrysene (18 of 24[75%); Dibenz(a,h)anthracene (3 of 24[12%); Dibenzofuran (3 of 24[12%); Di-n- octyphthalate (2 of 24[83%); Fluoranthene (21 of 24[88%); Fluorene (9 of 24[38%); Indeno(1,2,3-col)pyrene (15 of 24[62%); Isopropytloulene[4]-1 (1 of 12[8.3%); Methylnaphthalene[2-] (7 of 24[29%); Naphthalene (7 of 24[29%); Phenanthrene (20 of 24[83%); Pyrene (20 of 24[83%); Tetrachlorodibenzodioxin[2,3,7,8-] (5 of 16]31%); Tetrachlorodibenzofuran[2,3,7,8-] (8 of 16]50%); Toluene (2 of 12]17%)	24(33%)	Benzo(b)Huoranthene (22 5 of 24 21%); Dibenz(a,h)anthracene (14 1 of 24 4.2%); Indeno(1,2,3-cd)pyrene (7 3 of 24 12%)		Chrysene (0.13 2 of 24 8.3%)			Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g)h,i)perylene - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1; Di- n-octylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4] - C1; Methylnaphthalene[2-] - A1; Maphthalene - A1; Pheranhtrene - A1; Pyrene - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Tetrachlorodibenzofuran[2,3,7,8-] (- A1); Toluene - C1	
S-SMA-2.01	03-052(b)	Upper Sandia Aggregate Area	Acenaphthene (1 of 16[6.2%); Acetone (3 of 17]18%); Anthracene (4 of 16]25%); Aroclor- 1254 (8 of 16]50%); Aroclor-1260 (11 of 16[69%); Benzo(a))nthracene (3 of 16]19%); Benzo(a)nytene (4 of 16]25%); Benzo(b)fluoranthene (4 of 16]25%); Benzo(a),hiperylene (3 of 16]19%); Chrysene (5 of 16]31%); Fluoranthene (4 of 16]25%); Fluorene (1 of 16]6.2%); Indeno(1,2,3-cd)pyrene (1 of 16]6.2%); Naphthalene (1 of 17]5.9%); Phenanthrene (4 of 16]25%); Pyrene (5 of 16]31%)			Benzo(a)pyrene (0.49 4 of 16 25%)	Aroclor-1254 (0.52 2 of 16 12%); Aroclor- 1260 (0.51 1 of 16 6.2%); Benzo(b)fluoranthene (0.16 3 of 16 19%)	Total PCB		Acenaphthene - A1; Acetone - A1; Anthracene - A1; Aroclor-1254- A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
S-SMA-0.25	03-052(f)	Upper Sandia Aggregate Area	Acenaphthene (8 of 14 57%); Acenaphthylene (1 of 14 7.1%); Acetone (3 of 14 21%); Anthracene (12 of 14 86%); Arcclor-1254 (10 of 14 71%); Arcolor-1260 (11 of 14 79%); Benzo(a)anthracene (12 of 14 86%); Benzo(a)pyrene (12 of 14 86%); Benzo(b)fluoranthene (13 of 14 93%); Benzo(g),h.i)perylene (12 of 14 86%); Benzo(k)fluoranthene (11 of 14 75%); Bis(2-ethylhexyl)phthalate (7 of 14 50%); Chrysene (12 of 14 86%); Dibenz(a,h)anthracene (3 of 14 21%); Dibenzofuran (6 of 14 43%); Fluoranthene (13 of 14 93%); Fluorene (8 of 14 57%); Indeno(12,3-col)pyrene (12 of 14 86%); Minyaphthalene[21 (6 of 14 43%); Naphthalene (6 of 14 43%); Phenanthrene (12 of 14 86%); Pyrene (13 of 14 93%); Toluene (1 of 14 7.1%); Trimethylbenzene[1,2,4-] (1 of 14 7.1%)	Benzo(a)pyrene (130 8 of 14 57%)	Benzo(a)anthracene (13 5 of 14 36%); Benzo(b)fluoranthene (16 5 of 14 36%); Dibenz(a,h)anthracene (7.9 3 of 14 21%); Indeno(1,2,3-cd)pyrene (2.4 1 of 14 7.1%)		Aroclor-1254 (0.11 2 of 14 14%); Benzo(k)fluoranthene (0.33 1 of 14 7.1%); Chrysene (0.15 1 of 14 7.1%)	Total PCB	Acenaphthene; Acenaphthylene; Anthracene; Aroclor-1254; Aroclor-1260; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)fuoranthene; Benzo(b)fuoranthene; Chrysene; Benzo(k)fluoranthene; Chrysene; Dibenz(a,h)anthracene; Fluoranthene; Fluorene; Indeno(1,2,3-cd)pyrene; Methylnaphthalene[2-]; Naphthalene; Phenanthrene: Pyrene:	Acetone - C1; Bis(2-ethylhexyl)phthalate - A1; Dibenzofuran - A1; Toluene - C1; Trimethylbenzene[1,2,4-] - C1	PCBs; PAHs
M-SMA-1	03-054(e)	Upper Mortandad Aggregate Area	Acenaphthene (2 of 14[14%); Anthracene (2 of 14[14%); Aroclor-1242 (1 of 14[7.1%); Aroclor-1254 (1 of 14[7.1%); Aroclor-1260 (4 of 14[29%); Benzo(a)anthracene (2 of 14[14%); Benzo(a)pyrene (4 of 14[29%); Benzo(b)fluoranthene (6 of 14[36%); Benzo(g,h,i)perylene (4 of 14[29%); Benzo(b)fluoranthene (1 of 14[7.1%); Benzoic Acid (1 of 14[7.1%); Bis(2-ettr)hexyl)phthalate (2 of 14[14%); Chrysene (4 of 14[29%); Diethylphthalate (1 of 14[7.1%); Fluoranthene (5 of 14[36%); Fluorene (1 of 14[7.1%); Indeno(1,2,3-cd)pyrene (2 of 14[14%); Phenanthrene (2 of 14[14%); Pyrene (5 of 14[36%); Tetrachlorodibenzodioxin[2,3,7,8-] (1 of 3]33%)	Benzo(a)pyrene (3.4 1 of 14 7.1%)			Benzo(a)anthracene (0.35 1 of 14 7.1%); Benzo(b)fluoranthene (0.62 2 of 14 14%); indeno(1,2,3-cd)pyrene (0.19 1 of 14 7.1%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1242 - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pyrene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethythexyl)phthalate - A1; Chysene - A1; Diethylphthalate - A1; Fluoranthene - A1; Fluorene A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene A1; Pyrene - A1; Tetrachlorodibenzodioxin[2,3,7,8-]- A1	
LA-SMA-0.85	03-055(c)	Upper Los Alamos Canyon	Acenaphthene (3 of 17[18%); Anthracene (11 of 17[65%); Aroclor-1254 (15 of 17[88%); Aroclor-1260 (15 of 17[88%); Benzo(a)anthracene (12 of 17[74%); Benzo(a)pyrene (3 of 17[18%); Benzo(b)fluoranthene (4 of 17[24%); Benzo(a),h)perylene (1 of 17[5.9%); Benzo(k)fluoranthene (2 of 17[12%); Benzoic Acid (1 of 17[5.9%); Bis(2-ethylhexyl)phthalate (15 of 17[88%); Butanone[2-] (5 of 17[28%); Chrosene (9 of 17[53%); Dibenzofuran (2 of 17[12%); Ethylbenzene (1 of 17[5.9%); Houranthene (15 of 17[88%); Fluorene (3 of 17[14%); Indeno(1,2,3-cd)pyrene (2 of 17]12%); Methylnaphthalene[2-] (3 of 17[18%); Naphthalene (3 of 17]18%); Phenanthrene (15 of 17]88%); Pyrene (16 of 17]94%); Toluene (3 of 17]18%); Trichlorofluoromethane (1 of 17[5.9%); Xylene[1,3-]+Xylene[1,4-] (1 of 17]5.9%)	Benzo(a)pyrene (8.8 2 of 17 12%)	Benzo(b)fluoranthene (1.5 1 of 17 5.9%)		Benzo(a)anthracene (0.89 2 of 17 12%); Indeno(1,2,3-cd)pyrene (0.41 2 of 17 12%)			Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(g)anthracene - A1; Benzo(g),hi)perylene - A1; Benzo(b)fluoranthene - A1; Benzoic Acid - A1; Bis(2-eithylhexyl)phthalate - A1; Butanole[2] - C1; Chysene - A1; Dibenzofturan - A1; Ethylbenzene - C1; Fluoranthene - A1; Methylnaphthalene[2]- A1, Naphthalene - A1; Methylnaphthalene[2]- A1; Naphthalene - A1; Prenanthrene - A1; Prenathrene - A1;	
S-SMA-2	03-056(c)	Upper Sandia Aggregate Area	Acetone (4 of 13]31%); Aroclor-1260 (50 of 76]66%); Benzene (4 of 13]31%); Isopropyltoluene[4-] (6 of 13]46%); Tetrachloroethene (2 of 13]15%); Toluene (8 of 13]62%); Trichloroethane[1,1,1-] (1 of 13]7.7%); Trichlorofluoromethane (1 of 13]7.7%)		Aroclor-1260 (1.8 5 of 76 6.6%); Tetrachloroethene (3.3 1 of 13 7.7%)			Total PCB	Aroclor-1260	Acetone - C1; Benzene - C1; Isopropyltoluene[4-] - C1; Tetrachloroethene - C1; Toluene - C1; Trichloroethane[1,1,1-] - C1; Trichloroethane[1,1,1-]	PCBs
CDB-SMA-0.15	04-003(a)	Upper Canada del Buey Aggregate Area	Anthracene (2 of 21 9.5%); Benzo(a)pyrene (4 of 21 19%); Benzo(b)fluoranthene (4 of 21 19%); Benzo(b,h)perytene (3 of 21 14%); Benzo(k)fluoranthene (3 of 21 14%); Chrysene (3 of 21 14%); Fluoranthene (5 of 21 24%); Indeno(1,2,3-cd)pyrene (4 of 21 19%); Phenanthrene (4 of 21 19%); Pyrene (5 of 21 24%)	Benzo(a)pyrene (13 2 of 21 9.5%)	Benzo(b)fluoranthene (1.7 1 of 21 4.8%)		Indeno(1,2,3-cd)pyrene (0.69 3 of 21 14%)			Anthracene A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Chrysone - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1; PCBs - B1	
CDB-SMA-0.15	04-004	Upper Canada del Buey Aggregate Area	Aroclor-1260 (1 of 18 5.6%)							Aroclor-1260 - A1	
M-SMA-13	05-001(c)	Lower Mortandad/Cedro									
M-SMA-12.6	05-004	Lower Mortandad/Cedro	Benzoic Acid (5 of 28 18%); Methylene Chloride (3 of 20 15%)							Benzoic Acid - A1; Methylene Chloride - C1	
M-SMA-12.5	05-005(b)	Lower Mortandad/Cedro									
M-SMA-12.5	05-006(c)	Lower Mortandad/Cedro Canyons	Acetone (2 of 18 11%); Aroclor-1260 (3 of 18 17%); Isopropyltoluene[4-] (5 of 18 28%); Methylene Chloride (7 of 18 39%); Tetrachlorodibenzofuran[2,3,7,8-] (1 of 18 5.6%); Toluene (5 of 18 28%); Trimethylbenzene[1,2,4-] (1 of 18 5.6%)							Acetone - C1; Aroclor-1260 - A1; Isopropyltoluene[4] - C1; Methylene Chloride - C1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Toluene - C1; Trimethylbenzene[1,2,4-] - C1	
2M-SMA-3	07-001(a)	Twomile Canyon	Benzoic Acid (1 of 12 8.3%)							Benzoic Acid - A1	

	Table 8 Summary of Evaluation of Organic Data in Shallow Soil Samples											
				Organic Constituents Detected Above Residential SSLs Organic Constituents			nts Detected Above 10% of Residential SSLs			Constituents Site Related?		
								Stormwater Analytes				Potential Significant
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Exceeding TALs		Yes	No ¹	Industrial Materials
2M-SMA-3	07-001(b)	Twomile Canyon	Benzo(a)anthracene (1 of 12[8.3%); Benzo(k)fluoranthene (1 of 12[8.3%); Chloronaphthalene[2-] (1 of 12[8.3%); Dichlorobenzene[1,2-] (1 of 12[8.3%); Dichlorobenzene[1,3-] (1 of 12[8.3%); Dichlyriphthalate (1 of 12[8.3%); Di-n-octylphthalate (1 of 12[8.3%); Hexachlorobenzene (1 of 12[8.3%); Phenanthrene (1 of 12[8.3%); Pyrene (1 of 12[8.3%); RDX (5 of 12]42%); Tetryl (1 of 12[8.3%); Trichlorobenzene[1,2,4-] (1 of 12[8.3%)						RDX; Tetryl		Benzo(a)anthracene - A1; Benzo(k)fluoranthene - A1; Chloronaphthalene[2-] - A1; Dichlorobenzene[1,2-] - C1; Dichlorobenzene[1,3-] - C1; Diethylphthalate - A1; Di-n-octylphthalate - A1; Hexachlorobenzene - A1; Phenanthrene - A1; Pyrene - A1; Trichlorobenzene[1,2,4-] - A1	
PJ-SMA-3.05	09-004(o)	Starmer/Upper Pajarito	HMX (2 of 2 100%)				HMX (0.17 1 of 2 50%)		нмх			HE
B-SMA-0.5	10-004(a)	Canyon Bayo Canyon	Acetone (1 of 5/20%): Methylene Chloride (1 of 5/20%)								Acetone - C1: Methylene Chloride - C1	
W-SMA-10	11-005(a)	S-Site Aggregate Area	Acetone (2 of 9 22%); HMX (1 of 9 11%); Methylene Chloride (2 of 9 22%)						HMX		Acetone - C1; Methylene Chloride - C1	
W-SMA-10	11-005(b)	S-Site Aggregate Area	Benzo(a)pyrene (1 of 8 12%); Benzo(b)fluoranthene (2 of 8 25%); Benzo(k)fluoranthene (1 of 8 12%); Benzoic Acid (1 of 8 12%); Bis(2-ethylhexyl)phthalate (1 of 8 12%); Chrysene (1 of 8 12%); Fluoranthene (1 of 8 12%); HMX (6 of 8 75%); Pyrene (1 of 8 12%); Trichloroethane[1,1,1-] (1 of 8 12%); Trichloroethene (2 of 8 25%)			Benzo(a)pyrene (0.16 1 of 8 12%)			HMX		Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene A1; Benzoic Acid - A1; Bis(2- ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Pyrene - A1; Trichloroethane[1,1,1-] - C1; Trichloroethene - C1	
W-SMA-9.8	11-005(c)	S-Site Aggregate Area	Acenaphthene (1 of 13]7.7%); Acetone (2 of 13]15%); Benzo(a)anthracene (1 of 13]7.7%); Benzo(a)pyrene (1 of 13]7.7%); Benzo(b)fluoranthene (1 of 13]7.7%); Chrysene (1 of 13]7.7%); Fluoranthene (1 of 13]7.7%); HMX (6 of 13]46%); Isopropyltoluene[4-] (1 of 13]7.7%); Methylene Chloride (3 of 13]23%); Phenanthrene (1 of 13]7.7%); Prene (1 of 13]7.7%); RDX (1 of 13]7.7%); Trichloroethane[1,1,1-] (1 of 13]7.7%); Trichloroethene (2 of 13]15%)			Benzo(a)pyrene (0.15 1 of 13 7.7%)			HMX; RDX		Acenaphthene - A1; Acetone - C1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Isopropytloluene[4-] - C1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; Trichloroethane[1,1,1-] - C1; Trichloroethene - C1	
W-SMA-9.9	11-006(b)	S-Site Aggregate Area	Acetone (5 of 22 23%); Bis(2-ethylhexyl)phthalate (6 of 23 26%); Fluoranthene (2 of 23 8,7%); HMX (15 of 23 65%); Isopropyltoluene[4-] (2 of 22 9.1%); RDX (2 of 23 8.7%); Toluene (3 of 23)14%); Acet (3 of 23)14% (HMX; RDX		Acetone - C1; Bis(2-ethylhexyl)phthalate, - A1; Fluoranthene - A1; 4-Isopropyltoluene - C1; Pyrene - A1: Toluene - C1:	
W-SMA-10	11-006(c)	S-Site Aggregate Area	Acenaphthene (4 of 23)17%); Acetone (4 of 20)20%); Benzo(b)fluoranthene (4 of 23)17%); Benzoic Acid (6 of 23)26%); Bis(2-ethylhexyl)phthalate (3 of 23)13%); Fluoranthene (3 of 23)13%); HMX (18 of 23)78%); Isopropyltoluene(4); (2 of 20)10%); Methylene Chloride (2 of 20)10%); Pyrene (3 of 23)13%); RDX (2 of 23)8.7%)						HMX; RDX		Accnaptithere - A1; Acetone - C1; Benzo(b)fluoranthere - A1; Benzoic Acid - A1; Bis(2- ethylhexyl)pithalate - A1; Fluoranthere - A1; Isopropyloluene[4-] - A1; Methylene Chloride - C1; Pvrene - A1	
W-SMA-10	11-006(d)	S-Site Aggregate Area	Anthracene (2 of 10)20%); Benzo(a)anthracene (2 of 10)20%); Benzo(a)pyrene (2 of 10)20%); Benzo(b)fluoranthene (3 of 10)30%); Benzo(g,h))perylene (2 of 10)20%); Benzoic Acid (1 of 10)10%); Bicze-thylhexyl)phthalate (2 of 10)20%); Bunzone[2-1 (1 of 8)12%); Chrysene (2 of 10)20%); Dichloroethene[1,1-] (1 of 8)12%); Fluoranthene (2 of 10)20%); Dichloroethene[1,1-] (1 of 8)12%); Fluoranthene (2 of 10)20%); Indeno(1,2,3-cd)pyrene (2 of 10)20%); Isopropyltoluene[4-] (1 of 8)12%); Phenanthrene (2 of 10)20%); Pyrene (2 of 10)20%); RDX (1 of 10)10%)	Benzo(a)pyrene (2.6 1 of 10 10%)			Benzo(a)anthracene (0.35 1 of 10 10%); Benzo(b)fluoranthene (0.5 2 of 10 20%); Indeno(1,2,3-od)pyrene (0.16 1 of 10 10%)		HMX; RDX		Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a,h)perylene - A1; Benzo(b)fluoranthene - A1; Biso(2- ethylhexyl)phthalate - A1; Butanone[2-] - C1; Chrysene - A1; Dichloroethene[1,1-] - C1; Fluoranthene - A1; Indend(1,2,3-cd)pyrene - A1; Isopropyloluene[4-] - C1; Phenanthrene - A1; Purgeo A1	
W-SMA-9.7	11-011(a)	S-Site Aggregate Area	Acenaphthene (1 of 11]9.1%); Acetone (2 of 11]18%); Anthracene (2 of 11]18%); Benzo(a)anthracene (2 of 11]18%); Benzo(a)pyrene (4 of 11]36%); Benzo(b)fluoranthene (4 of 11]36%); Benzo(g),hi)perylene (4 of 11]36%); Butanone[2-] (1 of 11]9.1%); Ethylbenzene (1 of 11]9.1%); Chrysene (5 of 11]45%); Dichloroethene[1,1-] (1 of 11]9.1%); Ethylbenzene (1 of 11]9.1%); Chrysene (5 of 11]45%); Dichloroethene[1,1-] (1 of 11]9.1%); Ethylbenzene (1 of 11]9.1%); Fluoranthene (6 of 11]55%); Fluorene (1 of 11]9.1%); Indeno(1,2,3-cd)pyrene (4 of 11]36%); Isopropyltoluene[4-] (2 of 11]18%); Methylene Chloride (2 of 11]18%); Phenanthrene (3 of 11]27%); Pyrene (6 of 11]55%); Styrene (1 of 11]9.1%); Tulouene (3 of 11]27%); Trichloroethene (1 of 11]9.1%); Xylene[1,3-]+Xylene[1,4-] (1 of 11]9.1%)	Benzo(a)pyrene (1 1 of 11 9.1%)			Benzo(b)fluoranthene (0.17 2 of 11 18%				Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h)perylene - A1; Butanone[2-] - C1; Chloroform - C1; Chrysene - A1; Dichloroethene[1,1-] - C1; Ethylbenzene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Supropyltoluene[4-] - C1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; Styrene - C1; Toluene - C1; Trichloroethene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
W-SMA-9.7	11-011(b)	S-Site Aggregate Area	Acenaphthene (1 of 11]9.1%); Acetone (1 of 11]9.1%); Anthracene (3 of 11]27%); Benzo(a)anthracene (3 of 11]27%); Benzo(a)pyrene (3 of 11]27%); Benzo(b)fluoranthene (4 of 11]36%); Benzo(g),h)perylene (3 of 11]27%); Chrysene (3 of 11]27%); Sporpoyltoluene[4-] (11]36%); Fluorene (1 of 11]9.1%); Indeno(12,3-col)pyrene (3 of 11]27%); Sporpoyltoluene[4-] (1 of 11]9.1%); Methylene Chloride (3 of 11]27%); Methylnaphthalene[2-] (1 of 11]9.1%); Phenanthrene (3 of 11]27%); Pyrene (4 of 11]36%); Styrene (1 of 11]9.1%); Toluene (2 of 11]18%)	Benzo(a)pyrene (3.3 2 of 11 18%)			Benzo(a)anthracene (0.22]2 of 11 18%); Benzo(b)fluoranthene (0.48]2 of 11 18%); Indeno(1.2,3-cd)pyrene (0.26 1 of 11 9.1%)				Acenaphthene - A1; Acetone - C1; Anthracene - A1; Berzo(a)anthracene - A1; Berzo(a)pyrene - A1; Berzo(b)fluoranthene - A1; Berzo(g,h,i)perylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Methylnaphthalene[2-] - A1; Phenanthrene - A1; Pyrene - A1; Styrene - C1; Toluene - C1	
W-SMA-10	11-011(d)	S-Site Aggregate Area	Benzo(a)anthracene (1 of 5 20%); Benzo(a)pyrene (1 of 5 20%); Benzo(b)fluoranthene (2 of 5 40%); Chrysene (2 of 5 40%); Fluoranthene (2 of 5 40%); HMX (1 of 5 20%); Pyrene (2 of 5 40%)			Benzo(a)pyrene (0.1 1 of 5 20%)			НМХ		Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1	
CDV-SMA-2.3; W- SMA-8.7	13-001	S-Site Aggregate Area	Acenaphthene (5 of 29)17%); Anthracene (5 of 29)17%); Benzo(a)anthracene (11 of 29)38%); Benzo(a)pyrene (9 of 29)31%); Benzo(b)fluoranthene (12 of 29)41%); Benzo(g),h)perylene (6 of 29)21%); Benzo(g),h)perylene (7 of 29)21%); Benzo(g),h)perylene (7 of 29)21%); Denzo(g),h)perylene (7 of 29)21%); Denzo(g),h)perylene (2 of 29)38%); Dir-butyiphthalate (2 of 29)6,9%); Fluoranthene (11 of 29)38%); HMX (2 of 29)6,9%); Indeno(1,2,3-od)pyrene (7 of 29)24%); Phenanthrene (10 of 29)34%); Pyrene (12 of 29)41%)	Benzo(a)pyrene (1.3 1 of 29 3.4%)			Benzo(a)anthracene (0.1 1 of 29[3.4%); Benzo(b)fluoranthene (0.16 1 of 29[3.4%)		НМХ		Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Blazo(g,h,j)eerylene - A1; Benzo(k)fluoranthene - A1; Bls(2- ethylhexyl)phthalate - A1; Chrysene - A1; Di-n- butylphthalate - A1; Fluoranthene - A1; HMX (2 of 29(6.9%); Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1	
CDV-SMA-2.3; W- SMA-8.7	13-002	S-Site Aggregate Area	Acenaphthene (2 of 8 25%); Acetone (2 of 8 25%); Benzo(a)anthracene (1 of 8 12%); Benzo(a)pyrene (1 of 8 12%); Benzo(b)fluoranthene (1 of 8 12%); Benzo(g,h,i)perylene (1 of 8 12%); Chrysene (1 of 8 12%); Fluoranthene (2 of 8 25%); Indeno(1,2,3-cd)pyrene (1 of 8 12%); Wethylene Chloride (5 of 8 62%); Phenanthrene (2 of 8 25%); Pyrene (2 of 8 25%); Toluene (2 of 8 25%); Trichloroethane[1,1,1-] (2 of 8 25%); Trichloroethene (4 of 8 50%)			Benzo(a)pyrene (0.26 1 of 8 12%)					Acenaphthene - A1; Acetone - C1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Chrysene -A1; Ibuoranthene - A1; Indeno(1,2,3- cd)pyrene - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene- A1; Toluene - C1; Trichloroethane[1,1,1-] - C1; Trichloroethene - C1	
CDV-SMA-6.01	14-001(g)	Canon de Valle Aggregate Area TA-14	Benzene (5 of 15 33%); Bis(2-ethylhexyl)phthalate (3 of 30 10%); HMX (11 of 30 37%); Isopropyltoluene[4-] (2 of 15 13%); Toluene (5 of 15 33%); Trichloroethene (2 of 15 13%)						НМХ		Benzene - C1; Bis(2-ethylhexyl)phthalate - A1; Isopropyltoluene[4-] - A1; Toluene - A1; Trichloroethene - C1	

				Table 8 Su	Immary of Evaluation of Organic	: Data in Shallow Soil Sa	amples				
				Organic Constituents	Detected Above Residential SSLs	Organic Constituents D	etected Above 10% of Residential SSLs		Constitu	uents Site Related?	
								Stormwater Analytes		1	Potential Significant
SMA CDV-SMA-6.01	Site 14-006	Aggregate Area Canon de Valle Aggregate Area TA-14	Frequency of Detects Acenaphthene (4 of 11)36%); Amino-2,6-chintrotoluene[4-] (1 of 11]9.1%); Amino-4,6- dinitrotoluene[4-] (1 of 11]9.1%); Anthracene (3 of 11]27%); Benzo(a)anthracene (4 of 11]36%); Benzo(a)pyrene (4 of 11]36%); Benzo(b)fluoranthene (5 of 11]45%); Benzo(g,h)perylene (4 of 11]36%); Benzo(k)fluoranthene (4 of 11]36%); Bis(2- ethylhexyl)phthalate (2 of 11]136%); Denzel(4 of 11]36%); Dibenz(a,h)anthracene (2 of 11]18%); Dibenzofuran (3 of 11]27%); Fluoranthene (6 of 11]55%); Fluorene (3 of 11]27%); HMX (10 of 11]91%); Indeno(1,2,3-cd)pyrene (4 of 11]36%); Methylnaphthalene[2-] (2 of 11]18%); Naphthalene (2 of 11]18%); Fhenanthrene (4 of 11]36%); Pyrene (6 of 11]55%); RDX (2 of 11]18%); Trinitrotoluene[2,4,6-] (4 of 11]36%)	TAL List Benzo(a)pyrene (62 3 of 11 27%	 Benzo(a)anthracene (8.1]2 of 11 18%); Benzo(b)fluoranthene (8.8]3 of 11 27%); Dibenz(a,h)anthracene (9.5 2 of 11 28%); Indeno(1,2,3-cd)pyrene (3.8 1 of 11 9.1%) 	TAL List	Non-TAL List Benzo(k)/flouranthene (0.32 1 of 11 9.1%)	Exceeding TALs	Yes Amino-2,6-dinitrotoluene[4-]; Amino-4,6- dinitrotoluene[2-]; HMX; RDX; Trinitrotoluene[2,4,6-]	No ^o Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Dienz(a)ran - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Methylanpthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1); Pyrene - A1;	Industrial Materials
PT-SMA-1	15-004(f)	Potrillo/Fence Aggregate Area									
CDV-SMA-9.05	15-007(b)	Cañon de Valle	Anthracene (1 of 13]7.7%); Benzo(a)anthracene (2 of 13 15%); Benzo(a)pyrene (1 of 13]7.7%); Benzo(b)fluoranthene (1 of 13]7.7%); Benzo(g,h,i)perylene (1 of 13]7.7%); Bis(2-ethylhexyl)phthalate (4 of 13]31%); Chrysene (2 of 13]15%); Din-butylphthalate (1 of 13]7.7%); Fluoranthene (4 of 13]31%); Indeno(1,2,3-cd)pyrene (1 of 13]7.7%); Phenanthrene (2 of 13]15%); Pyrene (4 of 13]31%)	Benzo(a)pyrene (3.3 1 of 13 7.7%)	Benzo(a)anthracene (2.8 1 of 13 7.7%)		Benzo(b)fluoranthene (0.66 1 of 13 7.7%); Indeno(1,2,3-cd)pyrene (0.34 1 of 13 7.7%)				
PT-SMA-1	15-008(a)	Potrillo/Fence Aggregate Area	Acenaphthene (6 of 24 25%); Acetone (8 of 24 33%); Bis(2-ethylhexyl)phthalate (13 of 24 54%); Di-n-butylphthalate (3 of 24 12%); Isopropyltoluene(4-) (3 of 24 12%); Methylene Chloride (7 of 24 29%); Tetrachlorodibenzodioxin[2,3,7,8-] (1 of 2 50%)							Acenaphthene - A1; Acetone - C1; Bis(2- ethylhexyl)phthalate - A1; Di-n-butylphthalate - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Tetrachlorodibenzodioxin[2,3,7,8-] - A1	
3M-SMA-0.6	15-008(b)	Threemile Aggregate Area	Aroclor-1254 (20 of 40 50%); Aroclor-1260 (16 of 40 40%); Aroclor-1268 (3 of 3 100%); HMX (17 of 162 10%); TATB (13 of 162 8%)				Aroclor-1254 (0.13 1 of 40 2.5%)		HMX; TATB	Aroclor-1254 - A1; Aroclor-1260 - A1; Aroclor-1268 - A1	
PT-SMA-2	15-008(f)	Potrillo/Fence Aggregate Area	a Toluene (4 of 20)20%)							Toluene - C1	
3M-SMA-0.5	15-009(c)	Threemile Aggregate Area	Acetone (5 of 36)14%); Benzo(a)anthracene (2 of 35)5.7%); Benzo(a)pyrene (2 of 35)5.7%) Benzo(b)fluoranthene (2 of 35)5.7%); Chrysene (2 of 35)5.7%); Fluoranthene (2 of 35)5.7%) Isopropytioune[4-] (5 of 37]14%); Phananthrene (2 of 35)5.7%); Pyrene (2 of 35)5.7%); Toluene (7 of 37)19%); Xylene[1,3-]+Xylene[1,4-] (2 of 28)7.1%)	:		Benzo(a)pyrene (0.26 2 of 35 5.7%)				Acetone - C1; Benzo(a)anthracene - A1; Benzo(a)pyrene (- A1; Benzo(b)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Isopropyltoluene[4-] - C1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
PT-SMA-0.5	15-009(e)	Potrillo/Fence Aggregate Area	a Benzo(a)anthracene (1 of 8 12%); Benzo(a)pyrene (1 of 8 12%); Benzo(b)fluoranthene (3 of 8 38%); Benzo(k)fluoranthene (1 of 6 17%); Chrysene (1 of 8 12%); Fluoranthene (1 of 8 12%); Isopropytoluene[4-] (1 of 8 12%); Pyrene (1 of 8 12%); Toluene (1 of 8 12%)	f		Benzo(a)pyrene (0.32 1 of 8 12%)				Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Chrysne - A1; Fluoranthene - A1; Isopropyltoluene[4-] - C1; Pyrene - A1; Toluene - C1	
3M-SMA-0.2	15-010(b)	Threemile Aggregate Area	Acetone (7 of 17 41%); Aroclor-1254 (2 of 4 50%); Aroclor-1260 (1 of 4 25%); Benzo(a)anthracene (3 of 17 18%); Benzo(a)pyrene (3 of 17 18%); Benzo(b)fluoranthene (1 of 17 5.9%); Benzo(K)fluoranthene (1 of 17 5.9%); Bizeruty(histy)phthalate (2 of 17 12%); Chrysene (3 of 17 18%); Dichloroethene[1,1-] (1 of 17 5.9%); Di-n-buty(phthalate (5 of 17 12%); University (3 of 17 18%); Dichloroethene[1,1-] (1 of 17 5.9%); Di-n-buty(phthalate (5 of 17 12%); University (3 of 17 18%); Methylene Chloride (5 of 17 29%); Phenanthrene (3 of 17 18%); Pyrene (5 of 17 29%); Styrene (1 of 17 5.9%); Tetrachloroethene (1 of 17 5.9%); Toluene (6 of 17 35%); Xylene[1,3-]+Xylene[1,4-] (2 of 17 12%)			Benzo(a)pyrene (0.21 2 of 17 12%)				Acetone - C1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fuoranthene - A1; Benzo(k)fuoranthene- A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Dichloroethene11, 1-J C1; Din-Dutylphthalate - A1; Fluoranthene - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; Styrene - C1; Tetrachloroethene - C1; Toluene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
CDV-SMA-8	15-011(c)	Cañon de Valle	Acetone (2 of 2 100%); Methylene Chloride (1 of 2 50%); Trichlorofluoromethane (1 of							Acetone - C1; Methylene Chloride - C1;	
CDV-SMA-8.5	15-014(a)	Cañon de Valle	(2)00%) Acetone (2 of 3)67%); Dichlorobenzene[1,3-] (1 of 8)12%); Methylene Chloride (2 of 3)67%) Toluene (1 of 3)33%); Xylene (Total) (2 of 3)67%)	,						Acetone - C1; Dichlorobenzene[1,3-] - C1; Methylene Chloride - C1; Toluene - C1; Xylene (Total) - C1	
W-SMA-5	16-001(e)	S-Site Aggregate Area	Acenaphthene (4 of 4 100%); Amino-2,6-dinitrotoluene[4-] (3 of 4 75%); Amino-4,6- dinitrotoluene[2-] (1 of 4 25%); Anthracene (4 of 4 100%); Benzo(a)anthracene (4 of 4 100%); Benzo(a)pyrele (4 of 4 100%); Fluoranthene (4 of 4 100%); Fluorene (4 of 4 100%); Fluorenthene (4 of 4 100%); Fluorene (4 of 4 100%); Fluorenthene (4 of 4 100%); Fluorene (4 of 4 100%); Fluorenthene (4 of 4 100%); Fluorene (4 of 4 100%); Fluorenthene (4 of 4 100%); Fluorene (4 of 4 100%); Flu	Benzo(a)pyrene (3.7 2 of 4 50%)			Benzo(a)anthracene (0.35 1 of 4 25%); Benzo(b)fluoranthene (0.4]3 of 4 75%); Dibenz(a,h)anthracene (0.63 4 of 4 100%); Indeno(1,2,3-cd)pyrene (0.22 1 of 4 25%)		4-Amino-2,6-dinitrotoluene; 2-Amino-4,6- dinitrotoluene; RDX	Acenaphthene - A1; Anthracene - A1; Benzco(a)anthracene - A1; Benzco(a)pyrene - A1; Benzco(b)fuoranthene - A1; Benzco(g,h.i)perylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorane - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene- A1; Phenanthrene - A1; Pyrene - A1	
W-SMA-4.1	16-003(a)	Upper Water Canyon	Acenaphthene (3 of 9]33%); Anthracene (6 of 9]67%); Benzo(a)anthracene (6 of 9]67%); Benzo(a)pyrene (7 of 9]78%); Benzo(b)fluoranthene (6 of 9]68%); Benzo(g,h,i)perplene (7 o 9]78%); Benzo(k)fluoranthene (6 of 9]67%); Benzo(a coil (4 of 9]44%); Bis(2- ethythexyl)phthalate (1 of 9]11%); Chrysene (6 of 9]67%); Dibenz(a,h)anthracene (4 of 9]44%); Fluoranthene (9 of 9]100%); Fluorene (3 of 9]33%); Indeno(1,2,3-cd)pyrene (6 of 9]67%); Methylene Chioride (2 of 2]100%); Methythenol[4-] (2 of 9]22%); Naphthalene (2 of 9]22%); Phenanthrene (9 of 9]100%); Pyrene (9 of 9]100%); Trichlorofluoromethane (2 of 2]100%)	Benzo(a)pyrene (8.8 6 of 9 67%) f	Benzo(b)fluoranthene (1.3 1 of 9 11%); Dibenz(a,h)anthracene (1.1 1 of 9 11%)		Benzo(a)anthracene (0.68 6 of 9 67%); Indeno(1,2,3-cd)pyrene (0.59 6 of 9 67%)			Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fuoranthene - A1; Benzo(a,h)perylene - A1; Benzo(k)fluoranthene - A1; Benzo(a Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-col)pyrene - A1; Methylene Choirde - C1; Methylphenol[4]- A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Trichlorofluoromethane - C1	
W-SMA-5	16-003(f)	S-Site Aggregate Area	Acenaphthene (1 of 1 100%); Anthracene (1 of 1 100%); Benzo(a)anthracene (1 of 1 100%) Benzo(a)pyrene (1 of 1 100%); Benzo(b)fluoranthene (1 of 1 100%); Benzo(g,h,i)perylene (of 1 100%); Chrysene (1 of 1 100%); Dibenz(a,h)anthracene (1 of 1 100%); Fluoranthene (1 of 1 100%); Fluorene (1 of 1 100%); Indeno(1,2,3-cd)pyrene (1 of 1 100%); Phenanthrene (of 1 100%); Pyrene (1 of 1 100%); Xylene[1,2-] (1 of 1 100%)	; 1 1		Benzo(a)pyrene (0.22 1 of 1 100%)	Dibenz(a,h)anthracene (0.27 1 of 1 100%)			Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h.i)perylene - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1; Xylene[1,2-] - C1	

				Table 8 Su	mmary of Evaluation of Organic	Data in Shallow Soil San	nples				
				Organic Constituents Detected Above Residential SSLs Organic Constituents Detected			ected Above 10% of Residential SSLs	Stormwater	Constitu	uents Site Related?	
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Analytes Exceeding TALs	Yes	No ¹	Potential Significant Industrial Materials
CDV-SMA-2:3	16-003(0)	S-Site Aggregate Area	Acenaphthene (38 of 115)(33%); Acetone (12 of 43)28%); Amino-2,6-dinitrotoluene[4-] (6 of 54(9.3%); Anthracene (46 of 115)(40%); Benzo(a)hthracene (46 of 115)(40%); Benzo(a)pyrene (59 of 115)(51%); Benzo(a)hthracene (46 of 115)(123%); Belnzoic Acid (6 of 55)(11%); Bis(2-ethylhex)(phthatalet (16 of 55)(33%); Butanone[2-] (4 of 43)(9.3%); Chrysene (53 of 115)(45%); Dibenz(a,h)anthracene (10 of 115)(8.7%); Dibenzofuran (11 of 55)(20%); Dichloroethene[1,1-] (3 of 43)(7%); Ethylbenzene (3 of 43)(7%); Fluoranethene (72 of 115)(53%); Fluorene (35 of 115)(30%); HMX (31 of 54)(57%); Indeno(1,2,3-cd)pyrene (48 of 115)(53%); Isopropyltoluene[4-] (4 of 43)(9.3%); Methylnaphtalene[2-] (30 of 115)(26%); Methylphenol[4-1] (3 of 55)(55%); Naphthatene (30 of 115)(26%); Phenanthrene (62 of 115)(54%); Pyrene (68 of 115)(59%); RDX (24 of 54)(44%); Tetrachloroethene (6 of 43)(14%); Trinitrotoluene[2,4,6-] (8 of 54)(15%); Xylene[1,2-] (5 of 37)(14%); Xylene[1,3-]+Xylene[1,4-] (5 of 37)(14%)	Benzo(a)pyrene (180/33 of 115/29%); RDX (1 1 of 54 1.9%)	Idenzo(a)anthracene (18 15 of 115)[3%); Benzo(b)fluoranthene (26 18 of 115][6%) Dibenz(a,h)anthracene (20 8 of 115][7%); Indeno(1,2,3-cd)pyrene (8.9 8 of 115][7%)	K	Benzo(k)filoranthene (0.88)/ of 115[6.1%); Bis(2-ethylhexyl)phthalate (0.16)2 of 55[3.6%); Chrysene (0.24)4 of 115[3.5%); Naphthalene (0.25]3 of 115[2.6%)		4-Amno-2,6-dinitrolouene; Bis(2- ethylhex)(phthalate; HMX; RDX; Tetryl; 2,4,6-Trinitrotoluene;	Accmaphthene - A1; Acctone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethylhexy)phthalate - A1; Butanone[2-] - C1; Chrysene - A1; Dichoroethene[1,1-] - C1; Ethylbenzzene - A1; Fluoranthene - A1; Isopropyltoluene[4] - A1; Methylnaphthalene[2-] - A1; Methylaphtnalene[2-] - A1; Methylaphtnalene[2-] - A1; Methylaphtnalene - A1; Pyrene - A1; Totrachloroethene - C1; Toluene - C1; Trichloroethene - C1; Xylene[1,2-] - C1; Xylene[1,3-]+Xylene[1,4-] - C1	- -
W-SMA-7.9	16-006(c)	Upper Water Canyon	Acetone (1 of 4 25%); Anthracene (1 of 7 14%); Benzo(a)anthracene (1 of 7 14%); Benzo(a)pyrene (1 of 7 14%); Benzo(b)fluoranthene (1 of 7 14%); Benzo(g,h,i)perylene (1 of 7 14%); Benzo(k)fluoranthene (1 of 6 17%); Benzoic Acid (4 of 7 57%); Bis(2- ethylhexyl)phthalate (1 of 7 14%); Chrysene (1 of 7 14%); Dichlorobenzene[1,4-] (1 of 119,1%); Di-n-butylphthalate (1 of 7 14%); Fluoranthene (2 of 7 29%); Indeno(1,2,3- cd)pyrene (1 of 7 14%); Isopropylbunene[4-] (1 of 4 25%); Methylene Chloride (2 of 4 50%); Naphthalene (1 of 8 12%); Phenanthrene (1 of 7 14%); Pyrene (1 of 7 14%); Toluene (1 of 4 25%)	Benzo(a)pyrene (1 1 of 7 14%)			Benzo(a)anthracene (0.11 1 of 7 14%); Benzo(b)fluoranthene (0.13 1 of 7 14%)			Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pyrene - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Dichlorobenzene[1,4] - C1; Din-butylphthalate - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	:
CDV-SMA-2.51	16-010(i)	Cañon de Valle	Acetone (5 of 8 62%); Amino-2,6-dinitrotoluene[4-] (11 of 16 69%); Amino-4,6- dinitrotoluene[2-] (11 of 16 69%); Bis(2-ethylhexyl)phthalate (1 of 15 6.7%); Dichloroethane[1,2-] (1 of 8 12%); Dinitrobenzene[1,3-] (1 of 16 6.2%); Dinitrotoluene[2,4-] (12 of 31 39%); Fluoranthene (1 of 15 6.7%); HMX (16 of 16 100%); Isopropyltoluene[4-] (2 of 8 25%); Methylene Chloride (1 of 8 12%); Nitrosodimethylamine[N-] (1 of 15 6.7%); Nitrotoluene[2-] (2 of 16 12%); Nitrotoluene[4-] (1 of 16 6.2%); Phenanthrene (1 of 15 6.7%); RDX (14 of 16 88%); Tetryl (1 of 16 6.2%); Toluene (1 of 8 12%); Trinitrobenzene[1,3,5-] (7 of 16 44%); Trinitrobuene[2-4,6-] (1 of 16 6.1%); Toluene[2-4,6-]	RDX (180 5 of 16 31%); Trinitrotoluene[2,4,6-] (53 3 of 16 19%)	HMX (1.2 1 of 16 6.2%); Nitrosodimethylamine[N-] (15 1 of 15 6.7%	%)	Amino-4,6-dinitrotoluene[2-] (0.13 1 of 16]6,2%); Dinitrotoluene[2.4] (0.19 1 of 31]3.2%); Nitrotoluene[2-] (0.1 1 of 16]6.2%)				
CDV-SMA-1.7	16-019	Cañon de Valle	Acetone (1 of 1 100%); Amino-2,6-dinitrotoluene[4-] (5 of 21 24%); Amino-4,6- dinitrotoluene[2-] (5 of 21 24%); Amino-DNTs (2 of 38 5,3%); Bis(2-ethylhexyl)phthalate (4 of 58 6,9%); Di-h-butylphthalate (10 of 58 17%); HIMX (9 of 59 15%); Phenanthrene (5 of 58 8,6%); DBX (22 of 59 37%); Tinitroluene[2 4, 6-1 (9 of 59 15%))	RDX (26 4 of 59 6.8%); Trinitrotoluene[2,4,6-] (18 1 of 59 1.7%)				RDX	Amino-2,6-dinitrotoluene[4-]; Amino-4,6- dinitrotoluene[2-]; HMX; RDX; Trinitrotoluene[2,4,6-]	Acetone - C1; Di-n-butylphthalate - A1	HE
CDV-SMA-1.4	16-020	Cañon de Valle	Acenaphthene (3 of 25 12%); Acetone (12 of 21 57%); Anthracene (4 of 25 16%); Benzo(a)anthracene (11 of 25 44%); Benzo(a)pyrene (11 of 25 44%); Benzo(b)fluoranthene (0 of 25 56%); Benzo(b)fluoranthene (0 of 25 56%); Benzo(b)fluoranthene (10 of 25 64%); Bis(2-ethylhexyl)phthalate (4 of 25 16%); Chrysene (13 of 25 52%); Fluoranthene (14 of 25 55%); Fluorene (3 of 25 12%); Indeno(1,2,3-c0)pyrene (8 of 25 52%); Fluoranthene (14 of 25 56%); Methylene Chloride (10 of 21 48%); Methylpheno[3-] (1 of 19 5.3%); Naphthalene (2 of 25 8%); Phenanthrene (14 of 25 56%); Pyrene (18 of 25 72%); Toluene (4 of 21 19%); Trichlorofluoromethane (14 of 21 67%)	Benzo(a)pyrene (21 6 of 25 24%)	Benzo(a)anthracene (1.7 1 of 25 4%); Benzo(b)fluoranthene (2.3 2 of 25 8%)		Benzo(k)fluoranthene (0.18 1 of 25(4%); Indeno(1,2,3-cd)pyrene (0.95)4 of 25(16%)			Accnaphthene - A1; Acetone - C1; Amino-4,6- dinitrotoluene[2-] - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),h)perylene - A1; Benzo(k)fluoranthene - A1; Bics ethylhexyl)phthalate - A1; Chrysene- A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Sopropyltoluene[4-]- C1; Methylene Chloride - C1; Methylphenol[3-] - A1; Naphthalene - A1; Nitrotoluene[2-] - A1; Nitrotoluene[4-] - A1; Phenanthrene - A1; Pyrene - A1; RDX - A1; Toluene - C1: Trichlordfloor	
CDV-SMA-2	16-021(c)	Cañon de Valle	Acetone (3 of 14 21%); Amino-2,6-dinitrotoluene[4-] (3 of 14 21%); Amino-4,6- dinitrotoluene[2-] (3 of 14 21%); Benzoic Acid (1 of 14 7.1%); Di-n-butylphthalate (1 of 14 7.1%); Dinitrotoluene[2,4-] (5 of 29 18%); HMX (12 of 13 22%); Isopropyltoluene[4-] (2 of 14 14%); Naphthalene (1 of 14 7.1%); RDX (6 of 14 43%); Toluene (1 of 14 7.1%); Trichlorofluoromethane (1 of 14 7.1%); Tinitrobenzene[1,3,5-] (1 of 14 7.1%); Trinitrotoluenel2,4-6 (1 of 14 7.1%);			RDX (0.42 2 of 14 14%); Trinitrotoluene[2,4,6-] (0.12 1 o 14 7.1%)	HMX (0.51 3 of 13 23%) f		Amino-2,6-dinitrotoluene[4-]; Amino-4,6- dinitrotoluene[2-]; Dinitrotoluene[2,4-]; HMX; RDX; Trinitrobenzene[1,3,5-]; Trinitrotoluene[2,4,6-]	Acetone - C1; Benzoic Acid - A1; Di-n- butylphthalate - A1; Isopropyltoluene[4-] - C1; Naphthalene - A1; Toluene - C1; Trichlorofluoromethane - C1;	HE
W-SMA-5	16-026(b)	S-Site Aggregate Area	Acenaphthene (3 of 8]38%); Acetone (1 of 4]25%); Amino-2,6-dinitrotoluene[4-] (3 of 7]43%); Amino-4,6-dinitrotoluene[2-] (4 of 7]57%); Anthracene (6 of 8]75%); Benzo(aphtracene (3 of 8]38%); Benzo(b); Benzo(aphtracene (3 of 8]37%); Bis(2-ethylhexyl)phthalate (2 of 8]25%); Chrubene (3 of 8]38%); Bis(2-ethylhexyl)phthalate (2 of 8]25%); Din-butylphthalate (1 of 8]12%); Dibenzo(aphtracene (1 of 8]12%); Dibenzo(aphtracene (7 of 8]88%); Methylnaphthalane)[2-] (1 of 8]328%); Methylnaphthalane](2-] (1 of 8]12%); Naphthalaene (1 of 8]12%); Phenanthrene (7 of 8]88%); Pyrene (8 of 8]100%); RDX (1 of 7]14%); Trinitrotoluene](2,4-] (1 of 7]14%)	Benzo(a)pyrene (24 6 of 8 75%)	Benzo(a)anthracene (2.8 1 of 8 12%); Benzo(b)fluoranthene (4.9 2 of 8 25%); Dibenz(a,la)anthracene (4.3 1 of 8 12%); Indeno(1,2,3-cd)pyrene (1.3 1 of 8 12%)				4-Amino-2,6-dinitrotoluene; 2-Amino-4,6- dinitrotoluene; 2,4-Dinitrotoluene, HMX, RDX; 2,4,6-Trinitrotoluene	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)n)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Dienzofuran - A1; Di Dienz(a,h)anthracene - A1; Dienzofuran - A1; Di- n-butylphthalate - A1; Tiuoranthene (8 of 8 100%); Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	-
W-SMA-5	16-026(c)	S-Site Aggregate Area	Acenaphthene (5 of 13)38%); Acetone (1 of 6)17%); Anthracene (7 of 13)54%); Benzo(a)anthracene (10 of 13)77%); Benzo(a)pyrene (11 of 13)65%); Benzo(b)fluoranthene (12 of 13)92%); Benzo(a),i)perylene (9 of 13)69%); Benzo(b)fluoranthene (5 of 13)38%); Benzoic Acid (1 of 13)7.7%); Chrysene (11 of 13)85%); Dibenz(a,h)anthracene (3 of 13)23%); Dibenzofural (2 of 13)15%); Fluoranthene (13 of 13)10%); Fluorene (6 of 13)46%); HMX (1 of 13)7.7%); Indeno(1,2.3-od)pyrene (9 of 13)63%); Methylnaphthalene[2-] (1 of 13)7.7%); Naphthalene (2 of 13)15%); Phenanthrene (11 of 13)85%); Pyrene (13 of 13)10%); RDX (1 of 13)7.7%); Styrene (1 of 6)17%); Trintrotoluene[2,4,6-] (1 of 13)7.7%)	Benzo(a)pyrene (5 4 of 13 31%)			Benzo(a)anthracene (0.49 4 of 13(31%); Benzo(b)fluoranthene (0.62 8 of 13(62%); Dibenz(a,h)anthracene (0.81 3 of 13 23%); Indeno(1,2,3-cd)pyrene (0.3 3 of 13 23%)		HMX; RDX; 2,4,6-Trinitrotoluene	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)prene - A1; Benzo(b)fuoranthene - A1; Benzo(a),hi)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid- A1; Chrysene - A1; Dibenz(a),hanthracene - A1; Dibenzofuran - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2-] A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Styrene - C1	:
W-SMA-5	16-026(d)	S-Site Aggregate Area	Acenaphthene (4 of 17]24%); Amino-2,6-dinitrotoluene[4-] (2 of 17]12%); Amino-4,6- dinitrotoluene[2-] (1 of 17]5.9%); Anthracene (7 of 17]41%); Benzo(a)anthracene (9 of 17]53%); Benzo(a)pyrene (8 of 17]47%); Benzo(b)fluoranthene (8 of 17]47%); Benzo(g,h,i)perylene (7 of 17]41%); Benzo(b)fluoranthene (4 of 17]24%); Benzoic Acid (1 of 17]5.9%); Bis(2-ethylhexyl)phthalate (1 of 17]5.9%); Chrysene (9 of 17]53%); Dibenz(a,h)anthracene (1 of 17]5.9%); Diethylphthalate (1 of 17]5.9%); Di-hotuylphthalate (1 of 17]5.9%); Fluoranthene (9 of 17]53%); Fluorene (4 of 17]24%); HMX (1 of 17]5.9%); Indeno(1,2,3-cdpyrene (7 of 17]41%); Methylnaphthalene[2] (1 of 17]5.9%); RDX (4 of 17]24%); Trinitrotoluene[2,4,6-] (2 of 17]12%)	Benzo(a)pyrene (3.2 3 of 17 18%); RDX (1.9 1 of 17 5.9%)			Benzo(a)anthracene (0.36 4 of 17 24%); Benzo(b)fluoranthene (0.55 4 of 17 24%); Dibenz(a,1)anthracene (0.26)1 of 17 5.9%); Indeno(1,2,3-cd)pyrene (0.15 1 of 17 5.9%)		4-Amino-2,6-dinitrotoluene; 2-Amino-4,6- dinitrotoluene; HMX; RDX; 2,4,6- Trinitrotoluene	Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(c,h.i)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Diethylphthalate - A1; Di-h-butylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,c,3-cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	HE

				Organic Constituents	Detected Above Residential SSLs	Organic Constituents De	etected Above 10% of Residential SSLs				
								Stormwater Analytes		1	Potential Significant
SMA W-SMA-5	Site 16-026(e)	Aggregate Area S-Site Aggregate Area	Frequency of Detects Acenaphthene (3 of 19 16%); Amino-2,6-dinitrotoluene[4-] (6 of 15 40%); Amino-4,6- dinitrotoluene[2-] (5 of 15 33%); Anthracene (4 of 19 21%); Benzo(a)anthracene (7 of 19)37%); Benzo(a)pyrene (7 of 19)37%); Benzo(b)fluoranthene (9 of 19)47%); Benzo(g,h,i)perylene (5 of 19)26%); Benzo(b)fluoranthene (2 of 19)11%); Bis(2- ethylhexyl)phthalate (1 of 19 5.3%); Chrysene (9 of 19)47%); Dibenz(a,h)anthracene (2 of 19)11%); Fluoranthene (10 of 19)53%); Fluorene (3 of 19)16%); IHMX (3 of 15)20%); Indeno(1,2,3-cd)pyrene (5 of 19)26%); Methylene Chloride (1 of 12)8.3%); Phenanthrene (8 of 19)42%); Pyrene (11 of 19)58%); RDX (2 of 15)13%); Tetrachloroethene (2 of 12)17%); Trinitrotoluene[2,4,6-] (6 of 15)40%)	TAL List Benzo(a)pyrene (3.2]3 of 19 16%); RDX (6.5 1 of 15 6.7%)	Non-TAL List	TAL List	Non-TAL List Benzo(a)anthracene (0.32] of 19 16%); Benzo(b)fluoranthene (0.4] of 19 26%); Dibenz(a,h)anthracene (0.74]2 of 19 11%); Indeno(1,2,3-cd)pyrene (0.18 1 of 19 5.3%)	Exceeding TALs	Yes 4-Amino-2,6-dinitrotoluene; 2-Amino-4,6- dinitrotoluene; HMX; RDX; 2,4,6- Trinitrotoluene	No' Acenaphthene - A1;Ahracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2-3c-d)pyrene - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1;Tetrachloroethene - C1	Industrial Materials HE
CDV-SMA-1.45	16-026(i)	Cañon de Valle	Acenaphthene (4 of 4 100%); Acenaphthylene (2 of 4 50%); Acetone (4 of 4 100%); Anthracene (4 of 4 100%); Benzo(a)anthracene (4 of 4 100%); Benzo(a)pyrene (4 of 4 100%); Benzo(b)fluoranthene (4 of 4 100%); Borzo(g,h.i)perylene (3 of 4 75%); Chrysene (4 of 4 100%); Dibenzofuran (4 of 4 100%); Dimethylpheno [2,4-] (2 of 4 50%); Fluoranthene (4 of 4 100%); Fluorene (4 of 4 100%); Indeno(1,2,3-cd)pyrene (3 of 4 75%); Isopropyliouene[4-] (1 of 4 25%); Methylphenol[2-] (4 of 4 100%); Phenanthrene (4 of 4 25%); Methylphenol[4-] (3 of 4 75%); Naphthalene (4 of 4 100%); Phenanthrene (4 of 4 100%); Pyrene (4 of 4 100%); Toluene (2 of 4 50%)	Benzo(a)pyrene (130 4 of 4 100%)	Benzo(a)anthracene (14 4 of 4 100%); Benzo(b)fluoranthene (22 4 of 4 100%); Indeno(1,2,3-cd)pyrene (7.4 2 of 4 50%)		Chrysene (0.16)1 of 4 25%); Naphthalene (0.12 1 of 4 25%)			Acenaphthene - A1; Acenaphthylene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthracene - A1; Benzo(g,h,i)perylene - A1; Chrysene - A1; Dibenzofuran - A1; Dimethylphenol[2,4] - A1; Fluoranthrene - A1; Fluorene - A1; Indeno(12,3- cd)pyrene - A1; Borpropyltoluene[4,-] - C1; Methylphenol[4] - A1; Methylphenol[2,-] A1; Methylphenol[4] - A1; Methylphenol[2,-] A1; Methylphenol[4] - A1; Methylphenol[2,-] A1; Methylphenol[4,-] A1; Methylphenol[4,-] A1; Methylphenol[4,-] A1; Meth	
W-SMA-8.7	16-026(j2)	S-Site Aggregate Area	Acenaphthene (11 of 22[50%); Acetone (3 of 15[20%); Anthracene (11 of 22[50%); Benzo(a)anthracene (12 of 22[55%); Benzo(a)pyrene (14 of 22)64%); Benzo(b)fluoranthene (15 of 22[56%); Benzo(a),i)perylene (13 of 22[59%); Benzo(k)fluoranthene (6 of 22]56%); Benzoic Acid (3 of 22]14%); Butanone[2-] (1 of 15]6.7%); Chrysene (14 of 22]64%); Dibenz(a,h)anthracene (4 of 22]18%); Dibenzofuran (5 of 22]25%); Di-h-butylphthalate (2 of 22]9.1%); Fluoranthene (15 of 22]65%); Fluorene (10 of 22]45%); Indeno(1,2,3-col)pyrene (11 of 22]50%); Isopropylbenzene (1 of 15]6.7%); Isopropylbuluene](4-] (2 of 15]13%); Methylinaphtalene[2-] (9 of 22]41%); Naphthalene (9 of 22]41%); Phenanthrene (15 of 22]68%); Pyrene (16 of 22]73%); Trichloroethene (1 of 15]6.7%); Trimethylbenzene[1,2,4-] (1 of 15]6.7%); Xylene[1,3-]+Xylene[1,4-] (1 of 11]9.1%)	Benzo(a)pyrene (28 9 of 22 41%)	Benzo(a)anthracene (2.2 4 of 22 18%); Benzo(b)fluoranthene (3.3 4 of 22 18%); Dibenz(a,h)anthracene (4.1 3 of 22 14%); Indeno(1,2,3-cd)pyrene (1.7 3 of 22 14%)		Benzo(k)fluoranthene (0.2 1 of 22 4.5%)			Accnaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pyrene - A1; Butanone[2-] - C1; Chrysene - A1; Butanone[2-] - C1; Chrysene - A1; Butanone[2-] - C1; Chrysene - A1; Fluoranthene - A1; Fluoranthene - A1; Fluoranthene - A1; Isopropylolenzene - A1; Isopropylioluene[4-] - C1; Methylanghthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Tirchlorosthene - C1; Trimethylbenzene[1,2,4-] - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
W-SMA-1	16-026(v)	Upper Water Canyon	Acenaphthene (4 of 10)40%); Anthracene (5 of 10)50%); Benzo(a)anthracene (4 of 10)40%); Benzo(a)pyrene (4 of 10)40%); Benzo(b)fluoranthene (5 of 10)50%); Benzo(g,h,i)perylene (4 of 10)40%); Benzo(k)fluoranthene (4 of 10)40%); Benzoic Acid (1 of 10)10%); Bis(2- ethylhexyl)phthalate (5 of 10)60%); Chrysene (6 of 10)60%); Dibenz(a,h)anthracene (4 of 10)40%); Dibenzofuran (4 of 10)40%); Diethylphthalate (1 of 10)10%); Fluoranthene (8 of 10)80%); Fluorene (4 of 10)40%); Indeno(1,2,3-cd)pyrene (4 of 10)40%); Methylene Chloride (2 of 3)67%); Methylphenol[4-1] (2 of 10)20%); Naphtalene (4 of 10)40%); Methylene (8 of 10)80%); Pyrene (9 of 10)90%); Tetryl (2 of 10)20%); Trichlorofluoromethane (2 of 3)67%); Trinitrotoluene[2,4,8-] (1 of 10)10%)	Benzo(a)pyrene (26 4 of 10 40%)	Benzo(a)anthracene (3.3 3 of 10 30%); Benzo(b)fluoranthene (4.4 5 of 10 50%); Dibenz(a,h)anthracene (3 4 of 10 40%); Indeno(1,2,3-cd)pyrene (1.1 1 of 10 10%)		Benzo(k)fluoranthene (0.18 2 of 10 20%)		Tetryl; Trinitrotoluene[2,4,6-]	Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1; Diethylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylene Chloride - C1; Methylphenol[4] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Trichlorofluoromethane - C1	
CDV-SMA-2.5	16-028(a)	Cañon de Valle	Amino-2.6-dinitrotoluene[4-] (3 of 8]38%); Amino-4.6-dinitrotoluene[2-] (2 of 8]25%); Anthracene (1 of 6]17%); Benzo(a)anthracene (1 of 6]17%); Benzo(a)pyrene (1 of 6]17%); Benzo(b)fluoranthene (1 of 6]17%); Benzo(k)fluoranthene (1 of 5]20%); Chrysene (1 of 6]17%); Fluoranthene (1 of 6]17%); HMX (6 of 8]75%); Phenanthrene (1 of 17%); Pyrene (1 of 6]17%); Thurotoluene[2,4-6] (2 of 8]25%)			Benzo(a)pyrene (0.61 1 of 6 17%)	Tetrachloroethene (0.14 1 of 3 33%)		Amino-2.6-dinitrotoluene[4-]; Amino-4,6- dinitrotoluene[2-];HMX; RDX; Trinitrobenzene[1,3,5-]; Trinitrotoluene[2,4,6-]	Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1; Tetrachloroethene - C1	
W-SMA-8	16-028(b)	Upper Water Canyon	Acenaphthene (1 of 1 100%); Benzo(a)anthracene (1 of 1 100%); Benzo(a)pyrene (1 of 1 100%); Benzo(b)fluoranthene (1 of 1 100%); Benzo(g),h)perylene (1 of 1 100%); Benzo(k)fluoranthene (1 of 1 100%); Chrysene (1 of 1 100%); Initrobenzene[1,3-] (1 of 1 100%); Fluoranthene (1 of 1 100%); Fluorene (1 of 1 100%); Nitrotoluene[3-] (1 of 1 100%); Nitrotoluene[3-] (1 of 1 100%); Nitrotoluene[3-] (1 of 1 100%); Nitrotoluene[4-] (1 of 1 100%); Phenanthrene (1 of 1 100%); Pyrene (1 of 1 100%); Pyrene (1 of 1 100%); Tetryl (1 of 1 100%)	Benzo(a)pyrene (480 1 of 1 100%)	Benzo(a)anthracene (45[1 of 1 100%); Benzo(b)fluoranthene (51 1 of 1 100%); Benzo(k)fluoranthene (30 1 of 1 100%); Indeno(1,2,3-cd)pyrene (30 1 of 1 100%)		Chrysene (0.81 1 of 1 100%); Dinitrobenzene[1,3-] (0.46 1 of 1 100%); Nitrotoluene[3-] (0.78 1 of 1 100%)			Acenaphthene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)liuoranthene - A1; Benzo(g,h)jperylene - A1; Benzo(b)liuoranthene - A1; Chrysene - A1; Dinitrobenzene[1,3-] - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3 co]pyrene - A1; Nitrotoluene[3-] - A1; Nitrotoluene[4-] - A1; Phenanthrene - A1; Pyrene - A1; Tetryl - A1	
W-SMA-2.05	16-028(e)	Upper Water Canyon	Acenaphthene (5 of 11 45%); Acenaphthylene (2 of 11 18%); Acetone (3 of 4 75%); Amino- 2,6-dinitrotoluene[4-] (1 of 11 9.1%); Amino-4,6-dinitrotoluene[2-] (1 of 11 9.1%); Anthracene (5 of 11 45%); Benzo(a)anthracene (5 of 11 45%); Benzo(a)pylene (5 of 11 45%); Benzo(a)bylitoranthene (6 of 11 5%); Benzo(a),piperylene (5 of 11 45%); Benzo(k)fluoranthene (2 of 11 18%); Benzoic Acid (3 of 11 27%); Benzo(k)fluoranthene (6 of 11 5%); Dibenz(a,h)anthracene (5 of 11 45%); Benzoic Acid (3 of 11 27%); Chrysene (5 of 11 45%); Dibenz(a,h)anthracene (5 of 11 45%); Dibenzotran (4 of 11]36%); Di-r-butylphthalate (1 of 11 9.1%); Dinitrotoluene[2,4-] (2 of 22 9.1%); Fluoranthene (7 of 11 64%); Fluorene (6 of 11 45%); HMX (1 of 11 9.1%); Indentification (1,2,3-cd)pyene (5 of 11 45%); Bettylphene Chloride (4 of 4 100%); Methylinaphthalene[2-] (2 of 11 18%); Methylphenol[4-] (2 of 11 18%); Naphthalene (4 of 11 3%); Phenanthene (5 of 11 45%); Pterlyne Chloride (2 11 18%); Trinitrobenzene[1,3,5-] (1 of 11 9.1%); Trinitrotoluene[2,4,6-] (1 of 11 9.1%)	Benzo(a)pyrene (40 5 of 11 45%)	Benzo(a)anthracene (3.4]3 of 11 27%); Benzo(b)fluoranthene (5.8]3 of 11 27%); Dibenz(a),hanthracene (5.4]2 of 11 18%); Indeno(1,2,3-cd)pyrene (1.8 2 of 11 18%)				Amino-2,6-dinitrotoluene[4-]; Amino-4,6- dinitrotoluene[2,] Dinitrotoluene[2,4-]; HMX; Tetry; Trinitrobenzene[1,3,5-]; Trinitrotoluene[2,4,6-]	Acenaphthene - A1; Acenaphthylene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),h)perylene - A1; Benzo(b)fluoranthene - A1; Bibenz(a,h)anthracene - A1; Bibenzofluran - A1; Di- n-butylphthalate - A1; Fluoranthene - A1; Fluorene - A1;Indeno(1,2,3-cd)pyrene - A1; Methylene Chloride - C1; Methylnaphthalene[2-] - A1; Methylphenol[4-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
CDV-SMA-2.3; W- SMA-8.7	16-029(h)	S-Site Aggregate Area	Benzo(a)anthracene (5 of 20 25%); Benzo(a)pyrene (8 of 20 40%); Benzo(b)fluoranthene (9 of 20 45%); Benzo(g),h)perylene (3 of 20 15%); Benzo(k)fluoranthene (4 of 20 20%); Benzoic (a cl 2 of 20 10%); Chrysburghhalate (2 of 20 10%); Fluoranthene (11 of 20 55%); Indeno(1,2,3-cd)pyrene (3 of 20 15%); Methylene Chloride (4 of 20 20%); Phenanthrene (9 of 20 45%); Pyrene (11 of 20 55%)			Benzo(a)pyrene (0.18 5 of 20 25%)				Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h.i)perylene - A1; Benzo(k)fluoranthene - A1; Benzo(a kcid - A1; Chrysene - A1; Din-buty(phthalate - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1	
W-SMA-9.05	16-030(g)	Upper Water Canyon	Acenaphthene (2 of 4[50%); Acetone (1 of 2]50%); Amino-2,6-dinitrotoluene[4-] (2 of 9]22%); Amino-4,6-dinitrotoluene[2-] (1 of 9]11%); Anthracene (3 of 4]75%); Benzo(a),anthracene (2 of 4[50%); Benzo(a),anthracene (2 of 4[50%); Benzo(b),Ilouranthene (3 of 4]75%); Benzo(a),anthracene (2 of 4[50%); Benzo(b),Ilouranthene (2 of 4]50%); Dienzo(a), Iloura(a,h),anthracene (2 of 4[50%); Dienzo(a), Iloura(a,h),anthracene (2 of 4[50%); Dienzo(a), Iloura(a), 2 of 4]57%); Fluoranthene (3 of 4]75%); Fluoranthene (2 of 4]50%); Dintrotoluene[2,4-] (1 of 13]7.7%); Fluoranthene (2 of 4]50%); IMX (2 of 9]22%); Indeno(1,2,3-cd)pyrene (2 of 4]50%); Naphthalene (1 of 4]25%); Phenanthrene (3 of 4]75%); Pyrene (3 of 4]75%); Tetryl (2 of 9]22%); Trinitrotoluene[2,4,6-] (4 of 9]44%)	Benzo(a)pyrene (22 2 of 4 50%)	Benzo(a)anthracene (2.2 2 of 4 50%); Benzo(b)fluoranthene (3.2 2 of 4 50%); Dibenz(a,h)anthracene (2.8 2 of 4 50%)		Benzo(k)fluoranthene (0.17 1 of 4 25%); Indeno(1,2,3-cd)pyrene (0.95 2 of 4 50%)		Amino-2,6-dinitrotoluene[4-]; Amino-4,6- dinitrotoluene[2-]; Dinitrotoluene[2,4-]; HMX; Tetryl; Trinitrotoluene[2,4,6-]	Acenaphthene - A1; Acetone - C1; Anthracene (3 of 4/75%); Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h)jperylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Dienz(a,h)anthracene - A1; Dibenzofuran - A1; Di-n-butylphthalate - A1; Fluoranthene - A1; Fluoren - A1; Alenco(12,3- cd)pyrene - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
W-SMA-7.8	16-031(a)	Upper Water Canyon	Benzo(a)anthracene (1 of 1 100%); Benzo(a)pyrene (1 of 1 100%); Benzo(b)fluoranthene (1 of 1 100%); Benzo(k)fluoranthene (1 of 1 100%); Chrysene (1 of 1 100%); Fluoranthene (1 of 1 100%); Pyrene (1 of 1 100%)	Benzo(a)pyrene (5.1 1 of 1 100%			Benzo(a)anthracene (0.59 1 of 1 100%); Benzo(b)fluoranthene (0.55 1 of 1 100%)			Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1	

Table 8	Summary of Evaluation of	Organic Data in	Shallow Soil Samples	
	outilitiary of Evaluation of	Organic Data in	onanow oon oumpies	

					Campios							
				Organic Constituents L	Detected Above Residential SSLs	Organic Constituents De	etected Above 10% of Residential SSLs	Stormwater		Co	Instituents Site Related?	
								Analytes				Potential Significant
SMA CDV-SMA-2.3	Site 16-031(h)	Aggregate Area S-Site Aggregate Area	Frequency of Detects Anthracene (1 of 5 20%); Benzo(a)anthracene (3 of 5 60%); Benzo(a)pyrene (3 of 5 60%); Benzo(b)fluoranthene (3 of 5 60%); Benzo(g,h,i)perylene (2 of 5 40%); Benzo(k)fluoranthene (1 of 5 20%); Bist/2-ethylhexyl)phthalate (2 of 5 40%); Chrysene (2 of 5 40%); Distrophichtalate (1 of 5 20%); Chertyhphthalate (2 of 5 40%); Chrysene (2 of 5 60%); HMX (1 of 5 20%); Indeno(1,2,3-cd)pyrene (2 of 5 40%); Naphthalene (1 of 5 20%); Phenanthrene (2 of 5 40%); Pyrene (3 of 5 60%)	TAL List Benzo(a)pyrene (1.6 1 of 5 20%)	Non-TAL List Benzo(b)fluoranthene (1 1 of 5 20%)	TAL List	Non-TAL List Dibenz(a,h)anthracene (0.49 1 of 5 20%): Indeno(1,2,3-cd)pyrene (0.22 1 of 5 20%)	Exceeding TALs	НМХ	Yes	No ¹ Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2-ethylhex)phthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Diethylphthalate - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	Industrial Materials
3M-SMA-4	18-003(c)	Lower Pajarito Canyon	Aroclor-1254 (2 of 2 100%); Di-n-butylphthalate (1 of 2 50%)		Aroclor-1254 (24 2 of 2 100%)				Aroclor-1254		Di-n-butylphthalate - A1	PCBs
S-SMA-3.95	20-002(a)	Lower Sandia Aggregate Area										
S-SMA-5	20-002(c)	Lower Sandia Aggregate Area	Aroclor-1254 (4 of 4 100%); Aroclor-1260 (4 of 4 100%)								Aroclor-1254 - A1; Aroclor-1260 - A1	
S-SMA-4.5	20-002(d)	Lower Sandia Aggregate Area	Aroclor-1254 (1 of 3 33%); Aroclor-1260 (3 of 3 100%)								Aroclor-1254 - A1; Aroclor-1260 - A1	
S-SMA-5.2	20-003(c)	Lower Sandia Aggregate Area										
S-SMA-5.5	20-005	Lower Sandia Aggregate Area	Methylene Chloride (1 of 4 25%)								Methylene Chloride - C1	
LA-SMA-5.91	21-009	DP Site Aggregate Area	Anthracene (1 of 16]6.2%); Benzo(a)pyrene (1 of 16]6.2%); Benzo(b)fluoranthene (1 of 16]6.2%); Benzo(k)fluoranthene (1 of 16]6.2%); Chloroform (1 of 8]12%); Dichloroethene[1,1-] (2 of 8]25%); Fluoranthene (3 of 16]19%); Pyrene (5 of 16]31%); Tetrachlorodibenzofuran[2,3,7,8-] (1 of 1 100%); Tetrachloroethene (1 of 8 12%)			Benzo(a)pyrene (0.46 1 of 16 6.2%)	Benzo(b)fluoranthene (0.11 1 of 16[6.2%)				Anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Chloroform - C1; Dichloroethene[1,1-] - C1; Fluoranthene - A1; Pyrene - A1; Tetrachloroethene - C1	
LA-SMA-5.92	21-013(b)	DP Site Aggregate Area	Aroclor-1254 (21 of 82 26%); Aroclor-1260 (20 of 82 24%); Benzoic Acid (6 of 101 5.9%); Bis(2-ethylhexyl)phthalate (8 of 101 7.9%); Fluoranthene (13 of 101 13%); Phenanthrene (10 of 101 9.9%); Pyrene (17 of 101 17%)								Aroclor-1254 - A1; Aroclor-1260 - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1	
DP-SMA-3	21-013(c)	DP Site Aggregate Area	Acenaphthene (4 of 48)8.3%); Anthracene (8 of 48)17%); Aroclor-1254 (6 of 46)13%); Aroclor-1260 (12 of 46)26%); Benzo(a)pyrene (12 of 48)25%); Benzo(b)fluoranthene (17 of 48)35%); Benzo(g,h,i)peynele (8 of 48)17%); Benzo(k1fluoranthene (3 of 48)6.2%); Benzoic Acid (8 of 48)17%); Chrysene (12 of 48)25%); Fluoranthene (21 of 48)44%); Fluorene (3 of 48)6.2%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8] (2 of 2)100%); Heptachlorodibenzodioxins (Total) (2 of 2)100%); Heptachlorodibenzofuran[1,2,3,4,6,7,8-] (2 of 2)100%); Heptachlorodibenzodioxins (Total) (2 of 2)100%); Hexachlorodibenzodioxins (Total) (2 of 2)100%); Hexachlorodibenzofuran[1,2,3,7,8,9-] (1 of 2)50%); Hexachlorodibenzodioxins (Total) (1 of 2)50%); Hexachlorodibenzofuran[1,2,3,6,7,8-] (1 of 2)50%); Hexachlorodibenzodioxins (Total) (1 of 2)50%); Hexachlorodibenzofuran[1,2,3,4,7,8-] (1 of 2)50%); Hexachlorodibenzofurans (7 of 48)15%); Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] (2 of 2)100%); Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] (2 of 2)50%); Pentachlorodibenzofuran[2,3,4,7,8-] (1 of 2)50%); Pentachlorodibenzofurans (Total) (1 of 2)50%); Pentachlorodibenzofuran[2,3,4,7,8-] (1 of 2)50%); Pentec2) of 48)45%); Tettschlorodibenzofuran[2,3,7,8-] (1 of 2)50%); Pentachlorodibenzofuran[2,3,4,7,8-] (1 of 2)50%); Pentec2) of 48)45%); Tettschlorodibenzofuran[2,3,7,8-] (1 of 2)50%); Pentachlorodibenzofuran[2,3,4,7,8-] (1 of 2)50%); Pentec2) of 48)45%); Tettschlorodibenzofuran[2,3,7,8-] (1 of 2)50%); Tetrachlorodibenzofurans (Total) (1 of 2)50%)			Benzo(a)pyrene (0.98)12 of 48 25%)	Aroclor-1254 (0.34)1 of 46j2.2%); Benzo(b)fluoranthene (0.16j3 of 48j6.2%)				Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)pyrene - A1; Benzo(k)fluoranthene - A1; Benzo(a)pylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Chrysene - A1; Fluoranthene - A1; Bienzoic Acid - A1; Heptachlorodibenzodioxin[1,2,3,4,6,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,6,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,7,8] - A1; Heptachlorodibenzodioxin[1,2,3,7,8] - A1; Hexachlorodibenzodioxin[1,2,3,7,8] - A1; Hexachlorodibenzodioxin[1,2,3,7,8] - A1; Hexachlorodibenzodioxin[1,2,3,7,8] - A1; Hexachlorodibenzodioxin[1,2,3,4,6,7,8] - A1; Hexachlorodibenzodioxin[1,2,3,4,6,7,8] - A1; Hexachlorodibenzodioxin[1,2,3,4,6,7,8] - A1; Hexachlorodibenzodioxin[1,2,3,4,6,7,8,9] - A1; Dotachlorodibenzodioxin[1,2,3,4,6,7,8,9] - A1; Pentachlorodibenzodioxin[1,2,3,4,6,7,8,9]	
LA-SMA-5.92	21-013(g)	DP Site Aggregate Area	Aroclor-1254 (1 of 4 25%); Aroclor-1260 (3 of 4 75%); Benzoic Acid (2 of 12 17%); Fluoranthene (2 of 12 17%); Phenanthrene (1 of 12 8.3%); Pyrene (2 of 12 17%)								Aroclor-1254 - A1; Aroclor-1260 - A1; Benzoic Acid - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene -	
LA-SMA-5.92	21-018(a)	DP Site Aggregate Area	Acenaphthene (1 of 12)8.3%); Anthracene (1 of 12)8.3%); Benzo(a)anthracene (1 of 12)8.3%); Benzo(a)pyrene (1 of 12)8.3%); Benzo(b)fluoranthene (1 of 12)8.3%); Benzo(g)hi/lovranthene (1 of 12)8.3%); Benzo(g)hi/lovr	Benzo(a)pyrene (4.5 1 of 12 8.3%)			Benzo(a)anthracene (0.41 1 of 12 8.3%) Benzo(b)fluoranthene (0.41 1 of 12 8.3%); Indeno(1,2,3-cd)pyrene (0.29 1 of 12 8.3%)				A1 Accenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2,- ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1	
LA-SMA-5.91	21-023(c)	DP Site Aggregate Area	Aroctor-1242 (1 of 13]7.7%); Aroctor-1254 (3 of 13]23%); Aroctor-1260 (7 of 13]54%); Benzo(b)fluoranthene (5 of 62]8.1%); Chrysene (5 of 62]8.1%); Fluoranthene (13 of 62]21%); Phenanthrene (5 of 62]8.1%); Pyrene (11 of 62]18%)								Aroclor-1242 - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(b)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1	
LA-SMA-6.36	21-024(a)	DP Site Aggregate Area	Anthracene (2 of 31 6.5%); Benzo(b)fluoranthene (2 of 31 6.5%); Benzoic Acid (2 of 31 6.5%); Chloroaniline[4-] (2 of 31 6.5%); Fluoranthene (7 of 31 23%); Isopropyltoluene[4-] (1 of 14 7.1%); Pyrene (7 of 31 23%); Toluene (12 of 14 86%); Trichloroethene (3 of 14 21%)								Anthracene -A1; Benzo(b)fluoranthene - A1; Benzoic Acid - A1; Chloroaniline[4-] - A1; Fluoranthene - A1; Isopropyltoluene[4-] - C1; Pyrene - A1; Toluene - C2; Trichloroethene - C2	
LA-SMA-6.25	21-024(d)	DP Site Aggregate Area	Acenaphthene (2 of 36 5.6%); Anthracene (2 of 36 5.6%); Aroclor-1242 (3 of 5 60%); Aroclor-1254 (5 of 5 100%); Aroclor-1260 (5 of 5 100%); Benzco(hluronthene (5 of 36 14%); Benzco(a)phrene (5 of 36 14%); Benzcic Acid (2 of 36 5.6%); Bis(2-ethyhlexyl)phthalate (7 of 36 19%); Butylbenzylphthalate (3 of 36 3.3%); Chrysene (4 of 36 14%); Dichlorobenzene[1,4-] (5 of 63 7.9%); Di-n-butylphthalate (9 of 36 25%); Fluoranthene (6 of 36 22%); Indeno(1,2,3-cd)pyrene (5 of 36 14%); Methylene Chloride (2 of 27 7.4%); Phenanthrene (3 of 36 3.3%); Fytene (7 of 36 19%); Tetrachlorodibenzodioxin(2,3,7,8-] (3 of 5 60%); Tetrachlorodibenzofuran[2,3,7,8-] (5 of 5 100%); Toluene (9 of 28 32%); Trichloroethene (7 of 28 25%)	Benzo(a)pyrene (1.8 1 of 36 2.8%)			Aroclor-1242 (0, 12]1 of 5]20%); Aroclor- 1254 (0,41]3 of 5[60%); Benzo(a)anthracene (0,2]1 of 36]2.8%); Benzo(b)fluoranthene (0.28]3 of 36]8.3%)				Acenaphthene - A1; Anthracene - A1; Aroclor-1242 - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(b)fluoranthene - A1; Benzo(g),hipenylene - A1; Benzoic Acid - A1; BigC-ethylhexyl)phthalate - A1; Butylbenzylphthalate - A1; Chrysene - A1; Dichlorobenzene[1,4] - C1; Di-n-butylphthalate - A1; Butylbenzylphthalate - A1; Chrysene - A1; Dichlorobenzene[1,4] - C1; Di-n-butylphthalate - A1; Butylbenzylphthalate - A1; Chrysene - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Toluene - C1; Trichloroethene - C1	

Table 8	Summary of	Evaluation of	Organic Data	in Shallow	Soil Samples
---------	------------	---------------	---------------------	------------	--------------

-				Table 6 Summary 6	of Evaluation of Organic	bata in Shallow Soli Sali	lipies				
				Organic Constituents Detected Above Residential SSLs		Organic Constituents Detected Above 10% of Residential SSLs			Constitu	uents Site Related?	
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	Yes	No ¹	Potential Significant Industrial Materials
DP-SMA-2	21-024(h)	DP Site Aggregate Area	Acenaphthene (2 of 31[6,5%); Acetone (1 of 17[5,9%); Anthracene (4 of 31[13%); Benzo(a)anthracene (3 of 31]9.7%); Benzo(a)pyrene (3 of 31]9.7%); Benzo(b)fluoranthene (6 of 31]19%); Benzo(k)fluoranthene (3 of 31]9.7%); Bis(2-ethylhexyl)phthalate (4 of 31]13%); Chioroform (2 of 19]11%); Chrysene (6 of 31]19%); Di-n-butylphthalate (4 of 31]13%); Fluoranthene (13 of 31]42%); Isopropyltoluene[4-] (2 of 19]11%); Phenanthrene (10 of 31]32%); Pyrene (13 of 31]42%); Tetrachloroethene (1 of 19]5.3%); Toluene (6 of 19]32%); Xylene[1,3-]+Xylene[1,4-] (2 of 19]11%)			Benzo(a)pyrene (0.96 3 of 31 9.7%)	Benzo(b)fluoranthene (0.14 3 of 31 9.7%)			Accnaphthene - A1; Acctone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Bis(2-ethylhexyl)phthalate - A1; Chloroform - C1; Chrysene - A1; Di-n-butylphthalate - A1; Fluoranthene - A1; Isopropyltoluene[4-] - C1; Phenanthrene - A1; Pyrene - A1; Tetrachloroethene - C1; Toluene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
LA-SMA-6.395	21-024(j)	DP Site Aggregate Area	Acenaphthene (2 of 26)7.7%); Anthracene (4 of 26)15%); Aroclor-1254 (5 of 12)42%); Aroclor-1260 (5 of 12)42%); Benzo(a)anthracene (3 of 26)12%); Benzo(a)pyrene (2 of 26)7.7%); Benzo(b)fluoranthene (6 of 26)23%); Benzo(g,h,i)perylene (3 of 26)12%); Chloroform (1 19)5.3%); Chrysene (5 of 26)19%); Fluoranthene (10 of 26)38%); Fluorene (2 of 26)7.7%); Indenot (2.3cd)pyrene (2 of 26)7%); Isporpyluone14-1 (1 of 19)5.3%); Methylene Chloride (4 of 19)21%); Naphthalene (2 of 26)7.7%); Phenanthrene (7 of 26)27%); Pyrene (9 of 26)35%); Toluene (2 of 19)11%)			Benzo(a)pyrene (0.69 2 of 26 7.7%)	Aroclor-1254 (0.29 1 of 12 8.3%); Aroclor-1260 (0.12 1 of 12 8.3%); Benzo(a)anthracene (0.1 1 of 26 3.8%); Benzo(b)fluoranthene (0.15 2 of 26 7.7%)			Acenaphthene - A1; Anthracene - A1; Aroclor-1254 A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Chioroform - C1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Methylene Chioride - C1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	
DP-SMA-2.35	21-024(n)	DP Site Aggregate Area	Acetone (3 of 53]5.7%); Anthracene (23 of 101]23%); Aroclor-1254 (1 of 1 100%); Benzo(a)anthracene (25 of 101]25%); Benzo(a)pyrene (24 of 101]24%); Benzo(b)fluoranthene (48 of 101]48%); Benzo(a)pyrene (24 of 101]24%); Benzo(k)fluoranthene (9 of 101]8.9%); Bis/2-ethyflexyl)phthalate (6 of 1015.9%); Chloroform (3 of 53]5.7%); Chrysene (44 of 101]44%); Fluoranthene (56 of 101]55%); Indeno(1,2,3-cd)pyrene (23 of 101]23%); Bopropyltoluene[4-] (7 of 53]13%); Phenanthrene (44 of 101]44%); Pyrene (58 of 101]7%); Tetrachorodibenzodioxil,2,3,7,8-] (1 of 1 100%); Toluene (19 of 53]36%); Xylene[1,3-]+Xylene[1,4-] (3 of 53]5.7%)	Benzo(a)pyrene (3.6 4 of 101 4%) Benzo(b)	fluoranthene (1.7 2 of 101 2%)		Benzo(a)anthracene (0.76 8 of 101 7.9%), Indeno(1.2,3-cd)pyrene (0.58 6 of 101 5.9%)			Acetone - C1; Anthracene- A1; Aroclor-1254 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),h)perylene - A1; Benzo(b)fluoranthene - A1; Bic3(2- ethylhexyl)phthalate - A1; Chloroform - C1; Chrysene - A1; Isoropyltoluene[4-] - C1; Phenanthrene - A1; Dyrene - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Chrystene - C1; Xylene[1,4-] - C1	
LA-SMA-6.31	21-027(a)	DP Site Aggregate Area	Acenaphthene (5 of 27/19%): Anthracene (8 of 27/30%): Aroclor-1254 (2 of 2/100%): Aroclor-1260 (2 of 2/100%): Benzo(a)anthracene (11 of 27/14%): Benzo(a)pyrene (5 of 27/19%): Benzo(b)fluoranthene (12 of 27/14%): Benzo(g),hi)perylene (8 of 27/30%): Bis/2- ethylhexyl)pithhalate (2 of 27/17.4%): Chrysene (14 of 27/52%): Di-butylpithalate (2 of 27/7.4%): Fluoranthene (18 of 27/67%): Fluorene (3 of 27/11%): Indeno(1.2,3-cd)pyrene (7 of 27/26%): Phenanthrene (12 of 27/4%): Pyrene (17 of 27/63%): Tetrachlorodibenzodixin[2.3,7,8-] (4 of 9/44%): Tetrachlorodibenzoduran[2,3,7,8-] (5 of 9/56%): Tetrachloroethene (3 of 17/18%): Toluene (6 of 17/35%)	3enzo(a)pyrene (5.5 5 of 27 19%) Benzo(b)	fluoranthene (1 1 of 27 3.7%)	Tetrachlorodibenzodioxin[2,3,7 8-] (0.58 1 of 9 11%)	7, Benzo(a)anthracene (0.48 5 of 27 19%); Indeno(1,2,3-cd)pyrene (0.49 4 of 27 15%)			Acenaphthene - A1; Anthracene - A1; Aroclor-1254 A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h)jperlyene - A1; Bis(2- ethylhexyl)phthalate - A1; Chrysene - A1; Di-n- butylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Fhenanthrene - A1; Pyrene - A1; Tetrachlorodibenzodioxin[2,3,7,8-] A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Tetrachlorodthene - C1; Toluene - C1	
LA-SMA-6.25; LA-S 6.27	imA 21-027(c)	DP Site Aggregate Area	Acenaphthene (6 of 30)20%); Acetone (3 of 16)19%); Anthracene (9 of 30)30%); Aroclor- 1260 (1 of 1100%); Benzo(a)anthracene (7 of 30)23%); Benzo(a)pyrene (9 of 30)30%); Benzo(b)fluoranthene (1 of 3 of 30)43%); Benzo(a, h)perylene (3 of 30)10%); Benzo(k)fluoranthene (3 of 30)10%); Benzo(a, h)perylene (3 of 30)10%); Benzo(k)fluoranthene (1 of 30)40%); Dichlorobenzene[1,4-] (3 of 46)(6.5%); Di-n- buty/phthalate (5 of 30)17%); Fluoranthene (16 of 30)53%); Fluorene (6 of 30)20%); Heptachlorodibenzodirusni(1,2,3,4,6,7,8-) (1 of 1100%); Heptachlorodibenzodioxins (Total) (1 of 11)00%); Heptachlorodibenzodirusni [1,2,3,4,6,7,8-) (1 of 1100%); Heptachlorodibenzofurans (Total) (1 of 1100%); Hexachlorodibenzodioxins (Total) (1 of 11)00%); Indeno(1,2,3-cd)pyrene (5 of 30)(17%); Isopropyltoluene[4-1 (2 of 16)(12%); Methylene Chloride (2 of 16)(12%); Cotachlorodibenzodioxin(1,2,3,4,6,7,8,9-) (1 of 1100%); Heptachlorodibenzofurans (Total) (1 of 1100%); Pentachlorodibenzofurans (Total) (1 of 11)00%); Indeno(1,2,3-dp)yrene (5 of 30)(17%); Isopropyltoluene[4-1 (2 of 16)(12%); Methylene Chloride (2 of 16)(12%); Cotachlorodibenzodioxin(1,2,3,4,6,7,8,9-) (1 of 1100%); Fluorodibenzofurans (Totals) (1 of 11)00%); Phenanthrene (12 of 30)(40%); Pyrene (16 of 30)(53%); Tetrachlorodibenzofurans (Totals) (1 of 1100%); Toluene (14 of 16)(88%); Trichloroethene (2 of 16)(12%)	3enzo(a)pyrene (20 6 of 30 20%) Benzo(a) Benzo(b)	anthracene (2.1 1 of 30 3.3%); fluoranthene (3.8 1 of 30 3.3%)		Bis(2-ethylhexyl)phthalate (0.14 1 of 30 3.3%); Indeno(1,2,3-cd)pyrene (0.75 4 of 30 13%)			Acenaphthene - A1; Acetone - C1; Anthracene - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)ayrene - A1; Benzo(b)fluoranthene - A1; Benzoig)ayrene - A1; Biotayrene - A1; Fluorene - A1; Heytachlorodibenzodioxin [1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxins (Total) - A1; Heptachlorodibenzodioxins (Total) - A1; Hexachlorodibenzodioxins (Total) - A1; Pentachlorodibenzodioxins (Totals) - A1; Tetrachlorodibenzodioxins (Totals) - A1; Te	- -
PJ-SMA-5	22-015(c)	Starmer/Upper Pajarito	Trichloroethene (3 of 5 60%)							Trichloroethene - C1	
LA-SMA-9	26-001	Middle LA Aggregate Area	Acetone (3 of 40]7.5%); Aroclor-1260 (5 of 42 12%); Fluoranthene (3 of 42 7.1%); Toluene (23 of 40 58%)							Acetone - C1; Aroclor-1260 - A1; Fluoranthene - A1; Toluene - C1	
P-SMA-2.15	31-001	Pueblo Canyon	Anthracene (2 of 11 18%); Aroclor-1254 (1 of 8 12%); Aroclor-1260 (5 of 8 62%); Bis(2- ethylhexyl)phthalate (1 of 11 9.1%); Chrysene (1 of 11 9.1%); DDE[4,4'] (4 of 11 36%); DDT[4,4'] (3 of 11 27%); Dichloroberzene[1,4'] (2 of 22 9.1%); Dieldrin (2 of 11 15%); Di- butylphthalate (1 of 11 9.1%); Fluoranthene (3 of 11 27%); Phenanthrene (1 of 11 9.1%); Pyrene (3 of 11 27%); Tetrachloroethene (1 of 11 9.1%); Toluene (5 of 11 45%)				Aroclor-1260 (0.16 1 of 8 12%)			Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; DDE[4,4'] - A1; DDT[4,4'] - A1; Dichlorobenzene[1,4-] - C1; Dieldrin - A1; Di-n- butylphthalate - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1; Tetrachloroethene - C1; Toluene - C1	
LA-SMA-5.361	32-002(b)	not found	Aroclor-1260 (24 of 72[33%); Benzo(a)anthracene (17 of 145]12%); Benzo(a)pyrene (17 of 145]12%); Benzo(b)fluoranthene (25 of 145]17%); Benzo(a),h)perylene (9 of 145]6.2%); Benzo(k)fluoranthene (17 of 145]12%); Bis(2-ethylnexyl)phthalate (9 of 145]6.2%); Chrysene (33 of 145]23%); Dibenz(a,h)anthracene (8 of 145]5.5%); Fluoranthene (33 of 145]23%); Indeno(1,2,3-cd)pyrene (9 of 145]6.2%); Methylene Chloride (9 of 73]12%); Phenanthrene (8 of 145]5.5%); Pyrene (33 of 145]23%); Tetrachloroethene (8 of 73]11%)	3enzo(a)pyrene (2.8 8 of 45[5.5%)			Benzo(b)fluoranthene (0.47 8 of 145 5.5%); Dibenz(a,h)anthracene (0.61 8 of 145 5.5%); Indeno(1,2,3- cd)pyrene (0.18 8 of 145 5.5%)			Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),h.i)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; Tetrachloroethene - C1	
LA-SMA-5.362	32-003	Upper Los Alamos Canyon	Aroclor-1260 (23 of 34[68%); Benzo(a)anthracene (8 of 32[25%); Benzo(a)pyrene (7 of 32[22%); Benzo(b)fluoranthene (5 of 32[16%); Benzo(g,h.i)perylene (6 of 32[19%); Benzo(k)fluoranthene (4 of 32]12%); Bis(2-ethylhexyl)phthalate (4 of 28[15%); Chrysene (9 of 32[28%); Fluoranthene (11 of 32[34%); Indeno(11-2, 3-cd)pyrene (4 of 32]12%); Methylene Chloride (12 of 26[46%); Phenanthrene (9 of 32[28%); Pyrene (11 of 32[34%)	Senzo(a)pyrene (3 4 of 32 12%)			Aroclor-1260 (0.54)6 of 34 18%); Benzo(a)anthracene (0.22 3 of 32 9.4%); Benzo(b)fluoranthene (0.39)4 of 32 12%); Indeno(1,2,3-od)pyrene (0.2 4 of 32 12%)		Aroclor-1260	Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhex)/phthalate - A1; Chrysene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1	PCBs

				Table 8 S	ummary of Evaluation of Organic	Data in Shallow Soll Sa	ampies				
				Organic Constituent	ts Detected Above Residential SSLs	Organic Constituents De	etected Above 10% of Residential SSLs		c	onstituents Site Related?	
								Stormwater			Botontial Significant
SMA LA-SMA-5.33	Site 32-004	Aggregate Area Upper Los Alamos Canyon	Frequency of Detects Acenaphthene (10 of 104)9.6%); Acetone (8 of 32)25%); Anthracene (34 of 104)33%); Benzo(a)anthracene (56 of 104)54%); Benzo(a)pyrene (54 of 104)52%); Penzo(b)interactions (45 of 104)54%); Benzo(a) b)interactions (40 of 104)54%);	TAL List Benzo(a)pyrene (57 50 of 104 48%)	Non-TAL List Benzo(a)anthracene (5.5/20 of 104/19%); Benzo(b)fluoranthene (5.3/28 of 104/27%); Indono(1.2.2 of)wrang (2.2)(8 of 104/17.7%)	TAL List	Non-TAL List Benzo(k)fluoranthene (0.53 16 of 104 15%)	Exceeding TALs	Yes	No ¹ Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)tiverstene _ A1 = Denzo(a) biyerendene	Industrial Materials
			Benzo(K)fuorantinen (56 of 104[44%); Bei/2-of(),fi)periyeine (50 of 104[45%); Benzo(K)fuorantinen (46 of 104[44%); Bis(2-ethylhexyl)phthalate (48 of 88[55%); Butylbenzylphthalate (48 of 88[55%); Chrysene (64 of 104[62%); Di-n-octylphthalate (8 of 88]9, 1%); Fluoranthene (80 of 104[77%); Fluorene (10 of 104[9.6%); Inden(12,3-od)pyrene (40 of 104[38%); Naphthalene (8 of 104[7.7%); Phenanthrene (64 of 104[62%); Pyrene (72 of 104[59%)	3	indeno(1,2,3-cd)pyrene (3.2)a or 104/7.7%)				A1; benzo(k)/indvantmene - A1; benzo(g),njperylene- A1; Benzo(k)/indvanthene - A1; Bis(2- ethy/hexyl)phthalate - A1; Butylbenzylphthalate - A1; Chrysene - A1; Din-roctylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1 A1; Pyrene - A1	
CHQ-SMA-6	33-006(a)	Chaquehui Canyon	Dinitrobenzene[1,3-] (1 of 8 12%); Trinitrobenzene[1,3,5-] (1 of 8 12%)				Dinitrobenzene[1,3-] (0.25 1 of 8 12%)			Dinitrobenzene[1,3-] - A1; Trinitrobenzene[1,3,5-] - A1	
CHQ-SMA-1.02; CHC SMA-1.03	I- 33-008(α)	Chaquehui Canyon	Acenaphthene (5 of 19)26%); Acetone (3 of 9)33%); Anthracene (6 of 19)22%); Benzo(a)anthracene (12 of 19)63%); Benzo(a)pyrene (11 of 19)68%); Benzo(b)fluoranthene (12 of 19)63%); Benzo(a),hi)perylene (11 of 19)58%); Benzo(b)fluoranthene (11 of 17)65%); Benzoic Acid (1 of 19)5.3%); Bis(2-ethylhexyl)phthalate (2 of 19)11%); Butanone[2-] (1 of 19)11%); Carbazole (5 of 13)26%); Chiyesne (11 of 19)58%); Dienz-(a,h)anthracene (4 of 19)21%); Dibenzofuran (2 of 19)11%); Dimethylphenol[2,4] (1 of 19)5.3%); Di-n- butylphthalate (5 of 19)26%); Fluoranthene (14 of 19)74%); Fluorene (2 of 19)11%); Hexanone[2,1] (1 of 9)11%); Indeno(1,2,3-cd)pyrene (11 of 19)58%); Wethylene Chloride (4 of 9)44%); Methylnaphthalene[2-] (1 of 19)5.3%); Methylphenol[2-] (1 of 19)63%); Methylphenol[4-] (1 of 19)5.3%); Naphthalene (4 of 21)19%); Phenanthrene (13 of 19)68%); Phenol (1 of 19)5.3%); Pyrene (15 of 19)79%); Tertrachioroethene (1 of 9)11%); Toluene (2 of 9)22%); Tirchloroethene (2 of 9)22%); Trimethylbenzene[1,2,4-] (1 of 9)11%); Xylene (Total) (2 of 9)22%)	Benzo(a)pyrene (65 9 of 19 479	%) Benzo(a)anthracene (6.1 3 of 19 16%); Benzo(b)fluoranthene (6.8 4 of 19 21%); Dibenz(a,h)anthracene (17]3 of 19 16%); Indeno(1,2,3-cd)pyrene (4.1 2 of 19 11%)		Benzo(k)/luoranthene (0.68 5 of 17 29%); Naphthalene (0.22 1 of 21 4.8%)	Total PCB		Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,l)peylene - A1; Benzo(k)fluoranthene - A1; Benzo(a,h)peylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Butanone[2-] - C1; Carbazole - A1; Chrysene - A1; Butanone[2-] - C1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1; Dimethylphenol[2,4-] - A1; Din-butylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Metaylonene[2-] - C1; Indeno(1,2,3-c0)pyrene - A1; Methylphenol[2-] - C1; Indeno(1,2,3-c0)pyrene - A1; Methylphenol[2-] - A1; Methylphenol[2-] (- A1; Methylphenol[4-] - A1; Naphthalene - A1; Tencanthrene - A1; Phenol - A1; Pyrene - A1; Tetrachloroethene - C1; Toluene - A1; Trichloroethene - C1; Trimethylbenzene[1,2,4-] - A1; Xylene (Total) - C1	
CHQ-SMA-1.03	33-017	Chaquehui Canyon	Acenaphthene (6 of 18)33%); Anthracene (6 of 18)33%); Aroclor-1254 (5 of 7)71%); Aroclor- 1260 (7 of 7)100%); Benzo(a)anthracene (15 of 18)83%); Benzo(a)pyrene (13 of 18)72%); Benzo(b)fluoranthene (12 of 18)67%); Benzo(a,h,i)perylene (10 of 18)66%); Benzo(k)fluoranthene (4 of 18)22%); Benzoic Acid (3 of 18)17%); Butylbenzylphthalate (1 of 18)5.6%); Chrysene (16 of 18)89%); Dibenz(a,h)anthracene (2 of 18)11%); Dibenzofuran (3 of 18)17%); Di-n-butylphthalate (4 of 18)22%); Fluoranthene (15 of 18)83%); Fluorene (4 of 18)22%); Indeno(1,2,3-cd)pyrene (13 of 18)72%); Methylnaphthalene[2-] (3 of 18)17%); Naphthalene (4 of 18)22%); Phenanthrene (11 of 18)61%); Pyrene (16 of 18)89%)	Benzo(a)pyrene (16 10 of 18 56%)	Aroclor-1254 (1.2[1 of 7]14%); Aroclor-126 (2.5]2 of 7[29%); Benzo(a)anthracene (2.4]2 of 18[11%); Benzo(b)fluoranthene (1.8]2 of 18[11%); Dibenz(a,h)anthracene (2.2]2 of 18[11%)	0	Indeno(1,2,3-cd)pyrene (0.68 10 of 18 56%)	Total PCB	Aroclor-1254; Aroclor-1260	Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Butylbenzylphthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1); Di- n-butylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	PCBs
T-SMA-4; T-SMA-5	35-009(a)	Middle Mortandad/Ten Site Canyons	Acetone (1 of 4)25%); Aroclor-1254 (3 of 4)75%); Aroclor-1260 (3 of 4)75%); Bis(2- ethylhexyl)phthalate (2 of 9)22%); DDE[4,4'-] (1 of 4)25%); Dichloroethene[1,1-] (2 of 4)50%); Di-hutylphthalate (2 of 9)22%); Isopropyltoluene[4-] (4 of 4)100%); Toluene (1 of 4)25%)				Aroclor-1254 (0.35 2 of 4 50%); Aroclor- 1260 (0.57 2 of 4 50%)			Acetone - C1; Arcclor-1254 - A1; Arcclor-1260 - A1; Bis(2-ethylhexyl)phthalate - A1; DDE[4,4'-] - A1; Dichloroethene[1,1] - C1; Di-n-butylphthalate - A1; Isopropyltoluene[4-] - C1; Toluene - C1	
T-SMA-2.5	35-014(g3)	Middle Mortandad/Ten Site Canyons	Acenaphthene (3 of 26 12%); Acenaphthylene (2 of 26 7.7%); Acetone (8 of 20 40%); Aldrin (2 of 2 100%); Anthracene (3 of 26 12%); Benzo(a)phtracene (4 of 26 15%); Benzo(a)pyrene (5 of 26 19%); Benzo(b)fluoranthene (4 of 26 15%); Benzo(g,h)perylene (4 of 26 15%); Benzo(k)fluoranthene (4 of 26 15%); Benzo(a, A); Benzo(g, A), Benzo	Benzo(a)pyrene (26 3 of 26 129	Benzo(a)anthracene (2 2 of 26 7.7%); Dibenz(a,h)anthracene (9.9 2 of 26 7.7%); Indeno(1,2,3-cd)pyrene (2.2 2 of 26 7.7%)		Benzo(b)fluoranthene (0.81 1 of 26]3.8%); Benzo(k)fluoranthene (0.46 2 of 26 7.7%)			Acenaphthene - A1; Acenaphthylene - A1; Acetone - C1; Aldrin - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a, h)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Butanone[2-] - C1; Chrysene - A1; DDD[4,4'] - A1; DDT[4,4'] - A1; Dichoroethene[1,1-] - C1; Dieldrin - A1; Dichoroethene[1,1-] - C1; Dieldrin - A1; Bis(2-ethylhexyl)phthalate - A1; Burthene - A1; Dichoroethene[4] - C1; Methylnaphthalate - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4] - C1; Methylnaphthalene[2] - A1; Naphthalene - A1; Phenanthrene - A1; Phenol - A1; Pyrene - A1; Toluene - C1; Trichlorofluoromethane - C1; Xylene (Total) - C1	
T-SMA-3	35-016(b)	Middle Mortandad/Ten Site Canyons	Acenaphthene (1 of 6]17%); Bis(2-ethylhexyl)phthalate (5 of 6]63%); Butylbenzylphthalate (1 of 6]17%); Chrysene (1 of 6]17%); Fluoranthene (2 of 6]33%); Fluorene (1 of 6]17%); Phenanthrene (1 of 6]17%); Pyrene (3 of 6]50%)							Acenaphthene - A1; Bis(2-ethylhexyl)phthalate - A1; Butylbenzylphthalate - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Phenanthrene - A1; Pyrene - A1	
M-SMA-9.1	35-016(f)	Middle Mortandad/Ten Site Canyons	Aroclor-1254 (3 of 9(33%); Aroclor-1260 (8 of 9)89%); Benzo(a)anthracene (1 of 9)11%); Benzo(a)pyrene (3 of 9)33%); Benzo(h)fluoranthene (4 of 9)44%); Benzo(k)fluoranthene (2 of 9)22%); Benzoic Acid (2 of 9)22%); Bis/2-ethylhexylphthalate (4 of 9)44%); Chrysene (4 of 9)44%); Di-n-butylphthalate (3 of 9)33%); Fluoranthene (6 of 9)67%); Fluorene (2 of 9)22%); Phenanthrene (2 of 9)22%); Pyrene (6 of 9)67%)			Benzo(a)pyrene (0.27 3 of 9 33%)				Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)prene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Di-n-butylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Phenanthrene - A1; Pyrene - A1	
M-SMA-7	35-016(g)	Upper Mortandad Aggregate Area	Benzo(a)pyrene (2 of 21 9.5%); Benzo(b)fluoranthene (4 of 21 19%); Benzoic Acid (2 of 21 9.5%); Chrysene (2 of 21 9.5%); Fluoranthene (4 of 21 19%); Pyrene (4 of 21 19%)			Benzo(a)pyrene (0.14 2 of 21 9.5%)				Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzoic Acid - A1; Chrysene - A1; Fluoranthene - A1: Pyrene - A1	
M-SMA-6	35-016(h)	Upper Mortandad Aggregate Area	Benzo(a)anthracene (6 of 23)26%); Benzo(a)pyrene (6 of 23)26%); Benzo(b)fluoranthene (7 of 23)30%); Benzo(g),hi)perylene (3 of 23)13%); Benzo(k)fluoranthene (2 of 23)8.7%); Chrysene (7 of 23)30%); Fluoranthene (6 of 23)35%); Indeno(1,2,3-cd)pyrene (3 of 23)13%). Phenanthrene (6 of 23)26%); Pyrene (8 of 23)35%)			Benzo(a)pyrene (0.72 6 of 23 26%)	Benzo(b)fluoranthene (0.12 1 of 23 4.3%)	Total PCB		Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h)jperylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1	
Pratt-SMA-1.05	35-016(m)	Middle Mortandad/Ten Site	Acenaphthene (1 of 6)17%); Anthracene (1 of 6)17%); Benzo(a)anthracene (2 of 6)33%); Benzo(a)pyrene (2 of 6)33%); Benzo(b)fluoranthene (2 of 6)33%); Benzo(g,h,i)perylene (2 of 6)33%); Benzo(k)fluoranthene (2 of 6)33%); Benzoic (a (1 of 6)17%); Chrysene (2 of 6)33%); Diethylphthalate (1 of 6)17%); Di-n-butylphthalate (1 of 6)17%); Fluoranthene (3 of 6)50%); Fluorene (1 of 6)17%); Indeno(1,2,3-od)pyrene (2 of 6)33%); Phenanthrene (3 of 6)50%); Pyrene (3 of 6)50%)	Benzo(a)pyrene (1.1 1 of 6 17%	6)		Benzo(a)anthracene (0.11 1 of 6 17%); Benzo(b)fluoranthene (0.16 2 of 6 33%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Chrysene - A1; Diethylphthalate - A1; Di-n- butylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1	

Table 8 Summary of Evaluation of Organic Data in Shallow Soil San	nples
---	-------

				Organic Constituents	Detected Above Residential SSI s	Organic Constituents Det	ected Above 10% of Residential SSI s		Constitu	uents Site Related?	
				organic constituents		organic constituents bet		Stormwater	Consult		
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Analytes Exceeding TALs	Yes	No ¹	Potential Significant Industrial Materials
M-SMA-11.1	35-016(o)	Middle Mortandad/Ten Site Canyons	Acenaphthene (10 of 55)18%); Anthracene (15 of 55)27%); Aroclor-1254 (11 of 32)34%); Aroclor-1260 (15 of 32)47%); Benzo(a)anthracene (12 of 55)22%); Benzo(a)pyrene (16 of 55)29%); Benzo(b)fluoranthene (17 of 55)13%); Benzo(a),Dipeyrlene (12 of 55)22%); Benzo(k)fluoranthene (13 of 55)24%); Benzoic Acid (3 of 37)8.1%); Bis(2- ethylhexyl)phthalate (4 of 37)11%); Chrysene (21 of 55)38%); DDE1(4.4') (3 of 16)19%); DDT1[4.4'] (4 of 16)25%); Dibenz(a)nathracene (5 of 55)19.1%); Dibenzofuran (6 of 37)16%); Di-n-butylphthalate (6 of 37)16%); Fluoranthene (27 of 55)49%); Fluorene (11 of 55)29%); Indeno(1,2,3-cd)pyrene (9 of 55)16%); Methylnaphthalene[2-] (5 of 37)14%); Naphthalene (5 of 55)9.1%); Phenanthrene (18 of 55)33%); Phenol (3 of 37)8.1%); Pyrene (28 of 55)51%)	Benzo(a)pyrene (68 9 of 55 16%	 Arocior-1254 (1.21 of 32(3.1%); Benzo(a)anthracene (7.4(3 of 55(5.5%); Benzo(b)fluoranthene (6.3(3 of 55(5.5%); Dibenz(a,h)anthracene (15(5 of 55)9.1%); Indeno(1,2,3-od)pyrene (4.4(3 of 55(5.5%)) 		Aroclor-1260 (0.15 4 of 32 12%); Benzo(k)fluoranthene (0.74 3 of 55 5.5%)		Aroclor-1254; Aroclor-1260	Acenaphthene - A1; Anthracene - A1; Benzco(a)anthracene - A1; Benzo(a)pyrene - A1; Benzco(b)fuoranthene - A1; Benzo(a, h)perylene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; DDE[4,4'] - A1; DDT[4,4'] - A1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1; Di- n-butylphthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(11,2,3-cd)pyrene - A1; Methylnaphthalene[2] - A1; Naphthalene - A1; Phenanthrene - A1; Phenol - A1; Pyrene - A1	PCBs
M-SMA-12	35-016(p)	Middle Mortandad/Ten Site Canyons	Acenaphthene (2 of 18 11%); Anthracene (1 of 18 5.6%); Benzo(a)anthracene (3 of 18 17%); Benzo(a)pyrene (2 of 18 11%); Benzo(b)fluoranthene (3 of 18 17%); Benzo(b, fil)perylene (2 of 18 11%); Benzoic A; di (2 of 4 50%); Chrysene (6 of 18 33%); Fluoranthene (5 of 18 28%); Fluorene (2 of 18 11%); Indeno(1,2,3-cd)pyrene (1 of 18 5.6%); Naphthalene (1 of 18 5.6%); Phenanthrene (5 of 18 28%); Pyrene (7 of 18 39%)	Benzo(a)pyrene (1.2 1 of 18 5.6%)			Benzo(a)anthracene (0.13 1 of 18 5.6%)			Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fuoranthene - A1; Benzo(a,h)perylene - A1; Benzoic Acid - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
PT-SMA-2	36-003(b)	Potrillo/Fence Aggregate Area	a Fluoranthene (1 of 6 17%); Phenanthrene (1 of 6 17%); Pyrene (1 of 6 17%)							Fluoranthene - A1; Phenanthrene - A1	
PT-SMA-3	36-004(a)	Potrillo/Fence Aggregate Area	a HMX (1 of 2 50%)						HMX		
F-SMA-2	36-004(c)	Potrillo/Fence Aggregate Area	a Amino-2,6-dinitrotoluene[4-] (1 of 14 7.1%); Amino-4,6-dinitrotoluene[2-] (1 of 14 7.1%); Benzoic Acid (1 of 14 7.1%); Bis(2-ethylhexyl)phthalate (7 of 14 50%); Di-n-butylphthalate (6 of 14 43%); Dinitrotoluene[2,4-] (2 of 28 7.1%); HMX (1 of 14 7.1%)						4-Amino-2,6-dinitrotoluene; 2-Amino-4,6- dinitrotoluene; Bis(2-ethylhexyl)phthalate; Di-n-butylphthalate; 2,4-Dinitrotoluene; HMX	Benzoic Acid - A1	
PT-SMA-4.2	36-004(d)	Potrillo/Fence Aggregate Area	a Bis(2-ethylhexyl)phthalate (4 of 25 16%); Chrysene (2 of 25 8%); Isopropyltoluene[4-] (4 of 23 17%); Methylene Chloride (2 of 24 8.3%); Toluene (4 of 23 17%);						Bis(2-ethylhexyl)phthalate	Chrysene - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Toluene - C1;	
PT-SMA-3	36-006	Potrillo/Fence Aggregate Area	Trimethylbenzene[1,2,4-] (2 of 23 8,7%) a Acenaphthene (2 of 28 7.1%); Acetone (6 of 28 21%); Anthracene (2 of 28 7.1%); Benzo(a)anthracene (3 of 28 11%); Benzo(a)pyrene (3 of 28 11%); Benzo(b)fluoranthene (4 of 28 14%); Benzo(g,h,i)perylene (2 of 28 7.1%); Benzo(k)fluoranthene (3 of 28 14%); Chrysene (3 of 28 11%); Fluoranthene (4 of 28 14%); Fluorene (2 of 28 7.1%); Indeno(1,2,3- cd)pyrene (2 of 28 7.1%); Phenanthrene (3 of 28 11%); Pyrene (4 of 28 14%)	Benzo(a)pyrene (24 2 of 28 7.1%	 Benzo(a)anthracene (3.2 1 of 28 3.6%); Benzo(b)fluoranthene (3.4 1 of 28 3.6%); Indeno(1,2,3-od)pyrene (1 1 of 28 3.6%) 		Benzo(k)fluoranthene (0.15 1 of 28 3.6%)			Trimethylbenzene[1,2,4-] - C1 Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(g)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Chrysone - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1	
3M-SMA-2.6	36-008	Threemile Aggregate Area	Acenaphthene (21 of 107)[20%); Acetone (14 of 107)[13%); Anthracene (30 of 107)[28%); Aroclor-1254 (19 of 31)[61%); Aroclor-1260 (15 of 31)[48%); Benzo(a)anthracene (49 of 107)[46%); Benzo(a)pyrene (45 of 107)[42%); Benzo(b)[fluoranthene (50 of 107)[47%); Benzo(g,h.i)perylene (35 of 107)[42%); Benzo(b)[fluoranthene (50 of 107)[47%); Borzo(g,h.i)perylene (35 of 107)[42%); Benzo(in (6 of 107)[56%); Di-n- butylphthalate (13 of 107)[12%); Fluoranthene (59 of 107)[55%); Fluorene (22 of 107)[21%); Indeno(1,2,3-cd)pyrene (35 of 107)[35%); Isopropytoluene[4-] (40 of 107)[37%); Methylane Chioride (6 of 107)[55%); Methylinaphthalene[2-] (11 of 107)[10%); Naphthalene (11 of 107)[10%); Phenanthrene (7 of 107)[55%); Triwethylbenzene[1,2,4-] (7 of 107)[6.5%); Xylene[1,3-]+Xylene[1,4-] (15 of 107)[14%)	Benzo(a)pyrene (68 22 of 107 21%)	Benzo(a)anthracene (7.7)11 of 107)10%); Benzo(b)fluoranthene (13)14 of 107)13%); Dibenz(a,h)anthracene (9.5)3 of 107/12.8%); Indeno(1,2,3-od)pyrene (3.1)5 of 107/4.7%)		Aroclor-1254 (0.92]3 of 31[9,7%); Aroclor-1260 (0.28]1 of 31[3,2%)		Aroclor-1254 (19 of 31 61%); Aroclor-1260 (15 of 31 48%);	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a,h,)perylene - A1; Benzoic Acid - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1; Di- n-buty(phthalate - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Fluere - A1; Tolene - C1; Trichloroethene - C1; Trimethylbenzene[1,2,4-] - C1; Xylene[1,3-]+Xylene[1,4-] -C1	PCBs
A-SMA-2.7	39-002(c)	North Ancho Aggregate Area	Aroclor-1254 (2 of 10)20%): Benzo(a)anthracene (1 of 10)10%); Heptachlorodibenzodioxin(1,2,3,4,6,7,8-) (1 of 1100%); Heptachlorodibenzodioxins (Total) (1 of 11)00%); Heptachlorodibenzodivara(1,2,3,4,6,7,8-) (1 of 11)00%); Heptachlorodibenzodivara(1,2,3,4,7,8,9-) (1 of 11)00%); Heptachlorodibenzodivara(1,2,3,4,7,8,9-) (1 of 11)00%); Hexachlorodibenzodivara(1,2,3,4,7,8,9-) (1 of 11)00%); Detachlorodibenzodivara(1,2,3,4,7,8,9-) (1 of 11)00%); Pottachlorodibenzodivara(1,2,3,4,7,8,9-) (1 of 11)00%); Pottachlorodibenzodivara(1,2,3,4,7,8,9							Arodor-1254 - B5; Berzo(a)anthracene - B5; Heptachlorodibenzodioxins (Total) - B5; Heptachlorodibenzodioxins (Total) - B5; Heptachlorodibenzodruan (1,2,3,4,6,7,8-] - B5; Heptachlorodibenzodruan (1,2,3,4,6,7,8-] - B5; Heptachlorodibenzodruans (Total) - B5; Hexachlorodibenzodroxin (1,2,3,4,7,8-] - B5; Hexachlorodibenzodroxin (1,2,3,4,7,8-] - B5; Hexachlorodibenzodroxin (1,2,3,4,7,8-] - B5; Hexachlorodibenzodroxin (1,2,3,4,7,8-] - B5; Hexachlorodibenzodroxin (Total) - B5; Octachlorodibenzodroxin (Total) - B5; Octachlorodibenzodroxin (Total) - B5; Octachlorodibenzodroxin (Total) - B5; Pentachlorodibenzodroxin (Total) - B5; Pentachlorodibe	
A-SMA-2	39-004(b)	North Ancho Aggregate Area	Bis(2-ethylhexyl)phthalate (2 of 31 6.5%); Di-n-butylphthalate (2 of 31 6.5%)				Bis(2-ethylhexyl)phthalate (0.13 1 of			Bis(2-ethylhexyl)phthalate - A1; Di-n-butylphthalate -	
A-SMA-3	39-004(c)	North Ancho Aggregate Area	Aroclor-1248 (2 of 4 50%); Aroclor-1254 (1 of 4 25%); Aroclor-1260 (2 of 4 50%); Bis(2- ethylhexyl)phthalate (4 of 45(8,9%); Di-n-butylphthalate (7 of 45(16%); Heptachlorodibenzodiaxin(1,2,3,4,6,7,8-] (1 of 1 100%); Heptachlorodibenzodiaxins (Total) (1 of 1 100%); Heptachlorodibenzofuran(1,2,3,4,6,7,8-] (1 of 1 100%); Heptachlorodibenzofurans (Total) (1 of 1 100%); Hexachlorodibenzodiaxins (Total) (1 of 1 100%); Hexachlorodibenzofuran[1,2,3,4,7,8,4] (1 of 1 100%); Hexachlorodibenzofuran[1,2,3,4,7,8,4] (1 of 1 100%); Cotachlorodibenzofuran[1,2,3,4,7,8,9] (1 of 1 100%); Pentachlorodibenzofurans (Total) (1 of 1 100%); Pentachlorodibenzofurans (Totals) (1 of 1 100%); Pentachlorodibenzofurans (Totals) (1 of 1 100%); Pentachlorodibenzofurans (Totals) (1 of 1 100%); Cotachlorodibenzofurans (Totals) (1 of 1 100%)		Aroclor-1248 (30 1 of 4 25%); Aroclor-1260 (3.1 1 of 4 25%)		Aroclor-1254 (0.52 1 of 4 25%)	Total PCB	Aroclor-1248; Aroclor-1254 ; Aroclor-1260;	Bis(2-ethylhexyl)phthalate - A1; Di-n-butylphthalate - A10; Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodiuran[1,2,3,4,6,7,8-] - A1; Heptachlorodibenzofuran[1,2,3,4,6,7,8-] - A1; Hexachlorodibenzofuran[1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran[1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran[1,2,3,4,7,8-] - A1; Hexachlorodibenzofuran[1,2,3,4,7,8-] - A1; Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] - A1; Octachlorodibenzofuran[1,2,3,4,6,7,8,9-] - A1; Dentachlorodibenzofuran[1,2,3,4,6,7,8,9-] - A1; Pentachlorodibenzofuran[1,2,3,4,7,8-] - A1; Pentachlorodibenzofuran[1,2,3,4,7,8-] - A1; Pentachlorodibenzofuran[1,2,3,4,7,8,9-] - A1; Pentachlorodibenzofuran[1,2,3,4,7,8,9-] - A1; Pentachlorodibenzofuran[1,2,3,4,7,8,9-] - A1;	PCBs
A-SMA-1.1 A-SMA-2	39-004(d) 39-004(e)	North Ancho Aggregate Area North Ancho Aggregate Area	Aroclor-1260 (2 of 4 50%); HMX (6 of 80 7.5%) Bis(2-ethylhexyl)phthalate (3 of 39 7.7%); Di-n-butylphthalate (3 of 39 7.7%)						HMX	Aroclor-1260-A1 Bis(2-ethylhexyl)phthalate - A1; Di-n-butylphthalate - A1	
A-SMA-3.5	39-006(a)	North Ancho Aggregate Area	Amino-2,6-dinitrotoluene[4-] (1 of 16]6.2%); Aroclor-1254 (4 of 16]25%); Bis(2- ethylhexyl)phthalate (9 of 16]56%); Toluene (1 of 16]6.2%); Trimethylbenzene[1,2,4-] (1 of 16]6.2%)							Amino-2,6-dinitrotoluene[4-] - A1; Aroclor-1254 - A1; Bis(2-ethylhexyl)phthalate - A1; Toluene - C1; Trimethylbenzene[1,2,4-] - C1	

				10010 0 00	initially of Evaluation of organic		ampico				
				Organic Constituents	Detected Above Residential SSLs	Organic Constituents De	etected Above 10% of Residential SSLs		Const	ituents Site Related?	_
								Stormwater Analytes			Potential Significant
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Exceeding TALs	Yes	No ¹	Industrial Materials
A-SMA-2.7	39-008	North Ancho Aggregate Area	Aroclor-1254 (4 of 30 13%); Bis(2-ethylhexyl)phthalate (13 of 48 27%); Dichloroethane[1,2-] (1 of 15[6.7%); Di-n-butylphthalate (3 of 48 6.2%); Isopropyltoluene[4-] (2 of 15 13%); Methylene Chloride (2 of 15 13%); Trichlorofluoromethane (5 of 15 33%); Trimethylbenzene[1,3,5-] (2 of 15 13%)				Aroclor-1254 (0.55 2 of 30 6.7%)			Aroclor-1254 - A1; Bis(2-ethylhexyl)phthalate - A1; Dichloroethane[1,2] - C1; Dir-hottylphthalate - A1; Isopropyluone[4] - C1; Methylene Chloride - C1; Trichlorofluoromethane - C1; Trimethylbenzene[1,3,5-] - C1	
A-SMA-2.5	39-010	North Ancho Aggregate Area	Aroclor-1254 (3 of 54 5.6%); Aroclor-1260 (3 of 54 5.6%); Bis(2-ethylhexyl)phthalate (4 of 54[7.4%); Di-n-butylphthalate (15 of 54 28%); HMX (10 of 54 19%); RDX (5 of 54 9.3%); Trinitrotlownel2.4.6-1 (3 of 54 5.6%)			RDX (0.43 2 of 54 3.7%)			Di-n-butylphthalate; HMX; RDX; 2,4,6- Trinitrotoluene	Aroclor-1254 - A1; Aroclor-1260 - A1; Bis(2- ethylhexyl)phthalate - A1	HE
2M-SMA-1.65	40-005	Twomile Canyon	Acetone (5 of 11 45%); Methylene Chloride (2 of 11 18%)							Acetone - C1; Methylene Chloride - C1	
PJ-SMA-10	40-006(a)	Starmer/Upper Pajarito Canyon	Benzoic Acid (11 of 101 11%); Bis(2-ethylhexyl)phthalate (7 of 101 6.9%); Butylbenzylphthalate (6 of 101 5.9%); Di-n-butylphthalate (19 of 101 19%); HMX (10 of 100110%)						HMX	Benzoic Acid - A1; Bis(2-ethylhexyl)phthalate - A1; Butylbenzylphthalate - A1; Di-n-butylphthalate - A1	
PJ-SMA-9	40-009	Starmer/Upper Pajarito Canyon	Benzo(a)pyrene (1 of 16 6.2%); Benzo(b)fluoranthene (1 of 16 6.2%); Benzo(k)fluoranthene (1 of 16 6.2%); Benzoic Acid (1 of 16 6.2%); Bis(2-ethylhexyl)phthalate (3 of 16 19%); Di-n-octylphthalate (2 of 16 12%); Tetryl (1 of 16 6.2%)			Benzo(a)pyrene (0.36 1 of 16 6.2%)			Tetryl	Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2 ethylhexyl)phthalate - A1; Di-n-octylphthalate - A1	-
LA-SMA-1.1	43-001(b2)	Upper Los Alamos Canyon	Acenaphthene (10 of 21 48%); Anthracene (11 of 21 52%); Aroclor-1260 (11 of 21 52%); Benzo(a)anthracene (14 of 21 67%); Benzo(a)pyrene (14 of 21 67%); Benzo(b)fluoranthene (14 of 21 67%); Benzo(g,h.i)perylene (14 of 21 67%); Benzo(k)fluoranthene (14 of 21 67%); Bis(2-ethylhexyl)phthalate (14 of 21 67%); Butylbenzylphthalate (3 of 21 14%); Chrysene (14 of 21 67%); Dibenz(a,h)anthracene (5 of 21 24%); Dibenzofuran (8 of 21 38%); Fluoranthene (16 of 21 67%); Fluorene (10 of 21 4%); Indeno(1,2,3-cd)pyrene (14 of 21 67%); Phenanthracene (10 of 21 4%); Indeno(1,2,3-cd)pyrene (14 of 21 67%); Phenanthrene (14 of 21 67%); Pyrene (16 of 21 38%); Naphthalene (9 of 21 43%); Phenanthrene (14 of 21 67%); Pyrene (16 of 21 78%); Tetrachlorodibenzodioxin[2,3,7,8-] (3 of 21 14%); Tetrachlorodibenzofuran[2,3,7,8-] (4 of 21 19%)	Benzo(a)pyrene (38 12 of 21 57%)	Benzo(a)anthracene (3.9 5 of 21 24%); Benzo(b)fluoranthene (4.2 3 of 21 14%); Dibenz(a,h)anthracene (6.5 4 of 21 19%); Indeno(1,2,3-cd)pyrene (1.6 1 of 21 4.8%)		Benzo(k)fluoranthene (0.37 4 of 21 19%)		Aroclor-1260; Bis(2-ethylhexyl)phthalate; Tetrachlorodibenzodioxin[2,3,7,8-]; Tetrachlorodibenzofuran[2,3,7,8-]	Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),h)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate (14 of 21(67%); Butylbenzylphthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene- A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1-2,3- cd)pyrene - A1; Fluorene Chloride - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
CDB-SMA-1.65	46-003(b)	Upper Canada del Buey	Benzo(k)fluoranthene (1 of 2 50%); Chrysene (1 of 2 50%)							Benzo(k)fluoranthene - A1; Chrysene - A1	
CDB-SMA-1	46-003(c)	Aggregate Area Upper Canada del Buey Aggregate Area						Total PCB		PCBs - A1, Aroclor-1260 - A1	
CDB-SMA-1.55	46-003(e)	Upper Canada del Buey Aggregate Area	Anthracene (1 of 4 25%); Aroclor-1254 (3 of 4 75%); Aroclor-1260 (2 of 4 50%); Benzo(a)anthracene (1 of 4 25%); Benzo(a)pyrene (1 of 4 25%); Benzo(d)p/fluoranthene (1 of 4 25%); Benzo(g,h,i)perylene (1 of 4 25%); Benzoic Acid (1 of 4 25%); Bis(2- ethylhexyl)phthalate (1 of 4 25%); Chrysene (1 of 4 25%); Fluoranthene (1 of 4 25%); Phenanthrene (1 of 4 25%); Pyrene (1 of 4 25%)			Benzo(a)pyrene (0.11 1 of 4 25%)				Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(g)ayrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(b,ic) Acid - C2; Bis(2-ethylheyv)phthalate C2; Chrysene (1 of 4 25%) - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1	
CDB-SMA-1.35	46-004(a2)	Upper Canada del Buey Aggregate Area	Acenaphthene (1 of 8 12%); Anthracene (1 of 8 12%); Aroclor-1242 (1 of 8 12%); Aroclor- 1254 (4 of 8 50%); Aroclor-1260 (4 of 8 50%); Benzo(a)anthracene (3 of 8 38%); Benzo(a)pyrene (2 of 8 25%); Benzo(b)fluoranthene (3 of 8 38%); Benzo(g,h,i)perylene (1 o 8 12%); Chrysene (3 of 8 38%); Fluoranthene (3 of 8 38%); Fluorene (1 of 8 12%); Indeno(1,2,3-cd)pyrene (1 of 8 12%); Isopropyltoluene[4-] (2 of 8 25%); Methylene Chloride (1 of 8 12%); Phenanthrene (2 of 8 25%); Pyrene (3 of 8 38%)	Benzo(a)pyrene (4 1 of 8 12%)			Benzo(a)anthracene (0.49 1 of 8 12%); Benzo(b)fluoranthene (0.8 1 of 8 12%); Indeno(1,2,3-cd)pyrene (0.17 1 of 8 12%)			Acenaphthene - A1; Anthracene - A1; Aroclor-1242 A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)yrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Inden/1.2,3-cd)yrene - A1; Spropytloulene[4]] - C1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1	-
CDB-SMA-1.15	46-004(b)	Upper Canada del Buey Aggregate Area	Acenaphthene (1 of 4 25%); Anthracene (1 of 4 25%); Aroclor-1254 (2 of 4 50%); Aroclor- 1260 (2 of 4 50%); Benzo(a)anthracene (2 of 4 50%); Benzo(a)pyrene (1 of 4 25%); Benzo(b)fluoranthene (1 of 4 25%); Benzo(g),fi)perv[ene (1 of 4 25%); Chrosene (2 of 4 50%); Fluoranthene (2 of 4 50%); Fluorene (1 of 4 25%); Indeno(1,2,3-cd)pyrene (1 of 4 25%); Methylnaphthalene[2-] (1 of 4 25%); Naphthalene (1 of 4 25%); Phenanthrene (2 of 4 50%); Pyrene (2 of 4 50%); TPH-NOC (3 of 4 75%); Trichlorethane[1,1,1] (1 of 4 25%); Trichloroethene (1 of 4 25%); Trimethylbenzene[1,2,4-] (1 of 4 25%); Xylene[1,2-] (1 of 4 25%); Xylene[1,3-]+Xylene[1,4-] (1 of 4 25%)			Benzo(a)pyrene (0.8 1 of 4 25%)	Aroclor-1254 (0.15)1 of 4 25%); Benzo(a)anthracene (0.1)1 of 4 25%); Benzo(b)fluoranthene (0.13 1 of 4 25%)		Acenaphthene; Anthracene; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(g,h,i)perylene; Chrysene; Fluoranthene; Fluorene; Indeno(1,2,3- cd)pyrene; Methy/laphthalene[2-]; Naphthalene; Phenanthrene; Pyrene;	Aroclor-1254 - A1; Aroclor-1260 - A1; TPH-DRO - C2; Trichloroethane[1,1-] - C1; Trichloroethene - C1; Trimethylbenzene[1,2,4-] - C1; Xylene[1,2-] - C1; Xylene[1,3-]+Xylene[1,4-] - C1	PAHs
CDB-SMA-0.25	46-004(c2)	Upper Canada del Buey Aggregate Area	Acenaphthene (7 of 22 32%); Acetone (3 of 22 14%); Anthracene (8 of 22 36%); Aroclor- 1254 (12 of 22 55%); Aroclor-1260 (13 of 22 55%); Benzo(a)anthracene (11 of 22 50%); Benzo(a)pyrene (11 of 22 50%); Benzo(b)fluoranthene (12 of 22 55%); Benzo(g,h,i)perylene (9 of 22 41%); Benzo(k)fluoranthene (9 of 22 41%); Chrysene (11 of 22 50%); Dibenz(a,h)anthracene (5 of 22 41%); Methylnaphthalene[2-] (2 of 22 32%); Indeno(1,2,3-cd)pyrene (9 of 22 41%); Methylnaphthalene[2-] (2 of 22 3.9%); Naphthalene (4 of 22 18%); Phenanthrene (11 of 22 50%); Pyrene (13 of 22 59%); Xylene[1,3-]+Xylene[1,4-] (3 of 22 14%)	Benzo(a)pyrene (1.3 2 of 22 9.1%)			Aroclor-1254 (0.12 1 of 22 4.5%); Benzo(a)anthracene (0.15 2 of 22 9.1%); Benzo(b)Itovanthene (0.19 5 of 22 23%); Dibenz(a,h)anthracene (0.22 5 of 22 23%); Indeno(1,2,3-cd)pyrene (0.11 2 of 22 9.1%)	Total PCB		Acenaphthene - A1; Acetone - C1; Anthracene -A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Dibenz(a),hanthracene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Xylene[1,3-]+Xylene[1,4-] - C1	
CDB-SMA-1	46-004(d2)	Upper Canada del Buey Aggregate Area	Acenaphthene (6 of 40 15%); Anthracene (9 of 40 22%); Aroclor-1254 (8 of 40 20%); Aroclor-1260 (11 of 40 28%); Benzo(a)anthracene (16 of 40 40%); Benzo(a)pyrene (14 of 40 35%); Benzo(b)fluoranthene (20 of 40 50%); Benzo(a),h)perylene (15 of 40 38%); Chrysene (14 of 40 35%); Dibenz(a,h)anthracene (3 of 40)7.5%); Fluoranthene (21 of 40 52%); Fluorene (6 of 40 15%); Indeno(1,2,3-cd)pyrene (12 of 40 30%); Methylnaphthalene[2-] (3 of 40 7.5%); Naphthalene (5 of 40 12%); Phenanthrene (18 of 40 45%); Fyrene (22 of 40 55%)	Benzo(a)pyrene (9.5 4 of 40 10%) Benzo(a)anthracene (1 1 of 40 2.5%); Benzo(b)fluoranthene (1.6 1 of 40 2.5%); Dibenz(a,h)anthracene (2.3 1 of 40 2.5%)		Arocior-1254 (0.31 2 of 40 5%); Indeno(1,2,3-cd)pyrene (0.63 3 of 40 7.5%)	Fotal PCB		Acenaphthene -A1; Anthracene A-1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a,h)perytene - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylmaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
CDB-SMA-0.55	46-004(e2)	Upper Canada del Buey Aggregate Area	Acenaphthene (4 of 6 67%); Acetone (2 of 6 33%); Anthracene (5 of 6 83%); Aroclor-1254 (5 of 6 83%); Aroclor-1260 (5 of 6 83%); Benzo(a)anthracene (4 of 6 67%); Benzo(a)pyrene (5 of 6 83%); Benzo(b)fluoranthene (5 of 6 83%); Binzo(a)pyrene (6 of 6 83%); Dibenzofuran (1 of 6 17%); Chrysene (5 of 6 83%); Dibenz(a,h)anthracene (2 of 6 33%); Dibenzofuran (1 of 6 17%); Ethylbenzene (1 of 6 17%); Fluoranthene (6 of 6 10%); Fluorene (4 of 6 67%); Isoport, and (6 67%); Borporyblutoune[4-1] (1 of 6 17%); Methylene Chloride (1 of 6 17%); Methylnaphthalene[2-1] (2 of 6 33%); Methylphenol[2-1] (1 of 6 17%); Methylphenol[4-1] (1 of 6 17%); Naphthalene (3 of 6 50%); Phenanthrene (6 of 6 100%); Pyrene (6 of 6 100%); Toluene (1 of 6 17%); Xylene[1,2-1] (2 of 6 33%); Xylene[1,3-]+Xylene[1,4-] (2 of 6 33%)	Benzo(a)pyrene (9.1 2 of 6 33%)	Benzo(b)fluoranthene (1.1 1 of 6 17%); Dibenz(a,h)anthracene (1.4 1 of 6 17%)		Benzo(a)anthracene (0.93)2 of 6)33%); Indeno(1,2,3-cd)pyrene (0.45)1 of 6(17%)	Total PCB		Acenaphthene - A1; Acetone - C1; Anthracene - A1; Arcolor-1254 - A1; Arcolor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a),hiperylene - A1; Benzo(k)fluoranthene - A1; Dhenzo(a),hiperylene - A1; Dhenz(a),hanthracene - A1; Dhenzo(a), and Hiberz(a),hanthracene - A1; Dhenzo(a), and Hiberz(a), anthracene - A1; Dhenzo(a), and Hiberz(a), and Hiberz(a), and I - A1; Methylene Chloride - A1; Hethylhapthalene(2-] - A1; Methylpheno[[2-] - C2; Methylphenol[4-] - C2; Maphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; Trichloroethane[1,1-] - C1; Trimethylbenzene[1,3,5-] - C1; Xylene[1,2-] - C1; Xylene[1,3-]+Xylene[1,4-] - C1	-

Table 8	Summary of Evaluation of Organic Data in Shallow Soil Samples
---------	---

			-	Table o Summary of Evaluation	Tor organic Data in Shahow Son Sa	linples			r
				Organic Constituents Detected Above Resident	ial SSLs Organic Constituents De	tected Above 10% of Residential SSLs	Starmundar	Constituents Site Related?	
							Analytes		Potential Significant
SMA CDB-SMA-1	Site 46-004(f)	Aggregate Area Upper Canada del Buey Aggregate Area	Frequency of Detects Acenaphtene (1 of 8 12%); Anthracene (1 of 8 12%); Aroclor-1254 (3 of 8 38%); Aroclor-1260 (4 of 8 50%); Benzo(a)anthracene (2 of 8 25%); Benzo(a)pyrene (2 of 8 25%); Benzo(b)fluoranthene (2 of 8 25%); Benzo(g),hi)perylene (1 of 8 12%); Benzo(k)fluoranthene (2 of 8 25%); Benzo(g),hi)perylene (1 of 8 12%); Chrysene (2 of 8 25%); Fluoranthene (3 of 8 38%); Fluorene (1 of 8 12%); Indeno(1,2,3-cd)pyrene (1 of 8 12%); Methylene Chloride (2 of 8 25%); Phenanthrene (3 of 8 38%); Pyrene (3 of 8 38%); Toluene (1 of 8 12%)	TAL List Non-TAL I	List TAL List Benzo(a)pyrene (0.58 1 of 8 12%)	Non-TAL List E	Exceeding TALs Yes	No ¹ Acenaphthene -A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,hi)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2-ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Methylene Chloride - A1; Dencapthrane - A1; Methylene Chloride - A1;	Industrial Materials
CDB-SMA-0.55	46-004(g)	Upper Canada del Buey Aggregate Area	Acenaphthene (1 of 15[6.7%); Anthracene (1 of 13]7.7%); Aroclor-1254 (6 of 16]38%); Aroclor-1260 (3 of 16]19%); Benzo(a)anthracene (5 of 15]33%); Benzo(a)pyrene (3 of 12]25%); Benzo(b)fluoranthene (5 of 11 45%); Benzo(g,h)perylene (3 of 11 27%); Benzo(K)fluoranthene (1 of 13]7.7%); Chrysene (3 of 12]25%); Dibenz(a),h)anthracene (1 of 16]6.2%); Di-n-butylphthalate (1 of 16]6.2%); Ethylbenzene (1 of 16]6.2%); Fluoranthene (5 of 12]42%); Fluorene (1 of 15]6.7%); indeno(1,2,3-cd)pyrene (3 of 13]23%); Isopropyltolene[4-] (1 of 16]6.2%); Methylene Chloride (2 of 16]12%); Methylnaphthalene[2-] (1 of 15]6.7%); Naphthalene (1 of 15]6.7%); Phenanthrene (3 of 12]25%); Pyrene (5 of 12]42%); Toluene (5 of 16]31%); Trichloroethane[1,1-] (1 of 16]6.2%); Timethylbenzene[1,2,4-] (2 of 16]12%); Xylene[1,2-] (2 of 16]12%); Xylene[1,3-]+Xylene[1,4-]] (3 of 16]19%)	Benzo(a)pyrene (2 1 of 12 8.3%)		Aroclor-1254 (0.11 1 of 16 6.2%); To Benzo(a)anthracene (0.19 1 of 15 6.7%); Dibenz(a,h)anthracene (0.99 1 of 16 6.2%); Indeno(1.2,3-cd)pyrene (0.11 1 of 13 7.7%)	otal PCB	Acenaphthene -A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pyrene - A1; Benzo(k)fluoranthene - A1; Benzo(a)pyrene - A1; Benzo(k)fluoranthene - A1; Fluoranthene - A1; Fthylbenzene - C1; Fluoranthene - A1; Hourene - A1; Indeno(1,2,3- cd)pyrene - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Toluene - A1; Toluene - A1; Trichloroethane[1,1,1-] - C1; Trimethylbenzene[1,2,4-] - C1; Xylene[1,2-] - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
CDB-SMA-1.54	46-004(h)	Upper Canada del Buey	Aroclor-1254 (1 of 4 25%)					Aroclor-1254 -A1	
CDB-SMA-0.55	46-004(m)	Aggregate Area Upper Canada del Buey Aggregate Area	Acenaphthene (2 of 19 11%); Anthracene (4 of 19 21%); Aroclor-1254 (7 of 19 37%); Aroclor-1260 (2 of 19 11%); Benzo(a)anthracene (4 of 19 21%); Benzo(a)pyrene (5 of 19 26%); Benzo(b)fluoranthene (5 of 19 26%); Benzo(a),h.i)perylene (4 of 19 21%); Benzo(k)fluoranthene (1 of 19 5.3%); Bis/2C-ethylhexyliphthalate (8 of 19 42%); Chrysene (5 of 19 26%); Dibenzofuran (1 of 19 5.3%); Fluoranthene (6 of 19 32%); Fluorene (2 of 19 11%); Indeno(1,2.3-col)pyrene (4 of 19 21%); Methylene Chloride (1 of 19 5.3%); Methylnaphthalene[2-] (2 of 19 11%); Naphthalene (2 of 19 11%); Phenanthrene (6 of 19 32%); Fyrene (6 of 19 32%); Tetrachloroethene (1 of 19 5.3%); Toluene (2 of 19 11%); Trichloroethane[1,1-1] (1 of 19 5.3%); J+Xylene[1,4-] (1 of 19 5.3%)	Benzo(a)pyrene (7:3 2 of 19 11%) Benzo(b)fluoranthene (1.4	4 1 of 19 5.3%)	Benzo(a)anthracene (0.72 2 of 19 11%); To Indeno(1,2,3-od)pyrene (0.36 2 of 19 11%)	otal PCB	Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g),h.jberyfene - A1; Benzo(K)fluoranthene - A1; Bis(2-ethylhexyl)phthalate - C2; Chrysene - A1; Dibenzofuran - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Fluorene - Chloride - C1; Methylnaphthalene[2] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Tetrachloroethene - C1; Toluene - C1; Trichloroethane[1,1,1-] - C1; Trichloroethene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
CDB-SMA-1.54	46-004(q)	Upper Canada del Buey Aggregate Area	Aroclor-1254 (7 of 26)27%); Aroclor-1260 (7 of 26)27%); Benzo(a)anthracene (5 of 26)19%); Benzo(a)pyrene (4 of 26)15%); Benzo(b)fluoranthene (6 of 26)23%); Benzo(g,h.i)perylene (4 of 26)15%); Bis(2-ethylhexyl)phthalate (2 of 26)7.7%); Chrysene (5 of 26)19%); Fluoranthene (6 of 26)23%); Indeno(1,2,3-cd)pyrene (2 of 26)7.7%); Phenanthrene (5 of 26)19%); Pyrene (6 of 26)23%)		Benzo(a)pyrene (0.54 4 of 26 15%)	Aroclor-1254 (0.24/2 of 26)7.7%); Benzo(b)fluoranthene (0.11 1 of 26)3.8%)	Aroclor-1254; Aroclor-12	60; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h.i)perylene - A1; Bis(2-ethylhexyl)phthalate - C2; Chrysene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1	PCBs
CDB-SMA-0.55	46-004(s)	Upper Canada del Buey Aggregate Area	Anthracene (1 of 4 25%); Aroclor-1254 (2 of 4 50%); Aroclor-1260 (1 of 4 25%); Benzo(a)anthracene (2 of 4 50%); Benzo(a)pyrene (2 of 4 50%); Benzo(b)fluoranthene (2 of 4 50%); Benzo(g,h,i)perylene (2 of 4 50%); Benzo(k)fluoranthene (2 of 4 50%); Chrysene (2 of 4 50%); Fluoranthene (2 of 4 50%); Indeno(1,2,3-cd)pyrene (2 of 4 50%); Fhenanthrene (1 of 4 25%); Pyrene (2 of 4 50%); Tetrachloroethene (1 of 4 25%); Toluene (2 of 4 50%); Xylene[1,3-]+Xylene[1,4-] (2 of 4 50%)	Benzo(a)pyrene (1.2 1 of 4 25%)		Benzo(a)anthracene (0.13 1 of 4 25%); Benzo(b)fluoranthene (0.16 2 of 4 50%)	otal PCB	Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h)perylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1; Tetrachloroethene - C1; Toluene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
CDB-SMA-1	46-004(t)	Upper Canada del Buey Aggregate Area	Acenaphthene (5 of 16 31%); Anthracene (11 of 16 69%); Aroclor-1254 (12 of 16 75%); Aroclor-1260 (11 of 16 69%); Benzo(a)anthracene (11 of 16 69%); Benzo(a)pyrene (11 of 16 69%); Benzo(b)fluoranthene (11 of 16 69%); Benzo(a,h),perylene (11 of 16 69%); Benzo(k)fluoranthene (10 of 16 62%); Bsit2-ethylhexylhohtalate (2 of 16 12%); Chrysene (11 of 16 69%); Dibenz(a,h)anthracene (5 of 16 31%); Fluoranthene (11 of 16 69%); Fluorene (5 of 16 31%); Indeno(1,2,3-cd)pyrene (10 of 16 62%); Isopropyltoluene[4-] (5 of 16 31%); Hethylnaphthalene[2-] (4 of 16 25%); Phenanthrene (11 of 16 69%); Pyrene (11 of 16 69%); Toluene (2 of 16 12%)	Benzo(a)pyrene (4.1 4 of 16 25%)		Benzo(a)anthracene (0.44)4 of 16)25%); To Benzo(b)fluoranthene (0.62)4 of 16)25%); Dibenz(a,h)anthracene (0.96)5 of 16)31%); Indeno(1,2,3-cd)pyrene (0.26)7 of 16)44%)	otal PCB	Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a,h)iperylene - A1; Benzo(k)fluoranthene - A1; Bis(2-ethylhexyl)phthalate - C2; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Fluorene - A1; Inden(-1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	
CDB-SMA-1.35	46-004(u)	Upper Canada del Buey Aggregate Area	Aroclor-1254 (10 of 20)50%); Aroclor-1260 (5 of 20)25%); Benzo(a)anthracene (3 of 20)15%); Benzo(a)pyrene (2 of 20)10%); Benzo(b)fluoranthene (5 of 20)25%); Chrysene (2 of 20)10%); Fluoranthene (7 of 20)35%); Phenanthrene (4 of 20)20%); Pyrene (6 of 20)30%); Toluene (4 of 20)20%); Trichloroethene (3 of 20)15%); Xylene[1,2-] (1 of 16)6.2%); Xylene[1,3-]+Xylene[1,4-] (2 of 16)12%)		Benzo(a)pyrene (0.64 1 of 20 5%)	Benzo(b)fluoranthene (0.12 1 of 20 5%)		Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Chrysene - A1; Fluoranthene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; Trichloroethene - C1; Xylene[1,2-] - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
CDB-SMA-1.35	46-004(v)	Upper Canada del Buey Aggregate Area	Aldrin (1 of 4 25%); Aroclor-1254 (2 of 4 50%); Benzo(a)anthracene (1 of 4 25%); Benzo(a)pyrene (1 of 4 25%); Benzo(b)fluoranthene (1 of 4 25%); Benzo(k)fluoranthene (1 of 4 25%); Chrysene (1 of 4 25%); DDE(4,4 ⁻) (2 of 4 50%); Endrin Aldehyde (1 of 4 25%); Endrin Ketone (1 of 4 25%); Fluoranthene (1 of 4 25%); Isopropyltoluene[4-] (1 of 4 25%); Methylene Chloride (2 of 4 50%); Phenanthrene (1 of 4 25%); Pyrene (1 of 4 25%); Trichloroethene (1 of 4 25%)		Benzo(a)pyrene (0.4 1 of 4 25%)			Aldrin - A1; Aroclor-1254 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; DDE[4,4 ⁻] - A1; Endrin Aldehyde - C2; Endrin Ketone- C2; Fluoranthene - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; Trichloroethene - C1	
CDB-SMA-1.35	46-004(x)	Upper Canada del Buey Aggregate Area	Aroclor-1254 (2 of 10 20%); Aroclor-1260 (3 of 10 30%); Benzo(a)pyrene (2 of 8 25%); Benzo(b)fluoranthene (3 of 7 43%); Benzo(g,h,i)peylene (2 of 8 25%); Benzo(k)fluoranthene (3 of 7 43%); Indeno(1,2,3-col)pyrene (2 of 8 25%); Isopropyltoluene[4-] (2 of 10 20%); Methylnaphthalene[2-] (1 of 10 10%); Phenanthrene (2 of 8 25%); Pyrene (3 of 7 43%); Toluene (4 of 10 40%); Trichloroethene (4 of 10 40%); Xylene[1,3-]+Xylene[1,4-] (3 of 10 30%)	Dibenz(a,h)anthracene (1	.2[1 of 10 10%) Benzo(a)pyrene (0.21 2 of 8 25%)	Benzo(b)fluoranthene (0.35 1 of 7 14%)		Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(k)fluoranthene - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Fluoranthene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Methylnaphthalene[2-] - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; Trichloroethene - C1; Xylene[1,3-]+Xylene[1,4-] - C1	

Table o Summary of Evaluation of Organic Data in Shahow Son Samples	Table 8	Summary of Evaluation of Organic Data in Shallow Soil Samples
---	---------	---

			Or	ganic Constituents I	Detected Above Residential SSLs	Organic Constituents Dete	ected Above 10% of Residential SSLs		Constitu	ents Site Related?	
CMA	Site	A	Foregoing of Defects	TAL 1:00	New TAL List		New TALLIS	Stormwater Analytes	Yee	N=1	Potential Significant
CDB-SMA-1.15	46-004(y)	Aggregate Area Upper Canada del Buey Aggregate Area	Acenaphthene (4 of 16[25%); Acetone (4 of 16[25%); Anthracene (3 of 16[19%); Arcolor- Acenaphthene (4 of 16[25%); Acetone (4 of 16[25%); Anthracene (3 of 16[19%); Arcolor- Benzo(a)anthracene (3 of 16[19%); Benzo(a)anthracene (3 of 16[19%); Benzo(b)anthracene (3 of 16[19%); Benzo(a)anthracene (3 of 16[19%); Benzo(a)anthracene (3 of 16[19%); Benzo(a)anthracene (3 of 16[19%); Benzo(a)anthracene (3 of 16[19%); Ethylbenzene (4 of 16[25%); Fluoranthene (4 of 16[25%); Fluoranthene (5 of 16[12%); Chrysene (3 of 16[19%); Ethylbenzene (4 of 16[25%); Fluoranthene (4 of 16[25%); Fluoranthene (2 of 16[12%); Nethylene Chiodia (2 of 16[12%); Methylnaphthalene[2-] (2 of 16[12%); Naphthalaene (2 of 16[12%); Phenanthrene (3 of 16[19%); Trichloroethane (5 of 16[38%); Trichloroethane (1,1,1-] (2 of 16[12%); Trichloroethane (1,3,5-] (1 of 16[6,2%); Xylene[1,2-] (6 of 16[38%); Xylene[1,3-]]+Xylene[1,4-] (6 of 16[38%)	TAL LIST rene (5 2 of 16 12%)	NON-I AL LIST	TAL LIST	Aroclor-1254 (0.19] of 16[6.2%); Benzo(a)anthracene (0.54]2 of 16[12%); Benzo(b)fluoranthene (0.79]3 of 16[19%); Indeno(1,2,3-cd)pyrene (0.28]2 of 16[12%)	Exceeding TALS	Tes	Acenaphthene - A1; Acetone - C1; Anthracene - A1; Aroclor-1242 - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(g)apyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g)apyrene - A1; Ethylbenzene - C1; Fluorane - C2; Chrysene - A1; Ethylbenzene - C1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Methylene Chloride - C1; Methylnaphthalene(2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Trichlorosthene - C1; Trinethylbenzene(1,2,4) - C1; Trinethylbenzene(1,3,5-] - C1; Xylene(1,2-] - C1; Xylene[1,3-]+Xylene[1,4-] - C1	industriai Materiais
CDB-SMA-1.15	46-004(z)	Upper Canada del Buey Aggregate Area	Aroclor-1254 (1 of 12 8.3%); Trimethylbenzene[1,2,4-] (1 of 12 8.3%); Xylene[1,3-							Aroclor-1254 - A1; Trimethylbenzene[1,2,4-] - C1; Xylene[1,3-]+Xylene[1,4-] - C1	
CDB-SMA-1.15; CDB- SMA-1.35; CDB-SMA- 1.54	46-006(d)	Upper Canada del Buey Aggregate Area	Acenaphihene (3 of 36)8.3%); Acetone (5 of 30)17%); Anthracene (5 of 36)14%); Aroclor- 1254 (6 of 36)17%); Aroclor-1260 (14 of 36)39%); Benzo(a)anthracene (7 of 36)19%); Benzo(a)pyrene (11 of 36)31%); Benzo(b)fluoranthene (16 of 36)44%); Benzo(a),h)perylene (8 of 36)22%); Benzo(k)fluoranthene (4 of 36)11%); Butanone(2-] (2 of 36)5.6%); Chrysene (11 of 36)31%); Fluoranthene (21 of 36)58%); Indeno(1,2,3-cd)pyrene (9 of 36)25%); Ilsopropyltoluene[4-] (2 of 36)5.6%); Phenanthrene (15 of 36)42%); Pyrene (20 of 36)56%)		Aroclor-1254 (1.2 1 of 36 2.8%)	Benzo(a)pyrene (0.57 9 of 36 25%)	Aroclor-1260 (0.22 1 of 36 2.8%); Benzo(b)fluoranthene (0.14 3 of 36 8.3%)		Acenaphthene; Anthracene; Aroclor-1254; Aroclor-1260; Benzo(a)parthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(g,hi)perylene; Benzo(k)fluoranthene; Chrysene; Fluoranthene; Indeno(1,2,3-cd)pyrene; Phenanthrene; Pyrene	Acetone - C1; Butanone[2-] - C1; Isopropyltoluene[4-] - C1	PAHs; PCBs
CDB-SMA-0.55	46-006(f)	Upper Canada del Buey Aggregate Area	Acetone (1 of 8 12%); Anthracene (3 of 8 38%); Aroctor-1254 (1 of 8 12%); Benzo(a)pyrene (3 of 8 38%); Benzo(b)fluoranthene (4 of 8 50%); Benzo(g,h,i)perylene (3 of 8 38%); Bis(2- ethylhexyl)phthalate (1 of 8 12%); Chrysene (3 of 8 38%); Ethylbenzene (1 of 8 12%); Fluoranthene (4 of 8 50%); Indeno(1,2,3-cd)pyrene (3 of 8 38%); Phenanthrene (3 of 8 38%); Pyrene (4 of 8 50%); Toluene (1 of 8 12%); TPH-DRO (3 of 8 38%); Xylene[1,3- +Xylene[1,4-] (1 of 8 12%)			Benzo(a)pyrene (0.38 3 of 8 38%)	T	otal PCB	Anthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(t,h)jperylene; Chrysene; Fluoranthene; Indeno(1,2,3-cd)pyrene; Phenanthrene; Pyrene	Acetone - C1; Aroclor-1254 - B5; Bis(2- ethylhexyl)phthalate - C2; Ethylbenzene - C1; Toluene - C1; TPH-DRO - C2; Xylene[1,3-]+Xylene[1,4-] - C1	PAHs
CDB-SMA-1.35	46-008(f)	Upper Canada del Buey Aggregate Area	Acenaphthene (2 of 14 14%): Anthracene (4 of 14 29%); Aroclor-1242 (5 of 14 36%); Aroclor-1254 (6 of 14 43%); Aroclor-1260 (4 of 14 29%); Benzo(a)anthracene (6 of 14 43%); Benzo(a)pyrene (5 of 14 36%); Benzo(b)fluoranthene (6 of 14 43%); Benzo(g),h)perylene (3 of 14 21%); Benzo(k)fluoranthene (3 of 14 21%); Chrysene (6 of 14 43%); Fluoranthene (7 of 14 50%); Fluorene (2 of 14 14%); Inteno(1,2,3-col)pyrene (4 of 14 29%); Methylene Chloride (1 of 14 7.1%); Methylnaphthalene[2-] (1 of 14 7.1%); Naphthalene (1 of 14 7.1%); Phenanthrene (6 of 14 43%); Pyrene (6 of 14 43%); TPH-DRO (5 of 14 36%)	rene (2.3 2 of 14 14%)			Benzo(a)anthracene (0.23)3 of 14 21%); Benzo(b)fluoranthene (0.34 3 of 14 21%); Indeno(1,2,3-cd)pyrene (0.12 1 of 14 7.1%)		Acenaphthene: Anthracene: Aroclor-1242; Aroclor-1254; Aroclor-1260; Benzo(a)anthracene: Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(k)fluoranthene; Benzo(k)fluoranthene; Chrysene; Fluoranthene; Fluorene; Indeno(1,2,3- cd)pyrene; Methylene Chloride; Methylmaphthalene[2-]; Naphthalene; Phenanthrene; Pyrene	TPH-DRO - C2	PAHs
CDB-SMA-1	46-008(g)	Upper Canada del Buey Aggregate Area	Acenaphthene (5 of 14 36%); Acenaphthylene (1 of 14 7.1%); Anthracene (7 of 14 50%); Arcolor-1242 (1 of 14 7.1%); Arcolor-1254 (6 of 14 43%); Arcolor-1260 (6 of 14 43%); Benzo(a)anthracene (8 of 14 57%); Benzo(a)pyrene (7 of 14 50%); Benzo(b)fluoranthene (8 of 14 57%); Benzo(a),hiperylene (9 of 14 64%); Chrysene (8 of 14 57%); Dibenz(a),anhtracene (7 of 14 50%); Dibenzofuran (2 of 14 14%); Dibenz(a),anhtracene (7 of 14 50%); Dibenzofuran (2 of 14 14%); Fluoranthene (10 of 14 71%); Fluorene (4 of 14 29%); Indeno(1,2,3-cd)pyrene (9 of 14 64%); Methylnaphthalene[2-] (4 of 14 29%); Naphthalene (4 of 14 29%); Phenanthrene (8 of 14 57%); Pyrene (9 of 14 64%)	rene (20 4 of 14 29%)	Benzo(a)anthracene (2.1 1 of 14 7.1%); Benzo(b)fluoranthene (3.3 2 of 14 14%); Dibenz(a).Narhracene (3.9)2 of 14 14%); Indeno(1,2,3-cd)pyrene (1.1 1 of 14 7.1%)		Aroclor-1254 (0.95j2 of 14 14%); Aroclor-Tr 1260 (0.29 1 of 14 7.1%)	otal PCB	Acenaphthene; Acenaphthylene; Anthracene; Aroclor-1242; Aroclor-1254; Aroclor-1260; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(a)hjperylene; Chrysene; Dibenz(a,h)anthracene; Dibenzofuran; Fluoranthene; Fluorene; Indeno(1,2,3- cd)pyrene; Wethylnaphthalene[2-]; Naphthalene; Phenanthrene; Pyrene		PAHs, PCBs
CDB-SMA-1	46-009(a)	Upper Canada del Buey Aggregate Area	Acenaphthene (2 of 20)10%); Anthracene (5 of 20)25%); Aroclor-1254 (6 of 20)30%); Aroclor-1260 (10 of 20)50%); Benzo(a)anthracene (13 of 20)65%); Benzo(a)pyrene (10 of 20)50%); Benzo(b)fluoranthene (13 of 20)65%); Benzo(g),hi)perylene (4 of 20)20%); Chrysene (11 of 20)55%); Fluoranthere (15 of 20)75%); Fluorene (2 of 20)10%); Isopropyltoluene[4-] (2 of 20)10%); Naphthalene (2 of 20)10%); Phenanthrene (12 of 20)60%); Pyrene (14 of 20)70%); Toluene (3 of 20)15%); TPH-DRO (18 of 20)90%)	ene (1.3 1 of 20 5%)			Benzo(a)anthracene (0.15 1 of 20 5%); T. Benzo(b)fluoranthene (0.27 7 of 20 35%)	otal PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,hi)perylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Isopropyltoluene[4-] - C1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; TPH DRO - C2	
M-SMA-3; M-SMA-3.1; M-SMA-3.5; M-SMA-4	48-001	Upper Mortandad Aggregate Area	Acenaphthene (37 of 161 23%); Anthracene (58 of 161)36%); Aroclor-1254 (38 of 47 81%); Benzo(a)pyrn Arocaphthene (37 of 161 23%); Anthracene (78 of 161 36%); Benzo(a)pyrene (90 of 161 45%); Benzo(b)fluoranthene (101 of 161 63%); Carbazole (5 of 33)8, 19%); Chrysene (92 of 161 57%); Fluoranthene (110 of 161 63%); Fluorene (34 of 161 21%); Indeno(1,2,3-col)pyrene (50 of 161 37%); Suporpytitoluene[4-[3 of 29]10%); Methylene (13 of 29)10%); Methylene Chloride (3 of 29)10%); Methylnaphthalene[2-] (10 of 161 63%); Tetrachlorodibenzolivan(12,3,7.8-] (5 of 47)11%); Tetrachlorodibenzolivan(12,3,7.8-] (5 of 29)10%); Trimethylbenzene[1,2,4-] (3 of 29)10%); Tetrachlorodibenzolivan(12,3,7.8-] (5 of 47)11%); Tetrachlorodibenzolivan(13,3,7.8-] (5 of 47)11%); Tetrachlorodibenzolivan(13,3,7.8-] (5 of 47)11%); Tetrac	rene (66 37 of	Benzo(a)anthracene (6.8]7 of 161 4.3%); Benzo(b)fluoranthene (11 12 of 161 7.5%); Indeno(1,2,3-cd)pyrene (2.6 3 of 161 1.9%)		T	otal PCB		Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a,hi)perylene - A1; Benzo(b)fluoranthene - A1; Butanone[2-] - C1; Carbazole - A1; Chrysne - A1; Fluoranthene - A1; Fluorane - A1; Indeno(1,2,3- cd)pyrene - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrane - A1; Pyrene - A1; Naphthalene - A1; Phenanthrane - A1; Pyrene - A1; Tetrachlorodibenzodioxin[2,3,7,8-] - A1; Tetrachlorodibenzolixan[2,3,7,8-] - A1; Toluene - C1; Trichlorofluoromethane - C1; Trimethylbenzene[1,2,4-] - C1	
M-SMA-3.5	48-003	Upper Mortandad Aggregate Area	Acetone (1 of 17[5.9%); Anthracene (5 of 67[7.5%); Aroclor-1254 (7 of 11]64%); Aroclor- 1260 (10 of 11]91%); Benzo(a)anthracene (8 of 67]12%); Benzo(a)pyrene (13 of 67]19%); Benzo(b)fluoranthene (23 of 67]34%); Benzo(g,h,i)perylene (5 of 67]7.5%); Bis(2- ettrylhexyl)phthalate (4 of 67[6%); Chrysene (13 of 67]19%); Fluoranthene (26 of 67]39%); Indeno(1.2,3-cd)pyrene (5 of 67]7.5%); Isopropyltoluene[4-] (1 of 17]5.9%); Phenanthrene (11 of 67]16%); Pyrene (25 of 67]37%); Toluene (1 of 17]5.9%)			Benzo(a)pyrene (0.17 7 of 67 10%)				Acetone - C1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,hi)perylene - A1; Bis(2- ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Inden(1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Phenanthrene - A1; Durron - A1; Tohuron - C1;	
M-SMA-3; M-SMA-4	48-005	Upper Mortandad Aggregate Area	Acenaphthene (4 of 27 15%); Acetone (1 of 8 12%); Anthracene (4 of 27 15%); Aroclor-1248 Benzo(a)pyn (1 of 8 12%); Aroclor-1254 (7 of 8 88%); Aroclor-1260 (5 of 8 62%); Benzo(a)anthracene (4 27 7.4%) of 27 15%); Benzo(a)pyrene (5 of 27 19%); Benzo(b)fluoranthene (5 of 27 19%); Benzo(g),hi)perylene (5 of 27 19%); Chrysene (5 of 27 19%); Fluoranthene (8 of 27 30%); Fluorene (4 of 27 15%); Indeno(1,2,3-cd)pyrene (4 of 27 15%); Isopropylloluene 4-] (1 of 8 12%); Phenanthrene (5 of 27 19%); Pyrene (8 of 27 30%); Toluene (1 of 8 12%)	rene (1.4 2 of			Benzo(a)anthracene (0.13 2 of 27 7.4%); Tr Benzo(b)fluoranthene (0.23 4 of 27 15%)	otal PCB		Pryteie - A1; 10tente - C1 Acenaphthene - A1; Acetone - C1; Anthracene - C1; Arcolor-1248 - A1; Arcolor-1254 - A1; Arcolor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3-cd)pyrene - A1; Isopropyltoluene[4-] - C1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	

				Table 8 Sur	mmary of Evaluation of Organic	Data in Shallow Soil Sar	nples				
				Organic Constituents	Detected Above Residential SSLs	Organic Constituents Det	ected Above 10% of Residential SSLs	. .	Constitu	ents Site Related?	-
SMA	Site	Aggregate Area	Fromus et Detecto	TAL Lint	Non TAL List	TALLint	Non TAL List	Stormwater Analytes	Yes	No ¹	Potential Significant
M-SMA-3.1	48-007(b)	Aggregate Area Upper Mortandad Aggregate Area	Acenaphthene (8 of 31 26%); Anthracene (12 of 31 39%); Aroclor-1254 (6 of 15 40%); Aroclor-1260 (2 of 15 13%); Benzo(a)anthracene (16 of 31 52%); Benzo(a)pyrene (16 of 31 52%); Benzo(b)fluoranthene (16 of 31 52%); Benzo(a)pyrene (14 of 31 45%); Chrysene (16 of 31 52%); Fluoranthene (16 of 31 52%); Fluoran	Benzo(a)pyrene (11 5 of 31 16%)	Benzo(a)anthracene (1.5]2 of 31 6.5%); Benzo(b)fluoranthene (2.1 4 of 31 13%)	I AL LIST	Indeno(1,2,3-cd)pyrene (0.46 4 of 31 13%)	Exceeding TALS	Tes	Acenaphthene - A1; Anthracene - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)pjerylene - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1	
M-SMA-3	48-007(c)	Upper Mortandad Aggregate Area	Acenaphthene (5 of 23)22%); Anthracene (11 of 23)48%); Aroclor-1254 (9 of 11)82%); Aroclor-1260 (7 of 11)64%); Benzo(a)anthracene (11 of 23)48%); Benzo(a)pyrene (18 of 23)73%); Benzo(b)fluoranthene (21 of 23)91%); Benzo(a)hi,b)erytene (14 of 23)61%); Benzo(k)fluoranthene (7 of 23)03%); Chrysene (19 of 23)83%); Fluoranthene (22 of 23)96%); Fluorene (5 of 23)22%); Indeno(1,2,3-cd)pyrene (13 of 23)57%); Methytiaphthalene[2-1 (2 of 23)8-7%); Naphthalene (4 of 23)17%); Phenanthrene (15 of 23)65%); Pyrene (22 of 23)96%); Tetrachlorodibenzodioxin[2,3,7,8-] (3 of 11)27%)	Benzo(a)pyrene (1.4 5 of 23 22%)			Benzo(a)anthracene (0.13 5 of 23 22%); Benzo(b)fluoranthene (0.25 7 of 23 30%)	Total PCB	Aroclor-1254; Aroclor-1260;	Acenaphthene - A1; Anthracene- A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h)perylene - A1; Benzo(k)fluoranthene - A1; Chrysone - A1; Fluoranthene - A1; Indeno(1,2,3- cd)pyrene - A1; Methylanphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Tetrachlorodibenzodioxin[2,3,7,8-] - A1	
W-SMA-15.1	49-005(a)	TA-49 Sites Outside NES	Bis(2-ethylhexyl)phthalate (1 of 8 12%); Butanone[2-] (1 of 6 17%)							Bis(2-ethylhexyl)phthalate - A1; Butanone[2-] - C1	
W-SMA-11.7	49-008(c)	TA-49 Sites Inside NES	Bis(2-ethylhexyl)phthalate (1 of 6 17%); Isopropyltoluene[4-] (1 of 6 17%); Nitrotoluene[3-]							Bis(2-ethylhexyl)phthalate - A1; Isopropyltoluene[4-]	
T-SMA-1	50-006(a)	Upper Mortandad Aggregate Area	[(1 of 6]17%) Acenaphtene (5 of 92]5.4%); Acetone (7 of 31]23%); Anthracene (6 of 92]6.5%); Aroclor- 1260 (16 of 41]39%); Benzo(a)anthracene (20 of 92]22%); Benzo(a)pyrene (21 of 92]23%); Benzo(b)fluoranthene (22 of 92]24%); Benzo(a)(6 of 117]5.1%); Bis(2- ethylhexyl)phthalate (36 of 92]39%); Denzoic Acid (6 of 117]5.1%); Bis(2- ethylhexyl)phthalate (36 of 92]39%); Chrysene (25 of 92]27%); Di-n-butylphthalate (16 of 92]17%); Fluoranthene (28 of 92]30%); Indeno(1,2,3-cd)pyrene (15 of 92]16%); Phenanthrene (20 of 92]22%); Pyrene (29 of 92]32%); Toluene (10 of 31]32%)	Benzo(a)pyrene (8.1 13 of 92 14%)			Aroclor-1260 (0.62)6 of 41]15%); Benzo(a)anthracene (0.74]11 of 92]12%); Benzo(b)fluoranthene (0.74]14 of 92]15%); Indeno(1,2,3-cd)pyrene (0.45]7 of 92]7.6%)	Total PCB		- C1; Nitrotoluene[3-] - A1 Acenaphthene - A1; Acetone - C1; Anthracene - A1; Arocior-1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(a)piper/lene - A1; Benzo(k)fluoranthene - A1; Benzoic Acid - A1; Bis(2-ettrylhexyl)phthalate - A1; Chrysene - A1; Di-n-butylphthalate - A1; Fluoranthene - A1; Di-n-butylphthalate - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	
M-SMA-7.9	50-006(d)	Upper Mortandad Aggregate Area	Acetone (2 of 8 25%); Aroclor-1254 (3 of 28 11%); Aroclor-1260 (10 of 28 36%); Benzo(b)fluoranthene (4 of 63 6.3%); Benzoic Acid (9 of 64 14%); Fluoranthene (6 of 64 9.4%); Isopropytloubene(I4-] (2 of 8 25%); Phenanthrene (4 of 64 6.2%); Pyrene (4 of 64 6.2%); Toluene (2 of 8 25%)				Benzo(b)fluoranthene (0.21 2 of 63 3.2%)	Total PCB		Acetone - A1; Aroclor-1254 - A1; Aroclor-1260 - A1; Benzo(b)fluoranthene - A1; Benzoic Acid - A1; Fluoranthene - A1; Isopropyltoluene[4-] - C1; Phenanthrene - A1; Pyrene - A1; Toluene - C1	
T-SMA-1	50-009	Upper Mortandad Aggregate	Aroclor-1254 (3 of 59 5.1%); Aroclor-1260 (4 of 59 6.8%)				Aroclor-1254 (0.89 2 of 59 3.4%)	Total PCB		Aroclor-1254 - A1; Aroclor-1260 - A1	
S-SMA-3.71	53-001(a)	Area Lower Sandia Aggregate Area	Acetone (7 of 25 28%); Aroclor-1254 (13 of 44 30%); Aroclor-1260 (24 of 44 55%);		Aroclor-1254 (3.3 2 of 44 4.5%); Aroclor-				Aroclor-1254, Aroclor-1260	Acetone - C1; 1,2,4-Trimethylbenzene - C1	PCBs
S-SMA-3.72	53-001(b)	Lower Sandia Canyon	Irmethylbenzene[1,2,4-] (3 of 25/12%) Aroclor-1254 (4 of 7/57%); Aroclor-1260 (4 of 7/57%)		1260 (1.7 1 of 44 2.3%)		Aroclor-1254 (0.85 1 of 7 14%); Aroclor-		Aroclor-1254, Aroclor-1260		PCBs
LA-SMA-10.12	53-008	Lower Sandia Aggregate Area	Aroclor-1260 (5 of 34 15%); Ethylbenzene (2 of 34 5.9%); Methylene Chloride (6 of				1260 (0.48 1 01 7 14%)		Aroclor-1260	Ethylbenzene - C1; Methylene Chloride - C1;	
S-SMA-3.7	53-012(e)	Lower Sandia Aggregate Area	1341 row), Fulderie (3 of 34(6.3%) Arcolor-1248 (3 of 15)(20%); Arcolor-1254 (6 of 15)(40%); Arcolor-1260 (12 of 15)(80%); Bis(2- ethylhexyl)phthalate (1 of 12)(8.3%); Dieldrin (2 of 15)(13%); Endosulfan II (3 of 15)(20%); Endrin Aldehyde (2 of 15)(13%); Ethylbenzene (1 of 16)(6.2%)				Aroclor-1248 (0.34 1 of 15 6.7%); Aroclor-1254 (0.31 1 of 15 6.7%); Aroclor-1260 (0.15 2 of 15 13%)		Aroclor-1248; Aroclor-1254; Aroclor-1260;	Bis(2-ethylhexyl)phthalate - A1; Dieldrin - A1; Endosulfan II - A1; Endrin Aldehyde - A1; Ethylbenzene - C1	PCBs
PJ-SMA-14 S-SMA-3.6	54-004 60-007(b)	Middle Cañada del Buey Upper Sandia Aggregate Area	Methoxychlor[4,4'-] (2 of 4 50%) Acenaphthene (2 of 20 10%); Acetone (2 of 20 10%); Anthracene (5 of 20 25%); Aroclor- 1260 (2 of 20 10%); Benzo(a)anthracene (8 of 20 40%); Benzo(a)pyrene (8 of 20 40%); Benzo(b)fluoranthene (9 of 20 45%); Benzo(g,h,i)perylene (6 of 20 30%); Benzo(k)fluoranthene (6 of 20 30%); Bis(2-ethylhexyl)phthalate (4 of 20 20%); Chrysene (8 of 20 40%); Dibenz(a,h)anthracene (2 of 20 11%); Fluoranthene (9 of 20 45%); Fluorene (3 of 20 45%); Indeno(1,2,3-cd)pyrene (7 of 20 35%); Phenanthrene (7 of 20 35%); Pyrene (9 of 20 45%); Toluene (2 of 20 10%)	Benzo(a)pyrene (1.5 3 of 20 15%)			Benzo(a)anthracene (0.17 3 of 20 15%); Benzo(b)fluoranthene (0.24)4 of 20 20%); Dibenz(a,h)anthracene (0.15)2 of 20 10%); Indeno(1,2,3-cd)pyrene (0.17 1 of 20 5%)	Total PCB	Acenaphthene; Anthracene; Arocior-1260; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(g).hilperylene; Benzo(k)fuoranthene; Chrysene; Dibenz(a,h)anthracene; Fluoranthene; Fluorene; Indeno(1,2,3-cd)pyrene Phenanthrene; Pyrene:	Methoxychlor[4,4'-] - A1 Acetone - C1; Bis(2-ethylhexyl)phthalate - A1; Toluene - C1	PAHs
P-SMA-2	73-002	Pueblo Canyon	Aroclor-1254 (24 of 141 17%); Aroclor-1260 (16 of 141 11%); Benzo(a)pyrene (14 of 142 9.9%); Benzo(b)fluoranthene (16 of 142 11%); Benzo(a,h,i)perylene (8 of 142 5.6%); Benzoic Acid (11 of 142]7.7%); Chrysene (17 of 142 12%); DDE[4,4'-] (30 of 141 21%); DDT[4,4'-] (30 of 141 24%); Di-n-butylphthalate (25 of 142 18%); Pyrene (31 of 142 22%); Phenanthrene (26 of 142 18%); Pyrene (31 of 142 22%); Tetrachlorodibenzodioxin[2,3,7,8-] (8 of 145 5.5%); Tetrachlorodibenzofuran[2,3,7,8-] (63 of 145 5.5%); Tetrachlorodibenzofuran[2,3,7,8-] (75 of 145 16.5%); Tetrachlorodibenzofuran[2,3,7,8-] (75 of 145 16.5\%); Tetrachlorodibenzofuran[1,3,7,8-] (75 of 145 16.5\%); Tetrachloro	Benzo(a)pyrene (1.9 2 of 142 1.4%)			Aroclor-1254 (0.15 1 of 141 0.71%); Benzo(b)fluoranthene (0.47 4 of 142 2.8%)		Aroclor-1254; Aroclor-1260; Benzo(a)pyrene; Benzo(b)fluoranthene; Benzo(g),hi)perylene; Chrysene; DDE[4,4'-]; DDT[4,4'-]; Fluoranthene; Phenanthrene; Pyrene; Tetrachlorodibenzodioxin[2,3,7,8-]; Tetrachlorodibenzofuran[2,3,7,8-]	Benzoic Acid - A1; Di-n-butylphthalate - A1	PAHs; PCBs
P-SMA-3	73-006	Pueblo Canyon	Acenaphthene (1 of 6 17%); Anthracene (3 of 6 50%); Aroclor-1260 (1 of 6 17%); Benzo(a)anthracene (3 of 6 50%); Benzo(a)pyrene (2 of 6 33%); Benzo(b)fluoranthene (2 of 6 33%); Benzo(g),hi)perylene (2 of 6 33%); Benzo(k)fluoranthene (2 of 6 33%); Chrysene (3 of 6 50%); DDD[4,4-] (2 of 6 33%); DDE[4,4-] (1 of 6 17%); DDT[4,4-] (3 of 6 50%); Diethylphthalate (2 of 6 33%); Fluoranthene (4 of 6 67%); Fluorane (1 of 6 17%); Indeno(1,2,3-cd)pyrene (2 of 6 33%); Methylnaphthalene[2-] (1 of 6 17%); Naphthalene (1 of 6 17%); Phenanthrene (4 of 6 57%); Fluorane (1 of 6 17%); Naphthalene (1 of 6 17%); Phenanthrene (4 of 6 57%); Pyrene (4 of 6 67%); Tetrachlorodibenzodioxin[2,3,7,8-] (2 of 12 17%); Tetrachlorodibenzoduran[2,3,7,8-] (5 of 12 42%); Trichloro-1,2,2- trifluoroethane[1,1,2-] (1 of 6 17%)			Benzo(a)pyrene (0.76)2 of 6(33%)	Benzo(b)fluoranthene (0.12 1 of 6 17%)		Acenaphthene; Anthracene; Benzo(a)anthracene; Benzo(a)pyrene; Benzo(b)iuoranthene; Benzo(b)iuoranthene; Benzo(k)ifluoranthene; Chrysene; DDD[4,4'-]; Fluoranthene; Fluorene; Indeno(1,2,3-cd)pyrene; Methyinaphthalene[2]; Naphthalene; Phenanthrene; Pyrene; Tetrachlorodibenzodiuxin[2,3,7,8-]; Tetrachlorodibenzofuran[2,3,7,8-]	Aroclor-1260 - A1; Diethylphthalate - A1; Trichloro- 1,2,2-trifluoroethane[1,1,2-] - C2	PAHs
R-SMA-1	C-00-041	Guaje/Barrancas/Rendija Canyons	Benzoic Acid (3 of 33 9.1%); Chloroform (5 of 33 15%); Dichloroethene[1,1-] (8 of 33 24%); Fluoranthene (4 of 33 12%); Phenanthrene (3 of 33 9.1%); Pyrene (3 of 33 9.1%); Toluene (17 of 33 52%); Trimethylbenzene[1,2-4] (5 of 33 15%)						Benzo(a)pyrene; Fluoranthene; Phenanthrene; Pyrene	Benzoic Acid - A1; Chloroform - C1; Dichloroethene[1,1-] - C1; Toluene - C1; Trimethylbenzene[1,2,4-] - C1	
LA-SMA-0.9; LA-SMA- 1	C-00-044	Upper Los Alamos Canyon	Acenaphthene (8 of 44[18%); Anthracene (13 of 44]30%); Benzo(a)anthracene (23 of 44[52%); Benzo(a)pyrene (21 of 44 48%); Benzo(b)fluoranthene (20 of 44 45%); Benzo(g,h.i)perylene (21 of 44 48%); Benzo(k)fluoranthene (15 of 44 43%); Butylbenzylphthalate (11 of 44 25%); Chrysene (19 of 44 43%); Iuoranthene (26 of 44 59%); Fluorene (7 of 44 15%); Indeno(1,2,3-cd)pyrene (16 of 44 36%); Naphthalene (6 of 44 14%); Phenanthrene (18 of 44 41%); Pyrene (25 of 44 57%)	Benzo(a)pyrene (3.2 4 of 44 9.1%)			Benzo(a)anthracene (0.35[4 of 44]9.1%); Benzo(b)fluoranthene (0.44[6 of 44]14%); Indeno(1,2,3-cd)pyrene (0.2]3 of 44[6.8%)	Total PCB		Acenaphtnene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(l)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Benzo(l)fluoranthene - A1; Benzo(g,h,i)perylene - A1; Burylbenzylphthalate - A1; Chrysene - A1; Fluoranthene - A1; Nuprthalene - A1; Indeno(1,2,3- cd)pyrene - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1	
PT-SMA-0.5	C-15-004	Potrillo/Fence Aggregate Area	Tetrachlorodibenzodioxin[2,3,7,8-] (1 of 1 100%)							Tetrachlorodibenzodioxin[2,3,7,8-] - A1	
CHQ-SMA-1.03	C-33-001	Chaquehui Canyon	Aroclor-1260 (4 of 4 100%)		Aroclor-1260 (5 3 of 4 75%)		r	Total PCB	Aroclor-1260	<u> </u>	PCBs

				Organic Constituents	s Detected Above Residential SSLs	Organic Constituents	Detected Above 10% of Residential SSLs		Constitu	ents Site Related?	
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Stormwater Analytes Exceeding TALs	Yes	No ¹	Potential Significant Industrial Materials
CHQ-SMA-1.03; CHQ- C-33-003 SMA-2	3	Chaquehui Canyon	Accnaphthene (1 of 15[6.7%); Anthracene (1 of 15[6.7%); Benzene (1 of 15[6.7%); Benzo(a)anthracene (1 of 15[6.7%); Benzo(a)pyrene (1 of 15[6.7%); Benzo(b)fluoranthene (1 of 15]6.7%); Benzo(g), h)perylene (1 of 15[6.7%); Benzo(k)fluoranthene (1 of 15[6.7%); Bis(2-ethylhexyl)phthalate (1 of 15[6.7%); Chrysene (1 of 15[6.7%); Fluoranthene (3 of 15]20%); Fluorene (1 of 15[6.7%); Indeno(1,2,3-cd)pyrene (1 of 15[6.7%); Phenanthrene (2 of 15]13%); Pyrene (4 of 15]27%); Toluene (6 of 15]40%); Trichloroethene (5 of 15]33%)	Benzo(a)pyrene (8.1 1 of 15 6.7%)	Benzo(a)anthracene (1 1 of 15 6.7%)		Benzo(b)Huoranthene (0.67 1 of 15 6.7%); Indeno(1,2,3-od)pyrene (0.34 1 of 15 6.7%)	Total PCB		Acenaphthene - A1; Anthracene - A1; Benzene - C1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fuoranthene - A1; Benzo(g),hi)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2- ethylhexyl)phthalate - A1; Chrysene - A1; Fluoranthene - A1; Fluorene - A1; Indeno(1,2,3- cd)pyrene - A1; Phenanthrene - A1; Pyrene - A1; Toluene - C1; Trichloroethene - C1	
3M-SMA-2.6 C-36-003	3	Threemile Aggregate Area	Acenaphthene (5 of 16)31%); Anthracene (6 of 16)38%); Aroclor-1254 (8 of 16)50%); Aroclor-1260 (7 of 16)44%); Benzo(a)anthracene (6 of 16)38%); Benzo(a)pyrene (7 of 16)44%); Benzo(b)fluoranthene (7 of 16)44%); Benzo(a),i)perylene (6 of 16)38%); Benzolic Acid (1 of 16)6.2%); Bromodichloromethane (1 of 16)6.2%); Chlorodibromomethane (1 of 16)6.2%); Chlorotom (2 of 16)12%); Chlorysene (7 of 16)44%); Bi-huvljphthalate (6 of 16)38%); Isopropyltoluene[4-] (8 of 16)50%); Rburgene (5 of 16)31%); Indeno(1,2,3-od)pyrene (6 of 16)38%); Isopropyltoluene[4-] (8 of 16)50%); Rburgene (5 of 16)31%); Indeno(1,2,3-od)pyrene (6 of 16)38%); Isopropyltoluene[4-] (8 of 16)50%); Rburgene (1 of 16)25%); ZDLene (1 of 16)25%); Theoreme (7 of 16)44%); Evrene (8 of 16)50%); Rburgene (1 of 16)6.2%); Trimethylbenzene[1,2,4-] (1 of 16)6.2%); Xylene[1,3-]+Xylene[1,4-] (1 of 16)6.2%);	Benzo(a)pyrene (40 7 of 16 44%	 Benzo(a)anthracene (3.2]3 of 16[19%); Benzo(b)fluoranthene (8.8]6 of 16[38%); Indeno(1.2,3-cd)pyrene (2 1 of 16[6.2%) 		Aroclor-1254 (0.92 2 of 16 12%); Aroclor 1260 (0.28 1 of 16 6.2%)		Aroclor-1254 (8 of 16 50%); Aroclor-1260 (7 of 16 44%);	Acenaphthene - A1; Anthracene - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)lucarnthene - A1; Benzo(a,h.i)perylene - A1; Benzoic Acid - A1; Bromodichloromethane - A1; Chloroditromomethane - C1; Chloroform - C1; Chorysene - A1; Di-n-buty/phthalate - A1; Fluoranthene - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Phenanthrene - A1; Pyrene - A1; ISDX - A1; Toluene - C1; Timethylbenzene[1,2,4-] - C1; Xylene[1,3-]+Xylene[1,4-] - C1	PCBs
PT-SMA-2.01 C-36-006	6(e)	Potrillo/Fence Aggregate Area	 Acetone (6 of 10[60%); Benzoic Acid (1 of 10[10%); Bis[2-ethylhexyl)phthalate (1 of 10[10%); Heptachlorodibenzodioxin[1,2,3,4,6,7,8-] (1 of 11]100%); Heptachlorodibenzodioxins (Total) (1 of 11]00%); Heptachlorodibenzodioxins (Total) (2 of 11]00%); Heptachlorodibenzodioxins (Total) (1 of 11]00%); Heptachlorodibenzodioxins (Total) (1 of 11]00%); Heptachlorodibenzodioxins (Total) (2 of 11]00%); Heptachlorodibenzodioxins (1 of 11]00%); Heptachlorodibenzodioxins (1 of 11]00%); Heptachlorodibenzodioxin (1 of 11]00%); Hoptachlorodibenzodioxin (1 of 11]00%); Heptachlorodibenzodioxin (1 of 11]00%); Hoptachlorodibenzodioxin (1 of 11]00%); Hoptachlorodibenzodioxin (1 of 11]00%); Heptachlorodibenzodioxin (1 of 11]00%); Hoptachlorodibenzodioxin (1 of 11]00%); Hoptachlorodibenzodibenzodioxin (1 of 11]00%); Hoptac	1						Acetone - C1; Benzoic Acid - A1/C2; Bis(2- ethylhexyl)phthate - A1/C2; Heptachlorodibenzodioxin [1,2,3,4,6,7,8-] - A1; Heptachlorodibenzodioxin [1,2,3,4,6,7,8-] - A1; Heptachlorodibenzofurans (Total) - A1; Heptachlorodibenzofurans (Total) - A1; Hexachlorodibenzofurans (Total) - A1; Isopropyltoluene[4-] - C1; Methylene Chloride - C1; Octachlorodibenzodioxin [1,2,3,4,6,7,8,9-] - A1; Toluene - C1	

				Organic Constituents	Detected Above Residential SSLs	Organic Constituents Dete	ected Above 10% of Residential SSLs		(Constituents Site Related?	
								Stormwater Analytes		1	Potential Significant
SMA	Site	Aggregate Area	Frequency of Detects	TAL List	Non-TAL List	TAL List	Non-TAL List	Exceeding TALs	Yes	No	Industrial Materials
LA-SMA-1.25	C-43-001	Upper Los Alamos Canyon	Acenaphthene (2 of 28)85%); Accchaphthylene (2 of 28)7.1%); Acetone (2 of 28)7.1%); Anthracene (26 of 28)93%); Arcchar1254 (20 of 28)71%); Arcchar-1260 (14 of 28)50%); Benzo(a)anthracene (26 of 28)93%); Benzo(a)pyrene (26 of 28)93%); Benzo(b)fluoranthene (26 of 28)93%); Benzo(g),hi)perylene (26 of 28)93%); Benzo(k)fluoranthene (26 of 28)93%); Bis(2-ethylhexy)phthalate (14 of 28)150%); Bromorethane (6 of 28)21%); Butylbenzylphthalate (14 of 28)14%); Chrysene (26 of 28)93%); Dibenz(a,h)anthracene (10 of 28)36%); Indeno(1,2,3-cd)pyrene (26 of 28)93%); Isopropyltoluene[4-] (4 of 28)14%); Methylnaphthalene[2-] (14 of 28)50%); Naphthalene (22 of 28)7%); Phenanthrene (26 of 28)93%); Pyrene (26 of 28)93%); Tarcholroxdibarcodixin(23,7.8-1) (6 of 28)21%); Tetrachlorodibenzofuran[2,3,7,8-] (6 of 28)21%); Toluene (2 of 28)7.1%)	Benzo(a)pyrene (19 24 of 28 86%)	Benzo(b)luorantheae (1.9]8 of 28)29%); Benzo(b)luoranthene (1.7]8 of 28)29%); Dibenz(a,h)anthracene (1.8)6 of 28)21%)		Aroclor-1254 (0.18)4 of 28)14%); Benzo((H)uranthere (0.2)10 of 28)36%); Indeno(1,2,3-cd)pyrene (0.68)16 of 28)57%)			Acenaphthene - A1; Acedon - A1; Acetone - C1; Anthracene - A1; Arcolor-1254 - A1; Arcolor- 1260 - A1; Benzo(a)anthracene - A1; Benzo(a)pyrene - A1; Benzo(b)fluoranthene - A1; Benzo(g,h.i)perylene - A1; Benzo(k)fluoranthene - A1; Bis(2-ethylhexyl)phthalate - A1; Koromethane - A1; Butylbenzylphthalate - A1; Chrysene - A1; Dibenz(a,h)anthracene - A1; Dibenzofuran - A1; Fluoranthene - A1; Fluorene - A1; Dibenzofuran - A1; Fluoranthene - A1; Fluorene - A1; Ideno(1,2,3- cd)pyrene - A1; Sporpoytloulene[4] - C1; Methylnaphthalene[2-] - A1; Naphthalene - A1; Phenanthrene - A1; Pyrene - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Tetrachlorodibenzofuran[2,3,7,8-] - A1; Toluene - C1	

Notes: ¹The following codes indicate the results of the evaluation of whether constituents are site-related: A1 - Constituent not related to site history. C1 - Volatile organic compounds not appropriate constituent for storm water monitoring.

Confirmation Monitoring Phase	No Samples	One Sample	Two Samples	Total
Baseline Monitoring Extended	111	55	0	166
Enhanced Control Monitoring	22	17	9	48
Monitoring Not Required	36	0	0	36
Total	169	72	9	250

Table 9Summary of Confirmation Monitoring by December 31, 2013

Table 10 ATAL Exceedances

SMA Number	Stage Number	Analyte	Geomean Unit	ATAL	Geomean	Geomean ATAL Ratio
2M-SMA-1.42	M18	GROSSA	pCi/L	15	19.9195	1.328
2M-SMA-1.43	MEx	GROSSA	pCi/L	15	52	3.4667
2M-SMA-1.44	M18	GROSSA	pCi/L	15	21.1	1.4067
2M-SMA-1.45	M18	GROSSA	pCi/L	15	398	26.5333
2M-SMA-1.65	M18	GROSSA	pCi/L	15	220	14.6667
2M-SMA-1.65	CAM5	GROSSA	pCi/L	15	22.6	1.5067
2M-SMA-2	M18	1336-36-3	µg/L	0.00064	0.0652	101.875
2M-SMA-2	CAM5	1336-36-3	µg/L	0.00064	0.0497	77.6562
2M-SMA-2.2	M12	1336-36-3	µg/L	0.00064	0.0085	13.2687
3M-SMA-0.4	MEx	GROSSA	pCi/L	15	120	8
A-SMA-2	MEx	GROSSA	pCi/L	15	23.7	1.58
A-SMA-2.7	M18	GROSSA	pCi/L	15	28.4204	1.8947
A-SMA-2.7	CAM5	GROSSA	pCi/L	15	175	11.6667
A-SMA-3	MEx	GROSSA	pCi/L	15	136	9.0667
A-SMA-3	MEx	Hg	µg/L	0.77	9.04	11.7403
A-SMA-3	MEx	Se	µg/L	5	12.1	2.42
A-SMA-3	MEx	1336-36-3	µg/L	0.00064	3.06	4781.25
A-SMA-6	MEx	GROSSA	pCi/L	15	29.6	1.9733
ACID-SMA-2	M12	1336-36-3	µg/L	0.00064	0.0822	128.4375
ACID-SMA-2	M12	GROSSA	pCi/L	15	40.5	2.7
ACID-SMA-2.1	MEx	GROSSA	pCi/L	15	24.8	1.6533
ACID-SMA-2.1	MEx	1336-36-3	µg/L	0.00064	0.0249	38.9062
B-SMA-0.5	MEx	GROSSA	pCi/L	15	486	32.4
B-SMA-1	MEx	GROSSA	pCi/L	15	126	8.4
CDB-SMA-0.25	M12	1336-36-3	µg/L	0.00064	0.0063	9.9219
CDB-SMA-0.25	CAM5	1336-36-3	µg/L	0.00064	0.0037	5.7126
CDB-SMA-0.55	MEx	1336-36-3	µg/L	0.00064	0.0007	1.1109

SMA Number	Stage Number	Analyte	Geomean Unit	ATAL	Geomean	Geomean ATAL Ratio
CDB-SMA-1	M18	1336-36-3	µg/L	0.00064	0.0233	36.4063
CDB-SMA-1	M18	GROSSA	pCi/L	15	15.2	1.0133
CDB-SMA-1	CAM5	GROSSA	pCi/L	15	71.5	4.7667
CDB-SMA-1	CAM5	1336-36-3	µg/L	0.00064	0.0721	112.6563
CDB-SMA-4	MEx	GROSSA	pCi/L	15	54.8	3.6533
CDB-SMA-4	MEx	1336-36-3	µg/L	0.00064	0.0044	6.8281
CDV-SMA-1.3	MEx	GROSSA	pCi/L	15	34.7	2.3133
CDV-SMA-1.45	M18	GROSSA	pCi/L	15	17.8	1.1867
CDV-SMA-1.7	MEx	121-82-4	µg/L	200	908	4.54
CDV-SMA-1.7	MEx	CN(WAD)	mg/L	0.01	0.0175	1.75
CDV-SMA-1.7	MEx	GROSSA	pCi/L	15	36.9	2.46
CDV-SMA-2	MEx	GROSSA	pCi/L	15	18.2	1.2133
CDV-SMA-2.41	M18	1336-36-3	µg/L	0.00064	0.0241	37.6562
CDV-SMA-2.41	M18	GROSSA	pCi/L	15	231	15.4
CDV-SMA-2.42	MEx	GROSSA	pCi/L	15	89.3	5.9533
CDV-SMA-2.42	MEx	1336-36-3	µg/L	0.00064	0.0332	51.875
CDV-SMA-2.51	MEx	GROSSA	pCi/L	15	16.4	1.0933
CDV-SMA-3	M18	GROSSA	pCi/L	15	33.4	2.2267
CDV-SMA-6.02	M18	GROSSA	pCi/L	15	171.0351	11.4023
CDV-SMA-6.02	M18	Hg	µg/L	0.77	1.2329	1.6011
CDV-SMA-7	MEx	GROSSA	pCi/L	15	191	12.7333
CDV-SMA-7	MEx	Se	µg/L	5	5.33	1.066
CHQ-SMA-1.02	M18	1336-36-3	µg/L	0.00064	0.0092	14.4062
CHQ-SMA-1.02	CAM5	1336-36-3	µg/L	0.00064	0.0103	16.0565
CHQ-SMA-1.03	MEx	1336-36-3	µg/L	0.00064	0.0155	24.2187
CHQ-SMA-1.03	MEx	GROSSA	pCi/L	15	63.5	4.2333
CHQ-SMA-2	MEx	GROSSA	pCi/L	15	91.1	6.0733
CHQ-SMA-3.05	MEx	GROSSA	pCi/L	15	60.3	4.02
CHQ-SMA-3.05	MEx	1336-36-3	µg/L	0.00064	0.0009	1.3297
CHQ-SMA-4.1	MEx	GROSSA	pCi/L	15	34.5	2.3
CHQ-SMA-4.5	MEx	GROSSA	pCi/L	15	103	6.8667
CHQ-SMA-6	MEx	GROSSA	pCi/L	15	157	10.4667
DP-SMA-0.3	M18	GROSSA	pCi/L	15	65.5	4.3667
DP-SMA-0.3	M18	Ra-226+228	pCi/L	30	68.3	2.2767
DP-SMA-0.3	CAM5	GROSSA	pCi/L	15	77.6651	5.1777
DP-SMA-2.35	MEx	GROSSA	pCi/L	15	25	1.6667
DP-SMA-3	M18	GROSSA	pCi/L	15	174	11.6
F-SMA-2	M18	GROSSA	pCi/L	15	140	9.3333

Table 10 (continued)	ATAL Exceedances
------------	------------	------------------

SMA Number	Stage Number	Analyte	Geomean Unit	ATAL	Geomean	Geomean ATAL Ratio
LA-SMA-1	M18	GROSSA	pCi/L	15	1800	120
LA-SMA-1	CAM5	1336-36-3	µg/L	0.00064	0.0175	27.3438
LA-SMA-1	CAM5	GROSSA	pCi/L	15	434	28.9333
LA-SMA-1.1	M18	GROSSA	pCi/L	15	26.1649	1.7443
LA-SMA-10.12	M18	GROSSA	pCi/L	15	23	1.5333
LA-SMA-2.1	MEx	GROSSA	pCi/L	15	125	8.3333
LA-SMA-2.1	MEx	1336-36-3	µg/L	0.00064	21.1	32968.75
LA-SMA-2.3	M18	GROSSA	pCi/L	15	74.7	4.98
LA-SMA-4.1	M12	GROSSA	pCi/L	15	32.6945	2.1796
LA-SMA-4.1	M12	1336-36-3	µg/L	0.00064	0.0225	35.1562
LA-SMA-5.02	M18	1336-36-3	µg/L	0.00064	0.0603	94.2642
LA-SMA-5.31	M18	GROSSA	pCi/L	15	86	5.7333
LA-SMA-5.33	M18	GROSSA	pCi/L	15	100	6.6667
LA-SMA-5.35	M12	GROSSA	pCi/L	15	100.2547	6.6836
LA-SMA-5.51	MEx	GROSSA	pCi/L	15	92.3	6.1533
LA-SMA-5.51	MEx	Hg	µg/L	0.77	2.39	3.1039
LA-SMA-5.51	MEx	1336-36-3	µg/L	0.00064	0.0591	92.3437
LA-SMA-5.54	MEx	GROSSA	pCi/L	15	356	23.7333
LA-SMA-5.54	MEx	1336-36-3	µg/L	0.00064	0.0598	93.4375
LA-SMA-5.91	M12	GROSSA	pCi/L	15	92.6	6.1733
LA-SMA-5.91	CAM5	GROSSA	pCi/L	15	15.7	1.0467
LA-SMA-5.92	MEx	GROSSA	pCi/L	15	264	17.6
LA-SMA-5.92	MEx	Hg	µg/L	0.77	2.89	3.7532
LA-SMA-6.395	MEx	GROSSA	pCi/L	15	300	20
M-SMA-1	M12	GROSSA	pCi/L	15	25.1694	1.678
M-SMA-1	M12	1336-36-3	µg/L	0.00064	0.046	71.8261
M-SMA-1	CAM5	1336-36-3	µg/L	0.00064	0.0103	16.1702
M-SMA-1	CAM5	GROSSA	pCi/L	15	19.1638	1.2776
M-SMA-1.2	MEx	As	µg/L	9	10.6	1.1778
M-SMA-10	MEx	GROSSA	pCi/L	15	32.2	2.1467
M-SMA-10.01	CAM5	GROSSA	pCi/L	15	19.6	1.3067
M-SMA-10.3	M18	1336-36-3	µg/L	0.00064	0.0043	6.7341
M-SMA-12.6	MEx	GROSSA	pCi/L	15	19.2	1.28
M-SMA-3	MEx	1336-36-3	µg/L	0.00064	0.0181	28.2813
M-SMA-3	MEx	GROSSA	pCi/L	15	25.4	1.6933
M-SMA-4	M12	1336-36-3	µg/L	0.00064	0.0578	90.3125
M-SMA-4	M12	Ra-226+228	pCi/L	30	70.3	2.3433
M-SMA-6	MEx	1336-36-3	µg/L	0.00064	0.0349	54.5312

Table 10 (continued)	ATAL Exceedances
------------	------------	------------------

SMA Number	Stage Number	Analyte	Geomean Unit	ATAL	Geomean	Geomean ATAL Ratio
M-SMA-6	MEx	GROSSA	pCi/L	15	168	11.2
M-SMA-7	MEx	GROSSA	pCi/L	15	46.3	3.0867
M-SMA-7.9	MEx	1336-36-3	µg/L	0.00064	0.0022	3.3594
M-SMA-7.9	MEx	GROSSA	pCi/L	15	51.4	3.4267
P-SMA-0.3	MEx	GROSSA	pCi/L	15	28.6	1.9067
P-SMA-0.3	MEx	Hg	µg/L	0.77	39.3	51.039
P-SMA-0.3	MEx	Ra-226+228	pCi/L	30	55.6	1.8533
P-SMA-0.3	MEx	Se	µg/L	5	10.7	2.14
P-SMA-3.05	MEx	1336-36-3	µg/L	0.00064	0.0868	135.625
PJ-SMA-1.05	MEx	1336-36-3	µg/L	0.00064	0.0087	13.625
PJ-SMA-11	MEx	GROSSA	pCi/L	15	65.4	4.36
PJ-SMA-11.1	MEx	GROSSA	pCi/L	15	89.4	5.96
PJ-SMA-13.7	M18	GROSSA	pCi/L	15	52.6	3.5067
PJ-SMA-17	MEx	GROSSA	pCi/L	15	61.6	4.1067
PJ-SMA-18	MEx	GROSSA	pCi/L	15	23.6	1.5733
PJ-SMA-19	MEx	GROSSA	pCi/L	15	51.2	3.4133
PJ-SMA-19	MEx	Hg	µg/L	0.77	1.67	2.1688
PJ-SMA-19	MEx	Ra-226+228	pCi/L	30	43.7	1.4567
PJ-SMA-19	MEx	1336-36-3	µg/L	0.00064	0.0204	31.875
PJ-SMA-3.05	M18	CN(WAD)	mg/L	0.01	0.0274	5.2692
PJ-SMA-3.05	M18	GROSSA	pCi/L	15	65.9	4.3933
PJ-SMA-4.05	MEx	GROSSA	pCi/L	15	47.2	3.1467
PJ-SMA-5.1	M18	GROSSA	pCi/L	15	40.8705	2.7247
PT-SMA-0.5	M18	GROSSA	pCi/L	15	79.5	5.3
PT-SMA-0.5	CAM5	GROSSA	pCi/L	15	254	16.9333
PT-SMA-1	M18	GROSSA	pCi/L	15	104	6.9333
PT-SMA-1.7	MEx	GROSSA	pCi/L	15	92.6	6.1733
PT-SMA-2.01	M18	GROSSA	pCi/L	15	295	19.6667
Pratt-SMA-1.05	MEx	1336-36-3	µg/L	0.00064	0.447	698.4375
Pratt-SMA-1.05	MEx	GROSSA	pCi/L	15	96.5	6.4333
Pratt-SMA-1.05	MEx	Hg	µg/L	0.77	0.91	1.1818
R-SMA-0.5	MEx	GROSSA	pCi/L	15	36.5	2.4333
R-SMA-1	M18	GROSSA	pCi/L	15	32.8361	2.1891
R-SMA-1.95	M18	GROSSA	pCi/L	15	27.4	1.8267
S-SMA-0.25	M12	GROSSA	pCi/L	15	15.1981	1.0132
S-SMA-0.25	M12	1336-36-3	µg/L	0.00064	0.0502	78.4375
S-SMA-1.1	M18	1336-36-3	µg/L	0.00064	0.1061	165.7414
S-SMA-2	M12	1336-36-3	µg/L	0.00064	0.165	257.7557

Table 10 (continued) ATAL Exceedances

SMA Number	Stage Number	Analyte	Geomean Unit	ATAL	Geomean	Geomean ATAL Ratio
S-SMA-2	CAM3	1336-36-3	µg/L	0.00064	0.1038	162.2293
S-SMA-2.01	M18	1336-36-3	µg/L	0.00064	0.8553	1336.3715
S-SMA-2.01	CAM3	1336-36-3	µg/L	0.00064	0.164	256.25
S-SMA-3.53	M18	1336-36-3	µg/L	0.00064	0.702	1096.875
S-SMA-3.53	M18	GROSSA	pCi/L	15	62.5	4.1667
S-SMA-3.6	M12	1336-36-3	µg/L	0.00064	0.0076	11.8317
S-SMA-3.6	CAM3	1336-36-3	µg/L	0.00064	0.0035	5.3946
S-SMA-3.95	MEx	GROSSA	pCi/L	15	15.4	1.0267
S-SMA-4.1	M18	1336-36-3	µg/L	0.00064	0.0019	2.9541
S-SMA-4.1	CAM3	1336-36-3	µg/L	0.00064	0.0015	2.4219
S-SMA-6	M18	CN(WAD)	mg/L	0.01	0.0102	1.9544
S-SMA-6	M18	GROSSA	pCi/L	15	2307.2451	153.8163
S-SMA-6	M18	Ra-226+228	pCi/L	30	31.5011	1.05
S-SMA-6	M18	1336-36-3	µg/L	0.00064	2.1953	3430.2124
STRM-SMA-1.5	MEx	CN(WAD)	mg/L	0.01	0.0276	2.76
STRM-SMA-1.5	MEx	GROSSA	pCi/L	15	1270	84.6667
STRM-SMA-1.5	MEx	Hg	µg/L	0.77	1.17	1.5195
STRM-SMA-1.5	MEx	Ra-226+228	pCi/L	30	38.5	1.2833
STRM-SMA-1.5	CAM5	GROSSA	pCi/L	15	16.1	1.0733
STRM-SMA-5.05	M12	1336-36-3	µg/L	0.00064	0.0067	10.4531
STRM-SMA-5.05	M12	GROSSA	pCi/L	15	24.5	1.6333
T-SMA-1	M18	1336-36-3	µg/L	0.00064	0.0284	44.3376
T-SMA-2.85	MEx	GROSSA	pCi/L	15	36.6	2.44
T-SMA-3	MEx	GROSSA	pCi/L	15	34.4	2.2933
T-SMA-4	MEx	GROSSA	pCi/L	15	94.8	6.32
T-SMA-4	MEx	Hg	µg/L	0.77	2.14	2.7792
W-SMA-1	M12	GROSSA	pCi/L	15	18.5404	1.236
W-SMA-1	CAM5	GROSSA	pCi/L	15	314	20.9333
W-SMA-10	M18	GROSSA	pCi/L	15	106	7.0667
W-SMA-11.7	M18	GROSSA	pCi/L	15	38.1	2.54
W-SMA-11.7	CAM5	GROSSA	pCi/L	15	39.6	2.64
W-SMA-14.1	CAM5	GROSSA	pCi/L	15	38.7	2.58
W-SMA-15.1	M18	GROSSA	pCi/L	15	33.2	2.2133
W-SMA-8.71	M18	GROSSA	pCi/L	15	15.8	1.0533
W-SMA-8.71	CAM5	Hg	µg/L	0.77	1.51	1.961
W-SMA-9.9	M18	GROSSA	pCi/L	15	95.9	6.3933
W-SMA-9.9	CAM5	GROSSA	pCi/L	15	74.4	4.96

	Stage				Std	Target Level	Target Level	Result Target
SMA Number	Number	Analyte	Sd	Std Result	Unit	MQL	MTAL	Ratio
2M-SMA-1	M12	Al	8/20/2011	1200	µg/L	2.5	750	1.6
2M-SMA-1	CAM5	Al	9/12/2012	1430	µg/L	2.5	750	1.9067
2M-SMA-1.42	M18	Al	8/21/2011	794	µg/L	2.5	750	1.0587
2M-SMA-1.43	MEx	AI	7/12/2013	1500	µg/L	2.5	750	2
2M-SMA-1.44	M18	Cu	8/21/2011	31.5	µg/L	0.5	4.3	7.3256
2M-SMA-1.44	CAM5	Cu	9/12/2013	39.5	µg/L	0.5	4.3	9.186
2M-SMA-1.7	M18	Cu	8/3/2011	11.4	µg/L	0.5	4.3	2.6512
2M-SMA-1.8	M18	Zn	8/4/2011	71.8	µg/L	20	42	1.7095
2M-SMA-1.8	M18	Cu	8/4/2011	13.2	µg/L	0.5	4.3	3.0698
2M-SMA-1.8	M18	Cu	9/9/2011	6.6	µg/L	0.5	4.3	1.5349
2M-SMA-1.9	MEx	Cu	7/11/2012	24.9	µg/L	0.5	4.3	5.7907
2M-SMA-1.9	MEx	Zn	7/11/2012	314	µg/L	20	42	7.4762
2M-SMA-2	M18	Zn	7/28/2011	140	µg/L	20	42	3.3333
2M-SMA-2	M18	Cu	7/28/2011	14.9	µg/L	0.5	4.3	3.4651
2M-SMA-2	M18	Zn	9/4/2011	72.3	µg/L	20	42	1.7214
2M-SMA-2	M18	Cu	9/4/2011	5.5	µg/L	0.5	4.3	1.2791
2M-SMA-2	CAM5	Cu	6/14/2013	18.5	µg/L	0.5	4.3	4.3023
2M-SMA-2	CAM5	Zn	6/14/2013	102	µg/L	20	42	2.4286
2M-SMA-2	CAM5	Cu	8/18/2013	19.9	µg/L	0.5	4.3	4.6279
2M-SMA-2	CAM5	Zn	8/18/2013	123	µg/L	20	42	2.9286
2M-SMA-2.2	M12	Cu	8/13/2011	16.4	µg/L	0.5	4.3	3.814
2M-SMA-2.2	M12	Zn	8/13/2011	97.2	µg/L	20	42	2.3143
2M-SMA-2.2	M12	Zn	9/4/2011	90.1	µg/L	20	42	2.1452
2M-SMA-2.2	M12	Cu	9/4/2011	10.1	µg/L	0.5	4.3	2.3488
2M-SMA-3	MEx	AI	7/12/2013	3750	µg/L	2.5	750	5
2M-SMA-3	MEx	Cu	7/12/2013	6.05	µg/L	0.5	4.3	1.407
A-SMA-2	MEx	AI	9/12/2013	1310	µg/L	2.5	750	1.7467
A-SMA-2	MEx	Cu	9/12/2013	23.9	µg/L	0.5	4.3	5.5581
A-SMA-2.7	M18	Cu	7/24/2011	6.2	µg/L	0.5	4.3	1.4419
A-SMA-2.7	M18	Cu	9/4/2011	5.4	µg/L	0.5	4.3	1.2558
A-SMA-3	MEx	Hg	7/25/2013	9.04	µg/L	0.005	1.4	6.4571
A-SMA-3	MEx	Al	7/25/2013	997	µg/L	2.5	750	1.3293
A-SMA-3	MEx	Cu	7/25/2013	245	µg/L	0.5	4.3	56.9767
A-SMA-6	MEx	Cu	8/4/2013	5.86	µg/L	0.5	4.3	1.3628
ACID-SMA-2	M12	Al	8/19/2011	789	µg/L	2.5	750	1.052
CDB-SMA-0.25	M12	Cu	9/1/2011	11.2	µg/L	0.5	4.3	2.6047

Table 11 MTAL Exceedances

SMA Number	Stage Number	Analyte	Sd	Std Result	Std Unit	Target Level MQL	Target Level MTAL	Result Target Ratio
CDB-SMA-0.25	M12	Al	9/1/2011	2310	µg/L	2.5	750	3.08
CDB-SMA-0.25	CAM5	Cu	7/26/2013	15.2	µg/L	0.5	4.3	3.5349
CDB-SMA-0.25	CAM5	Cu	9/10/2013	15.2	µg/L	0.5	4.3	3.5349
CDB-SMA-0.55	MEx	Cu	9/13/2013	16.3	µg/L	0.5	4.3	3.7907
CDB-SMA-1	M18	Cu	9/7/2011	8	µg/L	0.5	4.3	1.8605
CDB-SMA-1	M18	AI	9/7/2011	1120	µg/L	2.5	750	1.4933
CDB-SMA-4	MEx	Cu	7/25/2013	8.14	µg/L	0.5	4.3	1.893
CDV-SMA-1.4	M18	CN(WAD)	8/21/2011	0.0231	mg/L	0.01	0.022	1.05
CDV-SMA-1.4	MEx	Ag	9/10/2012	7.86	µg/L	0.5	0.4	15.72
CDV-SMA-1.7	MEx	Cu	9/13/2013	11	µg/L	0.5	4.3	2.5581
CDV-SMA-2.42	MEx	Cu	7/12/2013	4.37	µg/L	0.5	4.3	1.0163
CDV-SMA-6.02	M18	Cu	8/13/2011	29.3	µg/L	0.5	4.3	6.814
CDV-SMA-6.02	M18	Cu	9/1/2011	28.1	µg/L	0.5	4.3	6.5349
CDV-SMA-6.02	M18	Hg	9/1/2011	1.6	µg/L	0.005	1.4	1.1429
CDV-SMA-7	MEx	Al	9/13/2013	956	µg/L	2.5	750	1.2747
CHQ-SMA-1.02	M18	Cu	8/21/2011	8	µg/L	0.5	4.3	1.8605
CHQ-SMA-1.02	CAM5	Cu	7/25/2013	4.46	µg/L	0.5	4.3	1.0372
CHQ-SMA-1.03	MEx	Cu	7/4/2012	14.4	µg/L	0.5	4.3	3.3488
CHQ-SMA-2	MEx	Al	7/4/2012	967	µg/L	2.5	750	1.2893
CHQ-SMA-2	MEx	Cu	7/4/2012	6.75	µg/L	0.5	4.3	1.5698
CHQ-SMA-6	MEx	Cu	7/25/2013	87.6	µg/L	0.5	4.3	20.3721
DP-SMA-0.4	MEx	Al	9/13/2013	3540	µg/L	2.5	750	4.72
DP-SMA-0.4	MEx	Cu	9/13/2013	10.7	µg/L	0.5	4.3	2.4884
DP-SMA-3	M18	Cu	7/29/2011	5.5	µg/L	0.5	4.3	1.2791
DP-SMA-3	M18	Al	7/29/2011	1870	µg/L	2.5	750	2.4933
F-SMA-2	M18	Cu	8/15/2011	72.5	µg/L	0.5	4.3	16.8605
F-SMA-2	M18	Al	8/15/2011	866	µg/L	2.5	750	1.1547
LA-SMA-0.85	M12	Zn	7/30/2011	55.7	µg/L	20	42	1.3262
LA-SMA-0.85	M12	Cu	7/30/2011	18.9	µg/L	0.5	4.3	4.3953
LA-SMA-0.85	M12	Al	7/30/2011	1310	µg/L	2.5	750	1.7467
LA-SMA-0.85	M12	Cu	8/14/2011	47.1	µg/L	0.5	4.3	10.9535
LA-SMA-0.85	M12	Al	8/14/2011	4170	µg/L	2.5	750	5.56
LA-SMA-0.85	M12	Zn	8/14/2011	186	µg/L	20	42	4.4286
LA-SMA-0.85	M12	Pb	8/14/2011	17.7	µg/L	0.5	17	1.0412
LA-SMA-0.85	CAM5	Cu	11/9/2012	26.4	µg/L	0.5	4.3	6.1395
LA-SMA-0.85	CAM5	Zn	11/9/2012	56.1	µg/L	20	42	1.3357
LA-SMA-0.85	CAM5	Cu	5/15/2013	22.8	µg/L	0.5	4.3	5.3023

Table 11	(continued) MTAL	Exceedances
----------	------------	--------	-------------

SMA Number	Stage Number	Analyte	Sd	Std Result	Std Unit	Target Level MQL	Target Level MTAL	Result Target Ratio
LA-SMA-0.85	CAM5	Zn	5/15/2013	78.2	µg/L	20	42	1.8619
LA-SMA-1	M18	Al	8/19/2011	6510	µg/L	2.5	750	8.68
LA-SMA-1	M18	Cu	8/19/2011	7.8	µg/L	0.5	4.3	1.814
LA-SMA-1	M18	Pb	8/19/2011	42.1	µg/L	0.5	17	2.4765
LA-SMA-1	CAM5	AI	9/13/2013	800	µg/L	2.5	750	1.0667
LA-SMA-1.1	M18	Zn	7/28/2011	162	µg/L	20	42	3.8571
LA-SMA-1.1	M18	Cu	7/28/2011	26.6	µg/L	0.5	4.3	6.186
LA-SMA-1.1	M18	Cu	8/19/2011	6.3	µg/L	0.5	4.3	1.4651
LA-SMA-1.1	CAI	Zn	10/26/2011	50.6	µg/L	20	42	1.2048
LA-SMA-1.1	CAI	Cu	10/26/2011	10.5	µg/L	0.5	4.3	2.4419
LA-SMA-1.1	CAI	Cu	9/28/2012	17.7	µg/L	0.5	4.3	4.1163
LA-SMA-1.1	CAI	Zn	9/28/2012	131	µg/L	20	42	3.119
LA-SMA-1.25	M12	Cu	7/30/2011	13.8	µg/L	0.5	4.3	3.2093
LA-SMA-1.25	M12	Zn	7/30/2011	109	µg/L	20	42	2.5952
LA-SMA-1.25	M12	Zn	8/28/2011	112	µg/L	20	42	2.6667
LA-SMA-1.25	M12	Cu	8/28/2011	33.3	µg/L	0.5	4.3	7.7442
LA-SMA-1.25	CAM5	Cu	9/10/2012	25	µg/L	0.5	4.3	5.814
LA-SMA-1.25	CAM5	Zn	9/10/2012	111	µg/L	20	42	2.6429
LA-SMA-1.25	CAM5	Cu	10/12/2012	7.31	µg/L	0.5	4.3	1.7
LA-SMA-1.25	CAM5	Zn	10/12/2012	53.2	µg/L	20	42	1.2667
LA-SMA-2.1	MEx	Cu	9/13/2013	11.1	µg/L	0.5	4.3	2.5814
LA-SMA-4.1	M12	Cu	8/19/2011	6.7	µg/L	0.5	4.3	1.5581
LA-SMA-4.1	M12	Cu	9/4/2011	5.3	µg/L	0.5	4.3	1.2326
LA-SMA-5.02	M18	Cu	8/19/2011	4.9	µg/L	0.5	4.3	1.1395
LA-SMA-5.31	M18	Cu	8/19/2011	5.5	µg/L	0.5	4.3	1.2791
LA-SMA-5.35	M12	Cu	8/4/2011	5.9	µg/L	0.5	4.3	1.3721
LA-SMA-5.51	MEx	Hg	7/12/2013	2.39	µg/L	0.005	1.4	1.7071
LA-SMA-5.92	MEx	Hg	7/12/2013	2.89	µg/L	0.005	1.4	2.0643
LA-SMA-5.92	MEx	Cu	7/12/2013	8.32	µg/L	0.5	4.3	1.9349
M-SMA-1	CAM5	Cu	6/14/2013	31.2	µg/L	0.5	4.3	7.2558
M-SMA-1	CAM5	Zn	6/14/2013	264	µg/L	20	42	6.2857
M-SMA-1	CAM5	Cu	7/2/2013	9.66	µg/L	0.5	4.3	2.2465
M-SMA-1	CAM5	Zn	7/2/2013	53.4	µg/L	20	42	1.2714
M-SMA-1.2	MEx	Cu	9/13/2013	38.4	µg/L	0.5	4.3	8.9302
M-SMA-1.22	M18	Cu	9/15/2011	6	µg/L	0.5	4.3	1.3953
M-SMA-1.22	M18	Al	9/15/2011	904	µg/L	2.5	750	1.2053
M-SMA-1.22	CAM5	Cu	9/12/2013	5.96	µg/L	0.5	4.3	1.386

Table 11	(continued) MTAL	Exceedances
----------	------------	--------	-------------

SMA Number	Stage Number	Analyte	Sd	Std Result	Std Unit	Target Level MQL	Target Level MTAL	Result Target Ratio
M-SMA-10.01	M18	Cu	8/27/2011	16	µg/L	0.5	4.3	3.7209
M-SMA-10.01	M18	Cu	9/15/2011	6.5	µg/L	0.5	4.3	1.5116
M-SMA-10.3	M18	Zn	7/30/2011	55	µg/L	20	42	1.3095
M-SMA-10.3	M18	AI	7/30/2011	2500	µg/L	2.5	750	3.3333
M-SMA-10.3	M18	Cu	7/30/2011	4.7	µg/L	0.5	4.3	1.093
M-SMA-10.3	M18	AI	8/19/2011	873	µg/L	2.5	750	1.164
M-SMA-4	M12	Cu	8/19/2011	6	µg/L	0.5	4.3	1.3953
M-SMA-6	MEx	Cu	10/12/2012	13	µg/L	0.5	4.3	3.0233
M-SMA-7	MEx	Zn	7/7/2012	60.6	µg/L	20	42	1.4429
P-SMA-0.3	MEx	Hg	7/25/2013	39.3	µg/L	0.005	1.4	28.0714
P-SMA-0.3	MEx	Cu	7/25/2013	9.01	µg/L	0.5	4.3	2.0953
P-SMA-3.05	M18	AI	8/4/2011	1130	µg/L	2.5	750	1.5067
P-SMA-3.05	M18	Cu	8/4/2011	5.4	µg/L	0.5	4.3	1.2558
P-SMA-3.05	MEx	Cu	9/13/2013	5.2	µg/L	0.5	4.3	1.2093
PJ-SMA-11	MEx	Cu	9/13/2013	42.9	µg/L	0.5	4.3	9.9767
PJ-SMA-11.1	MEx	AI	9/13/2013	1040	µg/L	2.5	750	1.3867
PJ-SMA-11.1	MEx	Cu	9/13/2013	20.9	µg/L	0.5	4.3	4.8605
PJ-SMA-17	MEx	Cu	7/25/2013	5.13	µg/L	0.5	4.3	1.193
PJ-SMA-19	MEx	Hg	8/8/2013	1.67	µg/L	0.005	1.4	1.1929
PJ-SMA-19	MEx	AI	8/8/2013	761	µg/L	2.5	750	1.0147
PJ-SMA-20	M18	Cu	7/29/2011	8.1	µg/L	0.5	4.3	1.8837
PJ-SMA-20	M18	Cu	8/22/2011	7.1	µg/L	0.5	4.3	1.6512
PJ-SMA-20	M18	AI	8/22/2011	1410	µg/L	2.5	750	1.88
PJ-SMA-3.05	M18	CN(WAD)	8/19/2011	0.0274	mg/L	0.01	0.022	1.2455
PJ-SMA-5	MEx	Cu	10/12/2012	75.5	µg/L	0.5	4.3	17.5581
PJ-SMA-5.1	M18	Zn	8/21/2011	50.6	µg/L	20	42	1.2048
PJ-SMA-5.1	M18	Cu	8/21/2011	8.2	µg/L	0.5	4.3	1.907
PJ-SMA-5.1	M18	Cu	9/7/2011	11.1	µg/L	0.5	4.3	2.5814
PJ-SMA-5.1	M18	Zn	9/7/2011	59.4	µg/L	20	42	1.4143
PT-SMA-0.5	M18	AI	9/1/2011	1380	µg/L	2.5	750	1.84
PT-SMA-0.5	M18	Cu	9/1/2011	6.5	µg/L	0.5	4.3	1.5116
PT-SMA-0.5	CAM5	AI	9/13/2013	1130	µg/L	2.5	750	1.5067
PT-SMA-1	M18	Al	9/1/2011	6550	µg/L	2.5	750	8.7333
PT-SMA-1	M18	Cu	9/1/2011	174	µg/L	0.5	4.3	40.4651
PT-SMA-1	M18	Zn	9/1/2011	75.9	µg/L	20	42	1.8071
Pratt-SMA-1.05	MEx	Al	9/13/2013	943	µg/L	2.5	750	1.2573
R-SMA-1	M18	Zn	7/2/2011	45.3	µg/L	20	42	1.0786

Table 11	(continued)) MTAL	Exceedances
----------	-------------	--------	-------------

SMA Number	Stage Number	Analyte	Sd	Std Result	Std Unit	Target Level MQL	Target Level MTAL	Result Target Ratio
R-SMA-1	M18	AI	8/19/2011	2010	µg/L	2.5	750	2.68
S-SMA-0.25	M12	Zn	7/28/2011	74.4	μg/L	20	42	1.7714
S-SMA-0.25	M12	Cu	7/28/2011	9.7	µg/L	0.5	4.3	2.2558
S-SMA-0.25	M12	Zn	8/15/2011	52.9	µg/L	20	42	1.2595
S-SMA-0.25	M12	Cu	8/15/2011	10.9	µg/L	0.5	4.3	2.5349
S-SMA-1.1	M18	Cu	8/4/2011	5.2	µg/L	0.5	4.3	1.2093
S-SMA-1.1	M18	Cu	9/4/2011	5.8	µg/L	0.5	4.3	1.3488
S-SMA-2	M12	Zn	7/28/2011	62.6	µg/L	20	42	1.4905
S-SMA-2	M12	Cu	7/28/2011	8.3	µg/L	0.5	4.3	1.9302
S-SMA-2	M12	Cu	8/13/2011	5.8	µg/L	0.5	4.3	1.3488
S-SMA-2	CAM3	Cu	7/11/2013	4.43	µg/L	0.5	4.3	1.0302
S-SMA-2	CAM3	Zn	7/11/2013	54	µg/L	20	42	1.2857
S-SMA-2	CAM3	Cu	8/1/2013	5.08	µg/L	0.5	4.3	1.1814
S-SMA-2	CAM3	Zn	8/1/2013	44.2	µg/L	20	42	1.0524
S-SMA-2.01	M18	Cu	8/5/2011	10.9	µg/L	0.5	4.3	2.5349
S-SMA-2.01	M18	Cu	9/7/2011	10.7	µg/L	0.5	4.3	2.4884
S-SMA-3.53	M18	Cu	8/4/2011	9.6	µg/L	0.5	4.3	2.2326
S-SMA-3.53	M18	Al	8/4/2011	1490	µg/L	2.5	750	1.9867
S-SMA-3.6	M12	Cu	7/28/2011	40.5	µg/L	0.5	4.3	9.4186
S-SMA-3.6	M12	Zn	7/28/2011	147	µg/L	20	42	3.5
S-SMA-3.6	M12	Zn	8/13/2011	70.7	µg/L	20	42	1.6833
S-SMA-3.6	M12	Cu	8/13/2011	10.9	µg/L	0.5	4.3	2.5349
S-SMA-3.6	CAM3	Cu	6/14/2013	20.8	µg/L	0.5	4.3	4.8372
S-SMA-3.6	CAM3	Zn	6/14/2013	135	µg/L	20	42	3.2143
S-SMA-3.6	CAM3	Cu	7/2/2013	15.4	µg/L	0.5	4.3	3.5814
S-SMA-3.6	CAM3	Zn	7/2/2013	108	µg/L	20	42	2.5714
S-SMA-6	M18	Al	7/30/2011	1470	µg/L	2.5	750	1.96
S-SMA-6	M18	Cu	7/30/2011	8.6	µg/L	0.5	4.3	2
S-SMA-6	M18	Cu	8/19/2011	6.1	µg/L	0.5	4.3	1.4186
STRM-SMA-1.05	M12	Cu	8/5/2011	5.7	µg/L	0.5	4.3	1.3256
STRM-SMA-1.05	M12	Cu	8/26/2011	6.9	µg/L	0.5	4.3	1.6047
STRM-SMA-1.05	CAM5	Cu	7/12/2013	10.8	µg/L	0.5	4.3	2.5116
STRM-SMA-1.05	CAM5	Cu	8/1/2013	9.92	µg/L	0.5	4.3	2.307
STRM-SMA-1.5	MEx	Cd	7/11/2012	1.26	µg/L	1	0.6	1.26
STRM-SMA-1.5	MEx	Ag	7/11/2012	0.589	µg/L	0.5	0.4	1.178
STRM-SMA-1.5	MEx	CN(WAD)	7/11/2012	0.0276	mg/L	0.01	0.022	1.2545
STRM-SMA-1.5	CAM5	Ag	9/13/2013	4.02	µg/L	0.5	0.4	8.04

Table 11	(continued)) MTAL Exceedances	s
----------	-------------	--------------------	---

SMA Number	Stage Number	Analyte	Sd	Std Result	Std Unit	Target Level MQL	Target Level MTAL	Result Target Ratio
STRM-SMA-4.2	M12	Al	9/9/2011	2330	µg/L	2.5	750	3.1067
STRM-SMA-5.05	M12	AI	8/21/2011	1170	µg/L	2.5	750	1.56
T-SMA-1	M18	Zn	7/30/2011	324	µg/L	20	42	7.7143
T-SMA-1	M18	Cu	7/30/2011	21.2	µg/L	0.5	4.3	4.9302
T-SMA-1	M18	Zn	8/15/2011	103	µg/L	20	42	2.4524
T-SMA-1	M18	Cu	8/15/2011	12.6	µg/L	0.5	4.3	2.9302
T-SMA-2.85	MEx	Cu	7/12/2013	5.64	µg/L	0.5	4.3	1.3116
T-SMA-3	MEx	Cu	9/10/2012	13.4	µg/L	0.5	4.3	3.1163
T-SMA-4	MEx	Hg	9/13/2013	2.14	µg/L	0.005	1.4	1.5286
T-SMA-4	MEx	Cu	9/13/2013	6.61	µg/L	0.5	4.3	1.5372
W-SMA-1	M12	Al	8/3/2011	918	µg/L	2.5	750	1.224
W-SMA-1	M12	AI	9/9/2011	1410	µg/L	2.5	750	1.88
W-SMA-1	CAM5	AI	9/12/2013	1010	µg/L	2.5	750	1.3467
W-SMA-1.5	M18	Zn	8/3/2011	49.3	µg/L	20	42	1.1738
W-SMA-1.5	M18	Cu	9/1/2011	9.7	µg/L	0.5	4.3	2.2558
W-SMA-11.7	M18	AI	9/1/2011	1020	µg/L	2.5	750	1.36
W-SMA-14.1	M18	Zn	7/25/2011	55.9	µg/L	20	42	1.331
W-SMA-14.1	M18	Cu	7/25/2011	42.6	µg/L	0.5	4.3	9.907
W-SMA-14.1	M18	Cu	8/18/2011	20	µg/L	0.5	4.3	4.6512
W-SMA-2.05	M18	AI	8/21/2011	1240	µg/L	2.5	750	1.6533
W-SMA-5	MEx	Cu	7/3/2012	6.28	µg/L	0.5	4.3	1.4605
W-SMA-8	MEx	Cu	9/12/2013	28.1	µg/L	0.5	4.3	6.5349
W-SMA-8	MEx	Al	9/12/2013	823	µg/L	2.5	750	1.0973
W-SMA-8.7	MEx	AI	9/12/2013	1920	µg/L	2.5	750	2.56
W-SMA-8.71	CAM5	Hg	9/13/2013	1.51	µg/L	0.005	1.4	1.0786
W-SMA-8.71	CAM5	Cu	9/13/2013	19.8	µg/L	0.5	4.3	4.6047
W-SMA-8.71	CAM5	Zn	9/13/2013	55.4	µg/L	20	42	1.319
W-SMA-9.7	MEx	Cu	9/13/2013	9.74	µg/L	0.5	4.3	2.2651
W-SMA-9.9	M18	Al	8/21/2011	962	µg/L	2.5	750	1.2827

Table 11 (continued) MTAL Exceedances
Category	Median (ng/L)	UTL (ng/L)	Max Conc. (ng/L)	Percentage of Results Greater Than NM Health Standard (0.64 ng/L)	Percentage of Results Greater Than NM Wildlife Standard (14 ng/L)
Precipitation	0.12	0.68	0.61	0	0
Snowpack	0.14	0.7	0.65	8	0
Rio Grande/Rio Chama					
Base Flow	0.01	*	1.36	6	0
Storm Water (Runoff)	0.24	—	51.4	39	3
Northern New Mexico Tributaries Storm Water	5.5	24	30.6	91	22
Baseline Pajarito Plateau Storm Wat	er				
Reference Sites (Flows Originating on Pajarito Plateau)	0.4	11.7	11.6	28	0
Western Boundary Sites (Flows Originating in Jemez Mountains)	2.1	19.5	20.7	78	17
Reference and Western Boundary Combined	0.97	13	20.7	56	10
Urban Runoff Los Alamos Townsite	12	98	144	98	46

 Table 12

 Summary of Total PCB Concentrations in Upper Rio Grande Watershed

*— = Not available.

Table 13Storm Water Background Results for Inorganics

	Reference Watersheds (Undeveloped Landscape, Weathered Bandelier Tuff)		Developed Urb (Los Alamos Co	Target Action	
Analytes (Units are μg/L unless stated otherwise)	Dissolved (Filtered) BVs (UTLs)	Total (Nonfiltered) BVs (UTLs)	Dissolved (Filtered) BVs (UTLs)	Total (Nonfiltered) BVs (UTLs)	ATAL/MTAL) under the Individual Permit
Aluminum	2210	161,000	245	17,700	750
Cadmium	na ^a	7.3	0.36	1.25	0.6
Copper	3.43	1490	32.3	84	4.3
Gross Alpha (pCi/L)	n/a ^b	1,490	n/a	32.5	15
Hardness (mg/L)	74	n/a	105	n/a	30
Lead	9.03	393	3.3	133	17
Radium-226 + 228 (pCi/L)	na	52.7	na	8.94	30
Zinc	109	1350	1120	1,671	42

^a na = Not available.

^b n/a = Not applicable.

Media	Environment Material	Cadmium	Copper	Lead	Zinc	Reference
Storm Water	Highway Runoff	0.14-<0.6	1.96–13.9	0.15–7.6	6.4–78.5	Highway Storm Water Runoff Study, 1998, Michigan Department of Transportation, CH2MHILL Report.
Storm Water	Urban/Suburban runoff	No data	1.0–16.9	3.8–15.4	8.4–905	Rose, S. et al., 2001, Comparative zinc dynamics in Atlanta metropolitan region stream and street runoff, Environmental Geology, 40, p. 983–992.
Rain	Atmosphere	0.1–3.9	1–355	2.0–76	5–235	Göbel, P. et al., 2007, Storm Water Runoff
Storm Water	Roof Runoff	0.2–1.0	6–3.4	2–493	24–4880	Concentration Matrix for Urban Areas, Journal of
Storm Water	Traffic area; low density	0.2–0.5	21–140	98–170	15–1420	
Storm Water	Traffic area; high density	0.3–13.0	97–104	11–525	120–2000	

Tal	ble 14
Dissolved Metals in Storm Water and Precipi	tation in Other Developed Urban Environments

	•	•			5		
	Site		Site		Site		
1	01-001(d)	19	02-009(c)	37	35-009(d)		
2	01-001(e)	20	02-011(b)	38	35-016(i)		
3	01-003(e)	21	02-011(c)	39	35-016(k)		
4	01-006(h)	22	02-011(d)	40	35-016(l)		
5	02-003(a)	23	03-009(i)	41	35-016(m)		
6	02-003(b)	24	03-012(b)	42	48-003		
7	02-003(e)	25	03-013(a)	43	50-006(a)		
8	02-004(a)	26	03-014(b2)	44	50-006(d)		
9	02-005	27	03-021	45	50-009		
10	02-006(b)	28	03-029	46	53-014		
11	02-006(c)	29	03-045(b)	47	54-013(b)		
12	02-006(d)	30	03-045(c)	48	54-017		
13	02-006(e)	31	03-052(b)	49	54-018		
14	02-007	32	20-002(c)	50	54-020		
15	02-008(a)	33	35-003(h)	51	60-007(b)		
16	02-008(c)	34	35-003(p)	52	72-001		
17	02-009(a)	35	35-003(r)	53	73-004(d)		
18	02-009(b)	36	35-004(h)				

Table 15Proposed Moderate Priority Sites

 Table 16

 Sites Not Requiring Coverage under the Individual Permit

Site	SMA	CoC Type	Approved Residential Risk Assessment in IR	CoC Date	IR	IR Approval Date
Sites with Co	Cs					
00-011(a)	R-SMA-2.5	Complete with Controls	Yes	May 7, 2013 (NMED 2013)	Investigation Report for Guaje/Barrancas/Rendija Canyons Aggregate Area At TA-00, Revision 1 (LANL 2007)	Dec. 20, 2007
00-011(c)	R-SMA-2.05	Complete without Controls	No	May 16, 2012 (NMED 2012)	n/a*	n/a
00-011(d)	B-SMA-1	Complete with Controls	Yes	May 7, 2013 (NMED 2013)	Investigation Report for Guaje/Barrancas/Rendija Canyons Aggregate Area At TA-00, Revision 1 (LANL 2007)	Dec. 20, 2007
00-011(e)	R-SMA-2.3	Complete with Controls	Yes	May 7, 2013 (NMED 2013)	Investigation Report for Guaje/Barrancas/Rendija Canyons Aggregate Area At TA-00, Revision 1 (LANL 2007)	Dec. 20, 2007
00-018(b)	P-SMA-0.3	Complete without Controls	Yes	Jan. 14, 2011 (NMED 2011)	Investigation Report for Pueblo Canyon Aggregate Area, Revision 1 (LANL 2008)	Aug. 22, 2008
01-001(b)	LA-SMA-2.3	Complete with Controls	Yes	Sept. 10, 2010 (NMED 2010)	Investigation Report for Upper Los Alamos Canyons Aggregate Area, Revision 1 (LANL 2010)	Apr. 21, 2010
01-001(c)	LA-SMA-4.2	Complete with Controls	Yes	Sept. 10, 2010 (NMED 2010)	Investigation Report for Upper Los Alamos Canyons Aggregate Area, Revision 1 (LANL 2010)	Apr. 21, 2010
01-001(e)	LA-SMA-3.1	Complete with Controls	Yes	Sept. 10, 2010 (NMED 2010)	Investigation Report for Upper Los Alamos Canyons Aggregate Area, Revision 1 (LANL 2010)	Apr. 21, 2010
01-003(e)	LA-SMA-5.02	Complete with Controls	Yes	Sept. 10, 2010 (NMED 2010)	Investigation Report for Upper Los Alamos Canyons Aggregate Area, Revision 1 (LANL 2010)	Apr. 21, 2010

Site	SMA	СоС Туре	Approved Residential Risk Assessment in IR	CoC Date	IR	IR Approval Date
Sites with Co	Cs					
01-006(d)	LA-SMA-4.2	Complete with Controls	Yes	Sept. 10, 2010 (NMED 2010)	Investigation Report for Upper Los Alamos Canyons Aggregate Area, Revision 1 (LANL 2010)	Apr. 21, 2010
16-030(c)	CDV-SMA-1.4	Complete without Controls	No	Jan. 23, 2008 (NMED 2008)	n/a	n/a
21-013(b)	LA-SMA-5.92	Complete with Controls	Yes	June 3, 2011 (NMED 2011)	Investigation Report for Consolidated Unit 21-018(a)-99, MDA V, Revision 1 (LANL 2007)	Aug. 13, 2007
21-013(g)	LA-SMA-5.92	Complete with Controls	Yes	June 3, 2011 (NMED 2011)	Investigation Report for Consolidated Unit 21-018(a)-99, MDA V, Revision 1 (LANL 2007)	Aug. 13, 2007
21-018(a)	LA-SMA-5.92	Complete with Controls	Yes	June 3, 2011 (NMED 2011)	Investigation Report for Consolidated Unit 21-018(a)-99, MDA V, Revision 1 (LANL 2007)	Aug. 13, 2007
21-023(c)	LA-SMA-5.91	Complete with Controls	Yes	June 3, 2011 (NMED 2011)	Investigation Report for Consolidated Unit 21-018(a)-99, MDA V, Revision 1 (LANL 2007)	Aug. 13, 2007
32-003	LA-SMA-5.362	Complete without Controls	No	Dec. 20, 2012 (NMED 2012)	n/a	n/a
35-014(e2)	M-SMA-10.3	Complete with Controls	Yes	Sept. 27, 2013 (NMED 2013)	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008
35-016(i)	M-SMA-10.3	Complete with Controls	Yes	Sept. 27, 2013 (NMED 2013)	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008
39-001(b)	A-SMA-2.8	Complete without Controls	Yes	April 6, 2010 (NMED 2010)	Investigation Report for North Ancho Canyon Aggregate Area, Revision 1 (LANL 2010)	Jan. 28, 2010

Table 16 (continued) Sites Not Requiring Coverage under the Individual Permit									
Site	SMA	СоС Туре	Approved Residential Risk Assessment in IR	CoC Date	IR	IR Approval Date			
Sites with Co	Cs								
39-002(c)	A-SMA-2.7	Complete without Controls	Yes	April 6, 2010 (NMED 2010)	Investigation Report for North Ancho Canyon Aggregate Area, Revision 1 (LANL 2010)	Jan. 28, 2010			
45-001	ACID-SMA-2	Complete without Controls	Yes	Feb. 22, 2013 (NMED 2013)	Investigation Report for Pueblo Canyon Aggregate Area, Revision 1 (LANL 2008)	Dec. 23, 2010			
45-002	ACID-SMA-2	Complete without Controls	Yes	Feb. 22, 2013 (NMED 2013)	Investigation Report for Pueblo Canyon Aggregate Area, Revision 1 (LANL 2008)	Dec. 23, 2010			
45-004	ACID-SMA-2	Complete without Controls	Yes	Feb. 22, 2013 (NMED 2013)	Investigation Report for Pueblo Canyon Aggregate Area, Revision 1 (LANL 2008)	Dec. 23, 2010			
46-004(m)	CDB-SMA-0.55	Complete without Controls	Yes	July 13, 2012 (NMED 2012)	Investigation Report for Upper Cañada del Buey Aggregate Area, Revision 1 (LANL 2011)	May 31, 2011			
48-007(a)	M-SMA-4	Complete with Controls	Yes	Sept. 7, 2010 (NMED 2010)	Investigation Report for Upper Mortandad Canyon Aggregate Area, Revision 1 (LANL 2010)	June 4, 2010			
48-007(d)	M-SMA-4	Complete with Controls	Yes	Sept. 7, 2010 (NMED 2010)	Investigation Report for Upper Mortandad Canyon Aggregate Area, Revision 1 (LANL 2010)	June 4, 2010			
48-010	M-SMA-4	Complete with Controls	Yes	Sept. 7, 2010 (NMED 2010)	Investigation Report for Upper Mortandad Canyon Aggregate Area, Revision 1 (LANL 2010)	June 4, 2010			
53-001(b)	S-SMA-3.72	Complete without Controls	Yes	July 31, 2013 (NMED 2013)	Investigation Report for Lower Sandia Canyon Aggregate Area, Revision 1 (LANL 2011)	Sept. 26, 2011			
53-014	S-SMA-4.1	Complete without Controls	Yes	July 31, 2013 (NMED 2013)	Investigation Report for Lower Sandia Canyon Aggregate Area, Revision 1 (LANL 2011)	Sept. 26, 2011			

Table 16 (continued) Sites Not Requiring Coverage under the Individual Permit									
Site	SMA	СоС Туре	Approved Residential Risk Assessment in IR	CoC Date	IR	IR Approval Date			
Sites with Co	oCs					•			
73-002	P-SMA-2	Complete with Controls	Yes	Aug. 13, 2007 (NMED 2007)	Investigation Report for Consolidated Unit 73-002-99 and Corrective Action of SWMU 73-002 (LANL 2001)	Aug. 13, 2007			
73-006	P-SMA-2	Complete with Controls	Yes	Aug. 13, 2007 (NMED 2007)	Investigation Report for Consolidated Unit 73-002-99 and Corrective Action of SWMU 73-002 (LANL 2001)	Aug. 13, 2007			
C-00-020	R-SMA-0.5	Complete without Controls	No	May 16, 2012 (NMED 2012)	n/a	n/a			
C-46-001	CDB-SMA-1	Complete without Controls	Yes	July 13, 2012 (NMED 2012)	Investigation Report for Upper Cañada del Buey Aggregate Area, Revision 1 (LANL 2011)	May 31, 2011			
Sites without	t CoCs								
04-001	T-SMA-7.1	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			
04-002	T-SMA-7.1	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			
04-003(b)	T-SMA-7	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			
05-001(a)	M-SMA-12.8	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			
05-001(b)	M-SMA-12.9	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			
05-001(c)	M-SMA-13	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			

Sites without CoCs									
Site	SMA	СоС Туре	Approved Residential Risk Assessment in IR	CoC Date	IR	IR Approval Date			
05-002	M-SMA-12.7, M-SMA-12.8, M-SMA-12.9	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			
05-005(a)	M-SMA-12.7	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			
05-006(b)	M-SMA-12.7	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			
05-006(e)	M-SMA-12.7	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			
16-017(a)-99	CDV-SMA-1.3	n/a	Yes	n/a	Supplemental Investigation Report for Consolidated Units 16-007(a)-99 and 16-008(a)-99 (LANL 2010)	Feb. 16, 2010			
16-017(b)-99	CDV-SMA-1.2	n/a	Yes	n/a	Supplemental Investigation Report for Consolidated Units 16-007(a)-99 and 16-008(a)-99 (LANL 2010)	Feb. 16, 2010			
16-026(m)	CDV-SMA-1.3	n/a	Yes	n/a	Supplemental Investigation Report for Consolidated Units 16-007(a)-99 and 16-008(a)-99 (LANL 2010)	Feb. 16, 2010			
16-029(k)	CDV-SMA-1.2	n/a	Yes	n/a	Supplemental Investigation Report for Consolidated Units 16-007(a)-99 and 16-008(a)-99 (LANL 2010)	Feb. 16, 2010			
35-004(a)	T-SMA-4, T-SMA-5	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008, 102187)	Apr. 1, 2008			
35-004(h)	PRATT-SMA-1.05	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008			

Table 16 (continued) Sites Not Requiring Coverage under the Individual Permit

Table 16 (continued) Sites Not Requiring	Coverage under the Individual Permit
--	--------------------------------------

Sites without C	Sites without CoCs									
Site	SMA	СоС Туре	Approved Residential Risk Assessment in IR	CoC Date	IR	IR Approval Date				
SWMU 35-008	M-SMA-10	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				
35-009(d)	PRATT-SMA-1.05	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				
35-010(e)	T-SMA-6.8	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				
35-014(e)	M-SMA-10	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				
35-014(e2)	M-SMA-10.3	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				
35-014(g)	T-SMA-2.85	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				
35-016(a)	T-SMA-5	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				
35-016(b)	T-SMA-3	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				
35-016(e)	M-SMA-10.01	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				
35-016(f)	M-SMA-9.1	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008				

Sites v	vithout
---------	---------

Sites without CoCs							
Site	SMA	СоС Туре	Approved Residential Risk Assessment in IR	CoC Date	IR	IR Approval Date	
35-016(i)	PRATT-SMA-1.05	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008	
35-016(m)	PRATT-SMA-1.05	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008	
35-016(n)	T-SMA-2.85	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008	
35-016(p)	M-SMA-12	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008	
35-016(q)	T-SMA-5	n/a	Yes	n/a	Investigation Report for Middle Mortandad/Ten Site Aggregate, Revision 2 (LANL 2008)	Apr. 1, 2008	

*n/a = Not applicable.

151

PART I - REQUIREMENTS FOR NPDES PERMITS

This Permit authorizes only those storm water discharges associated with solid waste management units (SWMUs) and area of concerns (AOCs) listed in Appendix A of the Permit. The SWMUs and AOCs identified in Appendix A are collectively referred to throughout this Permit as "Sites." This Permit does not authorize storm water discharges associated with current conventional industrial activities at the Permittees' LANL facility. Storm water discharges associated with current general permit for storm water discharges from industrial activity, also known as the Multi-Sector General Permit (MSGP).

The Permit contains non-numeric technology-based effluent limitations, coupled with a comprehensive, coordinated monitoring program and corrective action where necessary, to minimize pollutants in Permittees' storm water discharges. As used in this Permit, "minimize" means to reduce and/or eliminate discharges of pollutants in storm water to the extent achievable using site-specific control measures (including best management practices) that reflect best industry practice considering their technological availability, economic achievability and practicability

Permittees are required to implement site-specific control measures (including best management practices) to address the non-numeric technology-based effluent limits contained in the Permit, followed by confirmation monitoring against New Mexico water-quality criteria-equivalent target action levels to determine the effectiveness of the site-specific measures. Permittees must also develop a Site Discharge Pollution Prevention Plan (SDPPP) consistent with Section F.1.of the Permit describing the control measures used to meet the requirements of the Permit.

A. <u>NON-NUMERIC TECHNOLOGY-BASED EFFLUENT LIMITATIONS</u>

For all Sites identified in Appendix A of this Permit, the Permittees must implement baseline control measures to meet the following non-numeric technology-based effluent limits as necessary to minimize pollutants in its storm water discharges.

1. Erosion and Sedimentation Controls. The Permittees must minimize discharges of pollutants caused by onsite erosion and sedimentation. The Permittees must implement structural and non-structural, vegetative, and/or stabilization control measures as necessary to achieve this requirement.

2. Management of Run-on and Runoff. The Permittees must divert, infiltrate, reuse, contain or otherwise reduce storm water run-on/runoff in order, to minimize pollutants in discharges. The Permittees must implement storm water runoff management practices, e.g., permanent structural control measures that are necessary to minimize pollutants in the discharge. Nothing in this permit relieves the Permittees of the obligation to implement additional control measures required by other Federal authorities, or by a State or local authority. Structural control measures, which involve the discharge of dredge or fill material into any receiving waters (e.g., wetlands) may require a separate permit under section 404 of the CWA before installation.

3. Employee Training. The Permittees must provide training, at least once per year, to all employees who work in areas where industrial materials or activities are exposed to storm water, or who are responsible for implementing activities identified in the SDPPP (e.g., inspectors, maintenance personnel), including all members of the Site Discharge Pollution Prevention Team (referred to Pollution Prevention Team in this Permit). Training must cover both the specific components and scope of the SDPPP and the control measures required under this Part.

4. Unauthorized Discharges. The Permittees must eliminate non-stormwater discharges (e.g. process wastewater, spills or leaks of toxic or hazardous materials, contaminated groundwater, or any contaminated non-storm water) not authorized by an NPDES permit.

- 5. **Other Controls.** The Permittees must do the following where applicable:
- (a) Implement controls to ensure that no waste, garbage, or floatable debris are discharged to receiving waters, except as authorized by a permit issued under section 404 of the CWA;
- (b) Minimize the generation of dust, along with off-site vehicle tracking of raw, final or waste materials, or sediments;
- (c) Minimize the introduction of raw, final, or waste materials to exposed areas; and
- (d) Place flow velocity dissipation devices at discharge locations and along the length of any discharge channel if the flows would otherwise create erosive conditions.

B. <u>CONTROL MEASURES</u>

1. <u>Installation of Baseline Control Measures</u>

Permittees must select, design, install and implement baseline control measures (including best management practices) to minimize storm water pollutant discharges as necessary to meet the non-numeric effluent limits established in Part I.A. of the Permit. The selection, design, installation, and implementation of these measures must be in accordance with good engineering practices and manufacturer's specifications. Failure to install and implement control measures to meet the non-numeric effluent limits within six (6) months of the effective date of the Permit is a violation of this Permit. At some Sites, control measures to address the non-numeric effluent limits under this Permit have already been installed and implemented before the effective date of this Permit. Permittees shall certify completion of baseline control measures to address the non-numeric effluent limits to EPA within 30 days of completion of such measures, or if such measures have already been installed, then within 30 days after the effective date of the Permit. Such certification shall be signed in accordance with 40 CFR 122.22(b) and shall include a

description and photographs of all completed baseline control measures. Such certification shall be forwarded to the Chief of the NPDES Compliance Section (R6-ENWC), with copies to the Chief of the NPDES Permits and Technical Assistance Section (6WQ-PP) and NMED's Surface Water Quality Bureau (SWQB).

The specific baseline control measures installed or to be installed at each Site within 6 months of the effective date of the Permit to meet the non-numeric effluent limits are described in Appendix E to the Permit.

2. <u>Maintenance of Control Measures</u>

The Permittees must maintain all control measures in effective operating condition. Failure to do so is a violation of this Permit. The Permittees must keep documentation onsite that describes procedures and a regular schedule for preventative maintenance of all control measures and discussions of back-up practices in place should a runoff event occur while a control measure is off-line. Nonstructural control measures must also be diligently maintained (e.g., employee training). Nothing in this Permit shall be construed to prevent the Permittees from taking action(s) to modify control measures as appropriate to address deficiencies.

If during inspections, or any other event or observation, control measures that are not operating effectively are identified, the Permittees must repair or replace them before the next anticipated storm event if possible, or as soon as practicable following that storm event. In the interim, the Permittees must have back-up measures in place.

C. <u>APPLICABLE TARGET ACTION LEVELS</u>

The target action levels established below are based on and equivalent to New Mexico State water quality criteria for the subject pollutants. The applicable target action levels are not themselves effluent limitations, but are benchmarks to determine the effectiveness of control measures implemented to meet the non-numeric technology-based effluent limitations. Monitoring results based on validated analytical data showing pollutant concentrations above applicable target action levels at any Site indicate that corrective action is required as provided in Section E. of this Part.

Total, unless indicated	CAS No.	STORET	MQL (µg/l)(*1)	ATAL (µg/l)(*2)	MTAL (µg/l)(*3)			
RADIOACTIVITIES								
Ra-226 and Ra-228 (pCi/l)		11503		30				
Adjusted Gross Alpha (pCi/l)		80029		15				
METALS								
Aluminum, dissolved	7429-90-5	01106	2.5		750			
Antimony, dissolved (P)	7440-36-0	01095	60	640				
Arsenic, dissolved (P)	7440-38-2	01000	0.5	9	340			

Total unloss indicated	CAS No.	STODET	MQL	ATAL	MTAL		
Total, unless indicated		STOKET	$(\mu g/l)(*1)$	$(\mu g/l)(*2)$	$(\mu g/l)(*3)$		
Boron, dissolved	7440-42-8	01020	100	5000			
Cadmium, dissolved	7440-43-9	01025	1		0.6 (*5)		
Chromium, dissolved	7440-47-3	01030	10		210 (*5)		
Cobalt, dissolved	7440-48-4	01035	50	1000			
Copper, dissolved	7440-50-8	01040	0.5		4.3 (*5)		
Lead, dissolved	7439-92-1	01049	0.5		17 (*5)		
Mercury	7439-97-6	71900	0.005	0.77	1.4		
Nickel, dissolved (P)	7440-02-0	01067	0.5		170 (*5)		
Selenium	7782-49-2	01147	5	5	20		
Silver, dissolved	7440-22-4	01075	0.5		0.4 (*5)		
Thallium, dissolved (P)	7440-28-0	01057	0.5	6.3			
Vanadium, dissolved	7440-62-2	01085	50	100			
Zinc, dissolved	7440-66-6	01090	20		42 (*5)		
	CYA	NIDE					
Cyanide, weak acid dissociable	e 57-12-5	00718	10	5.2	22		
	DIC	DXIN					
2,3,7,8-TCDD (P)	1746-01-6	34675	0.00001	5.1E-08			
SEN	IIVOLATIL	E COMPC	DUNDS				
Pentachlorophenol	87-86-5	39032	5		19		
Benzo(a)pyrene (P)	50-32-8	34247	5	0.18			
Hexachlorobenzene (P)	118-74-1	39700	5	0.0029			
	PEST	ICIDES					
Aldrin (P)	309-00-2	39330	0.01	0.0005	3		
Gamma-BHC	58-89-9	39340	0.05		0.95		
Chlordane (P)	57-74-9	39350	0.2	0.0081	2.4		
4,4'-DDT and derivatives (P)	50-29-3	39300	0.02	0.001	1.1		
Dieldrin (P)	60-57-1	39380	0.02	0.00054	0.24		
Alpha-Endosulfan	959-98-8	34361	0.01		0.22		
Beta-Endosulfan	33213-65-9	34356	0.02		0.22		
Endrin	72-20-8	39390	0.02		0.086		
Heptachlor	76-44-8	39410	0.01		0.52		
Heptachlor Epoxide	1024-57-3	39420	0.01		0.52		
Toxaphene	8001-35-2	39400	0.3		0.73		
PCBS							
PCBs (P)	1336-36-3	39516	(*4)	0.00064			
HIGH EXPLOSIVES							
RDX	121-82-4			200			
2,4,6-Trinitrotoluene (TNT)	118-96-7			20			

Footnote:

- (*1) MQL is the minimum quantification level. EPA approved analytical methods with the same or more sensitive detectable level (DL) than MQL shall be used. If an individual analytical test result is smaller than the MQL listed above, a value of zero (0) or "ND" may be used for reporting and action purpose.
- (*2) ATAL stands for Average Target Action Level
- (*3) MTAL stands for Maximum Target Action Level
- (*4) Method 1668 Revision A or the most current revision of the Congener Method shall be used for PCB analysis. See Appendix C for MQL.
- (*5) Hardness-dependent metals target action levels.

D. <u>CONFIRMATION MONITORING REQUIREMENTS</u>

The Permittees shall monitor storm water discharges from Sites at specified sampling points known as site monitoring areas (SMAs) against applicable target action levels. The Permittees shall perform confirmation monitoring as detailed below following installation in accordance with Permittees' SDPPP of each site-specific control measure, including any enhanced or additional control measure installed as corrective action. Pollutants of concern to be monitored are specified in Appendix B.

1. <u>Initial Sampling</u>

Initial monitoring requirements and frequency of sampling for each pollutant of concern following installation and implementation of baseline control measures vary on a site-by-site basis as specified below:

(a) For Sites at which baseline control measures to address the non-numeric effluent limits in Part I.A. of the Permit have already been installed and implemented prior to the effective date of this permit, the Permittees shall collect two or more confirmation samples. One (1) confirmation sample shall be collected during each of at least two (2) separate measurable storm events occurring at least fifteen (15) days apart and within one (1) year after the effective date of this Permit at associated SMAs.

(b) For Sites at which baseline control measures to address the non-numeric effluent limits in Part I.A. of the Permit are installed within six (6) months of the effective date of the permit, the Permittees shall collect two or more confirmation samples. One (1) confirmation sample shall be collected during each of at least two (2) separate measurable storm events occurring at least fifteen (15) days apart) and within eighteen (18) months after the effective date of this Permit at associated SMAs.

2. <u>Sampling Locations</u>

All samples taken for purposes of confirmation monitoring shall be taken in compliance with the monitoring requirements specified below at SMAs specified in Appendix A to the Permit. Instead of monitoring at each individual Site, the Permittees may, when appropriate based on drainage patterns for the affected Sites, monitor two or more Sites in conjunction at an associated SMA, so long as the SMA and all associated Sites are identified in Appendix A to the Permit. SMA locations are based on reasonable site accessibility for sampling purposes and the Permittees' best judgment to ensure that samples taken at a particular point will be representative of discharges from Sites in the drainage area. The Permit may be modified, in accordance with the provisions of 40 C.F.R. § 122.62, to relocate a SMA based on a determination that the SMA is no longer representative of the drainage area for a Site or Sites, provided sufficient technical justification for the relocation is included with Permittee's request for permit modification. Any change in SMA location must be documented in an update to the SDPPP. Permittees may move a sampler to make minor adjustments that arise due to changes in natural conditions, unexpected events or as otherwise necessary to ensure that the sample location is representative. Such changes can include minor updates in Site boundaries, changes in storm water drainage patterns, logistical, or security adjustment. Any such movement of a sampler will be documented in the annual SDPPP, and be made available for public review. The Permittees shall provide that any permit modification request to EPA will be emailed to email list pursuant to Section I.7.b.

The Permittees must include the following information in their SDPPP regarding each SMA

- (a) Location of each Site within the SMA drainage area;
- (b) Coordinates for sampling location;
- (c) If more than one Site is monitored by a SMA, information to demonstrate those Sites are expected to discharge substantially identical effluents; and
- (d) Estimates of the size of the drainage area (in square feet) for each of the Sites and the total drainage area of the associated SMA.

3. <u>Sampling Procedures</u>

Any sampling performed for purposes of confirmation monitoring at a particular SMA must be performed following a storm event after installation of applicable control measures that results in an actual discharge from that Site or Sites and that produces sufficient volume to perform the required analyses (referred to herein as a "measurable storm event"), provided the interval since the preceding sampled storm event is at least fifteen (15) days. For each sampling event, the Permittees must identify the date and duration (in hours) of the storm event(s) sampled, rainfall measurements or estimates (in inches) of the storm event that generated the sampled runoff, and the duration between the storm event samples and the end of the previous measurable storm event. The Permittees may take meteorological information from the nearest meteorological tower or automated rain gage. Snow melt samples shall not be used for purposes of confirmation monitoring.

Grab samples shall be taken when discharge occurs. Samples must be collected beginning within the first thirty (30) minutes of (or as soon after as practical, but beginning no later than one (1) hour after) a measurable storm event. Samples shall not be used if the collected volume of sample is insufficient to perform all required analyses. Samples from the same SMA shall be at least fifteen (15) days apart.

4. <u>Confirmation Results below Target Action Levels</u>

(a) If all analytical results for a particular pollutant of concern at a particular SMA are at or below the maximum target action level (MTAL) and the average of all applicable sampling results is at or below the average target action level (ATAL), or the applicable minimum quantification level (MQL), whichever is greater, monitoring of that pollutant at the same SMA is no longer required for the remaining period of the permit. An exception is made for instances in which future installation of control measures at the Site or Sites being monitored involves soil disturbance. As described in Section E.5I.1. a below, if soil disturbance is involved, the Permittees must again sample for all listed pollutants of concern at that SMA. A minimum of two confirmation samples must be collected and analyzed before removing a particular pollutant of concern from monitoring requirements under this Section, except as provided in Sections E.5.(d) and (e)I.4 below. The two samples required for initial sampling under Section D.1 are sufficient to meet this requirement provided analytical results for the pollutant of concern at issue are at or below applicable target action levels.

(b) If analytical results for all pollutants of concern at a particular SMA are at or below the MTALs and the average of all applicable sampling results is at or below the ATALs, or the applicable MQLs, whichever is greater, no further sampling is required for the Site or group of Sites within the associated SMA for the remaining period of the permit (except as provided in Sections I.1, I.2, I.3 and I.4-E.5.). Permittees are required to continue to inspect all Sites in accordance with Section G. of the Permit and to maintain all control measures in effective operating condition as required by Section B.2. A minimum of two confirmation samples must be collected and analyzed before removing a Site or group of Sites from monitoring requirements under this Section, except as provided in Section D.1 are sufficient to meet this requirement provided analytical results for all pollutants of concern at the SMA at issue are at or below applicable target action levels.

E. <u>CORRECTIVE ACTION</u>

If, following installation of baseline control measures, any validated sample analytical result for a specific pollutant of concern at a particular SMA is greater than the applicable MTAL (or applicable MQL, whichever is greater) or the average of all applicable sampling results is greater than the applicable ATAL (or applicable MQL, whichever is greater). As specifically described below, if confirmation monitoring shows target action levels are not being met at a particular Site, Permittees must take corrective action as required in Section E.1 below. These actions include through installation of measures reasonably expected to: (i) meet applicable target action levels at that Site; (ii) achieve total retention of storm water discharges from the Site; (iii) totally eliminate exposure of pollutants to stormwater at the Site; or through (iv) a demonstration that the Site poses no unacceptable risk to human health or the environment. has achieved RCRA "corrective action complete without controls/corrective action complete with controls" status or a Certificate of Completion under NMED's Consent Order.

1. <u>Actions Constituting Completion of Corrective Action Confirmation Results</u> above Target Action Levels

(a)-(a) -Enhanced Control Measures to Reduce Pollutant Concentrations in Discharges

If, following installation of baseline control measures, any validated sample analytical result for a specific pollutant of concern at a particular SMA is greater than the applicable MTAL (or applicable MQL, whichever is greater) or the average of all applicable sampling results is greater than the applicable ATAL (or applicable MQL, whichever is greater), the The Permittees shall-may choose to conduct visual inspections for all Sites within the SMA drainage area, reevaluate the existing control measures, and initiate corrective action as soon as practicable through the design. Such corrective action may entail the design and installation of enhanced (additional, expanded or better tailored) control measures reasonably expected to achieve compliance with target action levels indentified in the Permit for all Sites within the SMA drainage area. If this type of corrective action is selected, at least two confirmation samples shall be collected (one confirmation sample shall be collected during each of at least two (2) separate measurable storm events occurring at least fifteen (15) days apart) following installation of any enhanced control. If either validated confirmation sample result for any specific pollutant of concern exceeds applicable target action levels, the Permittees shall conduct visual inspections for all Sites within the SMA drainage area, reevaluate the existing control measures, and initiate further measures to achieve completion of corrective action under Sections E.2 or 3, "Completion of Corrective Action" or Section E.4, "Alternative Compliance" as soon as practicable.

(b) **Total Elimination of Exposure to Pollutants**

If the The Permittees may decide to achieve corrective action under this Section through the installation of measures to totally eliminate exposure of pollutants to stormwater at a Site, Permittees will be in compliance with this Permit at that Site once they have certified and demonstrated to EPA, through the submission of certified as-built drawings, that such measures have been properly installed to perform their function to totally eliminate exposure of pollutants to stormwater, and no further confirmation sampling is required, unless required by Section E.5(c)I.3, "Further Actions Following Cessation of Monitoring". Thereafter, Permittees shall collect one sample and make the analytical results available via email notification and on the public website pursuant to Section I.7-10 of the Permit.

(c) Total Retention

If the <u>The</u> Permittees <u>may</u> decide to achieve corrective action <u>under this Section</u> through <u>the</u> installation of <u>control total retention</u> measures to totally retain and prevent the <u>discharge of stormwater.</u>, Permittees will be in compliance with this Permit at that Site once they have certified and demonstrated to EPA, through the submission of certified as-built drawings, that such measures have been properly installed to perform their function to totally retain discharges of stormwater, <u>"Total Retention" of the discharge of stormwater as used in this</u> <u>subsection shall mean the three-year, 24-hour storm. Except as provided under Section I.3</u>, <u>"Further Actions Following Cessation of Monitoring"</u>, and no further confirmation sampling is required., unless required by Section E.5(c).

(d) Site Poses No Unacceptable Risk to Human Health or the Environment

If the The Permittees may decide to achieve corrective action under this Section through a demonstration that the Site poses no unacceptable risk to human health or the environment through receipt of an NMED-approved:

(i) has achieved RCRA "corrective action complete without controls/corrective action complete with controls" status or a Certificate of Completion under NMED's Consent Order <u>confirming RCRA</u> "corrective action complete without controls/corrective action complete with controls";₅

(ii) Investigation Report under the NMED Consent Order confirming that the Site poses no unacceptable risk to human health or the environment based upon residential soil screening levels; or

(iii) Certificate of Clean Closure under LANL's Hazardous Waste Facility Permit confirming that the Site poses no unacceptable risk to human health or the environment based upon residential soil screening levels.

Permittees will be in compliance with this Permit at that Site once they have certified such results to EPA and provided the supporting documentation from NMED., <u>Except as provided under Sections 1.3</u>, "Further Actions Following Cessation of Monitoring" and I.5, "Deletion of Site", and no further confirmation sampling is required. except as provided by Section E.5(c) and Section I.2(b).

(c)2. <u>Certification of Completion</u>

Permittees shall certify completion of installation of control measures <u>as required to</u> <u>achieve corrective action</u> under this subsection to EPA within 30 days of completion of all such measures at the Site and, where applicable shall provide sampling results within 30 days of receipt of analytical results from the first measurable storm event after completion of such measures. Such certification shall be signed in accordance with 40 C.F.R. Section 122.22(b) and shall include a description and photographs of all completed measures. Except as provided in Section I.<u>25</u>, <u>"Deletion of Site"</u>, Permittees are required to continue to inspect the Site in accordance with Section G, <u>"Inspections"</u>, of the Permit and to maintain all control measures in effective operating condition as required by Section B.2.

(d) For high priority sites, if no confirmation sample could be collected due to lack of a measurable storm event prior to the second year of the permit (or prior to September 30, 2012), then the compliance deadlines for corrective action under Section E.4 below, shall be extended for a one (1) year period following the first successful confirmation sampling event.

23. <u>Completion of Corrective Action</u>

Permittees must certify to EPA, pursuant to 40 C.F.R. section 122.22(b), completion of corrective action at all Sites within the deadlines established under Section E.4-5 below. Except as provided in subsection E.3-4 below, "Completion of Corrective Action" under this Permit shall mean:

(a) Analytical results from confirmation sampling show pollutant concentrations for all pollutants of concern at the Site to be at or below applicable target action levels; or

(b) Control measures that totally retain and prevent the discharge of storm water have been installed at the Site; or

(c) Control measures that totally eliminate exposure of pollutants to stormwater have been installed at the Site; or

(d) The Site has poses no unacceptable risk to human health or the environment based upon a demonstration of one of the following:

(i) achieved RCRA "corrective action complete without controls/corrective action complete with controls" status or a <u>A</u> Certificate of Completion with or without controls under NMED's Consent Order; or

(ii) An NMED-approved Investigation Report (based upon a demonstration that the Site meets residential risk) under the NMED Consent Order; or

(iii) A Certificate of Clean Closure (based upon a demonstration that the Site meets residential risk) under the Hazardous Waste Facility Permit.

For High Priority Sites, if no confirmation sample could be collected due the lack of a measureable storm event prior to the second year of the Permit (or prior to September 30, 2012), then the compliance deadlines for corrective action under Section E.5 below, shall be extended for a one (1) year period following the first successful confirmation sampling event, and shall be extended for such additional time as may be necessary to collect, analyze and consider additional confirmation samples during a measureable storm event.

<u>34</u>. <u>Alternative Compliance</u>

(a) Where Permittees believe they have installed measures to minimize pollutants in their storm water discharges as required by Part 1.A of the Permit at a Site or Sites, but are unable to certify Completion of Corrective action under Sections E.23.(a) through E.23.(d) above (individually or collectively) due, for instance, to force majeure events, background concentrations of pollutants of concern, site conditions that make it impracticable to install further control measures, or pollutants of concern contributed by sources beyond the Permittees control, the Permittees may seek to place a site into Alternative Compliance, whereby Completion of Corrective Action will be accomplished on a case-by-case basis, and as necessary, pursuant to a individually tailored compliance schedule determined by EPA.

(b) To seek to place a Site or Sites into Alternative Compliance, the Permittees must file a written request with EPA and provide written notice to the public and opportunity for public comment. Such a request must include a comprehensive description of the control measures installed at the Site or Sites and a detailed demonstration, including any underlying studies and technical information, of how the Permittees reached the conclusion that they are unable to certify Completion of Corrective action under Sections E.23.(a) through E.23.(d) above (individually or collectively).

Upon submitting such a request to EPA, the Permittees shall make the request and all supporting information available to the public for review and comment for a period of forty-five (45) days, and shall develop and provide to the commenters a written response document addressing all relevant and significant concerns raised during the comment period. Permittees' request under this subsection, along with the complete record of public comment and the Permittees' response to comments shall be submitted to EPA Region 6 for a final determination on the request.

In making a final determination to place a Site or Sites into Alternative Compliance, EPA shall carefully consider all of the information submitted by the Permittees, including all comments received on the request and the Permittees response to those comments, and promptly notify the Permittees of its decision. The Permittees shall not be out of compliance with the applicable deadlines for achieving completion of corrective action under Section E.4-5 with respect to the Site or Sites covered by a request, provided that the request is submitted to EPA on or at least six months before the applicable deadlines.

(c) If the Permittees' request under this subsection is denied, EPA shall promptly notify the Permittees of the specifics of its decision and of the timeframe under which Completion of Corrective Action under Sections E.23. (a) through E.23. (d) above (individually or collectively) must be accomplished for that Site or Sites. EPA will determine the timeframe on a case-by-case basis taking into consideration account the types of actions Permittees and will be required to take, the time needed to complete such actions considering technological availability, economic achievability, practicality, and the need to complete corrective action as expeditiously as possible.

(d) If the Permittees' request under this subsection is granted, in whole or in part, EPA will issue a new, individually tailored work plan for the Site or Sites that may include, among other requirements, specific control measure enhancements, mitigation measures to address discharges from the Site or Sites, and any other requirements deemed necessary by EPA under the CWA, and will extend the compliance deadline for Completion of Corrective Action as necessary to implement the work plan. EPA will determine the compliance deadline on a case-by-case basis taking into account the types of actions Permittees will be required to take and the time needed to complete such actions considering technological availability, economic achievability, practicality, and the need to complete corrective action as expeditiously as possible. EPA may condition its response on the Permittees' acceptance of such conditions (applicable to the Site or Sites covered by the request) as may be reasonable and warranted in view of the demonstration submitted with the request.

4<u>5</u>. <u>Deadlines for Corrective Action</u>

(a) High Priority Sites

The following Sites have been identified by the Permittees as High Priority Sites:

LIST OF HIGH PRIORITY SITES					
1	00-018(a)	22	02-009(b)	43	35-003(r)
2	00-019	23	02-009(c)	44	35-004(h)
3	01-001(d)	24	02-011(a)	45	35-009(d)
4	01-001(c)	25	02-011(b)	46	35-014(e2)
5	01-001(f)	26	02-011(c)	47	35-016(i)
6	01-003(a)	27	02-011(d)	48	35-016(k)
7	01-003(e)	28	03-009(i)	49	35-016(l)
8	01-006(h)	29	03-012(b)	50	35-016(m)
9	02-003(a)	30	03-013(a)	51	48-003
10	02-003(b)	31	03-014(b2)	52	50-006(a)
11	02-003(e)	32	03-021	53	50-006(d)
12	02-004(a)	33	03-029	54	50-009
13	02-005	34	03-045(b)	55	53-014
14	02-006(b)	35	03-045(c)	56	54-013(b)
15	02-006(c)	36	03-052(b)	57	54-017
16	02-006(d)	37	03-052(f)	58	54-018
17	02-006(c)	38	03-056(c)	59	54-020
18	02-007	39	20-002(c)	60	60-007(b)
19	02-008(a)	40	21-024(i)	61	72-001
20	02 008(c)	41	35-003(h)	62	73-001(a)
21	02-009(a)	42	35-003(p)	63	73-004(d)

Permittees must certify completion of corrective action under Part I.E.2 of the Permit for all High Priority Sites within three (3) years of the effective date of the Permit, or such other time period as may be specified pursuant to Section E.<u>3-4</u>, "Alternative Compliance" or <u>E.5.DI.4.(b)</u>, "Confirmation Sampling". Such certification shall be forwarded to the Chief of the NPDES Compliance Section (R6-ENWC), with copies to the Chief of the NPDES Permits and Technical Assistance Section (6WQ-PP) and NMED's Surface Water Quality Bureau (SWQB).

(b) Moderate Priority Sites

The remaining Sites identified in Appendix A are Moderate Priority Sites. Permittees must certify completion of corrective action under Part I.E.<u>2-3</u>of the Permit for all Moderate Priority Sites within five (5) years of the effective date of the Permit, or such other time period as may be specified pursuant to Section E.<u>3-4</u>, "Alternative Compliance" or EI.<u>54</u>.d.(b), "Confirmation Sampling". Such certification shall be forwarded to the Chief of the NPDES Compliance Section

(R6-ENWC), with copies to the Chief of the NPDES Permits and Technical Assistance Section (6WQ-PP) and NMED's Surface Water Quality Bureau (SWQB).

(c) Force Majeure

The Permittees may seek EPA approval for an extension to a deadline if the Permittees can demonstrate that "force majeure" has resulted, or will result, in a delay in meeting the obligation to confirm Completion of Corrective Action by the specified deadline:

An event that constitutes "force majeure," includes, but is not limited to: (a) Acts of God, natural disasters such as fire or flood, war, terrorism, insurrection, civil disturbance, or explosion; (b) a federal government shut down, such as the ones that occurred in 1995, and 1996 and 2013; (c) unanticipated breakage or accident to machinery, equipment or lines of pipe; (d) restraint by court order; (e) inability to obtain the necessary authorizations, approvals, permits or licenses due to an action or inaction caused by another governmental authority; (f) unanticipated delays caused by compliance with applicable statutes or regulations governing contracting, procurement or acquisition procedures; and (g) inability to secure the reasonable cooperation of any other property owner in addressing storm water runon to a Site or Sites from such property.

To obtain an extension from EPA, the Permittees shall describe in detail: (a) the cause or causes of the delay; (b) the expected duration of the delay, including any obligations that would be affected; (c) the actions taken or to be taken by the Permittees to minimize the delay; and (d) the timetable by which those actions are expected to be implemented.

EPA will notify the Permittees whether an extension is reasonably justified and provide a new reasonable deadline that takes into account the actual delay resulting from the event, anticipated seasonal construction conditions and any other relevant factors. If EPA does not agree to the extension, it will <u>promptly</u> notify the Permittees in writing and provide the basis for its conclusion.

5. Additional Sampling Requirements

(a) If installation of control measures at a particular Site does not involve soil disturbance, the Permittees may choose to monitor only those pollutants for which previous monitoring data, including samples collected under the 2005 Federal Facility Compliance Agreement (FFCA), demonstrates an exceedence of the applicable target action levels as listed in Section C of this Permit. If monitoring of PCBs is required, analysis for PCBs must bereconducted unless Method 1668A or later revision of congener method was used in the previous analyses. If soil disturbance is involved, all listed pollutants of concern at that Site listed in Appendix B of the Permit shall be analyzed. Installation and routine maintenance of monitoring devices is not considered to involve soil disturbance.

(b) Sampling is not required for any Site which is designated by the Permittees in writing to EPA as a "No Exposure" Site, provided such "No Exposure" status has been verified

and confirmed in writing by EPA and the Site is continuously maintained under such status. EPA may request NMED provide such verification on behalf of EPA. (Note: "No Exposure" in this permit means that all pollutants of concern are protected from being exposed to storm water, including rain, snow, snowmelt and/or runoff).

(c) Notwithstanding the provisions of Sections D.4 and E.1, and except as provided in Section I.2, if a Site for which monitoring has ceased, later exhibits evidence of a discharge of contaminated runoff, or conditions that could lead to a discharge of contaminated runoff, such as control measure failure, erosion problems, re exposure of "no exposure" Sites, or if monitoring data (from the facility, State or local agency), shows an exceedance of applicable target action levels, the Permittees shall initiate appropriate actions to correct the problems within thirty (30) days of being made aware of such information. After completion of any required corrective actions, at least two confirmation samples shall be taken. One confirmation sample shall be collected during each of at least two (2) separate measurable storm events occurring at least fifteen (15) days apart and within one (1) year of completion of the corrective action to evaluate the effectiveness of the action. If confirmation samples show the problem continues, control measures sufficient to reduce pollutant concentration levels to at or below target action levels or control measures designed to totally eliminate the discharge of pollutants from the Site shall be installed and implemented within one year from receipt of analytical results. Confirmation sampling is not required if such a corrective action is part of routine control measure maintenance prior to any evidence of discharge of contaminated runoff. Any actions taken under this paragraph must be summarized in the Annual SDPPP update and in the Annual Report.

(d) If, during any period in which two (2) confirmation samples are required, only one confirmation sample could be collected from a measurable storm event, compliance with applicable target action levels for that particular Site or Sites will be determined by the single confirmation sample result.

(e) If no confirmation sample could be collected during the applicable period from a measurable storm event, confirmation sampling shall continue until at least one sample is collected, and compliance with applicable target action levels for that particular Site or Sites will be determined based on the single result from the first successful confirmation sampling event. If the Permittees are unable to collect samples from a measurable storm event for a particular Site or Sites, the adjusted deadline for Completion of Corrective Action for that Site or Sites shall be 6 months after receipt of a single result from the first successful confirmation sampling event or the deadline specified under Section E.4 for that Site, whichever is later. In the event it is impracticable to meet the adjusted deadline due to conditions affecting the Permittees' ability to install the necessary measures, the Permittees may request a further extension. EPA may grant a further extension after taking into account the anticipated seasonal construction conditions and any other relevant factors.

(f) Monitoring Location Change. If the location of any SMA for any Site or Sites has been changed, confirmation samples must be analyzed for all pollutants of concern for that Site or Sites, as listed in Appendix B of the Permit.

F. SITE DISCHARGE POLLUTION PREVENTION PLAN (SDPPP)

The Permittees must prepare a SDPPP for the facility and submit it to EPA within six (6) months of the effective date of this Permit. The facility's SDPPP must remain compliant with relevant State, Tribal, and local regulations, if applicable.

1. <u>Contents of SDPPP</u>

The facility's SDPPP must describe all control measures selected to meet the non-numeric effluent limits specified in Section I.A. of the Permit. In addition, the facility's SDPPP must contain all of the elements described below. The SDPPP must also address the inspection requirements set forth in Section G below.

(a) Site Discharge Pollution Prevention Team. The Permittees must identify the staff members (by name or title) that comprise the facility's Site Discharge Pollution Prevention Team (Pollution Prevention Team). The Permittees' Pollution Prevention Team is responsible for assisting the facility manager in developing and revising the facility's SDPPP as well as maintaining control measures and taking corrective actions for deficiencies. Specific responsibilities of each staff individual on the Team must be identified and listed in the SDPPP. Each member of the Pollution Prevention Team must have ready access to either an electronic or paper copy of applicable portions of this Permit and the facility's SDPPP.

(b) **Site Description.** The facility's SDPPP must include historical activities at each Site, precipitation information, general location map, and Site maps.

(c) Receiving Waters and Wetlands. The SDPPP must include the name(s) of all receiving waters that receive discharges from Sites covered by this permit. The SDPPP must also include the size and description of wetlands or other special aquatic sites.

(d) **Summary of Potential Pollutant Sources.** The SDPPP must identify each Site at the facility where industrial materials or activities were previously exposed to storm water and from which allowable non-storm water discharges were released. The SDPPP must also identify the pollutants of concern associated with those activities.

(e) **Description of Control Measures.** The SDPPP must identify the baseline control measures specified in Appendix E that will be, or which have been implemented for each Site to address the pollutant sources identified above, and to address storm water run-on that commingles with discharges associated with industrial activity. The Permittees must update the SDPPP as needed to document additional control measures implemented at any Site as a result of Corrective Action under Section E of the Permit. The SDPPP must include sufficient detail to identify and describe the Site-specific control measures.

(f) Schedules for Control Measure Installation. The SDPPP must include schedules for baseline control measure installation and implementation for each Site, and must be updated as necessary to include schedules for additional control measure installation and implementation resulting from Corrective Action under Section E of the Permit.

If the Permittees find that significant amounts of pollutants are running onto a specific Site, the Permittees should identify and address the contaminated run-on in the annual SDPPP update

(g) Monitoring and Inspection Procedures. The Permittees must document in the SDPPP schedules and planned procedures for sample collection and site inspection.

For each sample to be collected, the SDPPP must identify:

- (i) Locations where samples are to be collected, including coordinates for sampling locations and any determination that two or more Sites are substantially identical;
- (ii) Person(s) or positions of person(s) responsible for sample collection;
- (iii) Parameters to be sampled and frequency of sampling for each parameter;
- (iv) Procedures for gathering storm event data.

The Permittees must document in the SDPPP all tentative schedules and procedures for erosion and post-storm inspections as described in Sections G. 1 & and 2. of the Permit below.

(h) **Signature Requirements.** The SDPPP shall be signed, certified and dated in accordance with 40 CFR 122.22(b) no later than one hundred-eighty (180) days from the effective date of this Permit.

2. <u>Documentation</u>

The initial SDPPP document must include records and documents as described in Section F.1 above to comply with this permit. Additionally, the Permittees are required to maintain inspection, monitoring, and certification documentation with the SDPPP that together keep the records complete and help to explain ongoing SDPPP implementation activities. These records are maintained alongside the SDPPP document thereby providing a consolidated record of documented storm water requirements and implementation procedures.

Following the preparation of the initial SDPPP, the Permittees must at a minimum keep the following records and documentation alongside the SDPPP:

(a) Dates of training sessions, names of employees trained, and subject matter of

training;

(b) Sampling reports including sampling dates, analytical results, outfall locations, name and qualifications of technician;

(c) Inspection reports, including visual inspections required by Section E.1 above, and any other information required to be included in an Inspection Report under Section G.3.below;

(d) An accounting of and explanation of the length of time taken to modify control measures or implement additional control measures following the discovery of a deficiency or the need for modification;

(e) Documentation of maintenance and repairs of control measures, including the date(s) of regular maintenance, date(s) of discovery of areas in need of repair/replacement, and for repairs, the date(s) that control measure(s) returned to full function, and the justification for any extended maintenance/repair schedules.

3. <u>Required Modifications</u>

The Permittees must keep documents and records with the SDPPP as necessary to reflect:

(a) Construction or a change in design, operation, or maintenance at the facility having a significant impact on the discharge, or potential for discharge, of pollutants from the facility;

(b) Findings of deficiencies in control measures during inspection or based on analytical monitoring results;

(c) Any change of monitoring requirement or compliance status; (d) Any change of SMA location; and

(e) Summary of changes from the last year's SDPPP.

If any of the circumstances described above occur at any Site, the Permittees must address these changes or deficiencies to ensure compliance with this Permit's conditions and applicable monitoring requirements. All changes must be incorporated into the SDPPP (see Section F.4 below) and a summary of these changes must be included in the Annual Report.

4. <u>SDPPP Updates</u>

The SDPPP shall be updated annually to fully incorporate all changes made during the previous year and to reflect any changes projected for the following year.

5. <u>SDPPP Availability</u>

The Permittees must retain a paper copy of the current SDPPP required by this Permit at the facility, and it must be immediately available to EPA, a State, Tribal or local agency approving storm water management plans, the Pollution Prevention Team members, and representatives of the U.S. Fish and Wildlife Service (USFWS) or the National Marine Fisheries Service (NMFS) at the time of an onsite inspection or upon request. In accordance with Section I.7–<u>10</u> of this permit, a copy of the SDPPP will also be made available on a public website.

G. <u>INSPECTIONS</u>

The Permittees must conduct the following inspections for every Site in addition to visual inspections required by Section E.1 above. The facility's Pollution Prevention Team (as identified in the Permittees' SDPPP – see Section F. of the Permit) may conduct a combined inspection for a Site, if appropriate.

1. Erosion Inspection and Reevaluation

The facility's Pollution Prevention Team shall inspect and evaluate each Site annually for changes of conditions affecting erosion. The facility's Pollution Prevention Team must also reinspect and reevaluate all Sites after notice of a significant event, such as a fire, which could significantly impact the control measures and environmental conditions in the affected area. Such inspection and reevaluation should be conducted prior to the next anticipated storm event or as early as practicable.

2. <u>Post-Storm Inspection</u>

The facility's Pollution Prevention Team must inspect control measures and storm water management devices at any Site affected by a "storm rain event" defined below, within fifteen (15) calendar days after such storm rain event. The occurrence of a storm rain event as defined below shall be determined based on data from the nearest meteorological tower to any particular Site. A "storm rain event" under this paragraph means a 0.25-inch or more intensive rain event within 30 minutes.

If several storms exceeding the above intensity threshold occur over a period not to exceed fifteen (15) days from the first event, a single inspection following these storms is sufficient for compliance with this requirement, provided that the inspection occurs no more than fifteen (15) days from the date of the first storm. If adverse weather conditions prevent a site inspection within the required time period, the Permittees shall inspect the Site as soon as practicable. Adverse weather events shall be documented and maintained with the SDPPP. Adverse weather conditions include dangerous weather-related events (e.g., flooding, wildfires, or hail) that make site inspection dangerous for worker safety.

3. <u>Inspection Report</u>

All inspection reports shall include, at a minimum, the following items:

- (a) The personnel who conduct the inspections;
- (b) Date(s) on which inspection was performed;
- (c) A written summary of major observations, including observation of deficiency;

(d) A summary of evidence of potential contaminants, BMP failure, or alteration of management structure or runoff pathway, etc.;

- (e) Actions that should be taken to correct noted deficiencies;
- (f) Photo documentation of findings at the Site if necessary; and

(g) The signature of the delegated official of the Permittees and certification of findings, including observation of no deficiency.

H. <u>REPORTING</u>

1. <u>Annual Compliance Status Reports</u>

Each SMA ID number shall be provided an outfall number for ease of reporting. That list is provided in Appendix D. Monitoring results for each SMA ID shall be reported on the sample forms provided in Appendix D. The information includes, at a minimum, the assigned outfall number, the SMA ID number, pollutants of concern greater than the applicable target action levels, targeted control measure completion date, and actual control measure completion date if control measure installation and implementation is complete. EPA may require the Permittees to submit additional information. These reports shall be signed, certified, and dated in accordance with 40

CFR 122.22(b).

Reporting period is from January 1st to December 31st. The first reporting period is from the effective date of the permit to December 31, 2010, and the first DMR report is due on March 1,

2011. In addition to electronic and paper reports to EPA 6's Enforcement Division, a copy of these reports shall be sent to the Chief of the NPDES Permits and Technical Assistance Section

(6WQ-PP) and NMED's Surface Water Quality Bureau (SWQB).

2. <u>Annual Reports</u>

The Permittees shall submit an <u>annual Annual Compliance status Status reportReport.</u> <u>Reporting period is from January 1st to December 31st. The report is due on March 1st of the following year</u>. This report shall include the following:

(a) For each SMA (or Site), a summary of the Site-specific compliance status during the report period;

(b) <u>SMA-Discharge Monitoring Reports (DMR) using the sample form provided</u> in Appendix D, which show the results available during the reporting period, and that include the following minimum information required below at (c) through (f).

(c) SMA and associated Outfall and Site(s) numbers/identifications;

(c) Monitoring results available during the reporting period;

(d) Identification of pollutants which exceed applicable MTAL or ATAL;

(e) Description of baseline **c**ontrol measures installed, including the completion date or targeted completion date;

(f) Description of corrective actions required under Section E of this Permit to be taken or having been taken, including completion date or targeted completion date, and Progress update;

(g) Identification of Sites which meet No Exposure status;

(h) Identification of Sites which meet "corrective action complete without controls/corrective action complete with controls" under RCRA or which have been issued a Certificate of Completion with or without controls under the NMED Consent Order;

(i) Identification of Sites which have an NMED-approved Investigative Report that shows no unacceptable risk to human health or the environment (based upon a demonstration that the Site meets residential risk) under the NMED Consent Order;

(ij) <u>Identification of Sites which have an NMED-approved Certificate of Clean</u> <u>Closure that shows no unacceptable risk to human health or the environment (based upon a</u> <u>demonstration that the Site meets residential risk) under the Hazardous Waste Facility Permit;</u>

(k) Highlights of any change of compliance status from the <u>prior Annual Annual</u> <u>Compliance Status ReportReport</u>;

 (\underline{jl}) Lists of requests, for EPA's approval, including any requests for change of monitoring location or Site deletion and any requests to place a Site or Sites into Section E.34 Alternative compliance; and

 (\underline{km}) A summary of inspections performed in accordance with Sections G. 1 and 2 above, as well as for any visual inspections performed under Section E.1 above.

<u>EPA may require the Permittees to submit additional information. This Report shall be</u> signed, certified and dated in accordance with 40 CFR Section 122.22(b). The reporting period is from January 1st to December 31st. In addition to electronic and paper reports to EPA Region 6's <u>Enforcement Division, Copies copies</u> of the this Report Annual Reports in electronic format (e.g., compact discs or other acceptable media) shall be submitted to EPA 6EN, EPA 6WQ-PP and NMED's SWQB no later than March 1 of each year. A copy of each Report report shall be kept with the facility's SDPPP and a copy of the most current Annual <u>Compliance Status</u> Report shall be maintained on Permittees' public website.

I. <u>OTHER CONDITIONS</u>

1. <u>Soil Disturbance Associated with Installation of Control Measures</u> <u>Construction Activity Associated with Site Remediation</u>

If <u>the installation of control measures at a Site involves</u> disturbance of soil-is required to install a control measure, the Permittees shall take all necessary steps to minimize migration of sediments and runoff from disturbed sites. Installation and routine maintenance of monitoring devices is not considered to involve soil disturbance. Steps taken to minimize discharges of contaminated runoff during remediation activity shall be included in the SDPPP update. The Permittees shall conduct site inspections once a week to ensure sediments and runoffs control measures are maintained in good order. Corrective actions shall be taken immediately if deficiencies of sediments and runoff control measures are noticed either by inspectors or contractors. Storm water discharges associated with construction activity disturbing one acre or more are not covered under this permit. Storm water discharges associated with construction

activity disturbing one acre or more must be covered under EPA's Construction General Permit (CGP) or through a separate individual NPDES permit.

All listed pollutants of concern in Appendix B of the Permit shall be analyzed.

If the installation of control measures at a Site does not involve soil disturbance, the Permittees may choose to monitor only those pollutants for which previous monitoring data, including samples collected under the 2005 Federal Facility Compliance Agreement (FFCA) demonstrates an exceedance of the applicable TALs as listed in Section I.C of this Permit. If monitoring of PCBs is required analysis for PCBs must be re-conducted unless Method 1668A or later version of the congener method was used in the previous analyses.

2. <u>Deletion of SiteNo Exposure</u>

The Permittees may designate a "no exposure" Site in writing to EPA and EPA must confirm "No Exposure" Sites in writing. EPA may request NMED provide such verification on behalf of EPA. (Note: "no exposure" in this permit means that all pollutants of concern are protected from being exposed to storm water, including rain, snow, snowmelt and/or runoff). No sampling is required for Sites that have achieved "no exposure" status, and such Sites must be continuously maintained under such status.

3. Further Actions Following Cessation of Monitoring

(a) Notwithstanding the provisions of Sections D.4 and E.1, and except as provided in Section I.2, if a Site for which monitoring has ceased, later exhibits evidence of a discharge of contaminated runoff, or conditions that could lead to a discharge of contaminated runoff, such as control measure failure, erosion problems, re-exposure of "no exposure" Sites, or if monitoring data (from the facility, State or local agency), shows an exceedance of applicable target action levels, the Permittees shall initiate appropriate actions to correct the problems within thirty (30) days of being made aware of such information.

(b) After completion of any required corrective actions described in subsection I.3(a) above, at least two confirmation samples shall be taken. One confirmation sample shall be collected during each of at least two (2) separate measurable storm events occurring at least fifteen (15) days apart and within one (1) year of completion of the corrective action to evaluate the effectiveness of the action. Confirmation sampling is not required if such a corrective action is part of routine control measure maintenance prior to any evidence of discharge of contaminated runoff.

(c) If confirmation samples show the problem continues, control measures sufficient to reduce pollutant concentration levels to at or below TALs or control measures designed to totally eliminate the discharge of pollutants from the Site shall be installed and implemented within one year from receipt of analytical results.

(d) Any actions taken under this paragraph must be summarized in the Annual SDPPP update and in the Annual Compliance Status Report.

4. <u>Confirmation Sampling</u>

(a) If, during any period in which two (2) confirmation samples are required, only one confirmation sample could be collected from a measurable storm event, compliance with applicable TALs for that particular Site or Sites will be determined by the single confirmation sample result.

(b) If no confirmation sample could be collected during the applicable period from a measurable storm event, confirmation sampling shall continue until at least one sample is collected, and compliance with applicable TALs for that particular Site or Sites will be determined based on the single result from the first successful confirmation sampling event. If the Permittees are unable to collect samples from a measurable storm event for a particular Site or Sites, the adjusted deadline for Completion of Corrective Action for that Site or Sites shall be 6 months after receipt of a single result from the first successful confirmation sampling event or the deadline specified under Section E.5 for that Site, whichever is later. In the event it is impracticable to meet the adjusted deadline due to conditions affecting the Permittees' ability to install the necessary measures, the Permittees may request a further extension. EPA may grant a further extension after taking into account the anticipated seasonal construction conditions and any other relevant factors.

(c) If the monitoring location of any SMA for any Site or Sites has been changed, confirmation samples must be analyzed for all pollutants of concern for that Site or Sites, as listed in Appendix B of the Permit.

<u>5.</u> Deletion of Site

The Permittees may submit a written request to remove a Site if the Permittees can demonstrate that the Site meets one of the following conditions:

(a) The Site was never used for management of hazardous waste, assuming the Site does not otherwise meet the definitions of industrial activities (40 CFR 122.26(b)(14)(i) through (xi)); or

(b) The Site has met RCRA's "corrective action complete without

controls/corrective action complete with controls" status or the Site has received a Certificate of Completion under NMED's Consent Order with or without controls and confirmation samples of runoff have demonstrated concentrations no greater than applicable target action levels.

(c) The Site has received an NMED-approved Investigation Report under the NMED Consent Order demonstrating that it poses no risk to human health or the environment(based upon a demonstration that the Site meets residential risk); or

(d) The Site has received a Certificate of Closure under the Hazardous Waste Facility Permit demonstrating that it poses no risk to human health or the environment (based upon a demonstration that the Site meets residential risk). EPA may approve such a request as a minor modification to the Permit under 40 C.F.R. § 122.63. If such a request is approved, EPA will notify the Permittees in writing and issue a written public notice that the Permit has been modified to remove the Site from the Permit prior to the expiration of the Permit. Documents to support such requests and decisions must be kept with facility's SDPPP. Once a Site is removed from the Permit, a discharge of contaminated runoff is no longer authorized by this Permit.

<u>36</u>. <u>Watershed Protection Approach</u>

EPA encourages the Permittees to voluntarily install watershed-based control measures, such as sediment barriers, to mitigate sediment or storm water runoff reaching the main channels of the canyons and/or the Rio Grande. The Permittees should include information and monitoring data regarding the installation of any such watershed-based control measures in the Annual <u>Compliance Status</u> Report or the SDPPP.

47. <u>Record Keeping</u>

The Permittees shall retain records of all monitoring information and reports, Site inspections and reports, decision making procedures and supporting documents and records, and annual SDPPP updates with supplemental information for at least three years after the issuance of the next permit renewal.

<u>58</u>. <u>Reopener and Modification</u>

This Permit may be reopened and modified in accordance with 40 C.F.R. § 122.62. Any changes to monitoring and/or control measure requirements made to the Permit in accordance with such a permit modification shall be addressed in the Annual Report and in the annual SDPPP update.

69. <u>Permit Compliance</u>

Any noncompliance with any of the requirements of this Permit constitutes a violation of the Clean Water Act. Failure to take any required corrective actions constitute an independent violation of this Permit and the Clean Water Act. As such, any actions and time periods specified for remedying noncompliance do not absolve parties of the initial underlying noncompliance. However, where corrective action is triggered by an event that does not itself constitute Permit noncompliance, such as an exceedance of an applicable target action level prior to the deadline for corrective action established in Section I.E.<u>34</u> of the Permit, there is no permit violation provided Permittees take the required corrective action within the relevant deadlines.

Any corrective action required under this Permit must be completed by the deadlines or extensions established in Section E. of the Permit. If completion of corrective action, as defined under Section I.E.<u>2-3</u> of the Permit, has not been demonstrated at any given Site by the deadlines or extensions established in Section E, Permittees are in violation of this Permit at that Site.

7<u>10</u>. <u>Public Involvement</u>

(a) Website: Within six (6) months after the effective date of the Permit, the Permittees shall establish a public web site where information on the Permit, including the SDPPP, Annual Reports, Inspection Reports, DMRs, transmittal correspondence between Permittees and EPA, and other relevant data and documents, will be made available. A copy (either paper or electronic) of these documents will also be made available by the Permittees as soon as practicable to any member of the public who makes such a request in writing. Confidential Business Information (CBI) may not be withheld from regulatory agencies, but may be withheld from the public. All portions of the SDPPP not identified as CBI, pursuant to 40 CFR Part 2, must be provided to the public upon request.

(b) E-mail notification: The Permittees will provide the opportunity for members of the public to register for and receive e-mail notifications on compliance with the Permit on the public web site. E-mail notifications will provide notice of completion of installation of baseline control measures, updates on permit compliance, any requests for time extensions, spill information, and notification of any modification to the Permit or SDPPP including changing SMA locations, removing, deleting, or adding sites, and completions of corrective action. Such notifications will have a direct link to the specific document to which it relates. Notice will also be provided for any request to complete corrective of action under Section I.E.<u>3-4</u> of the Permit.

(c) Public Meetings: The Permittees shall publish a public notice and send an email notification to members of the public who have registered as provided in Section 7(b) about public meetings which will be held approximately every 6 months. The Permittees shall update the public on implementation of and compliance with the permit and provide an opportunity for both written and oral public comment. The meetings may be combined with other public meetings, but Permittees shall provide a discrete, separate time for comment and discussion of this Permit.

Permittees shall email a draft Agenda at least one week before the meeting and will consider suggestions from the public for changes or additions to the Agenda.

J. <u>Water Quality-Based Effluent Limits</u>

Permittees must control discharges from all Sites as necessary to ensure that such discharges will not cause or contribute to a violation of applicable water quality standards. EPA believes that compliance with the technology-based effluent limitations and other terms and conditions of this permit will control discharges as necessary to meet applicable water quality standards.

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Los Alamos/Pueblo	Rendija Canyon	R-SMA-0.5	C-00-020	Rendija Canyon
		R-SMA-1	C-00-041	
		R-SMA-1.95	00-015	
		R-SMA-2.05	00-011(c)	Rendija Canyon/Cabra Canyon
		R-SMA-2.3	00-011(e)	Rendija Canyon
		R-SMA-2.5	00-011(a)	
	Bayo Canyon	B-SMA-0.5	10-001(a)	Bayo Canyon
			10-001(b)	
			10-001(c)	
			10-001(d)	
			10-004(a)	
			10-004(b)	
			10-008	
			10-009	
		B-SMA-1	00-011(d)	
	Pueblo Canyon	ACID-SMA-1.05	00-030(g)	Pueblo Canyon/Acid Canyon
		ACID-SMA-2	01-002(b)-00	
			45-001	
			45-002	
			45-004	
		ACID-SMA-2.01	00-030(f)	
		ACID-SMA-2.1	01-002(b)-00	
		P-SMA-0.3	00-018(b)	Pueblo Canyon
		P-SMA-1	73-001(a)	
			73-004(d)	
		P-SMA-2	73-002	
			73-006	
		P-SMA-2.15	31-001	
		P-SMA-2.2	00-019	Pueblo Canyon/Graduation Canyon
		P-SMA-3.05	00-018(a)	Pueblo Canyon
	Los Alamos Canyon	LA-SMA-0.85	03-055(c)	Los Alamos Canyon
		LA-SMA-0.9	00-017	
			C-00-044	
		LA-SMA-1	00-017	
			C-00-044	
		LA-SMA-1.1	43-001(b2)	
		LA-SMA-1.25	C-43-001	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Los Alamos/Pueblo	Los Alamos Canyon	LA-SMA-2.1	01-001(f)	Los Alamos Canyon
		LA-SMA-2.3	01-001(b)	
		LA-SMA-3.1	01-001(e)	
			01-003(a)	
		LA-SMA-3.9	01-001(g)	
			01-006(a)	
		LA-SMA-4.1	01-003(b)	
			01-006(b)	
		LA-SMA-4.2	01-001(c)	
			01-006(c)	
			01-006(d)	
		LA-SMA-5.01	01-001(d)	
			01-006(h)	
		LA-SMA-5.02	01-003(e)	
		LA-SMA-5.2	01-003(d)	
		LA-SMA-5.31	41-002(c)	
		LA-SMA-5.33	32-004	
		LA-SMA-5.35	C-41-004	
		LA-SMA-5.361	32-002(b)	
			<u>32-002(b1)</u>	
			<u>32-002(b2)</u>	
		LA-SMA-5.362	32-003	
		LA-SMA-5.51	02-003(a)	
			02-003(e)	
			02-004(a)	
			02-005	
			02-006(b)	
			02-006(c)	
			02-006(d)	
			02-006(e)	
			02-008(a)	
			02-009(b)	
			02-011(a)	
			02-011(b)	
			02-011(c)	
			02-011(d)	
		LA-SMA-5.52	02-003(b)	
			02-007	
			02-008(c)	
Watershed	Canyon	SMA ID	Site ID	Receiving Water
-------------------	-------------------	--------------	-----------	-----------------------------
Los Alamos/Pueblo	Los Alamos Canyon	LA-SMA-5.53	02-009(a)	Los Alamos Canyon
		LA-SMA-5.54	02-009(c)	
		LA-SMA-5.91	21-009	Los Alamos Canyon/BV Canyon
			21-021	
			21-023(c)	
			21-027(d)	
		LA-SMA-5.92	21-013(b)	
			21-013(g)	
			21-018(a)	
			21-021	
		LA-SMA-6.25	21-021	Los Alamos Canyon
			21-024(d)	
			21-027(c)	
		LA-SMA-6.27	21-021	
			21-027(c)	
		LA-SMA-6.3	21-006(b)	
		LA-SMA-6.31	21-027(a)	
		LA-SMA-6.32	21-021	
		LA-SMA-6.34	21-021	
			21-022(h)	
		LA-SMA-6.36	21-021	
			21-024(a)	
		LA-SMA-6.38	21-021	
			21-024(c)	
		LA-SMA-6.395	21-021	
			21-024(j)	
		LA-SMA-6.5	21-021	
			21-024(i)	
		LA-SMA-9	26-001	
			26-002(a)	
			26-002(b)	
			26-003	
		LA-SMA-10.11	53-002(a)	
		LA-SMA-10.12	53-008	
	DP Canyon	DP-SMA-0.3	21-029	DP Canyon
		DP-SMA-0.4	21-021	
		DP-SMA-0.6	21-021	
			21-024(l)	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Los Alamos/Pueblo	DP Canyon	DP-SMA-1	21-011(k)	DP Canyon
			21-021	
		DP-SMA-2	21-021	
			21-024(h)	
		DP-SMA-2.35	21-021	
			21-024(n)	
		DP-SMA-3	21-013(c)	
			21-021	
		DP-SMA-4	21-021	
Sandia	Sandia Canyon	S-SMA-0.25	03-013(a)	Sandia Canyon
			03-052(f)	
		S-SMA-1.1	03-029	
		S-SMA-2	03-012(b)	
			03-045(b)	
			03-045(c)	
			03-056(c)	
		S-SMA-2.01	03-052(b)	
		S-SMA-2.8	03-014(c2)	-
		S-SMA-3.51	03-009(i)	
		S-SMA-3.52	03-021	
		S-SMA-3.53	03-014(b2)	
		S-SMA-3.6	60-007(b)	
		S-SMA-3.7	53-012(e)	
		S-SMA-3.71	53-001(a)	-
		S-SMA-3.72	53-001(b)	
		S-SMA-3.95	20-002(a)	
		S-SMA-4.1	53-014	-
		S-SMA-4.5	20-002(d)	-
		S-SMA-5	20-002(c)	-
		S-SMA-5.2	20-003(c)	-
		S-SMA-5.5	20-005	-
		S-SMA-6	72-001	
Mortandad	Cañada del Buey	CDB-SMA-0.15	04-003(a)	Cañada del Buey
			04-004	
		CDB-SMA-0.25	46-004(c2)	
			<u>46-004(e2)</u>	
			46-004(c2)	

Watershed	Canyon	sma id	Site ID	Receiving Water
Mortandad	Cañada del Buey	CDB-SMA-0.55	46-004(g)	Cañada del Buey
			46-004(m)	
			46-004(s)	
			46-006(f)	
		CDB-SMA-1	46-003(c)	Cañada del Buey /SWSC Canyon
			46-004(d2)	
			46-004(f)	
			46-004(t)	
			46-004(w)	
			46-008(g)	
			46-009(a)	
			C-46-001	
		CDB-SMA-1.15	46-004(b)	Cañada del Buey
			46-004(y)	
			46-004(z)	
			46-006(d)	
		CDB-SMA-1.35	46-004(a2)	
			46-004(u)	
			46-004(v)	
			46-004(x)	
			46-006(d)	
			46-008(f)	
		CDB-SMA-1.54	46-004(h)	
			46-004(q)	
			46-006(d)	
		CDB-SMA-1.55	46-003(e)	
		CDB-SMA-1.65	46-003(b)	Cañada del Buey /SWSC Canyon
		CDB-SMA-4	54-017	Cañada del Buey
			54-018	
			54-020	
	Mortandad Canyon	M-SMA-1	03-050(a)	Mortandad Canyon
			03-054(e)	
		M-SMA-1.2	03-049(a)	
		M-SMA-1.21	03-049(e)	
		M-SMA-1.22	03-045(h)	
		M-SMA-3	48-001	
			48-005	
			48-007(c)	

Watershed	Canyon	sma id	Site ID	Receiving Water
Mortandad	Mortandad Canyon	M-SMA-3.1	48-001	Mortandad Canyon
			48-007(b)	
		M-SMA-3.5	48-001	
			48-003	
		M-SMA-4	48-001	Mortandad Canyon/Effluent Canyon
			48-005	
			48-007(a)	
			48-007(d)	
			48-010	
		M-SMA-5	42-001(a)	
			42-001(b)	
			42-001(c)	
			42-002(a)	
			42-002(b)	
		M-SMA-6	35-016(h)	
		M-SMA-7	35-016(g)	
		M-SMA-7.9	50-006(d)	
		M-SMA-9.1	35-016(f)	Mortandad Canyon
		M-SMA-10	35-008	
			35-014(e)	
		M-SMA-10.01	35-016(e)	
		M-SMA-10.3	35-014(e2)	
			35-016(i)	
		M-SMA-11.1	35-016(o)	
		M-SMA-12	35-016(p)	
		M-SMA-12.5	05-005(b)	
			05-006(c)	
		M-SMA-12.6	05-004	
		M-SMA-12.7	05-002	
			05-005(a)	
			05-006(b)	
			05-006(e)	
		M-SMA-12.8	05-001(a)	
			05-002	
		M-SMA-12.9	05-001(b)	
			05-002	
		M-SMA-12.92	00-001	
		M-SMA-13	05-001(c)	

APPENDIX A SITE MONITORING AREA AND SITE INFORMATION

Watershed	Canyon	sma id	Site ID	Receiving Water
Mortandad	Ten-Site Canyon	Pratt-SMA-1.05	35-003(h)	Ten-Site Canyon
			35-003(p)	
			35-003(r)	
			35-004(h)	
			35-009(d)	
			35-016(k)	
			35-016(l)	
			35-016(m)	
		T-SMA-1	50-006(a)	
			50-009	
		T-SMA-2.5	35-014(g3)	
		T-SMA-2.85	35-014(g)	
			35-016(n)	
		T-SMA-3	35-016(b)	
		T-SMA-4	35-004(a)	
			35-009(a)	
			35-016(c)	
			35-016(d)	
		T-SMA-5	35-004(a)	
			35-009(a)	
			35-016(a)	
			35-016(q)	
		T-SMA-6.8	35-010(e)	
		T-SMA-7	04-003(b)	
		T-SMA-7.1	04-001	
			04-002	
Pajarito	Twomile Canyon	2M-SMA-1	03-010(a)	Twomile Canyon
		2M-SMA-1.42	06-001(a)	
		2M-SMA-1.43	22-014(a)	
			22-015(a)	
		2M-SMA-1.44	06-001(b)	
		2M-SMA-1.45	06-006	
		2M-SMA-1.5	22-014(b)	
		2M-SMA-1.65	40-005	
		2M-SMA-1.67	06-003(h)	
		2M-SMA-1.7	03-055(a)	
		2M-SMA-1.8	03-001(k)	
		2M-SMA-1.9	03-003(a)	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Pajarito	Twomile Canyon	2M-SMA-2	03-050(d)	Twomile Canyon
			03-054(b)	
		2M-SMA-2.2	03-003(k)	
		2M-SMA-3	07-001(a)	
			07-001(b)	
			07-001(c)	
			07-001(d)	
		2M-SMA-2.5	40-001(c)	
	Threemile Canyon	3M-SMA-0.2	15-010(b)	Threemile Canyon
		3M-SMA-0.4	15-006(b)	
		3M-SMA-0.5	15-006(c)	
			15-009(c)	
		3M-SMA-0.6	15-008(b)	
		3M-SMA-2.6	36-008	
			C-36-003	
		3M-SMA-4	18-002(b)	
			18-003(c)	
			18-010(f)	
	Pajarito Canyon	PJ-SMA-1.05	09-013	Pajarito Canyon
		PJ-SMA-2	09-009	
		PJ-SMA-3.05	09-004(o)	
		PJ-SMA-4.05	09-004(g)	
		PJ-SMA-5	22-015(c)	
Pajarito	Pajarito Canyon	PJ-SMA-5.1	22 016	Pajarito Canyon
			<u>22-010(b)</u>	
		PJ-SMA-6	40-010	
		PJ-SMA-7	40-006(c)	
		PJ-SMA-8	40-006(b)	
		PJ-SMA-9	40-009	
		PJ-SMA-10	40-006(a)	
		PJ-SMA-11	40-003(a)	
		PJ-SMA-11.1	40-003(b)	
		PJ-SMA-13	18-002(a)	
		PJ-SMA-13.7	18-010(b)	
		PJ-SMA-14	54-004	
		PJ-SMA-14.2	18-012(b)	
		PJ-SMA-14.3	18-003(e)	
		PJ-SMA-14.4	18-010(d)	
		PJ-SMA-14.6	18-010(e)	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Pajarito	Pajarito Canyon	PJ-SMA-14.8	18-012(a)	Pajarito Canyon
		PJ-SMA-16	27-002	
		PJ-SMA-17	54-018	
		PJ-SMA-18	54-014(d)	
			54-017	
		PJ-SMA-19	54-013(b)	
			54-017	
			54-020	
		PJ-SMA-20	54-017	
		STRM-SMA-1.05	08-009(f)	Pajarito Canyon/Starmer's Gulch
		STRM-SMA-1.5	08-009(d)	
		STRM-SMA-4.2	09-008(b)	
		STRM-SMA-5.05	09-013	
Water/Cañon de	Cañon de Valle	CDV-SMA-1.2	16-017(b)-99	Cañon de Valle
Valle			16-029(k)	
		CDV-SMA-1.3	16-017(a)-99	
			16-026(m)	
		CDV-SMA-1.4	16-020	Cañon de Valle
			16-026(l)	
			16-028(c)	
			16-030(c)	
		CDV-SMA-1.45	16-026(i)	
		CDV-SMA-1.7	16-019	
		CDV-SMA-2	16-021(c)	
		CDV-SMA-2.3	13-001	
			13-002	
			16-003(n)	
			16-003(o)	
			16-029(h)	
			16-031(h)	
		CDV-SMA-2.41	16-018	
		CDV-SMA-2.42	16-010(b)	
		CDV-SMA-2.5	16-010(c)	
			16-010(d)	
			16-028(a)	
		CDV-SMA-2.51	16-010(i)	
		CDV-SMA-3	14-009	
		CDV-SMA-4	14-010	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Water/Cañon de	Cañon de Valle	CDV-SMA-6.01	14-001(g)	Cañon de Valle
Valle			14-006	
		CDV-SMA-6.02	14-002(d)	
			14-002(c)	
			<u>14-002(c)</u>	
		CDV-SMA-7	15-008(d)	
		CDV-SMA-8	15-011(c)	
		CDV-SMA-8.5	15-014(a)	
		CDV-SMA-9.05	15-007(b)	
	Fence Canyon	F-SMA-2	36-004(c)	Fence Canyon
	Potrillo Canyon	PT-SMA-0.5	15-009(e)	Potrillo Canyon
			C-15-004	
		PT-SMA-1	15-004(f)	
			15-008(a)	
		PT-SMA-1.7	15-006(a)	
		PT-SMA-2	15-008(f)	
			36-003(b)	
			36-004(e)	
		PT-SMA-2.01	C-36-001	
			C-36-006(e)	
		PT-SMA-3	36-004(a)	
			36-006	
		PT-SMA-4.2	36-004(d)	
	Water Canyon	W-SMA-1	16-017(j)-99	Water Canyon
			16-026(c2)	
			16-026(v)	
		W-SMA-1.5	16-026(b2)	
			16-028(d)	
		W-SMA-2.05	16-028(e)	
		W-SMA-3.5	16-026(y)	
		W-SMA-4.1	16-003(a)	
		W-SMA-5	16-001(e)	Water Canyon/S-Site Canyon
			16-003(f)	
			16-026(b)	
			16-026(c)	
			16-026(d)	
			16-026(e)	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Water/Cañon de	Water Canyon	W-SMA-6	11-001(c)	Water Canyon
Valle		W-SMA-7	16-026(h2)	
			<u>16-029(e)</u>	
		W-SMA-7.8	16-031(a)	
		W-SMA-7.9	16-006(c)	
		W-SMA-8	16-016(g)	
			16-028(b)	
		W-SMA-8.7	13-001	
			13-002	
			16-004(a)	
			16-026(j2)	
			16-029(h)	
			16-035	
		W-SMA-8.71	16-004(c)	
		W-SMA-9.05	16-030(g)	
		W-SMA-9.5	11-012(c)	Water Canyon/S-Site Canyon
		W-SMA-9.7	11-011(a)	
			11-011(b)	
		W-SMA-9.8	11-005(c)	
		W-SMA-9.9	11-006(b)	
		W-SMA-10	11-002	
			11-003(b)	
			11-005(a)	
			11-005(b)	
			11-006(c)	
			11-006(d)	
			11-011(d)	
		W-SMA-11.7	49-008(c)	Water Canyon
		W-SMA-12.05	49-001(g)	
		W-SMA-14.1	15-004(h)	
			15-014(l)	
		W-SMA-15.1	49-005(a)	
Ancho	Ancho Canyon	A-SMA-1.1	39-004(a)	North Ancho Canyon
			39-004(d)	
		A-SMA-2	39-004(b)	
			39-004(e)	
		A-SMA-2.5	39-010	
		A-SMA-2.7	39-002(c)	
			39-008	

Watershed	Canyon	SMA ID	Site ID	Receiving Water
Ancho	Ancho Canyon	A-SMA-2.8	39-001(b)	North Ancho Canyon
		A-SMA-3	39-002(b)	
			39-004(c)	
		A-SMA-3.5	39-006(a)	South Ancho Canyon
		A-SMA-4	33-010(d)	
		A-SMA-6	33-004(k)	
			33-007(a)	
			33-010(a)	
Chaquehui	Chaquehui Canyon	CHQ-SMA-0.5	33-004(g)	Chaquehui Canyon
			33-007(c)	
			33-009	
		CHQ-SMA-1.01	33-002(d)	
		CHQ-SMA-1.02	33-004(h)	
			33-008(c)	
			33-011(d)	
			33-015	
		CHQ-SMA-1.03	33-008(c)	
			33-012(a)	
			33-017	
			C-33-001	
			C-33-003	
		CHQ-SMA-2	33-004(d)	
			33-007(c)	
			C-33-003	
		CHQ-SMA-3.05	33-010(f)	
		CHQ-SMA-4	33-011(e)	
		CHQ-SMA-4.1	33-016	
		CHQ-SMA-4.5	33-011(b)	
		CHQ-SMA-5.05	33-007(b)	
		CHQ-SMA-6	33-004(j)	
			33-006(a)	
			33-007(b)	
			33-010(c)	
			33-010(g)	
			33-010(h)	
			33-014	
		CHQ-SMA-7.1	33-010(g)	

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
R-SMA-0.5	C-00-020	Alpha <mark>& Ra</mark>	Cyanide	Metals		HE	
R-SMA-1	C-00-041	Alpha & Ra	Cyanide	Metals			
R-SMA-1.95	00-015	Alpha <mark>& Ra</mark>	Cyanide	Metals		HE	
R-SMA-2.05	00-011(c)	Alpha & Ra	Cyanide	Metals		HE	
R-SMA-2.3	00-011(e)	Alpha & Ra	Cyanide	Metals		HE	
R-SMA-2.5	00-011(a)	Alpha & Ra	Cyanide	Metals		HE	
B-SMA-0.5	10-001(a)	Alpha & Ra	Cyanide	Metals			
B-SMA-0.5	10-001(b)	Alpha & Ra	Cyanide	Metals			
B-SMA-0.5	10-001(c)	Alpha & Ra	Cyanide	Metals			
B-SMA-0.5	10-001(d)	Alpha & Ra	Cyanide	Metals			
B-SMA-0.5	10-004(a)	Alpha & Ra	Cyanide	Metals			
B-SMA-0.5	10-004(b)	Alpha & Ra	Cyanide	Metals			
B-SMA-0.5	10-008	Alpha & Ra	Cyanide	Metals			
B-SMA-0.5	10-009	Alpha & Ra	Cyanide	Metals			
B-SMA-1	00-011(d)	Alpha & Ra	Cyanide	Metals		HE	
ACID-SMA-1.05	00-030(g)	Alpha & Ra	Cyanide	Metals	PCBs		PEST
ACID-SMA-2	01-002(b)-00	Alpha & Ra	Cyanide	Metals	PCBs		
ACID-SMA-2	45-001	Alpha & Ra	Cyanide	Metals	PCBs		
ACID-SMA-2	45-002	Alpha & Ra	Cyanide	Metals	PCBs		
ACID-SMA-2	45-004	Alpha & Ra	Cyanide	Metals	PCBs		
ACID-SMA-2.01	00-030(f)	Alpha & Ra	Cyanide	Metals	PCBs		
ACID-SMA-2.1	01-002(b)-00	Alpha & Ra	Cyanide	Metals	PCBs		
P-SMA-0.3	00-018(b)	Alpha & Ra	Cyanide	Metals			
P-SMA-1	73-001(a)	Alpha & Ra	Cyanide	Metals	PCBs		
P-SMA-1	73-004(d)	Alpha & Ra	Cyanide	Metals			
P-SMA-2	73-002	Alpha & Ra	Cyanide	Metals-Pb	PCBs		Dioxin, SVC
P-SMA-2	73-006	Alpha & Ra	Cyanide	Metals			Dioxin, SVC
P-SMA-2.15	31-001	Alpha & Ra	Cyanide	Metals	PCBs		
P-SMA-2.2	00-019	Alpha & Ra	Cyanide	Metals	PCBs		
P-SMA-3.05	00-018(a)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-0.85	03-055(c)	Alpha & Ra	Cyanide	Metals			
LA-SMA-0.9	00-017	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-0.9	C-00-044	Alpha & Ra	Cyanide	Metals-Pb	PCBs		
LA-SMA-1	00-017	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-1	C-00-044	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-1.1	43-001(b2)	Alpha & Ra	Cyanide	Metals			
LA-SMA-1.25	C-43-001	Alpha & Ra	Cyanide	Metals			
LA-SMA-2.1	01-001(f)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-2.3	01-001(b)	Alpha & Ra	Cyanide	Metals			

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
LA-SMA-3.1	01-001(e)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-3.1	01-003(a)	Alpha & Ra	Cyanide	Metals-Pb	PCBs		
LA-SMA-3.9	01-001(g)	Alpha & Ra	Cyanide	Metals			
LA-SMA-3.9	01-006(a)	Alpha & Ra	Cyanide	Metals			
LA-SMA-4.1	01-003(b)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-4.1	01-006(b)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-4.2	01-001(c)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-4.2	01-006(c)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-4.2	01-006(d)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.01	01-001(d)	Alpha & Ra	Cyanide	Metals Hg, Pb	PCBs		
LA-SMA-5.01	01-006(h)	Alpha & Ra	Cyanide	Metals Hg, Pb	PCBs		
LA-SMA-5.02	01-003(e)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.2	01-003(d)	Alpha & Ra	Cyanide	Metals Pb, Sb			
LA-SMA-5.31	41-002(c)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu			
LA-SMA-5.33	32-004	Alpha & Ra	Cyanide	Metals			
LA-SMA-5.35	C-41-004	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu			
LA-SMA-5.361	32-002(b) 32-002(b1)	Alpha & Ra	Cyanide	Metals			
LA-SMA-5.361	32-002(b) 32-002(b2)	Alpha & Ra	Cyanide	Metals Hg, Pb			
LA-SMA-5.362	32-003	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-003(a)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-003(e)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-004(a)	Alpha & Ra	Cyanide	Metals Hg	PCBs		SVC
LA-SMA-5.51	02-005	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-006(b)	Alpha & Ra	Cyanide	Metals Hg	PCBs		SVC
LA-SMA-5.51	02-006(c)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-006(d)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-006(e)	Alpha & Ra	Cyanide	Metals Hg	PCBs		
LA-SMA-5.51	02-008(a)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-009(b)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-011(a)	Alpha & Ra	Cyanide	Metals Hg	PCBs		
LA-SMA-5.51	02-011(b)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-011(c)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.51	02-011(d)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.52	02-003(b)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.52	02-007	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.52	02-008(c)	Alpha & Ra	Cyanide	Metals Hg	PCBs		
LA-SMA-5.53	02-009(a)	Alpha & Ra	Cyanide	Metals	PCBs		

SMA Number	Site Number	Radioactivity	Cyanide	Metals PCBs		High Explosive	Others
LA-SMA-5.54	02-009(c)	Alpha & Ra	Cyanide	Metals	PCBs		
LA-SMA-5.91	21-009	Alpha & Ra	Cyanide	Metals			
LA-SMA-5.91	21-021	Alpha <mark>& Ra</mark>	Cyanide	Metals			
LA-SMA-5.91	21-023(c)	Alpha & Ra	Cyanide	Metals			
LA-SMA-5.91	21-027(d)	Alpha & Ra	Cyanide	Metals			
LA-SMA-5.92	21-013(b)	Alpha & Ra	Cyanide	Metals			
LA-SMA-5.92	21-013(g)	Alpha & Ra	Cyanide	Metals			
LA-SMA-5.92	21-018(a)	Alpha & Ra	Cyanide	Metals			
LA-SMA-5.92	21-021	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Hg			
LA-SMA-6.25	21-021	Alpha & Ra	Cyanide	Metals			
LA-SMA-6.25	21-024(d)	Alpha & Ra	Cyanide	Metals Cu, Pb			
LA-SMA-6.25	21-027(c)	Alpha & Ra	Cyanide	Metals-Pb			
LA-SMA-6.27	21-021	Alpha & Ra	Cyanide	Metals			
LA-SMA-6.27	21-027(c)	Alpha & Ra	Cyanide	Metals-Pb			
LA-SMA-6.3	21-006(b)	Alpha & Ra	Cyanide	Metals			SVC
LA-SMA-6.31	21-027(a)	Alpha & Ra	Cyanide	Metals-Pb			SVC
LA-SMA-6.32	21-021	Alpha & Ra	Cyanide	Metals			
LA-SMA-6.34	21-021	Alpha & Ra	Cyanide	Metals			
LA-SMA-6.34	21-022(h)	Alpha & Ra	Cyanide	<mark>Metals</mark> Ag, Pb			
LA-SMA-6.36	21-021	Alpha & Ra	Cyanide	Metals			
LA-SMA-6.36	21-024(a)	Alpha & Ra	Cyanide	Metals			
LA-SMA-6.38	21-021	Alpha & Ra	Cyanide	Metals			
LA-SMA-6.38	21-024(c)	Alpha & Ra	Cyanide	Metals Hg	PCBs		
LA-SMA-6.395	21-021	Alpha <mark>& Ra</mark>	Cyanide	Metals			
LA-SMA-6.395	21-024(j)	Alpha & Ra	Cyanide	Metals			
LA-SMA-6.5	21-021	Alpha & Ra	Cyanide	Metals	PCBs		SVC
LA-SMA-6.5	21-024(i)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
LA-SMA-9	26-001	Alpha & Ra	Cyanide	Metals			
LA-SMA-9	26-002(a)	Alpha & Ra	Cyanide	Metals			
LA-SMA-9	26-002(b)	Alpha & Ra	Cyanide	Metals			
LA-SMA-9	26-003	Alpha & Ra	Cyanide	Metals			
LA-SMA-10.11	53-002(a)	Alpha & Ra	Cyanide	Metals			
LA-SMA-10.12	53-008	Alpha & Ra	Cyanide	Metals			
DP-SMA-0.3	21-029	Alpha <mark>& Ra</mark>	Cyanide	Metals			
DP-SMA-0.4	21-021	Alpha & Ra	Cyanide	Metals Al, Cu			
DP-SMA-0.6	21-021	Alpha & Ra	Cyanide	Metals			
DP-SMA-0.6	21-024(l)	Alpha & Ra	Cyanide	Metals-Pb			
DP-SMA-1	21-011(k)	Alpha & Ra	Cyanide	Metals	PCBs		
DP-SMA-1	21-021	Alpha & Ra	Cyanide	Metals	PCBs		

SMA Number	Site Number	Radioactivity	Cyanide	e Metals PCBs		High Explosive	Others
DP-SMA-2	21-021	Alpha & Ra	Cyanide	Metals			
DP-SMA-2	21-024(h)	Alpha & Ra	Cyanide	Metals			
DP-SMA-2.35	21-021	Alpha <mark>& Ra</mark>	Cyanide	Metals			
DP-SMA-2.35	21-024(n)	Alpha & Ra	Cyanide	Metals			
DP-SMA-3	21-013(c)	Alpha & Ra	Cyanide	Metals			
DP-SMA-3	21-021	Alpha <mark>& Ra</mark>	Cyanide	Metals Al, Cu			
DP-SMA-4	21-021	Alpha & Ra	Cyanide	Metals			
S-SMA-0.25	03-013(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Zn	PCBs		SVC
S-SMA-0.25	03-052(f)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
S-SMA-1.1	03-029	Alpha & Ra	Cyanide	Metals	PCBs		SVC
S-SMA-2	03-012(b)	Alpha & Ra	Cyanide	Metals	PCBs		
S-SMA-2	03-045(b)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
S-SMA-2	03-045(c)	Alpha & Ra	Cyanide	Metals	PCBs		svc
S-SMA-2	03-056(c)	Alpha & Ra	Cyanide	Metals	PCBs		
S-SMA-2.01	03-052(b)	Alpha & Ra	Cyanide	Metals	PCBs		
S-SMA-2.8	03-014(c2)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
S-SMA-3.51	03-009(i)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
S-SMA-3.52	03-021	Alpha & Ra	Cyanide	Metals Pb, Tl	PCBs		SVC
S-SMA-3.53	03-014(b2)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
S-SMA-3.6	60-007(b)	Alpha & Ra	Cyanide	Metals	PCBs	HE	SVC
S-SMA-3.7	53-012(e)	Alpha & Ra	Cyanide	Metals	PCBs		
S-SMA-3.71	53-001(a)	Alpha & Ra	Cyanide	Metals	PCBs		
S-SMA-3.72	53-001(b)	Alpha & Ra	Cyanide	Metals-Pb	PCBs		
S-SMA-3.95	20-002(a)	Alpha & Ra	Cyanide	Metals		HE	SVC
S-SMA-4.1	53-014	Alpha & Ra	Cyanide	Metals	PCBs		
S-SMA-4.5	20-002(d)	Alpha & Ra	Cyanide	Metals		HE	
S-SMA-5	20-002(c)	Alpha & Ra	Cyanide	Metals	PCBs	HE	
S-SMA-5.2	20-003(c)	Alpha & Ra	Cyanide	Metals	PCBs	HE	SVC
S-SMA-5.5	20-005	Alpha & Ra	Cyanide	Metals			
S-SMA-6	72-001	Alpha & Ra	Cyanide	Metals	PCBs	HE	
CDB-SMA-0.15	04-003(a)	Alpha & Ra	Cyanide	Metals			
CDB-SMA-0.15	04-004	Alpha & Ra	Cyanide	Metals			
CDB-SMA-0.25	46-004(c2)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
CDB-SMA-0.25	46-004(e2)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
CDB-SMA-0.55	46-004(g)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
CDB-SMA-0.55	46-004(m)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
CDB-SMA-0.55	46-004(s)	Alpha & Ra	Cyanide	MetalsCu	PCBs		SVC
CDB-SMA-0.55	46-006(f)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
CDB-SMA-1	46-003(c)	Alpha & Ra	Cyanide	Metals	PCBs		

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
CDB-SMA-1	46-004(d2)	Alpha & Ra	Cyanide	Metals	PCBs		
CDB-SMA-1	46-004(f)	Alpha & Ra	Cyanide	Metals	PCBs		
CDB-SMA-1	46-004(t)	Alpha & Ra	Cyanide	Metals	PCBs		
CDB-SMA-1	46-004(w)	Alpha & Ra	Cyanide	Metals	PCBs		
CDB-SMA-1	46-008(g)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
CDB-SMA-1	46-009(a)	Alpha & Ra	Cyanide	Metals	PCBs		
CDB-SMA-1	C-46-001	Alpha & Ra	Cyanide	Metals	PCBs		
CDB-SMA-1.15	46-004(b)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
CDB-SMA-1.15	46-004(y)	Alpha & Ra	Cyanide	Metals Hg	PCBs		
CDB-SMA-1.15	46-004(z)	Alpha & Ra	Cyanide	Metals-Pb	PCBs		
CDB-SMA-1.15	46-006(d)	Alpha & Ra	Cyanide	Metals Cu, Hg	PCBs		SVC
CDB-SMA-1.35	46-004(a2)	Alpha & Ra	Cyanide	Metals	PCBs		PEST, SVC
CDB-SMA-1.35	46-004(u)	Alpha & Ra	Cyanide	Metals	PCBs		PEST, SVC
CDB-SMA-1.35	46-004(v)	Alpha & Ra	Cyanide	Metals	PCBs		PEST, SVC
CDB-SMA-1.35	46-004(x)	Alpha & Ra	Cyanide	Metals	PCBs		PEST, SVC
CDB-SMA-1.35	46-006(d)	Alpha & Ra	Cyanide	Metals Cu, Hg	PCBs		PEST, SVC
CDB-SMA-1.35	46-008(f)	Alpha & Ra	Cyanide	Metals	PCBs		PEST, SVC
CDB-SMA-1.54	46-004(h)	Alpha & Ra	Cyanide	Metals	PCBs		PEST
CDB-SMA-1.54	46-004(q)	Alpha & Ra	Cyanide	Metals Hg, Pb	PCBs		PEST
CDB-SMA-1.54	46-006(d)	Alpha & Ra	Cyanide	Metals Cu, Hg	PCBs		PEST, SVC
CDB-SMA-1.55	46-003(e)	Alpha & Ra	Cyanide	Metals Hg			
CDB-SMA-1.65	46-003(b)	Alpha & Ra	Cyanide	Metals			
CDB-SMA-4	54-017	Alpha & Ra	Cyanide	Metals	PCBs		Dioxin, SVC
CDB-SMA-4	54-018	Alpha & Ra	Cyanide	Metals	PCBs		Dioxin, SVC
CDB-SMA-4	54-020	Alpha & Ra	Cyanide	Metals	PCBs		Dioxin, SVC
M-SMA-1	03-050(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Zn	PCBs		
M-SMA-1	03-054(e)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-1.2	03-049(a)	Alpha & Ra	Cyanide	Metals Cu			
M-SMA-1.21	03-049(e)	Alpha & Ra	Cyanide	<mark>Metals</mark> Pb, Sb			
M-SMA-1.22	03-045(h)	Alpha & Ra	Cyanide	Metals			
M-SMA-3	48-001	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-3	48-005	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-3	48-007(c)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-3.1	48-001	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-3.1	48-007(b)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-3.5	48-001	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-3.5	48-003	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-4	48-001	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-4	48-005	Alpha & Ra	Cyanide	Metals	PCBs		

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
M-SMA-4	48-007(a)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-4	48-007(d)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-4	48-010	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-5	42-001(a)	Alpha & Ra	Cyanide	Metals	als PCBs		
M-SMA-5	42-001(b)	Alpha & Ra	Cyanide	Metals	Metals PCBs		
M-SMA-5	42-001(c)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-5	42-002(a)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-5	42-002(b)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-6	35-016(h)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-7	35-016(g)	Alpha & Ra	Cyanide	Metals			
M-SMA-7.9	50-006(d)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-9.1	35-016(f)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-10	35-008	Alpha & Ra	Cyanide	Metals			
M-SMA-10	35-014(e)	Alpha & Ra	Cyanide	Metals			
M-SMA-10.01	35-016(e)	Alpha & Ra	Cyanide	Metals			
M-SMA-10.3	35-014(e2)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
M-SMA-10.3	35-016(i)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
M-SMA-11.1	35-016(o)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-12	35-016(p)	Alpha & Ra	Cyanide	Metals	PCBs		
M-SMA-12.5	05-005(b)	Alpha & Ra	Cyanide	Metals		HE	SVC
M-SMA-12.5	05-006(c)	Alpha & Ra	Cyanide	Metals Cu, Pb		HE	SVC
M-SMA-12.6	05-004	Alpha & Ra	Cyanide	Metals		HE	SVC
M-SMA-12.7	05-002	Alpha & Ra	Cyanide	Metals Cu, Pb		HE	svc
M-SMA-12.7	05-005(a)	Alpha & Ra	Cyanide	Metals		HE	SVC
M-SMA-12.7	05-006(b)	Alpha & Ra	Cyanide	Metals		HE	SVC
M-SMA-12.7	05-006(e)	Alpha & Ra	Cyanide	Metals		HE	SVC
M-SMA-12.8	05-001(a)	Alpha & Ra	Cyanide	Metals Cu, Pb		HE	SVC
M-SMA-12.8	05-002	Alpha & Ra	Cyanide	Metals Cu, Pb		HE	svc
M-SMA-12.9	05-001(b)	Alpha & Ra	Cyanide	Metals Cu, Pb		HE	
M-SMA-12.9	05-002	Alpha & Ra	Cyanide	Metals Cu, Pb		HE	
M-SMA-12.92	00-001	Alpha & Ra	Cyanide	Metals			
M-SMA-13	05-001(c)	Alpha & Ra	Cyanide	Metals		HE	
Pratt-SMA-1.05	35-003(h)	Alpha & Ra	Cyanide	Metals	PCBs		
Pratt-SMA-1.05	35-003(p)	Alpha & Ra	Cyanide	Metals	PCBs		
Pratt-SMA-1.05	35-003(r)	Alpha & Ra	Cyanide	Metals	PCBs		
Pratt-SMA-1.05	35-004(h)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al, Hg	PCBs		
Pratt-SMA-1.05	35-009(d)	Alpha & Ra	Cyanide	Metals	PCBs		
Pratt-SMA-1.05	35-016(k)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
Pratt-SMA-1.05	35-016(l)	Alpha & Ra	Cyanide	Metals	PCBs		SVC

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
Pratt-SMA-1.05	35-016(m)	Alpha & Ra	Cyanide	Metals	PCBs		
T-SMA-1	50-006(a)	Alpha & Ra	Cyanide	Metals	PCBs		
T-SMA-1	50-009	Alpha & Ra	Cyanide	Metals	PCBs		
T-SMA-2.5	35-014(g3)	Alpha & Ra	Cyanide	Metals			
T-SMA-2.85	35-014(g)	Alpha & Ra	Cyanide	Metals			
T-SMA-2.85	35-016(n)	Alpha & Ra	Cyanide	Metals			
T-SMA-3	35-016(b)	Alpha & Ra	Cyanide	Metals			
T-SMA-4	35-004(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Hg			
T-SMA-4	35-009(a)	Alpha & Ra	Cyanide	Metals			
T-SMA-4	35-016(c)	Alpha & Ra	Cyanide	Metals			
T-SMA-4	35-016(d)	Alpha & Ra	Cyanide	Metals Hg			
T-SMA-5	35-004(a)	Alpha & Ra	Cyanide	Metals			
T-SMA-5	35-009(a)	Alpha & Ra	Cyanide	Metals			
T-SMA-5	35-016(a)	Alpha & Ra	Cyanide	Metals			
T-SMA-5	35-016(q)	Alpha & Ra	Cyanide	Metals			
T-SMA-6.8	35-010(e)	Alpha & Ra	Cyanide	Metals			
T-SMA-7	04-003(b)	Alpha & Ra	Cyanide	Metals			
T-SMA-7.1	04-001	Alpha & Ra	Cyanide	Metals			
T-SMA-7.1	04-002	Alpha & Ra	Cyanide	Metals			
2M-SMA-1	03-010(a)	Alpha & Ra	Cyanide	Metals Al			
2M-SMA-1.42	06-001(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al			
2M-SMA-1.43	22-014(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al			
2M-SMA-1.43	22-015(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al			
2M-SMA-1.44	06-001(b)	Alpha & Ra	Cyanide	Metals Cu			
2M-SMA-1.45	06-006	Alpha <mark>& Ra</mark>	Cyanide	Metals			
2M-SMA-1.5	22-014(b)	Alpha & Ra	Cyanide	Metals		HE	SVC
2M-SMA-1.65	40-005	Alpha & Ra	Cyanide	Metals			
2M-SMA-1.67	06-003(h)	Alpha & Ra	Cyanide	Metals		HE	
2M-SMA-1.7	03-055(a)	Alpha & Ra	Cyanide	Metals Cu			
2M-SMA-1.8	03-001(k)	Alpha & Ra	Cyanide	Metals Cu, Zn			
2M-SMA-1.9	03-003(a)	Alpha & Ra	Cyanide	Metals Cu, Zn			
2M-SMA-2	03-050(d)	Alpha & Ra	Cyanide	Metals Cu, Zn	PCBs		
2M-SMA-2	03-054(b)	Alpha & Ra	Cyanide	Metals	PCBs		SVC
2M-SMA-2.2	03-003(k)	Alpha & Ra	Cyanide	Metals Cu, Zn	PCBs		
2M-SMA-3	07-001(a)	Alpha & Ra	Cyanide	Metals Al, Cu		HE	
2M-SMA-3	07-001(b)	Alpha & Ra	Cyanide	Metals Al, Cu		HE	
2M-SMA-3	07-001(c)	Alpha & Ra	Cyanide	Metals Al, Cu		HE	
2M-SMA-3	07-001(d)	Alpha & Ra	Cyanide	Metals Al, Cu		HE	
2M-SMA-2.5	40-001(c)	Alpha & Ra	Cyanide	Metals			

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
3M-SMA-0.2	15-010(b)	Alpha & Ra	Cyanide	Metals			
3M-SMA-0.4	15-006(b)	Alpha <mark>& Ra</mark>	Cyanide	Metals		HE	
3M-SMA-0.5	15-006(c)	Alpha & Ra	Cyanide	Metals		HE	
3M-SMA-0.5	15-009(c)	Alpha & Ra	Cyanide	Metals		HE	
3M-SMA-0.6	15-008(b)	Alpha & Ra	Cyanide	Motals Be, Cu, Pb, Sb			
3M-SMA-2.6	36-008	Alpha & Ra	Cyanide	<mark>Metals</mark> Ag, Cu, Hg, Pb	PCBs	HE	SVC
3M-SMA-2.6	C-36-003	Alpha & Ra	Cyanide	Metals Ag, Cu, Pb	PCBs	HE	SVC
3M-SMA-4	18-002(b)	Alpha & Ra	Cyanide	Metals		HE	
3M-SMA-4	18-003(c)	Alpha & Ra	Cyanide	Metals	PCBs	HE	
3M-SMA-4	18-010(f)	Alpha & Ra	Cyanide	Metals		HE	
PJ-SMA-1.05	09-013	Alpha & Ra	Cyanide	Metals	PCBs		
PJ-SMA-2	09-009	Alpha & Ra	Cyanide	Metals			
PJ-SMA-3.05	09-004(o)	Alpha <mark>& Ra</mark>	Cyanide	Metals		HE	
PJ-SMA-4.05	09-004(g)	Alpha <mark>& Ra</mark>	Cyanide	Metals			
PJ-SMA-5	22-015(c)	Alpha & Ra	Cyanide	Metals Cu			SVC
PJ-SMA-5.1	22-010(b)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Zn			
PJ-SMA-5.1	22-016	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Zn			
PJ-SMA-6	40-010	Alpha & Ra	Cyanide	Metals			
PJ-SMA-7	40-006(c)	Alpha & Ra	Cyanide	Metals		HE	
PJ-SMA-8	40-006(b)	Alpha & Ra	Cyanide	Metals		HE	
PJ-SMA-9	40-009	Alpha & Ra	Cyanide	Metals Cu		HE	SVC
PJ-SMA-10	40-006(a)	Alpha & Ra	Cyanide	Metals		HE	SVC
PJ-SMA-11	40-003(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu			
PJ-SMA-11.1	40-003(b)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al, Cu			
PJ-SMA-13	18-002(a)	Alpha & Ra	Cyanide	Metals		HE	
PJ-SMA-13.7	18-010(b)	Alpha <mark>& Ra</mark>	Cyanide	Metals			
PJ-SMA-14	54-004	Alpha & Ra	Cyanide	Metals		HE	
PJ-SMA-14.2	18-012(b)	Alpha & Ra	Cyanide	Metals			
PJ-SMA-14.3	18-003(e)	Alpha & Ra	Cyanide	Metals			
PJ-SMA-14.4	18-010(d)	Alpha & Ra	Cyanide	Metals			
PJ-SMA-14.6	18-010(e)	Alpha & Ra	Cyanide	Metals			
PJ-SMA-14.8	18-012(a)	Alpha & Ra	Cyanide	Metals			
PJ-SMA-16	27-002	Alpha & Ra	Cyanide	Metals		HE	
PJ-SMA-17	54-018	Alpha & Ra	Cyanide	Metals	PCBs		
PJ-SMA-18	54-014(d)	Alpha & Ra	Cyanide	Metals	PCBs		
PJ-SMA-18	54-017	Alpha & Ra	Cyanide	Metals	PCBs		

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
PJ-SMA-19	54-013(b)	Alpha & Ra	Cyanide	Metals	PCBs		
PJ-SMA-19	54-017	Alpha & Ra	Cyanide	Metals	PCBs		
PJ-SMA-19	54-020	Alpha & Ra	Cyanide	Metals	PCBs		
PJ-SMA-20	54-017	Alpha & Ra	Cyanide	Metals	PCBs		
STRM-SMA-1.05	08-009(f)	Alpha & Ra	Cyanide	Metals Cu			
STRM-SMA-1.5	08-009(d)	Alpha & Ra	Cyanide	Metals Ag, Cd, Hg			svc
STRM-SMA-4.2	09-008(b)	Alpha & Ra	Cyanide	Metals Al			
STRM-SMA-5.05	09-013	Alpha <mark>& Ra</mark>	Cyanide	Metals Al PCBs			
CDV-SMA-1.2	16-017(b)-99	Alpha & Ra	Cyanide	Metals		HE	
CDV-SMA-1.2	16-029(k)	Alpha & Ra	Cyanide	Metals		HE	
CDV-SMA-1.3	16-017(a)-99	Alpha <mark>& Ra</mark>	Cyanide	Metals		HE	
CDV-SMA-1.3	16-026(m)	Alpha <mark>& Ra</mark>	Cyanide	Metals		HE	
CDV-SMA-1.4	16-020	Alpha & Ra	Cyanide	Metals Ag			
CDV-SMA-1.4	16-026(l)	Alpha & Ra	Cyanide	Metals			
CDV-SMA-1.4	16-028(c)	Alpha & Ra	Cyanide	Metals			
CDV-SMA-1.4	16-030(c)	Alpha & Ra	Cyanide	Metals Ag			
CDV-SMA-1.45	16-026(i)	Alpha & Ra	Cyanide	Metals			
CDV-SMA-1.7	16-019	Alpha & Ra	Cyanide	Metals Cu		HE	
CDV-SMA-2	16-021(c)	Alpha & Ra	Cyanide	Metals		HE	SVC
CDV-SMA-2.3	13-001	Alpha & Ra	Cyanide	Metals			
CDV-SMA-2.3	13-002	Alpha & Ra	Cyanide	Metals			
CDV-SMA-2.3	16-003(n)	Alpha & Ra	Cyanide	Metals Ba		HE	
CDV-SMA-2.3	16-003(o)	Alpha & Ra	Cyanide	<mark>Metals</mark> As, Ba, Co, Cu, Pb, V			
CDV-SMA-2.3	16-029(h)	Alpha & Ra	Cyanide	Metals			
CDV-SMA-2.3	16-031(h)	Alpha & Ra	Cyanide	Metals			
CDV-SMA-2.41	16-018	Alpha & Ra	Cyanide	Metals	PCBs		
CDV-SMA-2.42	16-010(b)	Alpha & Ra	Cyanide	Metals	PCBs		
CDV-SMA-2.5	16-010(c)	Alpha & Ra	Cyanide	Metals		HE	SVC
CDV-SMA-2.5	16-010(d)	Alpha & Ra	Cyanide	Metals		HE	SVC
CDV-SMA-2.5	16-028(a)	Alpha & Ra	Cyanide	Metals		HE	SVC
CDV-SMA-2.51	16-010(i)	Alpha & Ra	Cyanide	Metals		HE	SVC
CDV-SMA-3	14-009	Alpha & Ra	Cyanide	Metals		HE	
CDV-SMA-4	14-010	Alpha & Ra	Cyanide	Metals-Pb		HE	
CDV-SMA-6.01	14-001(g)	Alpha & Ra	Cyanide	Metals		HE	
CDV-SMA-6.01	14-006	Alpha & Ra	Cyanide	Metals-Pb		HE	
CDV-SMA-6.02	14-002(c)	Alpha & Ra	Cyanide	Metals		HE	
CDV-SMA-6.02	14-002(d)	Alpha & Ra	Cyanide	Metals		HE	

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
CDV-SMA-6.02	14-002(e)	Alpha & Ra	Cyanide	Metals		HE	
CDV-SMA-7	15-008(d)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al, Se			
CDV-SMA-8	15-011(c)	Alpha & Ra	Cyanide	Metals			SVC
CDV-SMA-8.5	15-014(a)	Alpha & Ra	Cyanide	Metals Ag			
CDV-SMA-9.05	15-007(b)	Alpha & Ra	Cyanide	Metals-Pb			SVC
F-SMA-2	36-004(c)	Alpha & Ra	Cyanide	Metals		HE	
PT-SMA-0.5	15-009(e)	Alpha & Ra	Cyanide	Metals	PCBs	HE	SVC
PT-SMA-0.5	C-15-004	Alpha & Ra	Cyanide	Metals PCBs		HE	SVC
PT-SMA-1	15-004(f)	Alpha & Ra	Cyanide	Metals Cu		HE	SVC
PT-SMA-1	15-008(a)	Alpha & Ra	Cyanide	Metals Cu		HE	SVC
PT-SMA-1.7	15-006(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals		HE	
PT-SMA-2	15-008(f)	Alpha & Ra	Cyanide	Metals		HE	SVC
PT-SMA-2	36-003(b)	Alpha & Ra	Cyanide	Metals		HE	SVC
PT-SMA-2	36-004(e)	Alpha & Ra	Cyanide	Metals		HE	SVC
PT-SMA-2.01	C-36-001	Alpha & Ra	Cyanide	Metals		HE	SVC
PT-SMA-2.01	C-36-006(e)	Alpha & Ra	Cyanide	Metals		HE	SVC
PT-SMA-3	36-004(a)	Alpha & Ra	Cyanide	Metals		HE	
PT-SMA-3	36-006	Alpha & Ra	Cyanide	<mark>Metals</mark> Cu, Pb		HE	
PT-SMA-4.2	36-004(d)	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-1	16-017(j)-99	Alpha <mark>& Ra</mark>	Cyanide	Metals Al			
W-SMA-1	16-026(c2)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al			
W-SMA-1	16-026(v)	Alpha & Ra	Cyanide	Metals			
W-SMA-1.5	16-026(b2)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Zn			
W-SMA-1.5	16-028(d)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Zn			
W-SMA-2.05	16-028(e)	Alpha & Ra	Cyanide	Metals			
W-SMA-3.5	16-026(y)	Alpha & Ra	Cyanide	Metals			
W-SMA-4.1	16-003(a)	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-5	16-001(e)	Alpha & Ra	Cyanide	Metals			SVC
W-SMA-5	16-003(f)	Alpha & Ra	Cyanide	Metals			SVC
W-SMA-5	16-026(b)	Alpha & Ra	Cyanide	Metals			SVC
W-SMA-5	16-026(c)	Alpha & Ra	Cyanide	Metals			SVC
W-SMA-5	16-026(d)	Alpha & Ra	Cyanide	Metals		HE	SVC
W-SMA-5	16-026(e)	Alpha & Ra	Cyanide	Metals		HE	SVC
W-SMA-6	11-001(c)	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-7	16-026(h2) 16-029(e)	Alpha & Ra	Cyanide	Metals			
W-SMA-7.8	16-031(a)	Alpha & Ra	Cyanide	Metals Cu, Pb			
W-SMA-7.9	16-006(c)	Alpha & Ra	Cyanide	Metals Ba			svc
W-SMA-8	16-016(g)	Alpha & Ra	Cyanide	Metals Al, Cu			SVC

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
W-SMA-8	16-028(b)	Alpha & Ra	Cyanide	Metals Cu			SVC
W-SMA-8.7	13-001	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-8.7	13-002	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-8.7	16-004(a)	Alpha & Ra	Cyanide	Metals Al		HE	
W-SMA-8.7	16-026(j2)	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-8.7	16-029(h)	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-8.7	16-035	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-8.71	16-004(c)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Hg, Zn			
W-SMA-9.05	16-030(g)	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-9.5	11-012(c)	Alpha & Ra	Cyanide	Metals			
W-SMA-9.7	11-011(a)	Alpha & Ra	Cyanide	Metals			
W-SMA-9.7	11-011(b)	Alpha & Ra	Cyanide	Metals			
W-SMA-9.8	11-005(c)	Alpha & Ra	Cyanide	Metals			
W-SMA-9.9	11-006(b)	Alpha & Ra	Cyanide	Metals			
W-SMA-10	11-002	Alpha <mark>& Ra</mark>	Cyanide	Metals			
W-SMA-10	11-003(b)	Alpha <mark>& Ra</mark>	Cyanide	Metals			
W-SMA-10	11-005(a)	Alpha & Ra	Cyanide	Metals			
W-SMA-10	11-005(b)	Alpha & Ra	Cyanide	Metals			
W-SMA-10	11-006(c)	Alpha & Ra	Cyanide	Metals			
W-SMA-10	11-006(d)	Alpha & Ra	Cyanide	Metals			
W-SMA-10	11-011(d)	Alpha & Ra	Cyanide	Metals			
W-SMA-11.7	49-008(c)	Alpha & Ra	Cyanide	Metals			
W-SMA-12.05	49-001(g)	Alpha & Ra	Cyanide	Metals		HE	
W-SMA-14.1	15-004(h)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Zn		HE	
W-SMA-14.1	15-014(l)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu, Zn		HE	
W-SMA-15.1	49-005(a)	Alpha & Ra	Cyanide	Metals			
A-SMA-1.1	39-004(a)	Alpha & Ra	Cyanide	Metals Cu, Hg, Pb		HE	
A-SMA-1.1	39-004(d)	Alpha & Ra	Cyanide	Metals Cu, Hg, Pb		HE	
A-SMA-2	39-004(b)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
A-SMA-2	39-004(e)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
A-SMA-2.5	39-010	Alpha & Ra	Cyanide	Metals Cu, Hg		HE	
A-SMA-2.7	39-002(c)	Alpha & Ra	Cyanide	Metals		HE	
A-SMA-2.7	39-008	Alpha & Ra	Cyanide	Metals		HE	
A-SMA-2.8	39-001(b)	Alpha & Ra	Cyanide	Metals			
A-SMA-3	39-002(b)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al, Cu, Hg, Se	PCBs	HE	
A-SMA-3	39-004(c)	Alpha & Ra	Cyanide	Metals Cu	PCBs	HE	

SMA Number	Site Number	Radioactivity	Cyanide	Metals	PCBs	High Explosive	Others
A-SMA-3.5	39-006(a)	Alpha & Ra	Cyanide	Metals	PCBs		
A-SMA-4	33-010(d)	Alpha & Ra	Cyanide	Metals		HE	
A-SMA-6	33-004(k)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
A-SMA-6	33-007(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
A-SMA-6	33-010(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
CHQ-SMA-0.5	33-004(g)	Alpha & Ra	Cyanide	Metals	PCBs	HE	
CHQ-SMA-0.5	33-007(c)	Alpha & Ra	Cyanide	Metals	PCBs	HE	
CHQ-SMA-0.5	33-009	Alpha & Ra	Cyanide	Metals	PCBs	HE	
CHQ-SMA-1.01	33-002(d)	Alpha & Ra	Cyanide	Metals	PCBs		
CHQ-SMA-1.02	33-004(h)	Alpha & Ra	Cyanide	Metals Cu	PCBs		
CHQ-SMA-1.02	33-008(c)	Alpha & Ra	Cyanide	Metals Cu	PCBs		
CHQ-SMA-1.02	33-011(d)	Alpha & Ra	Cyanide	Metals Cu	PCBs		
CHQ-SMA-1.02	33-015	Alpha & Ra	Cyanide	Metals Cu	PCBs		
CHQ-SMA-1.03	33-008(c)	Alpha & Ra	Cyanide	Metals Cu	PCBs		
CHQ-SMA-1.03	33-012(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu	PCBs		
CHQ-SMA-1.03	33-017	Alpha & Ra	Cyanide	Metals Cu	PCBs		
CHQ-SMA-1.03	C-33-001	Alpha & Ra	Cyanide	Metals	PCBs		
CHQ-SMA-1.03	C-33-003	Alpha & Ra	Cyanide	Metals	PCBs		
CHQ-SMA-2	33-004(d)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al, Cu	PCBs		
CHQ-SMA-2	33-007(c)	Alpha <mark>& Ra</mark>	Cyanide	Metals Al, Cu	PCBs		
CHQ-SMA-2	C-33-003	Alpha & Ra	Cyanide	Metals	PCBs		
CHQ-SMA-3.05	33-010(f)	Alpha <mark>& Ra</mark>	Cyanide	Metals	PCBs		PEST
CHQ-SMA-4	33-011(e)	Alpha & Ra	Cyanide	Metals	PCBs	HE	
CHQ-SMA-4.1	33-016	Alpha <mark>& Ra</mark>	Cyanide	Metals	PCBs	HE	
CHQ-SMA-4.5	33-011(b)	Alpha <mark>& Ra</mark>	Cyanide	Metals			
CHQ-SMA-5.05	33-007(b)	Alpha & Ra	Cyanide	Metals			
CHQ-SMA-6	33-004(j)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
CHQ-SMA-6	33-006(a)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
CHQ-SMA-6	33-007(b)	Alpha & Ra	Cyanide	Metals		HE	
CHQ-SMA-6	33-010(c)	Alpha & Ra	Cyanide	Metals Cu		HE	
CHQ-SMA-6	33-010(g)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
CHQ-SMA-6	33-010(h)	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
CHQ-SMA-6	33-014	Alpha <mark>& Ra</mark>	Cyanide	Metals Cu		HE	
CHQ-SMA-7.1	33-010(g)	Alpha & Ra	Cyanide	Metals		HE	

 Table A

 Changes Requested to LANL's NPDES Permit No. NM0030759 (Sept. 30, 2010)

Comment No.	Part I Permit Section	Page No.	LANL Renewal Permit Application – Other Changes	Suggested Text Change
1	B.1	2	This section refers to obligations and/or milestones that are no longer relevant and have been met. EPA may want to consider reviewing this text to revise add clarifying language regarding the "effective date of the IP" to avoid potential confusion with the renewed IP.	Revision necessary.
2	D.1 (a) and (b)	5	This section refers to obligations and/or milestones that are no longer relevant and have been met. EPA may want to consider reviewing this text to revise add clarifying language regarding the "effective date of the IP" to avoid potential confusion with the renewed IP.	Revision necessary.
3	D.4(a) and (b)	7	Section E.5 was moved from the current location to Section I, <i>Other Conditions</i> (see Comment No. 18 below). As a result, all references to Section E.5 have been renumbered accordingly to accurately reflect the same requirement in its new location.	See Attached Redline/Strikeout, at Part I, Section E.5 and Section I.
4	E (Corrective Action)	7–17	The section was reorganized to clearly identify the distinct type of corrective actions available Section E. New headers were included for clarity. Further, this section includes two new types of corrective actions (Investigative Report and Certificate of RCRA Clean Closure) based on an NMED-approved decision that a Site poses no unacceptable risk to human health or the environment. See Supporting Material, Sections 10.1 and 10.2.	See Attached Redline/Strikeout, at Part I, Section E.2 and new headers for Sections E.1(a), (b), (c), and (d).
5	New E.1(a)	7–9	Enhanced Control Measures to Reduce Pollutant Concentrations in Discharges. New header was added for clarity.	See Attached Redline-Strikeout at Part I, Section E(a).
6	New E.1(b)	9	Total elimination of Exposure to Pollutants. New header was added for clarity.	See Attached Redline-Strikeout at Part I, Section E(b).
7	New E.1(c)	9	Total Retention. This section includes a definition of total retention to provide clarify and enable Permittees to pursue this option. See Supporting Material, Section 10.5, Total Retention.	See Attached Redline-Strikeout at Part I, Section E(c).
8	New E.1(d)	9–10	Site Poses No Potential Risk to Human Health or the Environment. New subheader added for clarity. See Supporting Material, Section 10.1 and 10.2.	See Attached Redline-Strikeout at Part I, Section E (d).
9	Former E.1(d)	10	This section was moved to Section E.3, Completion of Corrective Action. No substantive changes were made.	See Attached Redline-Strikeout at Part I, Section E.3.
10	New E.2	10	Certification of Completion. New Header added for clarity. This section addresses certification of completion of control measures and no substantive changes were made.	See Attached Redline-Strikeout at Part I, Section E.2.

Comment No.	Part I Permit Section	Page No.	LANL Renewal Permit Application – Other Changes	Suggested Text Change					
11	Former E.2	10	This Section was moved to E.3. Substantive changes are described for each subsection.	See Attached Redline-Strikeout at Part I, Section E.3.					
12	New E.3	10–11	Completion of Corrective Action. This section was reorganized to include the types of actions constituting completion of correction action. The text was revised to include language, consistent with other permit provisions, that recognizes that additional time greater than 1 year may be necessary to collect, analyze and consider additional samples during a measurable storm event.	See Attached Redline/Strikeout, at Part I, Section E.3.					
13	Former E.3	11–13	Alternative Compliance section was moved renumbered to E.4	See Attached Redline/Strikeout, at Part I, Section E.4.					
14	E.3.(d)	11	Includes two new types of corrective actions (Investigative Report and Certificate of RCRA Clean Closure) based on an NMED-approved decision that a Site poses no unacceptable risk to human health or the environment.	See Attached Redline/Strikeout, at Part I, Section E.3.					
15	New E.4.(b)	13	The suggested language is consistent with Section E.3(c), and is added to ensure prompt decision making occurs. This is important because the Permittees' alternative compliance requests may include specific actions and control measures that will need to be procured and completed; delays in EPA decision-making can adversely impact this process.	See Attached Redline/Strikeout, at Part I, Section E.4(b).					
16	New E.4.(c)	13	The suggested addition will clarify that if an alternative compliance request is denied, EPA will set a compliance deadline for completion of corrective action that factors in the types of action and time needed to complete the action taking into consideration technological availability, economic achievability and practicality.	See Attached Redline/Strikeout, at Part I, Section E.4(c).					
17	New E.4(d)	13	The suggested addition will clarify that if EPA grants an alternative compliance request and issues an individual work plan, it will include a compliance deadline that take these factors the type of action and time to complete a specific work plan under a milestone includes consideration of technological availability, economic achievability and practicality. These factors are also included in Permit Section I.E.4(c).	See Attached Redline/Strikeout, at Part I, Section E.4(d).					
18	New E.5	13–15	High Priority Sites - Table. The Permittees request that certain sites be deleted from the High Priority Site Table (see Supporting Material, Section 10.3).	See Attached Redline/Strikeout, at Part I, Section E.5(a), Table.					

Table A (continued) Changes Requested to LANL's NPDES Permit No. NM0030759 (Sept. 30, 2010)

Comment No.	Part I Permit Section	Page No.	LANL Renewal Permit Application – Other Changes	Suggested Text Change				
19	New E.5	15	The suggested change corrects a typographical error; this section states that Permittees must certify corrective action for High Priority Sites within three years of the effective date of the Permit, or "such other time period as may be specified pursuant to Section E or E.5.d." The Permittees believe that this is a typographical error and should refer to Section <i>E.5.e</i> (not Section E.5.d) which specifies that if Permittees cannot collect samples from a measurable storm event for a particular site, "the adjusted deadline for Completion of Corrective Action for that Site shall be 6 months after receipt of a single result or the deadline specified under Section E.4, whichever is later." (Note former Section E.5.e has been moved and renumbered as Section I.3.c)	See Attached Redline/Strikeout, at Part I, Section E.5(a) and (b).Change Section E.5.d to Section "I.3.c" u				
20	E.5 (c)	15	New Header, <i>Force Majeure</i> , to provide clarity and organization. Also included is a suggested change that updates federal government shutdowns to include October 2013.	See Attached Redline/Strikeout, at Part I, Section E.5(c).				
21	E.5(a) – (f)	13–17	The Permittees suggest reorganizing and relocating these requirements to "Other Conditions" under Section I with discrete headers to facilitate understanding this section and compliance. This section has been difficult to understand because it sets forth "other sampling requirements" that are unrelated to "Corrective Action" under Section E, and includes additional requirements not related to sampling (i.e., No Exposure).	See Attached Redline-Strikeout at Part I, Section I.				
22	F.1	17–18	This section refers to obligations and/or milestones that are no longer relevant and have been met. EPA may want to consider reviewing this text to revise add clarifying language regarding the "effective date of the IP" to avoid potential confusion with the renewed IP.	Revision necessary.				
23	H.1 and H.2	21–23	The Permittees suggest combining these two reports into an "Annual Compliance Status Report" because they contain duplicative requirements and the same reporting period (Jan. 1 st to Dec. 31 st of each year). Combining the two reports will also facilitate permit compliance and save resources and time. The Permittees added clarifying language regarding what DMR reports must contain and the use of the form in Appendix D.	See Attached Redline-Strikeout at Part I, Section H.				
24	New H.2.(i) and (j)	18	New Sections. This language is consistent with changes made to Section E.1 and requires that the annual report identify Sites which have an NMED-approved Investigative Report or a certificate of clean closure demonstrating that there is no unacceptable risk to human health or the environment under the Consent Order. This section was renumbered to reflect these changes.	See Attached Redline-Strikeout at Part I, Section H (i) and (j).				

Table A (continued) Changes Requested to LANL's NPDES Permit No. NM0030759 (Sept. 30, 2010)

Tuble A (continued) changes requested to EARE 3 M DECT chint No. Millood 733 (Cept. 30, 2010)							
Comment No.	Part I Permit Section	Page No.	LANL Renewal Permit Application – Other Changes	Suggested Text Change			
25	l.1	23	New Header. This section has a new header, <i>Soil Disturbance Associated With Installation of Control Measures</i> , which is more consistent with the requirements of the permit condition. No substantive changes made.	See Attached Redline-Strikeout at Part I, Section I.1.			
26	New I.1.(a)	23	New subheader. No substantive changes made.	See Attached Redline-Strikeout at Part I, Section I.1(a).			
27	New I.1.(b)	24	New subheader. This section addresses requirements related to installation of control measures that may involve soil disturbance. This text was moved from former Section E.5 to one location to facilitate permit compliance. No substantive changes were made.	See Attached Redline-Strikeout at Part I, Section I.1(b).			
28	New I.2	24	New Section, No Exposure. This section was moved from Section E.5(b). No substantive changes were made.	See Attached Redline-Strikeout at Part I, Section I.2.			
29	New I.3	24	New Section, Further Actions Following Cessation of Monitoring. This section was moved from Section E.5 (c). No substantive changes were made.	See Attached Redline-Strikeout at Part I, Section I.3.			
30	New I.4	24–25	This section, Confirmation Sampling, was moved from Section E.5 (d), and includes a new header. No substantive changes made.	See Attached Redline-Strikeout at Part I, Section I.4.			
31	New I.5	25	This language resulted from the State's Section 401 Certification of the prior Permit. The Permittees do not believe this requirement is appropriate or necessary, and will be discussing it with NMED. Formerly Section I.2.(b).	See Attached Redline-Strikeout at Part I, Section I.5.			
32	New I.5.(c) and I.5.(d)	25	New Sections. The text has been revised to include other circumstances which validate deletion of a Site based on Clean Water Act criteria that no significant industrial material exists at a Site. The text includes NMED-approvals of Investigation Reports and submittals of a certificate of clean closure (see Supporting Material, Sections 10.1 and 10.2).	See Attached Redline-Strikeout at Part I, Section I.5(c) and (d).			
33	I.6-10	25–28	Existing sections were renumbered to reflect changes described above.	See Attached Redline-Strikeout at Part I, Section I.6-10.			
34	I.J	28	Section was capitalized for consistency with other headers.	See Attached Redline-Strikeout at Part I, Section I.J.			

Table A (continued) Changes Requested to LANL's NPDES Permit No. NM0030759 (Sept. 30, 2010)

Maps

Please print or type in the unshad	ded areas only.					Form Approved. OMB No. 2040-0	086.			
FORM	U.S. ENVIRO	I. EPA I.D. NUMBER								
1 ≎EPA	Co	F NM0030759			T/A	C D				
GENERAL	(Read the "	'Genera	al Instr	ructions" befe	1 2		13	8 14	15	
LABEL ITEMS						GENERAL INSTRU	CTION	iS d, affi	x it in	ו the
	L NM0030759					designated space. Review the information carefully; if any of it is incorrect, cross through it and enter the correct data in the				
	III. Los Alamos Na	appropriate fill-in area below. Also, if is absent (the area to the left of	any of the lab	the pre	eprinted ace list	l data s the				
III. FACILITY NAME	V. U.S. Departme	nt of	Ene	ray. Los /	Alamos Field Office	<i>information that should appear</i>), plea fill-in area(s) below. If the label is o	se prov complet	vide it i e and	n the p correct	roper t, you
V. FACILITY MAILING ADDRESS	VI. 3747 West Jemez Road, Los Alamos, NM 87544 has been provided. Refer to the instru-						nd VI (except VI-B which uplete all items if no labe tructions for detailed item			<i>which</i> label l item
VI. FACILITY LOCATION						descriptions and for the legal autho data is collected.	rization	s unde	er which	n this
II. POLLUTANT CHARACTERIS	STICS									
INSTRUCTIONS: Complete A t submit this form and the supple you answer "no" to each questio instructions. See also, Section I	hrough J to determine whethe emental form listed in the pare on, you need not submit any o D of the instructions for definiti	er you r enthesis f these ons of	need t s follo e form bold-	o submit an wing the qu s. You may faced terms	y permit application forms to estion. Mark "X" in the box i answer "no" if your activity is s.	the EPA. If you answer "yes" to ar in the third column if the supplemer s excluded from permit requirements	ny que ntal for s; see	stions m is a Sectio	attache on C o	must ed. If of the
		YES	Mar NO	k "X" FORM			YES	Marl NO	k "X" FO	RM
SPECIFIC QU	JESTIONS			ATTACHED	SPECIF	IC QUESTIONS			ATTA	CHED
results in a discharge to wat	ers of the U.S.? (FORM 2A)	16		18	include a concentrate aquatic animal produ	d animal feeding operation or inction facility which results in a the US 2 (FORM 2B)	19		2	21
C. Is this a facility which currer	ntly results in discharges to			See Footnote	D. Is this a proposed facilit	ty (other than those described in A		~		
waters of the U.S. other that above? (FORM 2C)	an those described in A or B	\mathbf{X}		II.C	or B above) which will r the U.S.? (FORM 2D)	esult in a discharge to waters of		X		
E. Does or will this facility f	treat, store, or dispose of	22	23	24 See Footnote	F. Do you or will you ir	nject at this facility industrial or	25	26	2	7
hazardous wastes? (FORM	3)	X		II.E	municipal effluent b containing, within one underground sources of	fluent below the lowermost stratum ithin one quarter mile of the well bore ources of drinking water? (FORM 4)				
G. Do you or will you inject at th	is facility any produced water	28	29	30	H. Do you or will you inje	ect at this facility fluids for special	31	32	3	13
or other fluids which are	brought to the surface in oil or natural gas production		\mathbf{X}		processes such as minin solution mining of mine	ng of sulfur by the Frasch process,		\sim		
inject fluids used for enhance	ed recovery of oil or natural				fuel, or recovery of geot	hermal energy? (FORM 4)				
(FORM 4)	age of liquid hydrocarbons?	34	35	36			37	38	3	39
I. Is this facility a proposed sta	tionary source which is one			See Footnote	J. Is this facility a propo	sed stationary source which is			See Fe	ootno
of the 28 industrial categories which will potentially emit 1	s listed in the instructions and 00 tons per year of any air	$ \times $		11.1	NOT one of the 28 in instructions and which	ndustrial categories listed in the will potentially emit 250 tons per		$ \times $	II.J	
pollutant regulated under the	Clean Air Act and may affect	40	41	42	year of any air pollutant	regulated under the Clean Air Act	43	44	4	45
					(FORM 5)	located in an attainment area:				
III. NAME OF FACILITY			1 1	- r - r						
1 SKIP Los Alamos	National Labora	ator	У				1			
15 16 - 29 30					·	· · · · · · · · · · · · · · · · · · ·	69			
IV. FACILITY CONTACT										
	A. NAME & TITLE (last	t, first, e	& title,)		B. PHONE (area code & no.)	_			
2 DAVID RHODES/SU	JPERVISOR ENVIRO	NMEI	I TI	REMEDIA	ATION PROJECTS	(505) 665-5325				
					45	46 48 49 51 52-	55			
V.FACILITY MAILING ADDRES	A. STREET OR P.	.O. BO	Х							
3 U.S. Department	of Energy, Los	Ala	imos	s Site	Office	_				
16	B. CITY OR TOWN				45 C. STATE	D. ZIP CODE	_			
			П							
4 LOS ATAIIOS					40 41 42	47 51				
VI. FACILITY LOCATION										
A. STF	REET, ROUTE NO. OR OTHE	R SPE	CIFIC	C IDENTIFIE	R					
5 3747 West Jemez	Road	T I								
15 16					45					
Los Alamos	B. COUNTY	/ NAM	E							
46								2:01		
		Τ						у кпоч	vnj	
6 LOS ALAIIOS					40 41 42 4	0/044 N/A 47 51 52	-54			

VII. SIC CODES (4-digit, in order of priority)	P. CECOND
A. FIROI	C (specify)Space Research & Technology
7 9711	7 9661
15 16 - 19	15 16 - 19
7 9922 (specify)Scientific Research	7 9611 (specify) Energy Development
15 16 - 19	15 16 - 19
VIII. OPERATOR INFORMATION	
A. NAME C. I.	B. Is the name listed in Item I I I I III-A also the owner? □ YES ☑ YES ☑ NO
C STATUS OF OPERATOR (Enter the appropriate letter into the	answer hox: if "Other." specify) D PHONE (area code & no.)
F = FEDERAL M = PUBLIC (other than federal or state) P P = PRIVATE O = OTHER (specify) 56	$\frac{c}{156} = \frac{1}{16} + \frac{1}{16}$
E. STREET OR P.O. BOX	
P.O. Box 1663	55
F. CITY OR TOWN	G. STATE H. ZIP CODE IX. INDIAN LAND
C	1 1 1 1 1 1 Is the facility located on Indian lands? NM 87545 □ YES ☑ NO
X. EXISTING ENVIRONMENTAL PERMITS	
A. NPDES (Discharges to Surface Water) D. PSD (Air Er	nissions from Proposed Sources)
c T I	otnote II.J
15 16 17 18 30 15 16 17 18	30
B. UIC (Underground Injection of Fluids)	E. OTHER (specify)
9 U N/A See Fo	otnote X.E (specify) N/A
15 16 17 18 30 15 16 17 18 C RCRA (Hazardous Wastes)	B OTHER (specify)
9 R NM08900105151 9 See Fo	otnote X.F
15 16 17 18 30 15 16 17 18	30
XI. MAP	
Attach to this application a topographic map of the area extending to at least one location of each of its existing and proposed intake and discharge structures, each injects fluids underground. Include all springs, rivers, and other surface water bodies	mile beyond property boundaries. The map must show the outline of the facility, the of its hazardous waste treatment, storage, or disposal facilities, and each well where it in the map area. See instructions for precise requirements.
XII. NATURE OF BUSINESS (provide a brief description)	
Los Alamos National Laboratory is a multidisciplinary/m is to reduce national security risks through evaluation provides significant programmatic support to many civil changing national and international priorities, the Lab and development capabilities to solve civilian problems energy, education, aeronautics, and the environment. E metallurgy, mathematics and computers, earth sciences a	ultiprogram laboratory. The Laboratory's central mission and stockplie stewardship. The Laboroatory also ian efforts. Because of evolving technologies and oratory increasingly uses its multidisciplinary research in the areas of health, national infrastructures, xtensive basic research programs in physics, chemistry, nd electronics support these efforts.
XIII. CERTIFICATION (see instructions)	
I certify under penalty of law that I have personally examined and am familiar with inquiry of those persons immediately responsible for obtaining the information cont am aware that there are significant penalties for submitting false information, including	the information submitted in this application and all attachments and that, based on my ained in the application, I believe that the information is true, accurate, and complete. I ig the possibility of fine and imprisonment.
A. NAME & OFFICIAL TITLE (type or print) JEFF MOUSSEAU/Director ADEP KIM DAVIS LEBAK/DOE Site Manager	Omio Zelale C. DATE SIGNED 3/25/2014 3/26/14
COMMENTS FOR OFFICIAL USE ONLY	

EPA Form 3510-1 (8-90)

EPA FORM 1 – GENERAL INFORMATION FOOTNOTES NPDES PERMIT NO. NM0030759

Footnote II.C (Form 2C). Industrial NPDES Permit No. NM0028355, which was issued to DOE and LANS by EPA on June 8, 2007, became effective on August 1, 2007. This Permit regulates 11 permitted, industrial, point-source outfalls. The categories of permitted discharges include Standard Industrial Classification codes 9922, 9711, 9661, and 9611. The Laboratory's discharges, most of which are intermittent in nature, are located 6.9 to 10.4 mi from the Rio Grande. The Permittees submitted a renewal application in January 2012, which includes a completed Form 2C.

Footnote II.E (Form 3). The Laboratory generates a variety of hazardous wastes from research and development activities, processing and recovery operations, D&D projects, and environmental restoration activities. DOE and LANS Hazardous Waste Facility Permit (No. NM0890010515-1), originally issued in 1989, was renewed on December 30, 2010. This Permit was issued pursuant to the authority of the NMED under the New Mexico Hazardous Waste Act (HWA), NMSA 1978, §§ 74-4-1 through 74-4-14, in accordance with the New Mexico Hazardous Waste Management Regulations (HWMR), 20.4.1 NMAC.

This Permit authorizes DOE and LANS (the co-Permittees) to manage, store, and treat hazardous waste at the Laboratory and establishes the general and specific standards for these activities, pursuant to the HWA and the HWMR. This Permit also establishes standards for closure and post-closure care of permitted units at the Laboratory pursuant to the HWA and HWMR. The maps included per Form 1 Section XI show the locations of the permitted hazardous waste management facilities.

Footnote II.I (Form 5). The Laboratory's Federal Clean Air Act Title V Operating Permit (Permit No. P100R1) provides the terms and conditions that must be followed to operate applicable air emission sources (i.e., boilers, electric generators, power plant, a combustion turbine generator, a data disintegrator, two carpenter shops, a degreaser, and an asphalt plant) at the Laboratory. The Laboratory also reports emissions from chemical use associated with research and development and permitted beryllium activities. The current Air Quality Operating Permit became effective on August 7, 2009.

Footnote II.J (Form 5). The Laboratory's Federal Clean Air Act Title V Operating Permit (Permit No. P100R1) provides the terms and conditions that must be followed to operate applicable air emission sources (i.e., boilers, electric generators, power plant, a combustion turbine generator, a data disintegrator, two carpenter shops, a degreaser, and an asphalt plant) at the Laboratory. The Laboratory also reports emissions from chemical use associated with research and development and permitted beryllium activities. The current Air Quality Operating Permit became effective on August 7, 2009.

Footnote X.E. The Laboratory's current NPDES MSGP No. NMR05GB21, which was issued to DOE and LANS by EPA, became effective on September 29, 2008. This Permit regulates storm water discharges from identified regulated industrial activities and their associated facilities. These activities include metal fabrication, hazardous waste treatment and storage, vehicle and equipment maintenance, recycling activities, electricity generation, warehousing activities, and asphalt manufacturing.

Footnote X.F. The Laboratory obtains 404/401 Dredge and Fill Permits as necessary to support construction and remediation projects. These Permits are issued by the U.S. Army Corps of Engineers and certified for water quality by the Nonpoint Source Section of the Surface Water Quality Bureau of the NMED under Section 401 of the CWA.

Please print or	type in the uns	haded are	25	EPA ID N	lumber (co	py from it	em I of Form	n 1)	Form Approved. O	MB No. 2040-0	086
Form 2F	Q . E	United States Environmental Protection Agency Washington, DC 20460 Application for Permit to Discharge Storm Water						ator			
NPDES		Discharges Associated with Industrial Activity							itv		
					oonan	9007			With made		ity
Public reportin sources, gathe any other aspe Information Po Affairs, Office of	Public reporting burden for this application is estimated to average 28.6 hours per application, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate, any other aspect of this collection of information or suggestions for improving this form, including suggestions which may increase or reduce this burden to: Chief, Information Policy Branch, PM-223, U.S. Environmental Protection Agency, 401 M St., SW, Washington, DC 20460, or Director, Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.										
I. Outfall L	ocation										A. Com
For each out	fall, list the latit	ude and l	ongitude o	of its locati	on to the n	earest 15	seconds ar	nd the na	ame of the receiving wat	er.	
(/	ist)	В	. Latitud	e	C	. Longitu	ide		(name) valer	
	'				1		1	10			
			See	SECTI	ON I, TA	ABLE I-	1, VOLU	JME 1			
			E.								
	monto	STATE STATE	3.62						Second Sciences and Sciences	自动与自然的的来 201	ALC: NOT ALC: NOT
A. Are you operatio in this a schedul	A. Are you now required by any Federal, State, or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.										
1. Identification	of Conditions,		2. Affec	ted Outfal	ls					4. F Compliar	inal nce Date
Agreeme	nts, Etc.	numbe	er so	urce of dis	scharge		3. Briet	f Descrip	otion of Project	a. req.	b. proj.
		1999 20									
			See	SECTI	ON II, T	ABLE I	I-1, VOL	UME	1	_	
		1				1					
	-					-		_			
						1					
D. Vermen	March and Mittan		1								
you now have a schedules for co	under way or vonstruction.	which you	plan. In	dicate whe	ether each	program	(or other er is now und	ler way	or planned, and idicate	your actual or	charges) planned
III Site Dra	inago Mar				Not	Applicabl	e Sores de la core			an ala Line Carta	110225
Attach a site topographic r water outfall; outdoor stora materials load waste treatme waste under a receive storm	map showing map ls unavaila paved areas a ge or disposa ding and access ent, storage or 40 CFR 262.34 water discharg	topograp able) depi and buildi al of signi ss areas, disposal t); each w ges from t	hy (or inc cting the ngs withir ficant ma areas wh units (incl ell where he facility	dicating the facility incl the drain terials, ea ere pestic uding each fluids from	e outline o luding: eao nage area ich existin ides, herb n are not ro n the facilit	of drainag ch of its ir of each s g structur icides, so equired to y are inject	e areas sentrate and distorm water e control m il conditione have a RC cted underg	rved by ischarge outfall, neasure ers and RA perr round; s	the outfall(s) covered is a structures; the drainag each known past or pri- to reduce pollutants in fertilizers are applied; en it which is used for acc prings, and other surfact	n the application e area of each esent areas us n storm water each of its haze cumulating haze water bodies	on if a storm sed for runoff, ardous ardous which
			5	See figures	s included	in SECTION	ON III, VOLI	UME 1			

Continued	d from the Front				
IV. Nar	rative Description of Poll	lutant Sources			
A. Fo	or each outfall, provide an estimate o	f the area (include units) of	impervious su	urfaces (including paved areas a	nd building roofs) drained
to	the outfall, and an estimate of the to	tal surface area drained by t	he outfall.	10 1.511	
Outfall	Area of Impervious Surface	Total Area Drained	Outfall	Area of Impervious Surface	Total Area Drained
Number	(provide units)	(provide units)	Number	(provide units)	(provide units)
			l		
	See SI	ECTION IV PART A,	TABLE IN	V-1, VOLUME 2	
	1		f	1	
B Pr	rovide a narrative description of signi	ificant materials that are cur	rently or in th	e past three years have been tro	asted stored or disposed
in	a manner to allow exposure to sto	orm water: method of treat	ment. storage	e, or disposal: past and presen	t materials management
pr	actices employed to minimize contact	t by these materials with sto	orm water run	off; materials loading and acces	s areas; and the location,
m	anner, and frequency in which pestic	ides, herbicides, soil conditi	oners, and fer	tilizers are applied.	52 54
	81 mm				
		See SECTION IV PA	ART B VO	ULIME 2	
		eee element iv	uti D, ve		
C. Fo	or each outfall, provide the location a	and a description of existing	structural ar	nd nonstructural control measure	es to reduce pollutants in
sto	orm water runoff; and a description	of the treatment the storm	water receiv	es, including the schedule and	type of maintenance for
CO	ntrol and treatment measures and th	e ultimate disposal of any so	olid or fluid wa	astes other than by discharge.	A1
Outfall					List Codes from
Number		Treatment			Table 2F-1
	See SE	ECTION IV PART C,	TABLE IN	/-2, VOLUME 2	
V Non	Stammuntan Diashannas		and the second second		
v. Non	Stormwater Discharges				
A. 1 (certify under penalty of law that the	he outfall(s) covered by th	is application	n have been tested or evaluat	ted for the presence of
no	Form 2E application for the outfall	nonstormwater discharges	from these of	uttall(s) are identified in either an	accompanying Form 2C
Name of (Official Title (type or print)	Signature		Da	te Signed
Jeff Mou	usseau/Director ADEP	Jet More		01 1 31	25/2014
Kim Dav	is Lebak/DOE Site Manager	- V	Dani	oT. h	1- () 14
B pro	ovide a description of the method use	ad the date of any testing a	nd the onsite	drainage points that were direct	observed during a test
. pr		su, the date of any teeting, a		dramage points that were direct	y observed during a test.
	Se	ee SECTION V. TAE	BLE V-1. V	OLUME 2	
		2			
VI. Sigi	nificant Leaks or Spills				
Provide	existing information regarding the h	nistory of significant leaks o	r spills of tox	ic or hazardous pollutants at the	e facility in the last three
years, in	ncluding the approximate date and lo	cation of the spill or leak, ar	id the type an	d amount of material released.	13-1
	Se	SECTION VI TAF	EVI-1	OLUME 2	
		2			

Continued from Page 2	EPA ID Number (copy from Item I of	Form 1)	
VII Discharge Information	1010030759	NAME OF TAXABLE PARTY.	with the second where the one attraction of the
A,B,C, & D: See instruction before proceedi Tables Vii-A, VII-B, and VII-C and	ng. Complete one set of tables for each o e included on separate sheets numbered	outfall. Annotate t	he outfall number in the space provided.
E. Potential discharges not covered by and substance which you currently use or ma	alysis - is any toxic pollutant listed in tab	le 2F-2, 2F-3, or	2F-4, a substance or a component of a
Yes (list all such pollutants below)		add of byproduct.	No (go to Section IX)
See SECT	ION VII, TABLES VII-1 throug	h VII-141, V0	DLUME 2
			i.
VIII. Biological Toxicity Testing	Data Data	P. S. R. Take	
Do you have any knowledge or reason to belia on a receiving water in relation to your dischar	eve that any biological test for acute or ch ge within the last 3 years?	ironic toxicity has	been made on any of your discharges or
Yes (list all such pollutants below)			No (go to Section IX)
See SECTION VI	IL INTRODUCTION VOLUME	= 2 for additi	onal information
		- 2, 101 addit	
IX Contract analysis Informatic	n literature and a second	and the second	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY A REAL PROPERT
Were any of the analysis reported in item VII p	erformed by a contract laboratory or con-	sulting firm?	
Yes (list the name, address, and tel	ephone number of, and pollutants		No (go to Section X)
analyzed by, each such labora	ory or firm below)	C Area Code S	Phone No D Bollutante Apolyzed
General Engineering Laboratories	2040 Savage Road	(843) 556-81	71 Cvanide
	Charleston, SC 29407	(High explosives Metals Organics Pesticides
Cape Fear Analytical	3306 Kitty Hawk Dr.	(910)795-042	PCBs
	Suite 120 Wilmington NC 28405		Dioxins
N 0 00	winnington, ive 28403		
X. Certification	at this document and all attac	hmonto woro	propored under my direction of
supervision in accordance with a the information submitted. Based directly responsible for gathering belief, true, accurate, and complet	system designed to assure that on on my inquiry of the person or pe the information, the information e. I am aware that there are sign	qualified persons proons who ma submitted is, nificant penaltion	onnel properly gather and evaluate mage the system or those persons to the best of my knowledge and es for submitting false information,
A. Name & Official Title (type or print) Jeff Mousseau, Director ADEP / Kim	Davis Lebak, DOE Site Manager	B. A (50	rea Code and Phone No. 5) 606-2337 / (505) 667-5105
C. Signature Juff Mon	?.l_k	D. D	ate Signed 3/25/2014
Jum Lansa	which		5/26/14

EPA ID Number (copy from Item I of Form 1) NM0030759						oproved. OMB No. 2040-0086 Approval expires 5-31-92
VII. Discharge In	formation	(Continued fro	om page 3 of	Form 2F)		
Part A - You mus instructio	t provide the resu	Its of at least one a details.	nalysis for every po	ollutant in this table	. Complete or	ne table for each outfall. See
Pollutant	Maximu (inclue)	m Values de units)	Average (includ	e Values e <i>units)</i>	Number Of	
And CAS Number <i>(if available)</i>	Grab Sample Taken During First 30	Flow-weighted Composite	Grab Sample Taken During First 30	Flow-weighted Composite	Storm Events Sampled	
	Minutes		Minutes			Sources of Pollutants
Biological Oxygen Demand (BOD5) Chemical Oxygen Demand (COD)	See SE0	CTION VII, TA	BLES VII-1 th	rough VII-141	, VOLUME	E 2
Total Suspended Solids (TSS)						
Nitrogen						
Phosphorus	Minimum	Maximum	Minimum	Maximum		
Part B - List each	nollutant that is li	mited in an effluent	winimum guideline which the	nuaximum	to or any pollu	tant listed in the facility's NDDES
permit fo See the i	r its process waste nstructions for ad	ewater (if the facility ditional details and	y is operating under requirements.	r an existing NPDE	S permit). Co	mplete one table for each outfall.
Pollutant	Maximu <i>(incluc</i>)	m Values <i>le units)</i>	Average (includ	e Values e <i>units)</i>	Number Of	
And CAS Number <i>(if available)</i>	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Grab Sample Taken During First 30 Minutes	Flow-weighted Composite	Storm Events Sampled	Sources of Pollutanta
	Mindles		Windes			Sources of Polititants
						2 7
	See SE	CTION VIL TA	BI ES VII-1 th	rough VII-141	VOLUM	= 2
	000 020	511010 vii, 179		rough vii 141	, VOLOIVII	
				i 		
					×	
						*
			,			
			Ψ.		2)	

ontinued	from the Fror	nt						
Part C	 List each additions 	i pollutant shown i	n Tables 2F-2, 2F-3	3, and 2F-4 that yo	u know or have rea	son to believe	is present. See the instructions	
	adultiona	Maximu	m Values	Average	e Values	Number		
Poll	utant	(incluc	le units)	(includ	e units)	Of	-	
A	nd	Grab Sample		Grab Sample		Storm		
CASN	lumber	Taken During	Flow-weighted	Taken During	Flow-weighted	Events		
(if ava	ailable)	First 30	Composite	First 30	Composite	e Sampled		
		Minutes		Minutes			Sources of Pollutants	
		See SE(CTION VII, TA	BLES VII-1 th	rough VII-141	, VOLUME	E 2	
					5			
		11						
							£5	
_								
-								
Part D) - Provide c	lata for the storm of	event(s) which resu	Ited in the maximu	m values for the flo	w weighted co	mposite sample.	
1. ate of torm	D of St	2. Duration corm Event	Total during st	3. rainfall orm event	4. Number of hou beginning of st ured and end of	rs between orm meas- of previous	5. Total flow from rain event	
vent	(in	minutes)	(in in	ches)	measurable r	ain event	(gallons or specify units)	
	-	· · · · ·						
	9	See SEC	TION VII, TAI	SLES VII-1 thi	rough VII-141,	VOLUME	2	
					5			
Provide	a description	of the method of f	l low measurement	or estimate.				
		See SEC	TION VII. TAI	BLES VII-1 th	rough VII-141	VOLUME	2	
							_	

NPDES FORM 2F SECTION I – OUTFALL LOCATION

Introduction

NPDES Form 2F Section I requests information regarding the location of storm water outfalls related to receiving waters. This Permit application information addresses storm water discharges (outfalls) from Sites that impact surface waters. In the 2008 Final Supplemental Information Submittal, Sites were grouped within geographic areas categorized as SMAs based on common drainage patterns, storm water and erosion control structures, pollutant sources, and receiving streams. The latitude and longitude of these SMAs were originally reported as outfalls in this section.

In an effort to be more representative of the Sites under this Permit, Sites are no longer grouped by SMA but are listed individually. The Sites consist of a variety of shapes and areas and are represented geographically as points (e.g., an outfall) and polygons (e.g., a drainage line or a firing site). To follow the reporting guidelines of Form 2F, the centroid of each Site boundary was calculated using geographic information system software for those Sites that occupied an area. The centroid is the geometric mean of the shape; using the centroid's coordinates allows a discrete latitude and longitude to be presented per site while providing an effective geographical representation for each site.

Table I-1 provides the outfall information for 405 Sites included in the Individual Permit. The information is presented in numerical Site order and includes the following:

- Latitude and Longitude: Outfall location (actual coordinate or centroid) by latitude and longitude in decimal degrees to the nearest 15 seconds.
- Receiving Water: Identified for an SMA or Site, either the significant canyon system or a named significant tributary to a canyon that the SMA/Site drains.

The outfalls are located within the following seven (7) major watersheds within the Laboratory facility boundary.

- Los Alamos/Pueblo
- Sandia
- Mortandad
- Pajarito
- Water/Cañon de Valle
- Ancho
- Chaquehui

The location data provided in Table I-1 are taken from the Laboratory's PRS boundary spatial data set. The PRS boundary data represent the current administrative record with NMED; however, they do not supersede the administrative record as official representation of SWMUs or AOCs.

Form 2F NPDES	3	United States Environmental Protection Agency Washington, DC 20460 Application for Permit to Discharge Storm Wate Discharges Associated with Industrial Activity						
I. Outfall L	ocation							
For each out	tfall, list the lat	tude and longitude of	f its location	n to the nea	arest 15 s	seconds ar	and the name of the receiving water.	
A. Outfall	A. Outfall Number (list)			C. Longitude			D. Receiving Water (name)	
		See	SECTIO		BLE I-1	I, VOLU	UME 1	

A. Outfall Number		B. La	atitude		C. Loi	ngitude	D. Receiving Water
00-001	35°	51'	39.082" N	106°	16'	8.097" W	Mortandad Canyon
00-011(a)	35°	54'	37.892" N	106°	16'	11.159" W	Rendija Canyon
00-011(c)	35°	54'	59.597" N	106°	17'	4.129" W	Rendija Canyon/Cabra Canyon
00-011(d)	35°	54'	3.700" N	106°	17'	49.697" W	Bayo Canyon
00-011(e)	35°	54'	55.641" N	106°	16'	30.874" W	Rendija Canyon
00-015	35°	54'	36.771" N	106°	16'	33.801" W	Rendija Canyon
00-017	35°	52'	48.751" N	106°	19'	17.287" W	Los Alamos Canyon
00-018(a)	35°	53'	24.121" N	106°	18'	32.665" W	Pueblo Canyon
00-018(b)	35°	52'	58.417" N	106°	14'	26.778" W	Pueblo Canyon
00-019	35°	52'	57.894" N	106°	17'	7.989" W	Pueblo Canyon/Graduation Canyon
00-030(f)	35°	53'	2.654" N	106°	18'	20.635" W	Pueblo Canyon/Acid Canyon
00-030(g)	35°	53'	1.602" N	106°	18'	38.740" W	Pueblo Canyon/Acid Canyon
01-001(b)	35°	52'	46.323" N	106°	18'	31.223" W	Los Alamos Canyon
01-001(c)	35°	52'	43.166" N	106°	18'	16.143" W	Los Alamos Canyon
01-001(d)	35°	52'	42.830" N	106°	18'	12.931" W	Los Alamos Canyon
01-001(e)	35°	52'	48.625" N	106°	18'	25.053" W	Los Alamos Canyon
01-001(f)	35°	52'	48.492" N	106°	18'	31.938" W	Los Alamos Canyon
01-001(g)	35°	52'	44.066" N	106°	18'	20.920" W	Los Alamos Canyon
01-002(b)-00	35°	53'	11.690" N	106°	18'	22.526" W	Pueblo Canyon/Acid Canyon
01-003(a)	35°	52'	47.033" N	106°	18'	23.406" W	Los Alamos Canyon
01-003(b)	35°	52'	43.742" N	106°	18'	18.882" W	Los Alamos Canyon
01-003(d)	35°	52'	40.541" N	106°	18'	6.214" W	Los Alamos Canyon
01-003(e)	35°	52'	43.582" N	106°	18'	9.696" W	Los Alamos Canyon
01-006(a)	35°	52'	44.458" N	106°	18'	21.128" W	Los Alamos Canyon
01-006(b)	35°	52'	44.593" N	106°	18'	17.908" W	Los Alamos Canyon
01-006(c)	35°	52'	43.306" N	106°	18'	15.986" W	Los Alamos Canyon
01-006(d)	35°	52'	43.192" N	106°	18'	15.402" W	Los Alamos Canyon
01-006(h)	35°	52'	44.027" N	106°	18'	13.106° W	Los Alamos Canyon
02-003(a)	35°	52'	35.010" N	106°	17'	24.840" W	Los Alamos Canyon
02-003(b)	35°	52'	34.853" N	106°	17'	23.707" W	Los Alamos Canyon
02-003(e)	35°	52'	35.108" N	106°	17'	24.574" W	Los Alamos Canyon
02-004(a)	35°	52'	35.188" N	106°	17'	27.230" W	Los Alamos Canyon
02-005	35°	52'	37.002" N	106°	17'	28.564" W	Los Alamos Canyon
02-006(b)	35°	52'	35.204" N	106°	17'	27.752" W	Los Alamos Canyon
02-006(c)	35°	52'	35.041" N	106°	17'	26.273" W	Los Alamos Canyon
02-006(d)	35°	52'	35.041" N	106°	17'	26.273" W	Los Alamos Canyon
02-006(e)	35°	52'	34.984" N	106°	17'	28.185" W	Los Alamos Canyon

Table I-1 Outfall Locations

A. Outfall Number		B. La	titude		C. Lor	ngitude	D. Receiving Water
02-007	35°	52'	35.222" N	106°	17'	24.012" W	Los Alamos Canyon
02-008(a)	35°	52'	34.894" N	106°	17'	30.241" W	Los Alamos Canyon
02-008(c)	35°	52'	34.802" N	106°	17'	24.566" W	Los Alamos Canyon
02-009(a)	35°	52'	33.143" N	106°	17'	22.618" W	Los Alamos Canyon
02-009(b)	35°	52'	35.618" N	106°	17'	24.889" W	Los Alamos Canyon
02-009(c)	35°	52'	34.776" N	106°	17'	22.816" W	Los Alamos Canyon
02-011(a)	35°	52'	35.180" N	106°	17'	27.114" W	Los Alamos Canyon
02-011(b)	35°	52'	35.012" N	106°	17'	24.300" W	Los Alamos Canyon
02-011(c)	35°	52'	35.424" N	106°	17'	30.305" W	Los Alamos Canyon
02-011(d)	35°	52'	35.027" N	106°	17'	30.536" W	Los Alamos Canyon
03-001(k)	35°	52'	6.450" N	106°	19'	28.236" W	Twomile Canyon
03-003(a)	35°	52'	19.931" N	106°	19'	33.239" W	Twomile Canyon
03-003(k)	35°	52'	8.680" N	106°	19'	17.699" W	Twomile Canyon
03-009(i)	35°	52'	24.312" N	106°	18'	57.815" W	Sandia Canyon
03-010(a)	35°	52'	24.783" N	106°	19'	49.446" W	Twomile Canyon
03-012(b)	35°	52'	26.164" N	106°	19'	9.452" W	Sandia Canyon
03-013(a)	35°	52'	31.835° N	106°	19'	31.479" W	Sandia Canyon
03-014(b2)	35°	52'	30.559" N	106°	18'	57.315" W	Sandia Canyon
03-014(c2)	35°	52'	28.700" N	106°	19'	0.564" W	Sandia Canyon
03-021	35°	52'	25.296" N	106°	19'	0.472" W	Sandia Canyon
03-029	35°	52'	33.741" N	106°	19'	5.010" W	Sandia Canyon
03-045(b)	35°	52'	26.164" N	106°	19'	9.452" W	Sandia Canyon
03-045(c)	35°	52'	26.191" N	106°	19'	8.819" W	Sandia Canyon
03-045(h)	35°	52'	15.328" N	106°	19'	5.857" W	Mortandad Canyon
03-049(a)	35°	52'	13.345" N	106°	18'	59.596" W	Mortandad Canyon
03-049(e)	35°	52'	14.989" N	106°	19'	2.227" W	Mortandad Canyon
03-050(a)	35°	52'	17.546" N	106°	19'	18.217" W	Mortandad Canyon
03-050(d)	35°	52'	13.376" N	106°	19'	26.867" W	Twomile Canyon
03-052(b)	35°	52'	21.706" N	106°	19'	4.543" W	Sandia Canyon
03-052(f)	35°	52'	34.480" N	106°	19'	21.598" W	Sandia Canyon
03-054(b)	35°	52'	7.346" N	106°	19'	21.045" W	Twomile Canyon
03-054(e)	35°	52'	13.785" N	106°	19'	10.757" W	Mortandad Canyon
03-055(a)	35°	52'	5.717" N	106°	19'	29.709" W	Twomile Canyon
03-055(c)	35°	52'	41.129" N	106°	19'	25.233" W	Los Alamos Canyon
03-056(c)	35°	52'	27.289" N	106°	19'	5.971" W	Sandia Canyon
04-001	35°	51'	37.113" N	106°	16'	56.991" W	Ten Site Canyon
04-002	35°	51'	38.729" N	106°	16'	57.019" W	Ten Site Canyon
04-003(a)	35°	51'	35.280" N	106°	17'	32.005" W	Cañada del Buey
04-003(b)	35°	51'	38.118" N	106°	16'	58.706" W	Ten Site Canyon

Table I-1	(continued)) Outfall	Locations
-----------	-------------	-----------	-----------

A. Outfall Number		B. La	titude		C. Lor	ngitude	D. Receiving Water
04-004	35°	51'	35.483" N	106°	17'	32.287" W	Cañada del Buey
05-001(a)	35°	51'	29.991" N	106°	16'	12.128" W	Mortandad Canyon
05-001(b)	35°	51'	30.029" N	106°	16'	10.336" W	Mortandad Canyon
05-001(c)	35°	51'	24.464" N	106°	15'	52.892" W	Mortandad Canyon
05-002	35°	51'	30.893" N	106°	16'	10.975" W	Mortandad Canyon
05-004	35°	51'	29.622" N	106°	16'	29.448" W	Mortandad Canyon
05-005(a)	35°	51'	30.806" N	106°	16'	14.312" W	Mortandad Canyon
05-005(b)	35°	51'	29.593" N	106°	16'	36.309" W	Mortandad Canyon
05-006(b)	35°	51'	30.482" N	106°	16'	14.389" W	Mortandad Canyon
05-006(c)	35°	51'	29.953" N	106°	16'	36.521" W	Mortandad Canyon
05-006(e)	35°	51'	30.063" N	106°	16'	14.300" W	Mortandad Canyon
06-001(a)	35°	51'	52.054" N	106°	20'	3.814" W	Twomile Canyon
06-001(b)	35°	51'	53.673" N	106°	19'	59.593" W	Twomile Canyon
06-003(h)	35°	51'	47.207" N	106°	19'	35.588" W	Twomile Canyon
06-006	35°	51'	51.214" N	106°	19'	59.768" W	Twomile Canyon
07-001(a)	35°	51'	39.984" N	106°	18'	59.457" W	Twomile Canyon
07-001(b)	35°	51'	37.824" N	106°	18'	56.435" W	Twomile Canyon
07-001(c)	35°	51'	35°340" N	106°	18'	50.510" W	Twomile Canyon
07-001(d)	35°	51'	36.751" N	106°	18'	52.922" W	Twomile Canyon
08-009(d)	35°	51'	37.526" N	106°	20'	58.346" W	Pajarito Canyon/Starmer's Gulch
08-009(f)	35°	51'	34.995" N	106°	20'	59.811" W	Pajarito Canyon/Starmer's Gulch
09-004(g)	35°	51'	15.278" N	106°	20'	17.784" W	Pajarito Canyon
09-004(o)	35°	51'	22.265" N	106°	20'	22.320" W	Pajarito Canyon
09-008(b)	35°	51'	31.734" N	106°	20'	44.570" W	Pajarito Canyon/Starmer's Gulch
09-009	35°	51'	24.722" N	106°	20'	29.949" W	Pajarito Canyon
09-013	35°	51'	37.448" N	106°	20'	27.585" W	Pajarito Canyon
10-001(a)	35°	53'	19.993" N	106°	15'	6.623" W	Bayo Canyon
10-001(b)	35°	53'	21.457" N	106°	15'	6.160" W	Bayo Canyon
10-001(c)	35°	53'	26.702" N	106°	15'	11.040" W	Bayo Canyon
10-001(d)	35°	53'	25.089" N	106°	15'	10.620" W	Bayo Canyon
10-004(a)	35°	53'	20.946" N	106°	14'	57.342" W	Bayo Canyon
10-004(b)	35°	53'	15.458" N	106°	14'	47.230" W	Bayo Canyon
10-008	35°	53'	33.186" N	106°	15'	21.298" W	Bayo Canyon
10-009	35°	53'	34.003" N	106°	15'	32.302" W	Bayo Canyon
11-001(c)	35°	50'	15.191" N	106°	20'	20.948" W	Water Canyon
11-002	35°	50'	17.850" N	106°	19'	25.480" W	Water Canyon/S-Site Canyon
11-003(b)	35°	50'	15.456" N	106°	19'	31.457" W	Water Canyon/S-Site Canyon
11-005(a)	35°	50'	17.653" N	106°	19'	32.217" W	Water Canyon/S-Site Canyon
11-005(b)	35°	50'	17.100" N	106°	19'	30.368" W	Water Canyon/S-Site Canyon

Table I-1	(continued)) Outfall	Locations
-----------	-------------	-----------	-----------

A. Outfall Number		B. La	titude		C. Lor	ngitude	D. Receiving Water
11-005(c)	35°	50'	19.715" N	106°	19'	29.668" W	Water Canyon/S-Site Canyon
11-006(b)	35°	50'	19.637" N	106°	19'	26.483" W	Water Canyon/S-Site Canyon
11-006(c)	35°	50'	16.762" N	106°	19'	25.210" W	Water Canyon/S-Site Canyon
11-006(d)	35°	50'	16.379" N	106°	19'	27.275" W	Water Canyon/S-Site Canyon
11-011(a)	35°	50'	19.993" N	106°	19'	33.498" W	Water Canyon/S-Site Canyon
11-011(b)	35°	50'	20.075" N	106°	19'	33.635" W	Water Canyon/S-Site Canyon
11-011(d)	35°	50'	17.394" N	106°	19'	30.688" W	Water Canyon/S-Site Canyon
11-012(c)	35°	50'	18.807" N	106°	19'	39.698" W	Water Canyon/S-Site Canyon
13-001	35°	50'	43.080" N	106°	20'	5.669" W	Cañon de Valle
13-002	35°	50'	41.345" N	106°	20'	5.349" W	Cañon de Valle
14-001(g)	35°	50'	52.824" N	106°	19'	3.598" W	Cañon de Valle
14-002(c)	35°	50'	51.971" N	106°	18'	59.214" W	Cañon de Valle
14-006	35°	50'	52.973" N	106°	19'	2.854" W	Cañon de Valle
14-009	35°	50'	53.216" N	106°	19'	13.011" W	Cañon de Valle
14-010	35°	50'	53.374" N	106°	19'	11.940" W	Cañon de Valle
15-004(f)	35°	50'	24.876" N	106°	17'	49.460" W	Potrillo Canyon
15-004(h)	35°	50'	0.213" N	106°	17'	48.279" W	Water Canyon
15-006(a)	35°	49'	57.472" N	106°	17'	44.675" W	Potrillo Canyon
15-006(b)	35°	50'	33.715" N	106°	17'	46.441" W	Threemile Canyon
15-006(c)	35°	50'	38.902" N	106°	17'	26.976" W	Threemile Canyon
15-007(b)	35°	50'	10.985" N	106°	18'	21.155" W	Cañon de Valle
15-008(a)	35°	50'	20.415" N	106°	17'	52.133" W	Potrillo Canyon
15-008(b)	35°	50'	40.801" N	106°	17'	25.825" W	Threemile Canyon
15-008(d)	35°	50'	44.245" N	106°	18'	42.368" W	Cañon de Valle
15-008(f)	35°	50'	14.508" N	106°	17'	33.223" W	Potrillo Canyon
15-009(c)	35°	50'	36.911" N	106°	17'	26.204" W	Threemile Canyon
15-009(e)	35°	50'	21.709" N	106°	17'	56.779" W	Potrillo Canyon
15-010(b)	35°	50'	54.580" N	106°	18'	33.747" W	Threemile Canyon
15-011(c)	35°	50'	38.889" N	106°	18'	37.146" W	Cañon de Valle
15-014(a)	35°	50'	27.889" N	106°	18'	39.403" W	Cañon de Valle
15-014(l)	35°	49'	58.172" N	106°	17'	47.397" W	Water Canyon
16-001(e)	35°	50'	29.973" N	106°	20'	20.442" W	Water Canyon/S-Site Canyon
16-003(a)	35°	50'	13.897" N	106°	20'	29.168" W	Water Canyon
16-003(f)	35°	50'	34.741" N	106°	20'	25.265" W	Water Canyon/S-Site Canyon
16-003(n)	35°	50'	46.475" N	106°	20'	12.628" W	Cañon de Valle
16-003(o)	35°	50'	45.193" N	106°	20'	5.474" W	Cañon de Valle
16-004(a)	35°	50'	38.533" N	106°	20'	7.217" W	Water Canyon
16-004(c)	35°	50'	37.898" N	106°	20'	5.752" W	Water Canyon
16-006(c)	35°	50'	10.752" N	106°	20'	15.629" W	Water Canyon

Table I-1	(continued)) Outfall	Locations
-----------	-------------	-----------	-----------

A. Outfall Number		B. La	titude		C. Loi	ngitude	D. Receiving Water
16-010(b)	35°	50'	55.475" N	106°	19'	57.502" W	Cañon de Valle
16-010(c)	35°	50'	49.776" N	106°	19'	55.724" W	Cañon de Valle
16-010(d)	35°	50'	53.570" N	106°	19'	54.031" W	Cañon de Valle
16-010(i)	35°	50'	51.069" N	106°	19'	48.076" W	Cañon de Valle
16-016(g)	35°	50'	10.675" N	106°	20'	14.582" W	Water Canyon
16-017(a)-99	35°	50'	52.688" N	106°	20'	50.975" W	Cañon de Valle
16-017(b)-99	35°	50'	51.962" N	106°	20'	52.580" W	Cañon de Valle
16-017(j)-99	35°	50'	46.077" N	106°	21'	18.394" W	Water Canyon
16-018	35°	50'	58.129" N	106°	19'	58.851" W	Cañon de Valle
16-019	35°	51'	1.485" N	106°	20'	32.014" W	Cañon de Valle
16-020	35°	51'	0.947" N	106°	20'	47.612" W	Cañon de Valle
16-021(c)	35°	50'	59.413" N	106°	20'	25.859" W	Cañon de Valle
16-026(b)	35°	50'	27.910" N	106°	20'	23.853" W	Water Canyon/S-Site Canyon
16-026(b2)	35°	50'	36.209" N	106°	21'	17.408" W	Water Canyon
16-026(c)	35°	50'	29.295" N	106°	20'	25.924" W	Water Canyon/S-Site Canyon
16-026(c2)	35°	50'	32.300" N	106°	21'	9.918" W	Water Canyon
16-026(d)	35°	50'	32.575" N	106°	20'	29.747" W	Water Canyon/S-Site Canyon
16-026(e)	35°	50'	36.218" N	106°	20'	32.379" W	Water Canyon/S-Site Canyon
16-026(h2)	35°	50'	20.778" N	106°	20'	20.487" W	Water Canyon
16-026(i)	35°	50'	59.139" N	106°	20'	49.210" W	Cañon de Valle
16-026(j2)	35°	50'	39.751" N	106°	20'	8.595" W	Water Canyon
16-026(l)	35°	51'	1.216" N	106°	20'	54.973" W	Cañon de Valle
16-026(m)	35°	50'	53.719" N	106°	20'	50.365" W	Cañon de Valle
16-026(v)	35°	50'	32.824" N	106°	21'	8.264" W	Water Canyon
16-026(y)	35°	50'	14.247" N	106°	20'	39.532" W	Water Canyon
16-028(a)	35°	50'	48.077" N	106°	19'	51.044" W	Cañon de Valle
16-028(b)	35°	50'	10.857" N	106°	20'	15.233" W	Water Canyon
16-028(c)	35°	51'	0.760" N	106°	20'	54.629" W	Cañon de Valle
16-028(d)	35°	50'	35.282" N	106°	21'	19.838" W	Water Canyon
16-028(e)	35°	50'	21.981" N	106°	21'	14.245" W	Water Canyon
16-029(e)	35°	50'	20.878" N	106°	20'	19.976" W	Water Canyon
16-029(h)	35°	50'	42.294" N	106°	20'	5.203" W	Cañon de Valle
16-029(k)	35°	50'	54.445" N	106°	20'	50.903" W	Cañon de Valle
16-030(c)	35°	51'	2.643" N	106°	20'	51.359" W	Cañon de Valle
16-030(g)	35°	50'	9.030" N	106°	20'	0.393" W	Water Canyon
16-031(a)	35°	50'	11.217" N	106°	20'	16.660" W	Water Canyon
16-031(h)	35°	50'	43.799" N	106°	20'	5.800" W	Cañon de Valle
16-035	35°	50'	42.789" N	106°	20'	6.823" W	Water Canyon
18-002(a)	35°	50'	31.274" N	106°	16'	5.888" W	Pajarito Canyon

Table I-1	(continued)) Outfall	Locations
-----------	-------------	-----------	-----------

A. Outfall Number		B. La	titude		C. Lor	ngitude	D. Receiving Water
18-002(b)	35°	50'	19.953" N	106°	16'	12.424" W	Threemile Canyon
18-003(c)	35°	50'	20.349" N	106°	16'	10.363" W	Threemile Canyon
18-003(e)	35°	50'	23.173" N	106°	15'	54.526" W	Pajarito Canyon
18-010(b)	35°	50'	23.938" N	106°	15'	59.087" W	Pajarito Canyon
18-010(d)	35°	50'	23.303" N	106°	15'	53.992" W	Pajarito Canyon
18-010(e)	35°	50'	22.946" N	106°	15'	52.013" W	Pajarito Canyon
18-010(f)	35°	50'	20.889" N	106°	16'	10.929" W	Threemile Canyon
18-012(a)	35°	50'	17.942" N	106°	15'	51.524" W	Pajarito Canyon
18-012(b)	35°	50'	22.914" N	106°	15'	55.888" W	Pajarito Canyon
20-002(a)	35°	51'	55.656" N	106°	15'	49.954" W	Sandia Canyon
20-002(c)	35°	51'	49.808" N	106°	15'	28.470" W	Sandia Canyon
20-002(d)	35°	51'	49.695" N	106°	15'	36.466" W	Sandia Canyon
20-003(c)	35°	51'	51.583" N	106°	15'	26.820" W	Sandia Canyon
20-005	35°	51'	46.944" N	106°	15'	20.156" W	Sandia Canyon
21-006(b)	35°	52'	32.868" N	106°	16'	40.933" W	Los Alamos Canyon
21-009	35°	52'	40.006" N	106°	16'	51.749" W	Los Alamos Canyon/BV Canyon
21-011(k)	35°	52'	39.334" N	106°	16'	28.450" W	DP Canyon
21-013(b)	35°	52'	37.410" N	106°	16'	52.495" W	Los Alamos Canyon/BV Canyon
21-013(c)	35°	52'	33.135° N	106°	16'	12.775" W	DP Canyon
21-013(g)	35°	52'	37.192" N	106°	16'	50.355" W	Los Alamos Canyon/BV Canyon
21-018(a)	35°	52'	38.373" N	106°	16'	50.496" W	Los Alamos Canyon/BV Canyon
21-021	35°	52'	33.831" N	106°	16'	31.265" W	Los Alamos Canyon/BV Canyon
21-022(h)	35°	52'	31.577" N	106°	16'	35.054" W	Los Alamos Canyon
21-023(c)	35°	52'	38.300" N	106°	16'	54.509" W	Los Alamos Canyon/BV Canyon
21-024(a)	35°	52'	30.918" N	106°	16'	29.465" W	Los Alamos Canyon
21-024(c)	35°	52'	31.623" N	106°	16'	26.203" W	Los Alamos Canyon
21-024(d)	35°	52'	34.842" N	106°	16'	43.730" W	Los Alamos Canyon
21-024(h)	35°	52'	35.933" N	106°	16'	21.226" W	DP Canyon
21-024(i)	35°	52'	29.540" N	106°	16'	16.331" W	Los Alamos Canyon
21-024(j)	35°	52'	30.863" N	106°	16'	21.789" W	Los Alamos Canyon
21-024(l)	35°	52'	39.045" N	106°	16'	39.927" W	DP Canyon
21-024(n)	35°	52'	35.371" N	106°	16'	19.387" W	DP Canyon
21-027(a)	35°	52'	33.537" N	106°	16'	39.853" W	Los Alamos Canyon
21-027(c)	35°	52'	33.740" N	106°	16'	42.850" W	Los Alamos Canyon
21-027(d)	35°	52'	38.162" N	106°	16'	55.012" W	Los Alamos Canyon/BV Canyon
21-029	35°	52'	47.519" N	106°	17'	21.161" W	DP Canyon
22-010(b)	35°	51'	35.737" N	106°	20'	1.763" W	Pajarito Canyon
22-014(a)	35°	51'	41.786" N	106°	20'	2.401" W	Twomile Canyon
22-014(b)	35°	51'	39.120" N	106°	19'	59.865" W	Twomile Canyon

A. Outfall Number		B. La	titude		C. Lor	ngitude	D. Receiving Water
22-015(a)	35°	51'	41.075" N	106°	20'	3.572" W	Twomile Canyon
22-015(c)	35°	51'	37.316" N	106°	20'	6.714" W	Pajarito Canyon
26-001	35°	52'	29.730" N	106°	15'	13.518" W	Los Alamos Canyon
26-002(a)	35°	52'	30.510" N	106°	15'	13.062" W	Los Alamos Canyon
26-002(b)	35°	52'	30.478" N	106°	15'	12.703" W	Los Alamos Canyon
26-003	35°	52'	30.504" N	106°	15'	12.654" W	Los Alamos Canyon
27-002	35°	49'	51.612" N	106°	14'	58.683" W	Pajarito Canyon
31-001	35°	53'	1.809" N	106°	16'	49.788" W	Pueblo Canyon
32-002(b1)	35°	52'	40.779" N	106°	17'	42.634" W	Los Alamos Canyon
32-002(b2)	35°	52'	39.941" N	106°	17'	41.883" W	Los Alamos Canyon
32-003	35°	52'	40.404" N	106°	17'	42.346" W	Los Alamos Canyon
32-004	35°	52'	40.904" N	106°	17'	45.532" W	Los Alamos Canyon
33-002(d)	35°	46'	56.505" N	106°	15'	18.372" W	Chaquehui Canyon
33-004(d)	35°	47'	1.312" N	106°	15'	28.639" W	Chaquehui Canyon
33-004(g)	35°	47'	1.615" N	106°	15'	31.062" W	Chaquehui Canyon
33-004(h)	35°	46'	58.081" N	106°	15'	21.213" W	Chaquehui Canyon
33-004(j)	35°	46'	16.298" N	106°	15'	7.798" W	Chaquehui Canyon
33-004(k)	35°	46'	20.742" N	106°	13'	53.547" W	South Ancho Canyon
33-006(a)	35°	46'	18.329" N	106°	15'	7.953" W	Chaquehui Canyon
33-007(a)	35°	46'	20.431" N	106°	13'	51.605" W	South Ancho Canyon
33-007(b)	35°	46'	22.712" N	106°	15'	7.271" W	Chaquehui Canyon
33-007(c)	35°	47'	0.058" N	106°	15'	31.865" W	Chaquehui Canyon
33-008(c)	35°	46'	58.915" N	106°	15'	18.023" W	Chaquehui Canyon
33-009	35°	47'	0.576" N	106°	15'	33.861" W	Chaquehui Canyon
33-010(a)	35°	46'	17.662" N	106°	13'	46.917" W	South Ancho Canyon
33-010(c)	35°	46'	15.675" N	106°	15'	8.293" W	Chaquehui Canyon
33-010(d)	35°	46'	23.770" N	106°	13'	48.132" W	South Ancho Canyon
33-010(f)	35°	46'	54.290" N	106°	15'	16.504" W	Chaquehui Canyon
33-010(g)	35°	46'	15.117" N	106°	15'	4.806" W	Chaquehui Canyon
33-010(h)	35°	46'	21.713" N	106°	15'	4.873" W	Chaquehui Canyon
33-011(b)	35°	46'	32.062" N	106°	14'	45.416" W	Chaquehui Canyon
33-011(d)	35°	46'	58.237" N	106°	15'	22.565" W	Chaquehui Canyon
33-011(e)	35°	46'	50.067" N	106°	15'	21.152" W	Chaquehui Canyon
33-012(a)	35°	46'	59.504" N	106°	15'	20.507" W	Chaquehui Canyon
33-014	35°	46'	19.197" N	106°	15'	4.312" W	Chaquehui Canyon
33-015	35°	46'	58.086" N	106°	15'	19.624" W	Chaquehui Canyon
33-016	35°	46'	44.517" N	106°	15'	17.929" W	Chaquehui Canyon
33-017	35°	46'	59.847" N	106°	15'	21.596" W	Chaquehui Canyon
35-003(h)	35°	51'	45.781" N	106°	17'	24.187" W	Ten Site Canyon

Table I-1	(continued)) Outfall	Locations
-----------	-------------	-----------	-----------

A. Outfall Number		B. La	titude		C. Lor	ngitude	D. Receiving Water
35-003(p)	35°	51'	45.016" N	106°	17'	25.685" W	Ten Site Canyon
35-003(r)	35°	51'	44.653" N	106°	17'	18.414" W	Ten Site Canyon
35-004(a)	35°	51'	44.769" N	106°	17'	30.393" W	Ten Site Canyon
35-004(h)	35°	51'	45.268" N	106°	17'	24.848" W	Ten Site Canyon
35-008	35°	51'	50.935° N	106°	17'	38.867" W	Mortandad Canyon
35-009(a)	35°	51'	43.935° N	106°	17'	30.184" W	Ten Site Canyon
35-009(d)	35°	51'	47.207" N	106°	17'	20.094" W	Ten Site Canyon
35-010(e)	35°	51'	41.948" N	106°	16'	59.781" W	Ten Site Canyon
35-014(e)	35°	51'	50.129" N	106°	17'	39.255" W	Mortandad Canyon
35-014(e2)	35°	51'	50.755" N	106°	17'	36.253" W	Mortandad Canyon
35-014(g)	35°	51'	44.498" N	106°	17'	38.678" W	Ten Site Canyon
35-014(g3)	35°	51'	43.039" N	106°	17'	40.445" W	Ten Site Canyon
35-016(a)	35°	51'	43.232" N	106°	17'	29.692" W	Ten Site Canyon
35-016(b)	35°	51'	44.925" N	106°	17'	35.779" W	Ten Site Canyon
35-016(c)	35°	51'	43.927" N	106°	17'	33.663" W	Ten Site Canyon
35-016(d)	35°	51'	44.682" N	106°	17'	32.603" W	Ten Site Canyon
35-016(e)	35°	51'	50.207" N	106°	17'	38.083" W	Mortandad Canyon
35-016(f)	35°	51'	49.558" N	106°	17'	41.594" W	Mortandad Canyon
35-016(g)	35°	51'	50.335° N	106°	17'	56.007" W	Mortandad Canyon/Effluent Canyon
35-016(h)	35°	51'	49.945" N	106°	17'	52.425" W	Mortandad Canyon/Effluent Canyon
35-016(i)	35°	51'	50.608" N	106°	17'	35.865" W	Mortandad Canyon
35-016(k)	35°	51'	45.662" N	106°	17'	24.679" W	Ten Site Canyon
35-016(l)	35°	51'	44.521" N	106°	17'	22.040" W	Ten Site Canyon
35-016(m)	35°	51'	46.206" N	106°	17'	21.337" W	Ten Site Canyon
35-016(n)	35°	51'	44.495" N	106°	17'	38.526" W	Ten Site Canyon
35-016(o)	35°	51'	49.267" N	106°	17'	25.608" W	Mortandad Canyon
35-016(p)	35°	51'	47.607" N	106°	17'	22.068" W	Mortandad Canyon
35-016(q)	35°	51'	42.497" N	106°	17'	29.005" W	Ten Site Canyon
36-003(b)	35°	50'	13.042" N	106°	17'	31.165" W	Potrillo Canyon
36-004(a)	35°	50'	0.071" N	106°	16'	54.605" W	Potrillo Canyon
36-004(c)	35°	49'	38.022" N	106°	16'	44.746" W	Fence Canyon
36-004(d)	35°	49'	42.201" N	106°	15'	34.276" W	Potrillo Canyon
36-004(e)	35°	50'	15.613" N	106°	17'	30.993" W	Potrillo Canyon
36-006	35°	50'	0.927" N	106°	16'	53.510" W	Potrillo Canyon
36-008	35°	50'	19.190" N	106°	16'	23.717" W	Threemile Canyon
39-001(b)	35°	48'	9.099" N	106°	15'	40.930" W	North Ancho Canyon
39-002(b)	35°	47'	59.948" N	106°	15'	53.270" W	North Ancho Canyon
39-002(c)	35°	48'	7.498" N	106°	15'	43.015" W	North Ancho Canyon
39-004(a)	35°	48'	36.102" N	106°	16'	6.135" W	North Ancho Canyon

Table I-1	(continued)) Outfall	Locations
-----------	-------------	-----------	-----------

A. Outfall Number		B. La	titude		C. Lor	ngitude	D. Receiving Water
39-004(b)	35°	48'	33.178" N	106°	16'	13.336" W	North Ancho Canyon
39-004(c)	35°	47'	59.896" N	106°	15'	53.388" W	North Ancho Canyon
39-004(d)	35°	48'	35°315" N	106°	16'	5.159" W	North Ancho Canyon
39-004(e)	35°	48'	31.021" N	106°	16'	8.491" W	North Ancho Canyon
39-006(a)	35°	47'	14.722" N	106°	15'	3.000" W	South Ancho Canyon
39-008	35°	48'	7.331" N	106°	15'	44.236" W	North Ancho Canyon
39-010	35°	48'	24.926" N	106°	15'	51.822" W	North Ancho Canyon
40-001(c)	35°	51'	25.513" N	106°	19'	7.873" W	Twomile Canyon
40-003(a)	35°	51'	23.176" N	106°	18'	42.833" W	Pajarito Canyon
40-003(b)	35°	51'	23.140" N	106°	18'	40.509" W	Pajarito Canyon
40-005	35°	51'	36.516" N	106°	19'	45.714" W	Twomile Canyon
40-006(a)	35°	51'	24.239" N	106°	18'	57.639" W	Pajarito Canyon
40-006(b)	35°	51'	25.998" N	106°	19'	13.812" W	Pajarito Canyon
40-006(c)	35°	51'	25.988" N	106°	19'	18.367" W	Pajarito Canyon
40-009	35°	51'	24.761" N	106°	19'	10.791" W	Pajarito Canyon
40-010	35°	51'	26.907" N	106°	19'	45.372" W	Pajarito Canyon
41-002(c)	35°	52'	36.329" N	106°	17'	47.027" W	Los Alamos Canyon
42-001(a)	35°	51'	51.009" N	106°	18'	4.339" W	Mortandad Canyon/Effluent Canyon
42-001(b)	35°	51'	51.661" N	106°	18'	4.147" W	Mortandad Canyon/Effluent Canyon
42-001(c)	35°	51'	51.567" N	106°	18'	3.837" W	Mortandad Canyon/Effluent Canyon
42-002(a)	35°	51'	51.009" N	106°	18'	4.339" W	Mortandad Canyon/Effluent Canyon
42-002(b)	35°	51'	51.601" N	106°	18'	4.966" W	Mortandad Canyon/Effluent Canyon
43-001(b2)	35°	52'	52.189" N	106°	19'	15.518" W	Los Alamos Canyon
45-001	35°	53'	5.776" N	106°	18'	22.460" W	Pueblo Canyon/Acid Canyon
45-002	35°	53'	4.395" N	106°	18'	22.701" W	Pueblo Canyon/Acid Canyon
45-004	35°	53'	7.859" N	106°	18'	23.299" W	Pueblo Canyon/Acid Canyon
46-003(b)	35°	51'	13.021" N	106°	16'	43.115" W	Cañada del Buey/SWSC Canyon
46-003(c)	35°	51'	9.457" N	106°	16'	52.504" W	Cañada del Buey/SWSC Canyon
46-003(e)	35°	51'	15.716" N	106°	16'	43.678" W	Cañada del Buey
46-004(a2)	35°	51'	15.201" N	106°	16'	46.999" W	Cañada del Buey
46-004(b)	35°	51'	16.529" N	106°	16'	49.686" W	Cañada del Buey
46-004(c2)	35°	51'	16.227" N	106°	16'	55.750" W	Cañada del Buey
46-004(d2)	35°	51'	12.415" N	106°	16'	55.230" W	Cañada del Buey/SWSC Canyon
46-004(e2)	35°	51'	15.955" N	106°	16'	56.961" W	Cañada del Buey
46-004(f)	35°	51'	12.152" N	106°	16'	52.710" W	Cañada del Buey/SWSC Canyon
46-004(g)	35°	51'	16.070" N	106°	16'	53.793" W	Cañada del Buey
46-004(h)	35°	51'	15.689" N	106°	16'	44.669" W	Cañada del Buey
46-004(m)	35°	51'	15.713" N	106°	16'	51.786" W	Cañada del Buey
46-004(q)	35°	51'	16.320" N	106°	16'	44.545" W	Cañada del Buey

Table I-1	(continued)) Outfall	Locations
-----------	-------------	-----------	-----------

A. Outfall Number		B. La	titude		C. Lor	ngitude	D. Receiving Water
46-004(s)	35°	51'	13.783" N	106°	16'	54.799" W	Cañada del Buey
46-004(t)	35°	51'	10.246" N	106°	16'	53.015" W	Cañada del Buey/SWSC Canyon
46-004(u)	35°	51'	16.430" N	106°	16'	46.201" W	Cañada del Buey
46-004(v)	35°	51'	16.233" N	106°	16'	46.228" W	Cañada del Buey
46-004(w)	35°	51'	11.539" N	106°	16'	53.815" W	Cañada del Buey/SWSC Canyon
46-004(x)	35°	51'	16.286" N	106°	16'	47.281" W	Cañada del Buey
46-004(y)	35°	51'	16.770" N	106°	16'	48.754" W	Cañada del Buey
46-004(z)	35°	51'	16.963" N	106°	16'	50.021" W	Cañada del Buey
46-006(d)	35°	51'	16.419" N	106°	16'	48.622" W	Cañada del Buey
46-006(f)	35°	51'	14.829" N	106°	16'	53.316" W	Cañada del Buey
46-008(f)	35°	51'	14.833" N	106°	16'	47.704" W	Cañada del Buey
46-008(g)	35°	51'	10.155" N	106°	16'	53.631" W	Cañada del Buey/SWSC Canyon
46-009(a)	35°	51'	11.420" N	106°	16'	49.484" W	Cañada del Buey/SWSC Canyon
48-001	35°	51'	57.397" N	106°	18'	22.037" W	Mortandad Canyon
48-003	35°	51'	59.193" N	106°	18'	17.442" W	Mortandad Canyon
48-005	35°	51'	57.633" N	106°	18'	24.542" W	Mortandad Canyon
48-007(a)	35°	51'	56.563" N	106°	18'	20.436" W	Mortandad Canyon/Effluent Canyon
48-007(b)	35°	52'	0.739" N	106°	18'	21.770" W	Mortandad Canyon
48-007(c)	35°	52'	0.678" N	106°	18'	23.688" W	Mortandad Canyon
48-007(d)	35°	51'	55.501" N	106°	18'	21.269" W	Mortandad Canyon/Effluent Canyon
48-010	35°	51'	55.881" N	106°	18'	18.266" W	Mortandad Canyon/Effluent Canyon
49-001(g)	35°	49'	30.140" N	106°	17'	56.741" W	Water Canyon
49-005(a)	35°	49'	28.109" N	106°	17'	42.846" W	Water Canyon
49-008(c)	35°	49'	26.491" N	106°	18'	5.506" W	Water Canyon
50-006(a)	35°	51'	41.329" N	106°	17'	49.828" W	Ten Site Canyon
50-006(d)	35°	51'	51.040" N	106°	17'	52.896" W	Mortandad Canyon/Effluent Canyon
50-009	35°	51'	39.612" N	106°	17'	53.844" W	Ten Site Canyon
53-001(a)	35°	52'	7.431" N	106°	16'	23.968" W	Sandia Canyon
53-001(b)	35°	52'	5.705" N	106°	16'	25.111" W	Sandia Canyon
53-002(a)	35°	52'	3.581" N	106°	15'	8.667" W	Los Alamos Canyon
53-008	35°	52'	0.222" N	106°	15'	4.726" W	Los Alamos Canyon
53-012(e)	35°	52'	5.668" N	106°	16'	26.903" W	Sandia Canyon
53-014	35°	52'	3.036" N	106°	15'	43.425" W	Sandia Canyon
54-004	35°	50'	37.425" N	106°	15'	52.100" W	Pajarito Canyon
54-013(b)	35°	49'	53.169" N	106°	14'	20.213" W	Pajarito Canyon
54-014(d)	35°	49'	45.724" N	106°	14'	21.524" W	Pajarito Canyon
54-017	35°	49'	50.215" N	106°	14'	13.688" W	Cañada del Buey
54-018	35°	49'	54.424" N	106°	14'	33.293" W	Cañada del Buey
54-020	35°	49'	51.373" N	106°	14'	20.093" W	Cañada del Buey

A. Outfall Number		B. La	titude		C. Lo	ngitude	D. Receiving Water
60-007(b)	35°	52'	22.112" N	106°	18'	47.001" W	Sandia Canyon
72-001	35°	51'	49.018" N	106°	14'	56.813" W	Sandia Canyon
73-001(a)	35°	52'	51.100" N	106°	16'	12.253" W	Pueblo Canyon
73-002	35°	52'	57.064" N	106°	16'	31.846" W	Pueblo Canyon
73-004(d)	35°	52'	51.342" N	106°	16'	14.800" W	Pueblo Canyon
73-006	35°	52'	56.35" N	106°	16'	32.041" W	Pueblo Canyon
C-00-020	35°	54'	27.155" N	106°	18'	40.690" W	Rendija Canyon
C-00-041	35°	54'	22.232" N	106°	18'	1.591" W	Rendija Canyon
C-00-044	35°	52'	47.856" N	106°	19'	17.804" W	Los Alamos Canyon
C-15-004	35°	50'	22.371" N	106°	17'	57.761" W	Potrillo Canyon
C-33-001	35°	47'	1.087" N	106°	15'	21.971" W	Chaquehui Canyon
C-33-003	35°	47'	1.284" N	106°	15'	24.167" W	Chaquehui Canyon
C-36-001*	n/a	n/a	n/a	n/a	n/a	n/a	Potrillo Canyon
C-36-003	35°	50'	18.35" N	106°	16'	23.622" W	Threemile Canyon
C-36-006(e)	35°	50'	11.981" N	106°	17'	30.275" W	Potrillo Canyon
C-41-004	35°	52'	36.397" N	106°	17'	51.502" W	Los Alamos Canyon
C-43-001	35°	52'	49.852" N	106°	19'	13.742" W	Los Alamos Canyon
C-46-001	35°	51'	10.469" N	106°	16'	52.718" W	Cañada del Buey/SWSC Canyon

Table I-1 (continued) Outfall Locations

* AOC C-36-001 is a former containment vessel for which no specific location(s) exists. The Site is considered part of PT-SMA-2.01 in TA-36.

NPDES FORM 2F SECTION II – IMPROVEMENTS

Introduction

NPDES Form 2F Section II, included following this introduction, consists of two parts: Part A and Part B. Part A requests information regarding implementation schedules for various activities, such as construction or facility upgrades or for compliance with environmental programs. Part B requests additional information pertaining to current or planned actions regarding anticipated additional water pollution or other environmental projects that may affect discharges.

Part A

NMED, DOE, and the University of California (succeeded by LANS in 2006) signed a Consent Order under the New Mexico Hazardous Waste Act and New Mexico Solid Waste Act on March 1, 2005. The purpose of the Consent Order was to establish corrective action requirements for releases of contaminants from SWMUs and AOCs at the Laboratory. The Consent Order replaced the corrective action requirements contained in the Laboratory's RCRA permit.

The Consent Order contains requirements for investigating the nature and extent of releases of contaminants from SWMUs and AOCs and determining whether these releases pose an unacceptable risk to human health or the environment. If a release is determined to pose an unacceptable risk, the Consent Order contains additional requirements for corrective actions to mitigate these risks. Following completion of investigation and, if necessary, cleanup activities, and demonstration that the SWMU or AOC does not pose an unacceptable risk, the Laboratory may recommend the SWMU or AOC for corrective action complete status. Upon approval of this recommendation by NMED, the Laboratory may request a CoC under the Consent Order. The CoC certifies that no additional corrective actions are required under the Consent Order for the SWMU or AOC. CoCs may be issued with or without controls. A CoC without controls signifies that the Site is suitable for unrestricted use, while a CoC with controls indicates that residual site contamination, while not posing a risk under current and foreseeable future land use, does require additional controls.

The Sites regulated under the Individual Permit are a subset of the SWMUs and AOCs that are addressed under the Consent Order issued by NMED. NMED has issued CoCs for some Individual Permit Sites with controls related to storm water discharges. These controls constitute requirements by a State authority covered under Section II Part A of the Permit application. The following Part A identifies the Sites that have received CoCs with storm water–related controls and provides a summary of these controls.

Form 2F NPDES A. Are you now required by any Federal, State, or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stimulations, court orders, and grant or logan compliance								
					4. F	inal		
1. Identification	of Conditions,	2 number	. Affected Outfalls	3 Priof Description of Project	Complia	nce Date		
B. You may you now have schedules for c	attach additiona under way or w construction.	l sheets des hich you pla	cribing any additional water an. Indicate whether each Not /	pollution (or other environmental projects which ma program is now under way or planned, and idicate Applicable	 y affect your dis e your actual o	L scharges) r planned		

Table II-1 Improvements

	2. Affected Outfalls			4. F Complia	Final ance Date
1. Identification of Conditions, Agreements, etc.	Number	Source of Discharge	3. Brief Description of Project	a. Req	b. Proj
NMED issued a CoC with controls for this Site on May 7, 2013. The CoC requires the Site to be monitored under the NPDES Individual Permit.	00-011(a)	Storm water runoff	SWMU 00-011(a) is a 28.5-acre former mortar impact area located in Rendija Canyon that was used in the 1940s.	n/a	n/a
NMED issued a CoC with controls for this Site on May 7, 2013 The CoC requires the Site to be monitored under the NPDES Individual Permit.	00-011(d)	Storm water runoff	SWMU 00-011(d) is a former bazooka firing area located in a small north-trending tributary of Bayo Canyon. The area is approximately 5 acres and was used as a target area for 2.36-in. bazooka rounds in the mid-1940s.	n/a	n/a
NMED issued a CoC with controls for this Site on May 7, 2013. The CoC requires the Site to be monitored under the NPDES Individual Permit.	00-011(e)	Storm water runoff	SWMU 00-011(e) is a former ammunition impact area located on USFS land in a tributary of Rendija Canyon. The area is approximately 14 acres and was used as an ammunition impact area in the mid-1940s.	n/a	n/a
NMED issued a CoC with controls for this Site on September 10, 2010. The CoC states that storm water discharge may mobilize residual contamination from the Site and requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	01-001(b)	Storm water runoff	SWMU 01-001(b), septic tank 135, served two former LANL buildings. The tank and drainlines were removed during a radiological survey performed from 1974–1976.	n/a	n/a
NMED issued a CoC with controls for this Site on September 10, 2010. The CoC states that storm water discharge may mobilize residual contamination from the Site and requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	01-001(c)	Storm water runoff	SWMU 01-001(c), septic tank 137, served former LANL building D-2. The tank and its outfall were removed in 1975. Contaminated soil around the tank, drainlines and building D-2 were also removed in 1975.	n/a	n/a

ω

	2. Affect	ed Outfalls			Final ance Date					
1. Identification of Conditions, Agreements, etc.	Number	Source of Discharge	3. Brief Description of Project	a. Req	b. Proj					
NMED issued a CoC with controls for this Site on September 10, 2010. The CoC states that storm water discharge may mobilize residual contamination from the Site and requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	01-001(e)	Storm water runoff	SWMU 01-001(e), septic tank 139, served three former LANL buildings. The tank became inactive in 1965 and was later removed.	n/a	n/a					
NMED issued a CoC with controls for this Site on September 10, 2010. The CoC states that storm water discharge may mobilize residual contamination from the Site and requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	01-003(e)	Storm water runoff	SWMU 01-003(e) was a surface disposal area located along the northern wall of Los Alamos Canyon. Concrete construction debris, piping, and other miscellaneous objects were observed at the site in the past. A major portion of this site is under fill material brought in by the private owner to extend the canyon rim farther south.	n/a	n/a					
NMED issued a CoC with controls for this Site on September 10, 2010. The CoC states that storm water discharge may mobilize residual contamination from the Site and requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	01-006(d)	Storm water runoff	SWMU 0 1-006(d) is a drainline and associated outfall that served former LANL building D-3 and discharged to a hillside above Los Alamos Canyon.	n/a	n/a					
NMED issued a CoC with controls for this Site on February 18, 2011. The CoC requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	03-056(c)	Storm water runoff	SWMU 03-056(c) is an inactive outdoor transformer storage area located at TA-03 above a tributary to Sandia Canyon. The area was used to store electrical equipment, capacitors, and transformers with PCB-containing dielectric oils. Waste solvents used to clean electric equipment were also stored at this location. Investigations and remedial actions were conducted at the site in 1994, 1995, 2000, and 2001.	n/a	n/a					

4

Table II-1 Improvements (continued)								
	2. Affected Outfalls				inal Ince Date			
1. Identification of Conditions, Agreements, etc.	Number	Source of Discharge	3. Brief Description of Project	a. Req	b. Proj			
NMED issued a CoC with controls for this Site on June 3, 2011. The CoC states that storm water discharge may mobilize residual contamination from the Site and requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	21-013(b)	Storm water runoff	SWMU 21-013(b) is the location of a former surface debris disposal site located immediately south of MDA V on the south-facing slope leading into BV Canyon. It is not known how long this site received building debris; however, it did not receive waste after 1994. SWMU 21-013(b) contained the external concrete piers, the concrete building foundations, and other building debris resulting from the 1965 demolition of the laundry facility (building 21-20 [SWMU 21-018(b)]) and a waste treatment laboratory (building 21-33 [AOC 21-009]). The debris was removed in 2005.	n/a	n/a			
NMED issued a CoC with controls for this Site on June 3, 2011. The CoC states that storm water discharge may mobilize residual contamination from the Site and requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	21-013(g)	Storm water runoff	AOC 21-013(g) is located immediately south of MDA V on the south-facing slope leading into BV Canyon and has historically been described as a surface debris disposal site. It is not known how long the site received building debris; however, it did not receive waste after 1994. AOC 21-013(g) consisted of two discarded drainlines and miscellaneous building materials of unknown origin. The debris was removed in 2005.	n/a	n/a			
NMED issued a CoC with controls for this Site on June 3, 2011. The CoC states that storm water discharge may mobilize residual contamination from the Site and requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	21-018(a)	Storm water runoff	SWMU 21-018(a), more commonly referred to as MDA V, is an approximately 1-acre site located immediately south of the former laundry facility [building 21-20; SWMU 21-018(b)]. The SWMU consists of three former interconnected liquid waste absorption beds constructed to receive radioactive liquid wastewater from the laundry facility and designed to enhance the infiltration of liquids into the tuff bedrock. The absorption beds were constructed in 1945 and operated until 1961. They remained on stand-by status until September 1963 when they were permanently removed from service. All absorption bed material and associated piping was removed between 2005 and 2007.	n/a	n/a			

S

Table II-1 Improvements (continued)								
	2. Affect	ed Outfalls			Final ance Date			
1. Identification of Conditions, Agreements, etc.	Number	Source of Discharge	3. Brief Description of Project	a. Req	b. Proj			
NMED issued a CoC with controls for this Site on June 3, 2011. The CoC states that storm water discharge may mobilize residual contamination from the Site and requires monitoring storm water discharge for potential transport of residual contamination. The CoC notes that this monitoring is currently being accomplished under the NPDES Individual Permit.	21-023(c)	Storm water runoff	SWMU 21-023(c) is a former septic system that consisted of a tank, inlet and outlet lines, and an outfall that served a waste treatment laboratory (building 21-33 [AOC 21-009]). The septic tank was located immediately west of the MDA V absorption beds and was constructed of reinforced concrete. The outlet line surfaced 40 ft southwest from the tank, approximately 30 ft from the canyon edge above BV Canyon. The outfall area extended south into BV Canyon. The waste treatment laboratory septic system was put into service in 1948, and the tank was removed in 1965.	n/a	n/a			
NMED issued a CoC with controls for this Site on September 27, 2013. The CoC indicates controls are needed to protect surface waters from potential adverse impacts from storm water discharges from the Site and requires monitoring under the NPDES Individual Permit.	35-014(e2)	Storm water runoff	AOC 35-014(e2) is the site of a former oil spill that originated from overflows of a waste-oil impoundment. The impoundment was decommissioned in 1989.	n/a	n/a			
NMED issued a CoC with controls for this Site on September 27, 2013. The CoC indicates controls are needed to protect surface waters from potential adverse impacts from storm water discharges from the Site and requires monitoring under the NPDES Individual Permit.	35-016(i)	Storm water runoff	SWMU 35-016(i) is an active surface discharge channel that handles storm water runoff from the area between the east end of TA-35-85 and the main parking lot for TA-35.	n/a	n/a			
NMED issued a CoC with controls for this Site on September 7, 2010. The CoC requires continuation of storm water monitoring under NPDES Individual Permit for potential transportation of residual contamination.	48-007(a)	Storm water runoff	SWMU 48-007(a) is an outfall formerly used to discharge treated cooling tower blowdown from two cooling towers. The outfall was formerly listed on the NPDES Permit but was removed from the Permit in 1999.	n/a	n/a			
NMED issued a CoC with controls for this Site on September 7, 2010. The CoC requires continuation of storm water monitoring under NPDES Individual Permit for potential transportation of residual contamination.	48-007(d)	Storm water runoff	SWMU 48-007(d) is an outfall formerly used to discharge noncontact cooling water that cooled a vacuum pump. The outfall was formerly listed on the NPDES Permit but was removed from the Permit in 1998.	n/a	n/a			

Table II-1 Improvements (continued)									
	2. Affec	ted Outfalls		4. Final Compliance Dat					
1. Identification of Conditions, Agreements, etc.	Number	Source of Discharge	3. Brief Description of Project	a. Req	b. Proj				
NMED issued a CoC with controls for this Site on September 7, 2010. The CoC requires continuation of storm water monitoring under NPDES Individual Permit for potential transportation of residual contamination.	48-010	Storm water runoff	SWMU 48-010 is an unlined surface impoundment that received discharges from SWMUs 48-007(a) and 48-007(d).	n/a	n/a				
NMED issued a CoC with controls for this Site on August 13, 2007. The CoC requires installation of permanent and appropriate storm water controls to prevent the downgradient transport of contaminant via storm water.	73-002 s	Storm water runoff	SWMU 73-002 is a former incinerator used to burn municipal solid waste and a surface disposal area used to dispose of the incinerator ash. All ash and other disposed waste were removed from the site from 2006–2007.	n/a	n/a				
NMED issued a CoC with controls for this Site on August 13, 2007. The CoC requires installation of permanent and appropriate storm water controls to prevent the downgradient transport of contaminant via storm water.	73-006 s	Storm water runoff	SWMU 73-006 consisted of two drainlines that discharged to Pueblo Canyon from the incinerator building.	n/a	n/a				

 $\overline{}$