

1. . The four most recent reports in this series, unclassified, are LA-5184, LA-5586, LA-5977-PR, and LA-6321-MS.

. . .

.

-

٠

.

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy \$4.50 Microfiche \$3.00

·

This report was prepared as an account of work sponsored by the United Nates Government, Neither the United States nor the United Nates Government, Neither the United States institution, nor any of their employees, nor any of their contractors, subwortractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy. completeness, or unefulness of any information, apparetus, product, or process disclosed, or represents that its use would not infringe privately owned rights. CONTENTS

ABSTRACT	C .	1
Ι.	INTRODUCTION	1
	A. Physical Setting	1
	B. Meteorology	2
11.	SUMMARY OF RESULTS	4
III.	STATEMENT OF PARTICULARS	5
	A. Geographic Coordinate System and Access Control	5
	B. Units of Measurement and Statistical Treatment of Data	7
	C. Standards for Environmental Contaminants	7
	D. Analytical Quality Control Program	. 7
IV.	ENVIRONMENTAL RELEASES FROM LASL OPERATIONS	9
v.	EXTERNAL PENETRATING RADIATION	11
	A. Procedures	11
	B. Results	11
VI.	RADIOACTIVITY IN AIR	12
	A. General Sampling Procedures	12
	B. Daily Gross-Beta Radioactivity	12
	C. Annual Gross-Alpha and Gross-Beta Radioactivity	13
	D. Tritium	14
	E. Plutonium	15
	F. Uranium	16
VII.	RADIOACTIVITY IN SURFACE AND GROUND WATERS	16
	A. Regional and Perimeter	17
	B. Water Supply	17
	C. On-Site Surface and Ground Waters	19
VIII.	RADIOACTIVITY IN SOILS AND SEDIMENTS	19
IX.	RADIOACTIVITY IN FOODSTUFFS	20
х.	RADIATION DOSE ASSESSMENT	21
	A. Methods and Assumptions	21
	B. External Penetrating Radiation	21
	C. Radioactivity in Air	22
	D. Other Nuclides and Pathways	24
XI.	CHEMICAL QUALITY OF SURFACE AND GROUND WATERS	24
	A. Regional and Perimeter	24
	B. Water Supply	25
	C. On-Site Surface and Ground Waters	26
	D. Fenton Hill Site Surface and Ground Waters	26
XII.	ECOLOGICAL STUDIES	28
	A. Radiation Exposures Measured in Rodents Inhabiting a Liquid Radioactive Effluent Receiving Area at Los Alamos	28
	B. Long-Term Effect of Exposure to Uranium	29
	C. Distribution and Transport of ¹³⁷ Cs in Los Alamos Soils	31
XIII.	UNPLANNED RELEASE	34
XIV.	RADIOLOGICAL SURVEY AND DECONTAMINATION OF A FORMER TECHNICAL AREA	34
XV.	ACKNOWLEDGMENTS	35
APPENDI	x	36

iji

.

CONTENTS (cont)

REFERENCES	
TABLES	
DISTRIBUTION	LIST

38 40-59

60

¢

4

TABLES

I.	MEANS AND EXTREMES OF TEMPERATURE AND PRECIPITATION	40
II.	UNITS OF MEASUREMENT CONVERSIONS	41
III.	DETECTION LIMITS FOR RADIOCHEMICAL ANALYSES OF TYPICAL ENVIRONMENTAL SAMPLES	42
IV.	ERDA RADIOACTIVITY CONCENTRATION GUIDES (CGs)	43
v.	WATER STANDARDS	44
VI.	ATMOSPHERIC RADIOACTIVE EFFLUENT TOTALS FOR 1976	45
VII.	ANNUAL THERMOLUMINESCENT DOSIMETER MEASUREMENTS	46
VIII.	ANNUAL ATMOSPHERIC LONG-LIVED GROSS-ALPHA AND GROSS-BETA ACTIVITY CONCENTRATIONS	47
IX.	ANNUAL ATMOSPHERIC TRITIATED WATER VAPOR CONCENTRATIONS	48
x.	ANNUAL ATMOSPHERIC ²³⁸ PU AND ²³⁹ PU CONCENTRATIONS	49
XI.	ANNUAL ATMOSPHERIC URANIUM	50
XII.	RADIOACTIVITY IN OFF-SITE AND SUPPLY WATERS	51
XIII.	RADIOACTIVITY IN ON-SITE SURFACE AND GROUND WATER	52
XIV.	RADIOACTIVITY IN SOIL AND SEDIMENTS	53
xv.	CHEMICAL QUALITY OF REGIONAL SURFACE WATER	54
XVI.	CHEMICAL QUALITY OF PERIMETER SURFACE AND GROUND WATERS	55
XVII.	CHEMICAL QUALITY OF THE LOS ALAMOS WATER SUPPLY	56
XVIII.	CHEMICAL QUALITY OF ON-SITE SURFACE AND GROUND WATERS	57
XIX.	CHEMICAL QUALITY OF WATER IN THE VICINITY OF FENTON HILL	58
xx.	SOIL EROSION STAKE DATA FOR MORTANDAD CANYON BETWEEN JUNE 12, 1975 AND	59

NOVEMBER 4, 1976

FIGURES

1.	Topography of the Los Alamos, New Mexico, area	v
2.	North-central New Mexico	3
З.	Los Alamos County residential areas and LASL technical areas	6
4.	TLD and air sampler locations	10
5.	Long-lived atmospheric gross-beta radioactivity for 1976	13
6.	Average monthly long-lived gross-beta radioactivity over the past 4 yr for on-site, perimeter, and off-site sampling locations	14
7.	Annual mean atmospheric tritiated water concentrations in the vicinity of LASL	15
8.	Regional surface water, sediment, and soil sampling locations	17
9.	Water, sediment, and soil sampling locations on or near the LASL site	18
10.	Fenton Hill Sampling Station map	27
11.	Estimated contour lines of uranium concentrations (mg U/g) in surface soil (0-2.5 cm depth) samples obtained at E-F Site on a polar coordinate sampling scheme	30
12.	Cesium-137 in soils from stream channels and banks	32
13.	Stream channel erosion	33

1

٦

Fig. 1. Topography of the Los Alamos, New Mexico, area.

,

a

ENVIRONMENTAL SURVEILLANCE AT LOS ALAMOS DURING 1976

by

Environmental Studies Group

ABSTRACT

This report documents the environmental monitoring program at the Los Alamos Scientific Laboratory (LASL) in 1976. Data are presented for concentrations of radioactivity measured in air, ground and surface waters, sediments, soils, and foodstuffs, and are compared with relevant U.S. Energy Research and Development Administration guides and/or data from other reporting periods. Levels of external penetrating radiation measured in the LASL environs are given. The average whole-body radiation dose to residents of Los Alamos County resulting from LASL operations is calculated. Chemical qualities of surface and ground waters in the LASL environs have been determined and compared to applicable standards. Results of related environmental studies are summarized.

I. INTRODUCTION

This report documents the results of the environmental monitoring program conducted at the Los Alamos Scientific Laboratory (LASL) during 1976. In keeping with Energy Research and Development Administration (ERDA) and Laboratory intent to keep information on environmental quality available to the public, it principally serves the purpose of providing public documentation of data on environmental quality and conditions in the vicinity of the Laboratory. In accordance with LASL contractual agreement, it additionally complies with the requirements specified in ERDA Manual Chapter (ERDAM) 0513.

The Laboratory is administered by the University of California for ERDA, under

contract W-7405-ENG-36. The LASL environmental program is conducted by the Environmental Studies Group (Group H-8) as part of continuing environmental investigation and documentation.

Since its inception in 1943, the Laboratory's primary mission has been nuclear weapons research and development. National security programs include weapons development, laser fusion, nuclear materials, and laser isotopes separation. LASL also conducts research programs in the physical sciences, energy research and development, and biomedical and environmental studies. A. Physical Setting

The Los Alamos Scientific Laboratory and the residential communities of Los Alamos and White Rock are located in Los Alamos County in north-central New Mexico, about 100 km NNE of Albuquerque and 40 km

NW of Santa Fe, by air. The lll km² Laboratory site and adjacent communities are situated on the Pajarito Plateau, which consists of a series of mesas separated by deep canyons that run eastward from the Jemez Mountains to the Rio Grande valley. Most Laboratory and community development is confined to the mesa tops; the surrounding land is essentially undeveloped. Large tracts of land north, west, and south of the Laboratory site are held by the U.S. Forest Service and the U.S. National Park Service. Indian pueblo lands border the Laboratory to the east (Figs. 1 and 2). The major plant associations of the area are coniferous forests and pinon-juniper woodlands, which support a typical variety of western mountain wildlife.

North-central New Mexico contains approximately one-half million people, of whom nearly 70% are concentrated in Albuquerque and another 10% are located in Santa Fe. The remainder of the population is distributed among small towns and Indian pueblos ranging in size from a few hundred to a few thousand inhabitants. About 12 000 people live in the residential area of Los Alamos proper and some 6000 more reside in the White Rock area.

The economy of the Santa Fe/Los Alamos area is based largely on Government operations (LASL and the New Mexico State Government offices in Santa Fe), large tourist trade, arts and crafts, and some light service industries. Subsistence agriculture is practiced to a limited extent within 20 to 40 km of Los Alamos. In the immediate area (less than 20 km from LASL) home gardening is practiced, but is not quantifiable from the amount of population subsistence provided.

B. Meteorology

Los Alamos has a semiarid, continental mountain climate. The average annual precipitation of 46 cm is accounted for by warm-season orographic convective rain showers and winter migratory storms. Seventy-five percent of the annual total moisture falls between May and October, primarily as thunderstorms. Peak shower activity is in August, when one day in four will have at least 2.5 mm of rain accumulations, and some rain falls on about half of the days. The annual average of 62 thunderstorm-days per year makes this area equivalent to the Gulf Coast states in thunderstorm occurrence. The showers tend to develop in early afternoon, with a secondary maximum about 1800 MST. They are accompanied by lightning, gusty surface winds (10-20 m/s), and occasional hail. Tornadoes have not been observed in this area.

Winter precipitation falls primarily as snow, with annual accumulations of about 1.3 m. The water equivalent of snowfall in Los Alamos varies between 1:10 and 1:20, the latter occurring in cold conditions and higher altitudes.

Summers are cool and pleasant. Maximum temperatures are generally below 32° C, and a large diurnal variation keeps nocturnal temperatures in the 12-15°C range. Winter temperatures are typically in the range from -10°C to 5°C. Many winter days are clear with light winds, and strong solar radiation makes conditions quite comfortable even when air temperatures are cold. The annual total of heating degree days (degree days per day = 18.3°C - daily average temperature in degrees Celsius) is 3500, with January accounting for over 610 and July and August averaging 0.

Annual insolation is approximately two-thirds of potential total insolation according to an analysis of one year's solar radiation described in Balcomb et al.,¹ which estimated an envelope to the observations of daily insolation. This implies that approximately one-third of the daylight hours in one year were affected by cloudiness. The most cloud-free month (January) had 85% of potential insolation while the minimum (July) had 55%.

Fig. 2. North-central New Mexico.

Average relative humidity is 40%, ranging from 30% in May and June to above 50% in July, January, and February. The diurnal variation is very large and basically inverted to the diurnal temperature cycle. The summer months have nocturnal maxima of 80% and minima of 30%. Spring is the driest time, with a diurnal range from 15-50%.

Table I shows the means and extremes of temperature and precipitation for the period of record, 1910-1974, and separately for 1976. The beginning of the year was slightly warmer than average, but the second half year was distinctly cool. The year was drier than normal with total precipitation only 76% of average. February, July, and November had above average precipitation while January, October, and December had less than 10% of their normal accumulation.

II. SUMMARY OF RESULTS

This report summarizes the results of LASL's environmental monitoring program. Results of measurements of (1) radioactivity in air, ground and surface waters, sediments and soils, and foodstuffs, (2) external penetrating radiation, (3) chemical quality of surface and ground waters, (4) the chemical and radiochemical quality of potable supply waters, and (5) related ecological investigations are presented. The results of the environmental monitoring program for this reporting period confirm the generally low radiation and contaminant levels due to LASL operations previously observed^{2,3,5} in the Los Alamos environs.

The average external penetrating radiation level for off-site locations was ll8 mrem/yr. External penetrating radiation at on-site locations near facilities emitting radiation reached a maximum of about 480 mrem/yr. Annual mean concentrations of atmospheric tritium oxide for regional, perimeter, and on-site locations were 15, 23, and 60 x 10^{-12} µCi/mℓ, respectively. These concentrations are, respectively, 0.008, 0.012, and 0.0012% of the applicable uncontrolled-area and controlled-area Concentration Guides (CGs). (Concentration Guides represent levels of radioactivity considered acceptable in air breathed, or water drunk, by occupationally exposed persons in controlled areas or members of the general public in uncontrolled areas, see Table IV.) Atmospheric long-lived grossalpha and gross-beta mean concentrations in the LASL environs were 1.3 and 64 x 10^{-15} µCi/ml, respectively, or 2.2 and 0.2% of their respective uncontrolled-area CGs. Atmospheric ²³⁸Pu and ²³⁹Pu concentrations in the LASL environs were 0.5 and 11.9 x 10^{-18} µCi/ml, respectively, which are 0.0007 and 0.02% of the uncontrolled-area CGs. The annual atmospheric uranium mean concentration was 59 pg/m³ in the LASL environs, 0.0007% of the uncontrolled-area CG.

Radioactivity in surface and ground waters in the LASL environs was below applicable CGs. The chemical quality of most surface and ground water samples in the LASL environs met standards set for drinking water. The chemical quality of municipal and Laboratory sewage effluent samples was typical for such releases, and these releases do not become a source of potable water. The samples of potable supply water met applicable standards (see Table V) for all chemical and radiochemical constituents measured except arsenic. Water from one supply well had natural arsenic concentrations that exceeded the Environmental Protection Agency (EPA) drinking water standard. However, water from this well is mixed with water from other wells in the same field so the arsenic concentration in the distribution system is diluted to about 20% of the standard (see Section XI.B.).

No Laboratory-related concentrations of radionuclides were detected beyond a 20-km radius of the Laboratory. Consequently, individual and population dose assessments were made for Los Alamos County only. The only significant (~1 mrem/yr or greater) whole-body doses that could be attributed

to Laboratory effluents resulted from tritiated water vapor, 41 Ar, and mixed activa-tion products (11 C, 13 N, and 15 O). The maximum above-background individual whole-body dose due to tritiated water vapor, at a site boundary, was calculated to be 0.76 mrem/yr, which is 0.15% of the ICRP-recommended⁴ radiation protection standard of 500 mrem/yr for individuals in uncontrolled areas. The tritiated water vapor contributed a total population dose of approximately 0.25 manrem to the 18 000 residents of Los Alamos County. Argon-41 was estimated by theoretical calculations to result in a maximum individual whole-body dose, in an uncontrolled area, of 3.1 mrem/yr, or 0.62% of the radiation protection standard. The estimated population dose from ⁴¹Ar was 1.8 man-rem. Mixed activation products were estimated by theoretical calculations to result in a maximum individual whole-body dose, at a site boundary, of 22 mrem/yr, or 4.4% of the radiation protection standard. The estimated population dose attributable to mixed activation products was 1.9 man-rem. The maximum lung dose from airborne transuranic nuclides was calculated to be 0.2 mrem/yr, which is 0.013% of the radiation protection standard of 1500 mrem/yr for an individual in an uncontrolled area. For comparison, the residents of Los Alamos County receive an estimated 2750 man-rem from natural radiation sources.

Several related ecological investigations are also briefly summarized. These include studies of the distribution of 137 Cs in canyon soils, erosion rates, radiation received by rodents living near low-level contamination in a treated effluent receiving stream channel, and uranium deposited on ground surrounding dynamic test sites.

An inadvertent release of radioactive material occurred in July 1976. Approximately 22 000 Ci of tritium gas $({}^{3}\text{H}_{2})$ was released from a vent on the Cryogenics Building at TA-3 due to an operational error. The gas was transported and dispersed by a northeast wind. Urine assay of

potentially exposed Laboratory personnel and environmental measurements from air and vegetation samples showed no measurable exposure resulting from the release, either on- or off-site.

III. STATEMENT OF PARTICULARS

A. Geographic Coordinate System and Access Control

All Los Alamos County and vicinity locations referenced in this report are identified by the long-established LASL Cartesian coordinate system (see Fig. 3). This system is based on English units of measurement and is standard throughout the Laboratory, but completely independent of the U.S. Geological Survey and the New Mexico State Survey coordinate systems. The major coordinate markers shown on the maps are at 10 000-ft (3.048-km) intervals, but for the purposes of this report locations are identified to the nearest 1000 ft (0.30 km). The area within the LASL boundary (see Figs. 1 and 3) is considered a controlled area because the Laboratory has the capability of complete access restriction. Complete control would be instituted when deemed necessary. Under normal circumstances, however, public access roads that traverse the Laboratory site are open to commuters and other travelers; no continuous occupancy of these areas is permitted. Access to individual technical areas is restricted for safety and security reasons. Some of the more remote and little-used regions of the site are not actively controlled against public access, although most of the site is posted against trespassing and routine security patrols cover the entire site.

In November 1976, the Los Alamos Scientific Laboratory lands, encompassing lll km^2 , were designated as a National Environmental Research Park by the U.S. Energy Research and Development Administration. The ultimate goal is to encourage environmental research that will contribute understanding of how man can best live in balance with

Fig. 3. Los Alamos County residential areas and LASL technical areas.

nature while enjoying the benefits of technology. Park resources are to be made available to individuals and organizations outside of LASL for the purposes of facilitating self-supported research on those subjects deemed appropriate and compatible with the LASL programmatic mission. B. Units of Measurement and Statistical

Treatment of Data

LASL scientific and technical documentation uses metric units. Table II provides conversion data for units of measure given in this text.

For many environmental measurements. particularly those from which a chemical or instrumental background must be subtracted, it is possible to obtain net values that are lower than the minimum detection limit (MDL) of the system (see Table III). It is not uncommon for individual measurements to result in values of zero or negative numbers due to statistical fluctuations in the measurements. Although a negative value for an environmental measurement does not represent a physical reality, a valid long-term average of many measurements can be obtained only if the very small or negative values are included in the population. For this reason, the primary value given in the numerical tabulations in this report is the actual value obtained from an individual measurement or group of measurements. These primary values are those used in making subsequent statistical analyses and in evaluating the real environmental impact of Laboratory operations. To provide an indication of the precision of the numerical value, an additional value is included in parentheses immediately following the primary numerical value. For contiguous measurements, such as air monitoring and environmental radiation, the parenthetical value indicates the 95% confidence range for the primary value, i.e., twice the square root of the variance, or 2σ . For discrete data, e.g., water samples, soil samples, etc., the parenthetical value represents the

average of the analytical errors associated with the measurements.

C. Standards for Environmental Contaminants

The concentrations of radioactive and chemical contaminants in air and water samples collected throughout the environment are compared with pertinent standards contained in the regulations of several Federal and State agencies to verify the Laboratory's compliance with these standards. LASL operations pertaining to environmental quality control are conducted in accordance with the directives and procedures contained in ERDAM 0500, <u>Health and Safety</u>, Chapters 0510, 0511, 0513, 0524, and 0550.

In the case of radioactive materials in the environment, the standards contained in ERDAM 0524 (see Table IV) take precedence over other Federal or State regulations. However, the ERDA standard for uranium in water (1500 and 60 mg/l for controlled and uncontrolled areas, respectively) does not consider chemical toxicity. Therefore, for the purposes of this report, the more restrictive standards⁴ of the International Commission on Radiological Protection (ICRP) for uranium in water of 60 mg/l for an occupational 40-h week, and 1.8 mg/l for a nonoccupational 168-h week, are preferred. For atmospheric uranium, the ERDA and ICRP standards are in agreement. For chemical pollutants, the controlling standards are those promulgated by either the EPA or the appropriate New Mexico State agency (Table ♥).

D. Analytical Quality Control Program

A routine quality control program is maintained on the environmental analytical chemistry to provide regular evaluation of the results. In addition, the program provides data useful in assessing the capabilities of the various procedures. Data generated by this program are presented here, along with a discussion of the methods of data analysis. For most procedures, quality control involves analyses of blanks and standards along with routine analyses of unknown samples. Blanks are matrix materials containing quantities of the constituent below the detection limit of the analytical procedure. Standards are materials containing known quantities of the constituent.

Quality control samples for grossalpha, gross-beta, tritium, and 137 Cs are provided by the EPA as part of their ongoing laboratory intercomparison program. Standards for plutonium analyses are prepared by adding known quantities of ²³⁹Pu to soils from deep wells, Teklad hamster food (to represent vegetation), ground beef, beef bones, or triple-distilled water. Standards for uranium analyses are wellcharacterized, reference samples of various grades of uranium ore from the International Atomic Energy Agency. Blanks for uranium were selected from a large number of analyses of air filters containing quantities of uranium at less than the detectable limit.

The characteristics of the various analytical procedures were evaluated from the quality control samples. The percent recovery (% Recovery = Reported Quantity $\frac{x \ 100}{x}$) was calculated for each analysis of a quality control standard. A mean value (\bar{x}) of the percent recovery for all analyses of a given type was calculated by weighting each value (x_i) by the uncertainty associated with it:

$$\bar{\mathbf{x}} = \frac{\Sigma_{\mathbf{i}} \cdot \mathbf{x}_{\mathbf{i}} / \sigma_{\mathbf{i}}^{2}}{\Sigma_{\mathbf{i}} \cdot \mathbf{x}_{\mathbf{i}} / \sigma_{\mathbf{i}}^{2}} \cdot$$

The standard deviation (σ) of the weighted mean was calculated assuming a normal distribution.

$$\sigma = \frac{\Sigma_{i}(\bar{x}-x_{i})^{2}}{N-1}$$

These calculated values are presented below. The weighted mean of the percent recovery is indicative of the accuracy of the analysis. The standard deviation is a measure of its precision.

PERCENT RECOVERY IN QUALITY CONTROL STANDARDS

No, of <u>Samples</u>	Percent Recovery (Weighted Mean) (x ± σ)
35	92 ± 11
10	94 ± 29
27	99 ± 9
36	94 ± 19
39	96 ± 8
28	101 ± 31
48	101 ± 8
	No. of <u>Samples</u> 35 10 27 36 39 28 48

The weighted mean of the absolute quantity of the constituent measured in blank materials and the standard deviation of the mean are given as follows.

QUANTITY OF CONSTITUENT REPORTED IN BLANKS

Analyses	No. of Determi- nations	Units	Weighted <u>Mean</u>	Standard Deviation (1 σ)
238 _{Pu}	54	pCi	-9.7×10^{-4}	3.7×10^{-2}
239 _{Pu}	38	pCi	3.2×10^{-4}	2.2×10^{-2}
Uranium	153	ng	25	12

Detection limits for analyses performed in conjunction with the environmental monitoring program are presented in Table III. Results greater than the defined value of the detection limits indicate the presence of the constituent at the 95% confidence level. However, results less than the detection limit do not necessarily indicate its absence. Detection limits for 239 Pu, ²³⁸Pu, and uranium are calculated from the mean blank value + 2 σ . Tritium and ¹³⁷Cs are instrumental analyses; the blank is evaluated and subtracted out of the calculated result. Therefore, the detection limit is merely 2 σ of repetitive determinations of the instrumental blank. Grossalpha and gross-beta are analyzed simultaneously by counting on a gas proportional counter and electronically discriminating the output pulses. As there is crosstalk generated by the detection of the two types of emissions, the detection limit of one is a function of the other's count rate. Detection limits in Table III assume that counting rates for both alpha and beta are

at background levels. The detection limit for alpha increases 10% above the limit for every count per minute (cpm) of beta activity emitted by the sample. Similarly, the detection limit for beta increases 40% for every 10 cpm of alpha.

Quality control monitoring has successfully identified several analytical problems associated with the environmental monitoring program. For example, there was an unexplained increase in tritium concentration in routine water monitoring in the autumn of the year. Careful evaluation of the quality control samples showed a similar increase in the blank waters from the EPA. The increase is now attributed to contamination in the scintillation liquid used in the analyses, to an extent equivalent to about $2 \times 10^{-6} \mu \text{Ci/ml}$. Correction to allow for this contamination provided satisfactory results for the EPA blanks and standards.

Quality control on 238,239 Pu analyses of the air filters showed an untraced loss of the plutonium isotopes from this matrix, i.e., the recovery was 50%-75% vs the >90% seen on analyses of most matrices. The problem was traced to an inadequate method of dissolution. Subsequent development work improved the technique, and the recovery of 239 Pu from filter standards is now comparable to results for the quality control standards.

Comparison between uranium analyses on air filter blanks and samples indicated that the quantity of uranium in the aliquots was below the detection limit of the procedure. Analyses were rerun using larger sample aliquots.

IV. ENVIRONMENTAL RELEASES FROM LASL OPER-ATIONS

LASL's activities are carried out in 30 active technical areas (TA) distributed over the LASL site (Fig. 3). These facilities include hundreds of potential sources of waste effluent. However, processes with potential for significant releases are confined to only a few locations which are rigorously controlled and monitored.

The environmental monitoring program emphases are dictated by the types and quantities of potentially hazardous materials being used in LASL programs and by the demography, ecology, hydrology, and geology of this location. Emphasis is placed on the analyses for tritium, uranium, and plutonium in samples of the environmental media. Fission product radionuclides are generally of lesser concern, due to the minimal amounts handled, but selected samples are analyzed for radioactive species of cesium and strontium.

The documented release of radioactive materials to the atmosphere from LASL operations is shown in Table VI. These data were compiled from stack effluent monitoring determinations. Releases of plutonium in 1976 were about 25% of the total released in 1975 and less than 10% of the total released in 1974,^{2,5} due largely to improved filtration systems at TA-3. Mixed fission product releases were higher in 1976 than in 1975 by about 75% due to programmatic differences. Argon releases were higher in 1976 than in 1975 by about 40% due to increased operation of the Omega West Reactor (TA-2). Tritium releases were lower in 1976 than in 1975 by about 45% due to programmatic differences.

In addition to the releases from stacks listed in Table VI, some depleted uranium (uranium with reduced amounts of isotopes other than 238 U) is dispersed by experiments employing conventional high explosives. Most of the debris from these experiments is deposited on the ground in the vicinity of the firing point, and relatively little is dispersed as air-suspended particulate. In 1976 approximately 1023 kg of depleted uranium were used in such experiments. Based on previous measurements of isotopic composition⁶ this mass is estimated to contain approximately 0.38 Ci of activity

Fig. 4. TLD and air sampler locations.

(uranium only, excluding daughters). Limited experimental information indicates that no more than about 10% of the depleted uranium is aerosolized. Approximate dispersion calculations indicate that resulting airborne concentrations at site boundaries would be in the same range as attributable to natural crustal-abundance uranium in resuspended dust. This theoretical evaluation is compatible with the concentrations of atmospheric uranium measured by the continuous air sampling network (see Section VI.F.).

V. EXTERNAL PENETRATING RADIATION A. Procedures

Exposure from external penetrating radiation (primarily gamma radiation) in the LASL environs is monitored by 48 thermoluminescent dosimeter (TLD) stations. Three regional stations are located 28 to 44 km from the Laboratory boundaries in the neighboring communities of Espanola, Pojoaque, and Santa Fe (see Fig. 2). Fifteen stations are within 4 km of the boundary and are classed as perimeter stations. Thirty stations are located within LASL boundaries and are classed as on-site stations. Twenty-one of the on-site stations are located near LASL nuclear facilities, in groups of three to six stations per facility, to monitor these sources of radiation. All TLD stations are on a 13-wk integration cycle. Locations for on-site and perimeter stations are given in Fig. 4, and map coordinates identify locations in the data tabulation (see Table VII).

Each of the TLD monitors consists of three Harshaw TLD-100 LiF (natural isotopic composition) chips, 6.4 mm square by 0.9 mm thick. The TLDs are annealed, calibrated, and read by standard techniques. The annealing cycle is 1 h at 400°C, followed by 1 h at 100°C. For each annealing batch, an independent calibration factor is determined by standard radiation (from 10 mR to 160 mR) with 60 Co. The chips are heat-sealed in an opaque polyethylene envelope which is sealed in an opaque 7-ml polyethylene vial for placement in the field. Latent thermoluminescence after annealing and transit dose are compensated for by control dosimeters. All TLDs are read with an Eberline model TLR-5 reader with 15-s, 140°C preheat and 15-s, 240°C integration cycles. During handling, exposure to light is minimized. As the TLDs are calibrated in a known radiation flux from a 60 Co source as measured by air-lionization instruments, a conversion factor of 1 rem (tissue) = 1.061 R is used.⁷ B. Results

The annual external penetrating radiation dose values determined from the TLD environmental radiation monitoring program are summarized in Table VII according to regional, perimeter, and on-site locations. The values are the total dose integrals for 1976 for each station. For regional and perimeter stations, and for those on-site stations not located close to known sources of radiation, the annual dose reported is four times the weighted mean of the four quarterly dose measurements. The reciprocal of the variance of each quarterly dose measurement is used for weighting both the mean and the uncertainty of the mean (2 σ , 95% confidence interval).⁸ This method of calculating the annual dose assumes that there is no difference in the natural radiation dose rate during the four quarters at a particular dosimeter station. While this may not be strictly true, since soil moisture content and snow cover can cause temporal variations in dose rate, the assumption of constant dose rate is widely used in environmental dosimetry. The largest variation in quarterly doses at any of the 18 regional and perimeter stations was 57%. The smallest variation was 21%. The mean and standard deviation of the percent variation of quarterly doses of all 18 stations were 32% and 8%, respectively.

For those on-site stations that monitor nuclear facilities, temporal differences

are expected in the quarterly dose measurements. These differences may be as much as several hundred percent and application of the weighted mean is clearly not useful. Therefore, the cumulative sum of the four quarterly dose measurements was used for the annual dose for these stations. The uncertainty in the dose (2 σ , 95% confidence interval) is twice the square root of the sum of the variances of each 13-wk dose. This uncertainty is not related to the temporal differences between the quarterly doses for each station. The variance for each quarterly dose is derived from the distribution of the readings for the three individual chips in the dosimeter, from the calibration uncertainty, from the control dosimeter corrections, and from the instrumental background subtractions.

Significant spatial variations were also observed which result from differences in the terrestrial component of external environmental gamma radiation. These differences are a complex function of the topography, geology, hydrology, and meteorology of the monitoring sites. Due to atmospheric shielding of cosmic radiation, elevation is also a factor in natural radiation levels. As would be expected, the lower monitoring locations, e.g., Santa Fe, Pojoaque, Española, and Pajarito Acres, record the smallest dose rates. The weighted mean for all off-site (regional and perimeter) stations is 118.2 mrem/yr, with an uncertainty of \pm 27.4 mrem/yr (2 σ , 95%) confidence interval). Again, the assumption is that the dose being measured is the same at all stations. This assumption cannot be strictly defended. However, if the highest dose and the lowest dose are discarded, the ranges of all the other values are within 3% at the 3 σ level. The arithmetic mean for all off-site stations is 118.3 mrem/yr, which supports the assumption.

VI. RADIOACTIVITY IN AIR

A. General Sampling Procedures

Atmospheric radioactivity samples were collected at 29 continuously operating air sampling stations in Los Alamos County and vicinity. On-site and perimeter station locations are shown in Fig. 4; map coordinates identify locations in the data tables. Perimeter stations are 0 to 4 km from the LASL boundary. The regional monitoring stations are located 28 to 44 km from LASL at Espanola, Pojoaque, and Santa Fe (see Fig. 2) and serve as reference points for determining background atmospheric radioactivity concentrations.

Samples were collected over 2-week periods and totaled 729 for 1976. High volume positive displacement air pumps with flow rates of approximately 3 ℓ s were used in the network. Atmospheric aerosols were collected on 79-mm-diam polystyrene filters. Part of the total air flow (~2 ml/s) was passed through a cartridge containing silica gel to adsorb atmospheric water vapor for tritium analyses. Air flow rates through both sampling cartridges were measured with variable-area flow meters, and actual sampling times were recorded.

Lable IV lists Concentration Guides (CGs) for several radioactive species in air and water for uncontrolled (unlimited public access) and controlled (limited public access) areas. (See also Section III.A. regarding site access control.) Concentrations from the perimeter and regional stations are compared to uncontrolled-area CGs. Concentrations from onsite stations are compared to controlledarea CGs.

B. Daily Gross-Beta Radioactivity

Atmospheric radioactivity samples were collected daily (Monday through Friday) at one location (N50 E40) with the same kind of sampler as used for biweekly sampling. Atmospheric particulate matter on each daily filter was counted for gross-alpha and gross-beta activities on collection day, and again 7 to 10 days after collection. The first measurement provided an early indication of any major change in atmospheric radioactivity. The second measurements were used to observe temporal variations in long-lived atmospheric radioactivity.

Figure 5 shows daily atmospheric grossbeta concentrations for 1976. Higher than normal activity occurred during the last quarter of the year. This abnormal activity is attributed to two atmospheric nuclear tests by the People's Republic of China. The Chinese exploded nuclear devices of ~0.2 megatons (MT) and ~4.0 MT, on 26 September 1976 and 17 November 1976, respectively, which injected radioactive debris into the troposphere and stratosphere. Qualitative gamma spectral analyses of atmospheric particulate samples collected after each test showed the presence of fission products (e.g., ¹⁴¹Ce, ¹³¹I, and ⁹⁹Mo). The highest gross-beta concentration, observed on 19 October 1976, was 1300 $(\pm 170) \times 10^{-15} \mu \text{Ci/ml}$, which is 4.3% of the uncontrolled-area CG.

Fig. 5. Long-lived atmospheric gross-beta radioactivity for 1976.

C. Annual Gross-Alpha and Gross-Beta Radioactivity

Gross-alpha and gross-beta activities on the biweekly air filters were measured with a gas-flow proportional counter on collection day and 7 to 10 days after collection. The first count was used to screen samples for inordinate activity levels. The second count (made after adsorbed, naturally occurring, radon-thoron daughters had reached equilibrium with their longlived parents) provided a record of longlived atmospheric radioactivity.

The annual average biweekly gross-alpha and gross-beta concentrations are presented in Table VIII. Station and group means were weighted for the length of each sampling period and for the air volume sampled. The means were calculated using the following equation.⁹

$$\overline{\mathbf{c}} \approx \frac{\sum_{i=1}^{n} \mathbf{v}_i \mathbf{t}_i \mathbf{c}_i}{\sum_{i=1}^{n} \mathbf{v}_i \mathbf{t}_i}$$

where

- \bar{c} = annual mean station or group atmospheric radioactive species concentration,
- n = total number of samples during 1976 for a station or group,
- t_i= length of routine sampling period for station or group i, and
- v_i = air volume sampled for station or group i during t_i.

The standard deviations for station and group means were similarly weighted by using the following equation.⁹

$$\sigma_{\vec{c}} = \left\{ \frac{\prod_{i=1}^{n} (v_i t_i \sigma_i)^2}{\left(\prod_{i=1}^{n} v_i t_i\right)^2} \right\}^{1/2}$$

where

- σ = standard deviation of \bar{c}
- c σ₁ = standard deviation (derived from nuclear counting statistics, air sample volume uncertainties, and analytical uncertainties of c₁).

Parenthetical values represent twice the propagated measurement uncertainties (2 σ) associated with the annual means. The data are grouped according to off-site, perimeter, and on-site sampling locations. For gross-alpha activity, the group means were 1.4 (±0.1), 1.3 (±0.1), and 1.3 (±0.1) x 10⁻¹⁵ µCi/ml, respectively. The highest annual station mean gross-alpha concentration, 1.8 (±0.3) x 10⁻¹⁵ µCi/ml, is 0.09% of the controlled area CG.

For gross-beta activity, the regional, perimeter, and on-site annual means were 60 (± 4) , 65 (± 2) , and 65 $(\pm 2) \times 10^{-15} \mu \text{Ci/ml}$, respectively. The highest observed station mean concentration of 143 $(\pm 20) \times 10^{-15} \mu \text{Ci/}$ ml (Royal Crest Trailer Court) is 0.5% of the uncontrolled-area CG. This mean is biased, since the station was only operated in August through December when atmospheric radioactivity levels were relatively higher due to fallout from the Chinese nuclear tests (see Section VI.B.). For comparison, the mean concentration for the three regional stations during the same period was 131 $(\pm 17) \times 10^{-15} \mu \text{Ci/ml}$.

Significant temporal variations in long-lived gross-alpha and gross-beta concentrations (see Figs. 5 and 6) were observed this year. The major fluctuations, in November and December, were caused by the Chinese atmospheric nuclear explosive tests previously mentioned. All maximum values of long-lived gross-alpha and grossbeta activities occurred during these 2 months.

Data plotted in Fig. 6 also show there were no significant differences in atmospheric gross-beta concentrations among the regional, perimeter, and on-site sampling station groups this year. There have been no statistically significant differences over the past 3 yr. The similarities in concentrations imply that LASL operations have a negligible impact on the ambient atmospheric radioactivity in the Los Alamos vicinity.

D. Tritium

Silica gel cartridges from the 29 air sampling stations, were analyzed biweekly for tritiated water. The cartridges contained a small amount of 'indicating' gel at each end to indicate dessicant oversaturation. During cold months of low absolute humidity, sampling flow rates were increased to ensure collection of enough water vapor for analysis. Water was distilled from each silica gel sample, yielding a 2-wk average atmospheric water vapor sample. An aliquot of the distillate was then analyzed for tritium by liquid scintillation counting.

The concentrations for each station were averaged for 1976 and are presented in Table IX. Parenthetical values represent twice the propagated measurement errors

Fig. 6. Average monthly long-lived gross-beta radioactivity over the past 4 yr for on-site, perimeter, and off-site sampling locations.

 (2σ) associated with the annual means (see Section VI.C. for explanation of uncertainty calculation methods). The highest observed annual mean concentration for an uncontrolled area (Los Alamos Airport) was 51 (±4) $\times 10^{-12}$ µCi/ml, and for a controlled area (TA-54) the highest value was 330 (\pm 32) x 10^{-12} µCi/ml. These concentrations are 0.026% and 0.0066%, respectively, of the uncontrolled and controlled area CGs specified for tritium in air. The relatively high concentration at TA-54 was possibly due to evapotranspiration of buried tritium wastes at this materials disposal site. These tritium concentrations, as well as the CGs, are for atmospheric tritiated water (HTO).

The annual means for the distributions of regional, perimeter, and on-site tritium concentrations were 15 (± 2) , 23 (± 1) , and 60 (±2) x $10^{-12} \mu Ci/ml$, respectively. The on-site mean is statistically higher (at a >99% confidence level) than the regional and perimeter means. The higher value reflects tritium releases from LASL operations (see Table VI). The annual mean atmospheric tritium concentrations for the perimeter and on-site stations are depicted graphically in Fig. 7. The relatively higher concentrations for the on-site stations are clearly seen. The highest annual mean concentration of 330 (\pm 32) pCi/m³ was observed at TA-54 (SO80 E260).

E. Plutonium

After being measured for gross-alpha and gross-beta activities, the biweekly filters for each station were combined and dissolved to produce composite 6- or 8-wk samples for each station. An aliquot of each sample was saved for uranium analysis, and plutonium was separated by anion exchange from the remaining solution. The aliquots for uranium analyses were combined to represent 12- or 14-wk samples. The purified plutonium samples were separately electro-deposited and measured by alphaparticle pulse height analysis. Alphaparticle energy groups associated with the

Graphic representation of annual mean atmospheric tritiated water concentrations. Relative concentrations are indicated by height above the grid plane. The bold outline at the level of the grid plane indicates the Laboratory boundary; the letter symbols indicate the community areas of Los Alamos (LA) and White Rock (WR).

Fig. 7. Annual mean atmospheric tritiated water concentrations in the vicinity of LASL.

decay of 238 Pu and 239 Pu were then integrated, and the concentration of each radionuclide in its respective air sample was calculated. This technique does not differentiate between 239 Pu and 240 Pu. Thus, when the notation 239 Pu is used it actually means the combined amount of 239 Pu and 240 Pu.

The annual average ²³⁸Pu and ²³⁹Pu concentrations for each station are listed in Table X according to regional, perimeter. and on-site sampling locations. Parenthetical values represent twice the propagated measurement uncertainties (20) associated with the annual averages (see Section VI.C. for explanation of uncertainty calculation method). The highest observed annual mean ²³⁸Pu concentration for an uncontrolled area (Royal Crest) was 2.0 (\pm 1.2) x 10⁻¹⁸ μ Ci/ml, and for a controlled area (TA-54) was 4.3 (±1.2) x $10^{-18} \mu \text{Ci/ml}$. These concentrations are, respectively, 0.003% and 0.0002% of the CGs specified for 238 Pu in air. The means for the distributions of

regional, perimeter, and on-site annual average $^{238}{\rm Pu}$ concentrations were 0.0 (±0.4), 0.4 (±0.2), and 0.9 (±0.2) x 10^{-18} µCi/ml, respectively.

The highest observed annual mean concentration of ²³⁹Pu in an uncontrolled area (Los Alamos Airport) was 6.8 $(\pm 1.1) \times 10^{-18}$ μ Ci/ml, and for a controlled area (Booster P-1) was 171 (±11) x $10^{-18} \mu Ci/m\ell$. These concentrations are, respectively, 0.01% and 0.007% of the CGs specified for 239 Pu in air. The ²³⁹Pu annual concentration value for the Booster P-1 station deviates from the normal range of values. This average is largely dependent on the maximum measurement of 1510 (±96) x 10^{-18} µCi/ml observed in July and would be 6 x 10^{-18} µCi/ ml by omitting this value. The July value is believed to be unrealistic since a release and dispersion of ²³⁹Pu from the Laboratory would most likely be noted at several stations. However, the high value could be due to a single soil particle, resuspended by the wind, from the nearby Materials Disposal Site (TA-54), or to crosscontamination in the analytical laboratory. The means for the distribution of regional, perimeter, and on-site annual average ²³⁹Pu concentrations were 4.1 (±0.5), 5.2 (±0.3), and 22.5 (±1.1) x 10^{-18} µCi/ml, respectively. The higher on-site group mean is largely due to the previously mentioned high July measurement, and would have been 4.3 $(\pm 0.5) \times 10^{-18} \mu \text{Ci/ml}$ if that value were omitted.

F. Uranium

A sample was composited for each of the 29 stations, with aliquots taken from the dissolution for the plutonium procedure, to represent a 12- or 14-wk sampling period. The uranium content of the composite was determined by fluorometry and quarterly atmospheric uranium concentrations were calculated. The 12- or 14-wk uranium concentrations for each station were averaged (see Section VI.C. for explanation of averaging method) for 1976 and are shown in Table XI. Parenthetical values represent twice the propagated uncertainties (2σ) associated with the annual means (see Section VI.C. for explanation of uncertainty calculation method). The fluorometric analysis measures total uranium, therefore, the concentrations are given in mass concentration units.

The highest observed annual mean uranium concentration for an uncontrolled area (Diamond Drive) was 111 (±13) pg/m³, and for a controlled area (Booster P-2) the highest value was 125 (±20) pg/m³. These concentrations are, respectively, 0.0012% and 0.00006% of the relevant CGs for natural uranium in air. A third slightly elevated concentration 112 (\pm 37) pg/m³ was observed at TA-54. These three stations are all located in dusty areas where a higher filter dust loading may account for more natural crustal-abundance uranium being collected. The annual means of the regional, perimeter, and on-site uranium concentrations were 61 (± 4) , 59 (± 2) , and 60 (± 3) pg/m³, respectively. These average values are statistically indistinguishable.

VII. RADIOACTIVITY IN SURFACE AND GROUND WATERS

Surface and ground water radioactivity monitoring provides a routine surveillance of the potential dispersion of effluents from LASL operations. Grab samples of water are collected in 4-L polyethylene bottles, acidified in the field with 5 ml of concentrated nitric acid, and returned to the laboratory within a few hours for filtration through 0.45-µm-pore membrane filters. All samples are analyzed radiochemically for dissolved plutonium $(^{238}$ Pu and 239 Pu) and for tritium as HTO, as well as for total dissolved gross-alpha, -beta, and -gamma activities. Selected samples were analyzed radiochemically for ²⁴¹Am, ¹³⁷Cs, and ⁹⁰Sr. Total uranium concentrations were measured by fluorometry.

Analyses of surface and ground water from regional and perimeter stations reflect base line levels of radionuclides in the area. A summary of these analyses is presented first for comparison with analyses from water supply and on-site stations. The summary tables in the text for the regional, perimeter, and water supply show maximum values from each group of stations. The table for the on-site stations shows the highest station average. More detailed results are presented in Table XII and XIII. The stations are grouped according to location or hydrologic similarity. Comparisons with appropriate concentration guides (Table IV) are included.

A. Regional and Perimeter

Regional surface water within 75 km of LASL was collected at six stations in the Rio Grande, Chama, and Jemez Rivers (Fig. 8, Table XII). Radioactivity concentrations were also determined for samples from six perimeter locations, three surface and three ground water stations, located <4 km outside the LASL boundary (Fig. 9, Table XII). The maximum concentrations of radioactive materials in these waters were

Analyses	Units (µCi/ml)	Regional Surface Water	Perimeter Surface and <u>Ground Water</u>	CGs for Un- controlled <u>Areas</u>
з _и .	10 ⁻⁶	2.8	2.6	3 000
90 _{Sr}	10 ⁻⁹	. 16	8.5	300
¹³⁷ Cs	10 ⁻⁹	<32	31	30 000
238 _{Pu}	10 ⁻⁹	<0.02	<0.02	5 000
²³⁹ Pu	10 ⁻⁹	<0.04	<0.03	5 000
Gross-alph	a 10 ⁻⁹	9	7	5 000
Gross-beta	10 ⁻⁹	28	12	300
Total U	µg/⊈	6	17	1 800 ^a

^aSee Section III.C for explanation.

The radionuclide concentrations in water from regional and perimeter stations are low and have shown no change from previous analyses.⁵ The concentrations are well below concentration guides for uncontrolled areas.

B. Water Supply

Water supplied to the Laboratory and the community came from 15 deep wells and 1 gallery. These sources produced a total of $6.4 \times 10^6 \text{ m}^3$ during 1976. The water is

Fig. 8. Regional surface water, sediment, and soil sampling locations.

pumped from the main aquifer which lies at a depth of about 350 m below the surface of the mesas at Los Alamos. The gallery, located in the mountains to the west of Los Alamos, discharges from a perched water zone in the volcanics. Water samples were collected from the 15 wells and the gallery and at 5 stations on the distribution system within the Laboratory and community (Fig. 9, Table XII). The maximum concentrations of radioactive material in these waters were

<u>Analyses (</u>	Units µCi/ml)	Los Alamos Water Supply	CGs i contr Are	for Un- colled
з _н	10 ⁻⁶	2.4	з	000
90 _{Sr}	10 ⁻⁹	5,8		300
¹³⁷ Cs	10 ⁻⁹	<20	30	000
238 _{Pu}	10 ⁻⁹	<0.04	5	000
239 _{Pu}	10 ⁻⁹	<0.01	5	000
Gross-alpha	. 10 ⁻⁹	9	5	000
Gross-beta	10 ⁻⁹	16		300
Total U	µg/£	5.6	1	800 ^a

^aSee Section III.C for explanation.

Fig. 9. Water, sediment, and soil sampling locations on or near the LASL site.

The radionuclide concentrations have shown no change from previous analyses.⁵ The concentrations are well below concentration guides for uncontrolled areas. C. On-Site Surface and Ground Waters

Radioactivity concentrations were determined for surface and ground water samples from six on-site locations that are not in Laboratory effluent release areas (Fig. 9, Table XIII). Three are surface water stations and three are from deep wells completed in the main aquifer as are the supply wells. The highest stationaverage concentrations for these six stations were

Analyses	Units (µCi/ml)	On-Site Non- effluent Areas	CGs for Controlled <u>Areas</u>
³ н	10 ⁻⁶	3.3	100 000
90 _{Sr}	10 ⁻⁹	9.4	10 000
¹³⁷ Cs	10 ⁻⁹	<38	400 000
238 _{Pu}	10 ⁻⁹	0.01	100 000
239 _{Pu}	10 ⁻⁹	0.02	100 000
Gross-alpha	∎ 10 ⁻⁹	2.9	100 000
Gross-beta	10 ⁻⁹	14.5	10 000
Total U	µg/1	1.2	60 000 ^a

^aSee Section III.C for explanation.

The concentrations were near or below detection limits and were of the same magnitude as reported in 1975.⁵

The radioactivity concentrations for surface and ground water were determined from 22 locations in past and present Laboratory effluent release areas (Fig. 9, Table XIII). The surface and ground waters in these canyon areas are not a source of muncipal, industrial, or agricultural supply, and do not reach the Rio Grande except during storm runoff. The observation holes in these areas are completed into the stream channel alluvium and into the top of underlying volcanics and do not exceed 25 m in depth. The highest station-average concentrations of radioactive materials in these waters were

	Units	Duchle	Pandia	DP-Los	Mortan-	CGs for Controlled
BURIYSES	(heilme)	Pueblo	SEGULE	ATRICOR	ala	Areas
3 _H	10-6	2.6	5.1	445	2000	100 000
90 _{Sr}	10-9	60	-	384	84	10 000
¹³⁷ Св	10 ⁻⁹	<14	<28	71	32	400 000
241 _{Am}	10 ⁻⁹	<1.2	<1.4	0.24	60	100 000
²³⁸ Pu	10 ⁻⁹	0.6	<0.02	0.30	20	100 000
239 _{Pu}	10 ⁻⁹	0.74	<0.02	0.58	3.8	100 000
Gross-alph	∎ 10 ⁻⁹	7.8	1.6	810	76	100 000
Gross-beta	10 ⁻⁹	115	20	1260	1120	10 000
Total U	µg/l	0.7	<2.4	14	13	60 000 ^ª

^aSee Section III.C for explanation.

The radioactivity concentrations observed in Acid-Pueblo Canyon result from residuals of treated and untreated radioactive waste effluent released into the canyon before 1964. Radionuclides adsorbed by channel sediments are being resuspended by runoff and municipal sanitary waste treatment effluents. Sandia Canyon receives cooling tower blowdown from TA-3 power plant and some treated sanitary effluent. DP-Los Alamos Canyon reflects current release of treated radioactive waste effluents from the TA-21 industrial waste treatment plant. Mortandad Canyon received treated radioactive waste effluents from the TA-50 industrial waste treatment plant.

The areas receiving treated radioactive waste effluents have measurable amounts of radioactivity; however, the concentrations are well below the concentration guides for controlled areas.

VIII.RADIOACTIVITY IN SOILS AND SEDIMENTS

Soil samples were collected by taking five plugs, 75 mm in diameter and 50 mm deep, at the center and corners of a square area 10 m on a side. The five plugs were combined to form a composite sample for radiochemical analyses. Sediment samples were collected from dune build-up behind boulders in the main channels of perennially flowing streams. Samples from the beds of intermittently flowing streams were collected across the main channel. The soil and sediment samples were analyzed for gross-alpha and gross-beta activities, total uranium, and ²³⁸Pu and ²³⁹Pu. Moisture distilled from the soil and dry stream sediment samples was analyzed for ³H. A few samples were also analyzed for ⁹⁰Sr.

Soil and sediment samples were collected in the same general locations as the regional and perimeter water samples to provide data on the normal concentrations of radioactive materials in the environment (Figs. 8 and 9, Table XIV). Soil and sediment samples were also collected at on-site locations (see Fig. 9, Table XIV). The maximum observed concentrations of radioactivity in regional, perimeter, and onsite soils and sediments were

		Regional and Perimeter		<u>On-Site</u>	
Analyses	Units	<u>Soils</u>	Sedi- ments	<u>Soils</u>	Sedi- ments
³ н	10 ⁻⁶ µCi/ml	6.4	4.1	11	17
90 _{Sr}	pCi/g	13.9	5,9	10.5	8.5
¹³⁷ Cs	pCi/g	1.7	0.23	-	1.5
238 _{Pu}	pCi/g	0.004	0.003	0.005	0.115
239 _{Pu}	pCi/g	0.033	2.06	0,193	0.720
Gross-alph	a pCi/g	18	10	10	10
Gross-beta	pCi/g	12	6.1	8.5	28
Total U	µg/g	3.9	2.7	5.3	30

Worldwide fallout plutonium in the region in 1970 ranged from 0.001 to 0.004 pCi/g for ²³⁸Pu and from 0.001 to 0.023 pCi/g for ²³⁹Pu.¹⁰ Regional and perimeter soils fall within this range of values. A perimeter sediment sample from Pueblo Canyon, a former effluent release area now off-site, contained ²³⁹Pu at a maximum concentration of 2.06 pCi/g which is a result of adsorption from low-level effluent released into the canyon prior to 1964. The on-site soil samples collected near TA-21 and TA-50, a plutonium processing plant and industrial waste treatment plant, respectively, contained 0.19 and 0.10 pCi/g of Pu. Sediment samples collected from on-site treated effluent release areas are above regional levels due to adsorption of 238 _{Pu and} 239 _{Pu from the effluents.}

Tritium values for on-site soil and sediments were 2 to 4 times above those

values typical for regional and perimeter soils and sediments. Gross-alpha, 137 Cs, and 90 Sr concentrations from the regional and perimeter stations were comparable to on-site stations.

Gross-beta and total U in the regional and perimeter soil and sediments and the onsite soils are comparable. Gross-beta and total U in sediments from on-site effluent release areas are the result of adsorption of radionuclides from effluents.

Three sediment sampling stations, located off-site in the lower reach of Los Alamos Canyon to the Rio Grande, were sampled in 1970 and again in 1976. This reach of the canyon receives intermittent storm runoff from the former release area in Acid-Pueblo Canyon and present release area in DP Canyon. The total Pu (²³⁸Pu and ²³⁹Pu) in 1970 for the three sample stations ranged from 0.37 to 0.60 pCi/g with an average of 0.45 pCi/g. In 1976, the total plutonium at the same stations ranged from 0.088 to 0.019 pCi/g with an average of 0.14 pCi/g. The concentrations in 1976 ranged from about 2 to 8 times regional levels attributable to worldwide fallout. Storm runoff has transported the radionuclides adsorbed or attached to the sediments out of the disposal areas.

IX. RADIOACTIVITY IN FOODSTUFFS

The limited foodstuff sampling program to evaluate possible dose commitment from consumption of locally produced foodstuffs initiated in 1975 was continued in 1976. Samples were collected during fall harvest in the Los Alamos area and in the Rio Grande valley at points both above and below the confluences with streams crossing the Laboratory. Twenty-four samples of fruit and vegetables were washed as they would be prior to consumption and then were analyzed for ^{238,239}Pu, tritium oxide (HTO), and total uranium. In all cases the plutonium and uranium analyses gave values below the detection limits of ~0.001 pCi/g (dry weight) for 238,239 Pu and ~0.01 µg/g (dry weight) for total U.

Tritium in foodstuffs was determined by distillation of water from the samples and subsequent liquid scintillation analysis of the distillate. The data presented below summarize the tritium content in water from various samples grouped according to different irrigation water supplies.

	Irrigation	No. of	Tritium Concentration $(10^{-6} \mu Ci/ml)$		
Location	Water Source	Samples	Average	Range	
Espanola	Rio Chama ^a	4	2.6 (±0.4)	2.2-3.5	
Ranchitos	Rio Chama ^a	4	3.5 (±0.4)	3.1-3.9	
Cochiti	Rio Grande ^b	4	3.1 (±0.2)	2.9-3.4	
Los Alamos	L.A. County	5	3.8 (±1.4)	2.3-5.9	
White Rock	L.A. County	7	3.3 (±0.3)	2.7-3.7	

^aUpstream from Laboratory stream confluence. ^bDownstream from Laboratory stream confluence.

There was no significant difference in tritiated water content between upstream, downstream, and local area samples. Additionally, these concentrations were between the ranges of values observed in local surface waters and meteoric water. Thus there is no indication of any measurable contribution from Laboratory operations.

X. RADIATION DOSE ASSESSMENTA. Methods and Assumptions

The radiation dose assessments presented in this section are based on the effluent and environmental monitoring data of this report. Calculations are made for the radionuclides detected by the LASL monitoring network and for critical pathways associated with these effluents. The calculations represent estimates of doses incurred during the 1-yr period covered by the monitoring data. The mathematical models are those recommended by the ICRP,⁴, ^{11,12} and are summarized in the Appendix. No Laboratory-related concentrations of radionuclides were detected beyond a 20-km radius of the Laboratory; consequently, it was not considered necessary to do population dose assessments beyond Los Alamos

County. The 1976 Los Alamos County population estimates (12 000 and 6000 people in Los Alamos and White Rock, respectively) were obtained from the Los Alamos County Planning Department. The estimated 97 000 population in the 80-km radius about the Laboratory was obtained from the LASLdeveloped Pathfinder Program¹³ with updating from the "Statistical Abstract of the United States - 1976."

B. External Penetrating Radiation

Variations in terrestrial and cosmic radiation complicate any analysis of external radiation exposure as measured by the LASL environmental radiation TLD network. The variations in dose among the off-site stations (see Table VII) are believed to be due to the variation in natural radiation. All of these stations are within 11% of the annual dose recorded in 1975, indicating the year-to-year variation is less than the station-to-station variation.

The variations in some of the on-site data (in addition to natural background variations) are caused by variation in the radiation emissions at the various Laboratory facilities. Thus station-to-station, and, for the most part, year-to-year comparisons are not meaningful. It is believed that the elevated dose at the State Highway 4 location resulted from radioactive waste discharges into canyons upstream of this station. The TLD-measured dose rates have been confirmed by high-pressure ion-chamber measurements. Preliminary in-situ spectral measurements indicate elevated ¹³⁷Cs levels in this area. The elevated dose rate at this station does not represent a significant exposure potential to the people in the area because there is no residential or other usage of this area by the populace.

The dose rates at the off-site stations are consistent with the expected values (126-175 mrem/yr) due to natural environment radiation estimated for New Mexico by the U.S. Environmental Protection Agency,^{14,15} and are similar to a TLD-measured dose rate

of 143 mrem/yr at Colorado Springs, Colorado.¹⁶ Because there was no indication of off-site incremental external penetrating radiation resulting from Laboratory operations, individual and population doses for these exposures were not calculated.

C. Radioactivity in Air

The whole-body dose resulting from the inhalation and skin absorption of tritiated water vapor was calculated using the formu $la D = 2.4 \times 10^6 C$ (where D is dose in rems and C is concentration in μ Ci/ml; see Apfor details). The highest potenpendix tial dose at a LASL boundary was estimated from the measurements at TA-54, which is within 0.4 km of a boundary with unoccupied land. The annual average concentration there (330 x $10^{-12} \mu \text{Ci/ml}$) would result in a whole-body dose of 0.76 mrem/yr (0.15% of the individual dose limit) above background. Background concentrations of tritiated water vapor were 15 x $10^{-12} \mu Ci/ml$ as measured at the three regional stations. The highest calculated individual dose above background at an occupied location, based on measurements at the airport, would be 0.086 mrem/yr, which is 0.017% of the radiation protection standard for an individual (500 mrem/yr) or 0.05% of the radiation protection standard for an average dose to the population (170 mrem/yr). The White Rock dose above background would be 0.011 mrem/ yr based on an average concentration of $18 \times 10^{-12} \mu Ci/m\ell$. These doses combine to provide a total of 0.18 man-rem to the 12 000 residents of Los Alamos and 0.07 man-rem to the 6000 residents of White Rock.

The average uranium concentrations in air were a very small percentage (.0012% maximum) of the appropriate CGs for breathing air. Three stations, Booster P-2, TA-54, and Diamond Drive, had slightly elevated concentrations of uranium compared to the other stations. Booster P-2 and TA-54 are located in dusty areas where additional dust loading of the filters could account for a greater mass of natural crustalabundance uranium being collected on the filters. The Diamond Drive station had concentrations comparable to Booster P-2 and TA-54, which are similar to values experienced at off-site as well as on-site stations in previous years.^{2,5} Thus, no dose calculation for atmospheric uranium was made.

Only 2 stations, Booster P-1 and TA-54, indicated 239 Pu concentrations in air statistically higher than the average concentrations measured at the other 27 stations in the air sampling network. The highest station average, at Booster P-1, was strongly influenced by the single maximum sample of 1510 x 10⁻¹⁸ µCi/ml. (Without this sample, the average would be 6.0 x 10^{-18} µCi/ml.) The TA-54 station is a new station located at the solid radioactive waste disposal area.

The highest potential dose at a LASL boundary was estimated from the measurements at Booster P-1 station, which is approximately 0.8 km from a Laboratory boundary. Using the equation D = 1.3 x 10^{12} C (where D is dose in rems and C is concentration in μ Ci/ml; see Appendix for details) the dose to the lung from the average concentration of 171 x 10^{-18} μ Ci/ml at Booster P-1 would be 0.2 mrem/yr which is 0.013% of the radiation protection standard of 1500 mrem/yr for an individual in an uncontrolled area.

The perimeter stations indicate an average concentration of 5 x $10^{-18} \mu Ci/ml$ and the off-site stations an average concentration of 4 x $10^{-18} \mu Ci/ml$. If this slight difference is assumed to be due to Laboratory effluents, and not variations in fallout patterns due to location and elevation differences, the associated dose to the lung at perimeter stations would be 0.001 mrem, which is 0.0002% of the appropriate radiation protection standard and equivalent to the lung dose due to external penetrating radiation received by riding in a jet at 9000 m for 5 s, or wearing a typical luminous-dial watch for about 3 h.¹⁵

Because measured concentrations of 238 Pu in air were predominately below the detection limit, it was not possible to distinguish between background and any contribution from effluents. Therefore, no estimate of an incremental ²³⁸Pu dose due to Laboratory operations was made. For completeness, doses were estimated based on total concentrations with no allowance for subtracting background due to worldwide fallout. As would be expected from the ²³⁹Pu data, the ²³⁸Pu average concentrations were a maximum at Booster P-1 and TA-54. To estimate the dose to members of the public at an occupied location, the Booster P-1 station average was used, The average concentration of 3.2 x $10^{-18} \mu Ci/ml$ (strongly influenced by the maximum of 25.2 $\times 10^{-18} \mu Ci/ml$) would result in a total lung dose of 0.004 mrem/yr, or 0.003% of the individual radiation protection standard. The calculation was made from the formula $D = 1.35 \times 10^{12} C$ (where D is dose in rems and C is concentration in μ Ci/ml; see Appendix for details). The maximum dose at a site boundary was estimated from data collected at the TA-54 station (which is ~ 0.4 km from a site boundary at an unoccupied location) as 0.006 mrem/yr total dose to the lung. The laboratory contribution to these doses, if any, would be a small fraction of the total.

The potential dose due to ⁴¹Ar was calculated with the technique developed by the Nuclear Regulatory Commission¹⁷ assuming immersion in a semi-infinite cloud. Theoretical calculations of the dispersion of the 339 Ci of ⁴¹Ar (an activation product with a 1.83 h half-life) released from the Omega West Reactor stack (located on Mesita de Los Alamos just south of TA-2, see Fig. 3) in 1976 indicate a maximum uncontrolled area dose of 3.1 mrem/yr, which is 0.62% of the radiation protection standard for an individual. The estimated dose to the townsite population from this release is 1.8 man-rem. Radiation from ⁴¹Ar would be included in the dose documented by the TLD external penetrating radiation measurements. The estimated maximum dose is less than the uncertainty in the TLD measurements.

The largest amount of radioactivity (5890 Ci, Table VI) released to the atmosphere was due to the short-lived isotopes 11 C, 13 N, and 15 O created as activation products from air during operation of the linear accelerator at LAMPF. Theoretical calculations (see Appendix for details) based on Gaussian diffusion models give an estimated maximum annual boundary dose of 22 mrem/yr. This calculation assumes a finite cloud size and that the receptor is at the cloud centerline. No decay was assumed during transit from the stack to the nearest site boundary (0.8 km north). This would tend to overestimate the dose because ¹⁵O has a half-life slightly over 2 min

(¹¹C and ¹³N have 10- and 24.4-min half lives, respectively). The amount of overestimate is not known because the proportions of the three isotopes as they leave the stack are not known. Extending the theoretical dispersion calculations and taking some credit for decay (~30 min) at the townsite lead to an estimated average individual dose of 0.16 mrem/yr and a total population dose of about 1.9 man-rem. The average individual doses would be documented as part of the TLD measurements and are less than the uncertainty in the TLD measurements.

Theoretical calculations for all other isotopes for which there is a measured release (see Table VI) indicate doses much less than those calculated (theoretically or from actual measurements) and thus are not included in this report.

The population doses from tritium, ⁴¹Ar, and mixed activation products (other isotopes gave insignificant doses by comparison) combine to give 4 man-rem above background to the estimated 18 000 residents of Los Alamos County. This is the estimated total population dose which could be attributed to Laboratory effluents. Note that the portion due to argon and mixed activation

products (3.7 man-rem) would be included in the overall external penetrating radiation dose measured by TLDs.

By comparison, the residents of Los Alamos County would receive 2750 man-rem from natural radiation sources. This assumes contributions from internal radioactivity of 18 mrem/yr, the neutron component of cosmic radiation as 17 mrem/yr (ref. 14), and average external gamma radiation from cosmic and terrestrial sources as 118 mrem/ yr (see Table VII, perimeter stations). Using the same assumptions for internal radioactivity and neutron components, and an average of 92 mrem/yr for natural external radiation to residents outside Los Alamos County (see Table VII, regional stations), leads to an estimated 12 800 manrem population dose from natural radiation sources within an 80-km radius.

D. Other Nuclides and Pathways

Theoretical calculations were made of doses expected to be received from all airborne radioactive effluents listed in Table VI. Results indicated these gave insignificant doses in comparison to those listed for tritium and activation products and thus are not included here.

Potential exposure pathways to man could result from eating deer and honey found to contain some contamination during ecological studies conducted within the Laboratory boundaries. Assuming the maximum measured concentrations of 1.8 pCi/g of ¹³⁷Cs in deer muscle or 3000 pCi/ml of tritium in honey, and large but credible consumption rates of 110 kg/yr of venison or 2.3 kg/yr of honey, resulting estimated individual maximum doses are 3.9 mrem/yr from eating venison and 0.12 mrem/yr from eating honey.

Liquid effluents, as such, do not flow beyond the LASL boundary but are absorbed in the alluvium of the receiving canyons; excess moisture is lost primarily by evapotranspiration. These effluents are monitored at the points of discharge and in the alluvium of the canyons below the outfalls. Small quantities of radioactive contaminants have been measured in canyon sediments beyond the LASL boundary, probably transported there during periods of heavy runoff. However, no pathways from the sediments to humans have been identified.

No radioactivity in excess of normal background concentrations was detected in drinking water, perennial surface water, or ground water at any off-site location. There are no known significant aquatic pathways or food chains to humans in the local area. Consequently, no potential dose contributions beyond those already discussed could be identified or evaluated.

XI. CHEMICAL QUALITY OF SURFACE AND GROUND WATERS

Monitoring of selected chemical quality parameters of surface and ground waters provides an additional means for detecting the potential dispersion of effluents from LASL operations. Water samples are collected in 1-L polyethylene bottles and returned to the laboratory for filtration through Whatman #2 filters. Standard methods are used to analyze samples for gross chemical characteristics and a selected list of ions. Samples are collected twice a year for chemical quality analyses. The summary tables in the text for the regional and water supply show maximum values for each group of samples while the perimeter and on-site stations show the highest station-average values for each group. The stations are grouped according to location or hydrologic similarity. Detailed results are presented in Tables XV through XVIII. Comparison is made with drinking water standards found in Table V.

A. Regional and Perimeter

Regional surface waters within 75 km of LASL are sampled at six stations on the Rio Grande, Chama, and Jemez Rivers (Fig. 8, Table XV). In addition, the chemical quality of water is determined from six perimeter locations, and three surface and three ground water stations located <4 km outside the LASL boundary (Fig. 9, Table XVI). These analyses are made to provide a continuing record of the chemical quality of water in the area. All of these waters met drinking water standards (see Table V) for the constituents measured, with the occasional exception of Total Dissolved Solids (TDS). No significant changes from previous reporting periods were noted.^{2,5} The maximum or highest station-average observed concentrations of Cl⁻, F⁻, NO₃⁻, and TDS for these perimeter and regional samples were

	Concen	Concentrations (mg/l)						
		Perimeter						
		(Highest	Standard					
	Regional	Station	or					
Constituent	(Max.)	Average)	<u>Criteria</u>					
C1 ⁻	58	33	250					
F	1.4	0.6	2.0					
NO3	0.8	24	45					
TDS	664	326	500					

B. Water Supply

The Los Alamos water supply system, which serves the Laboratory and the community, is sampled at each of the 15 supply wells and a supply gallery, and at 5 points in the distribution system (see Fig. 9, Table XVII). The chemical quality from individual wells varies slightly from periods of light (winter) to periods of heavy (summer) pumpage. The chemical quality varies between wells in the three fields due to local conditions occurring within the aquifer around the wells. The maximum concentrations for all chemical constituents measured were below applicable EPA Interim Primary Drinking Water Standards (see Table V) with the exception of arsenic.

	Concentrations (mg/l)						
Constituents	Water Supply (Maximums)	Standards or Criteria					
As	0.051	0.050					
C1 ⁻	15	250					
F ⁻	2.0	2.0					
Hg	0.0002	0.002					
NO3	1.7	45					
Se	<0.001	0.01					
TDS	434	500					

The occurrence of natural arsenic in Well G-2, Guaje Well field, is near or slightly above the standard of 0.050 mg/ ℓ . However, the low arsenic inputs from the remaining six wells in the field dilute the concentration to acceptable levels before it reaches the first distribution point. Samples from this point had arsenic concentrations ranging from 0.007 to 0.013 mg/ ℓ in 1976.

One well in the Los Alamos field, Well LA-6, contained arsenic concentrations ranging from 0.150 to over 0.200 mg/L, or 3 to 4 times the drinking water standard for arsenic. It was determined during special tests in 1976 that the water could not be diluted sufficiently with pumpage from other wells in the field to result in water of acceptable quality. Additional tests were made to isolate sections of the well at various depths. It was determined that the aquifer throughout the well contained high arsenic concentrations. The arsenic, derived from a deep source, is apparently dispersed through the well by a fault. The well was placed on standby to be used only in emergency conditions such as fire. It is tested periodically, with the water pumped to waste. Tests in October 1976 indicated arsenic concentration ranged from 0.142 to 0.172 mg/l. It is calculated that the arsenic concentration from the well would have to be reduced to 0.100 mg/l at a pumping rate of 1100 l/m to allow dilution with other pumpage in the field to meet the drinking water standards.¹⁹

C. On-Site Surface and Ground Waters

Chemical analyses were made on samples from three on-site ground water and three on-site surface water locations that are not in Laboratory effluent receiving areas (see Fig. 9, Table XVIII). The quality of water from surface water locations varies slightly as base flow is diluted with varying amounts of storm runoff; however, both the surface water and ground water analyses indicated no significant changes from various reporting periods.^{2,5} These waters met drinking water standards for the constituents measured. The waters from these sources are not used for domestic. municipal, or industrial supply. The average station high concentrations of Cl⁻, F⁻, NO₂⁻, and total dissolved solids (TDS) that are indications of Laboratory release for the six stations were

Concentration (mg/l)					
On-Site, Non-	Standard				
EIIIuent Areas	or criteria				
24	250				
0.6	2				
1.3	45				
350	500				
	On-Site, Non- Effluent Areas 24 0.6 1.3 350				

Chemical quality was determined for samples of surface and ground waters in canyons which are current or former recipients of industrial effluents (see Fig. 9. Table XVIII). Acid-Pueblo Canvon received industrial wastes from 1943 to 1964 and currently receives treated municipal sewage effluent, which is a large portion of the total flow. Sandia Canyon receives cooling tower blowdown from the TA-3 power plant and some treated sewage effluent. Except for snowmelt or storm runoff, these effluents constitute the total flow in Sandia Canyon. DP-Los Alamos Canyon receives effluents from industrial waste and sanitary sewage treatment plants and cooling tower blowdown from TA-21 and TA-2. Mortandad Canyon receives the effluent from the industrial waste treatment plant at TA-50. This effluent is a major part of the flow

except during storm runoff or spring snowmelt. The highest station-average concentrations of Cl⁻, F⁻, NO_3^- , and TDS for these canyons were

	Concentration (mg/1)								
Constit- uent	Acid- Pueblo	Sandia	DP-Los Alamos	Mortan- dad	Standard or <u>Criteria</u>				
C1	44	49	90	30	250				
P	0.8	1.2	4.2	1.4	2				
NO3	44	33	58	189	45				
TDS	370	620	1930	89 0 [.]	500				

The chemical quality of waters in each of these areas is clearly influenced by the input of effluents. None of these waters is a source of either municipal or domestic water supply, but the surface waters in these canyon areas are used by wildlife. In some places these waters do not meet drinking water standards for chemical criteria, specifically for TDS, F⁻, and NO₃⁻. They do meet proposed EPA¹⁸ criteria for TDS and NO₃⁻ in water used for livestock.

D. Fenton Hill Site Surface and Ground Waters

The chemical quality of surface and ground water in the vicinity of the Fenton Hill site, of the LASL Dry Hot Rock Geothermal Energy Experiment (~30 km W of Los Alamos, see Fig. 10), has been measured to determine the geohydrology, for environmental studies, and to fulfill monitoring requirements. The results of preliminary studies and detailed chemical data have been reported elsewhere.^{20,21}

Table XIX summarizes the chemical quality data for nine surface water stations, four water supply locations, two springs along the Jemez Fault, three springs discharging from recent volcanics, and one additional well that is abandoned. It also summarizes the quality of water from three ponds that contain water from experiments related to development of the geothermal loop in the dry hot rock at a depth of 3000 m below land surface. The water in the

Fig. 10. Fenton Hill Sampling Station map.

ponds is highly mineralized; it is recirculated or released into a nearby dry channel after treatment to remove harmful constituents. Release is made when quality is acceptable to the U.S. Forest Service. No flow reaches perennial streams in the area.

A supply well was completed at the geothermal site at a depth of about 137 m. The quality of water from the wells is good with C1⁻ at 7 mg/ ℓ ; F⁻, 0.2 mg/ ℓ ; NO₃⁻, <0.4 mg/ ℓ ; and TDS, 200 mg/ ℓ . However, the water is moderately hard with a hardness of 90 mg/ ℓ due to calcium and magnesium concentrations of 31 and 4 mg/ ℓ , respectively. The well, located near the ponds, shows no indication of seepage from the ponds.

XII. ECOLOGICAL STUDIES

A. Radiation Exposures Measured in Rodents Inhabiting a Liquid Radioactive Effluent Receiving Area at Los Alamos

A preliminary study was completed to determine the external gamma radiation exposures to rodents inhabiting an area where low-level treated radioactive effluents are released within the LASL land areas.

A 50 x 50 m site near the effluent outfall in DP Canyon was chosen for this study. It has measurable, but variable, levels of ¹³⁷Cs in the soil, which have accumulated from the release of the treated effluent. Rodents in the study area were trapped, implanted with thermoluminescent dosimeters, and released for subsequent recapture and TLD retrieval. A detailed description of the experimental design and sampling methodology are reported elsewhere.²²

The following table shows that the contaminated area produces a readily measurable radiation exposure to rodents living in the area. Exposures averaging 26 mrad/d were measured in harvest mice, with somewhat lower averages obtained for deer mice (8.3 mrad/d), pinon mice (1.9 mrad/d), and chipmunks (1.4 mrad/d). In all cases, individual exposures were higher than the 0.4 mrad/d attributable to natural external background sources in the Los Alamos area (see Section X.B).

Species exhibiting the higher radiation doses were caught most often (i.e., 50-70% of the time) along the effluent stream channel. Here, radiation intensities at the ground surface measured 20-87 mrad/d. Low doses were found in rodents captured in this zone less than 20% of the time.

Correlation of elevated exposure levels with species is attributed, at least in part, to differences in habitat requirements and mobility. The smaller, less mobile, harvest mice and deer mice are associated with the dense vegetation cover and greater radiation intensities along the stream channel. The larger, more mobile, pinon mice and chipmunks are associated with the open forest adjacent to the study plot.

RADIATION DOSES RECEIVED BY NATIVE RODENTS IN A DISPOSAL AREA FOR TREATED RADIOACTIVE EFFLUENT

Species	No.	(mrad/ Mean	day) ^a S.D.
Harvest Mouse (Reithrodontomys megalotis)	8	26	10
Deer Mouse (Peromyscus maniculatis)	4	8.3	9.6
Pinon Mouse (Peromyscus trueii)	5	1.9	0.9
Chipmunk (Eutamias minimus)	13	1.4	1.2

^aPrimarily due to ¹³⁷Cs gamma rays.

This study showed that the accumulation on soil of ¹³⁷Cs from liquid effluent release increased the average radiation exposure of small ground-dwelling rodents in the area by a factor of as much as 50. Average doses of 26 mrad/d were observed in harvest mice, although individual measurements for this species were as much as 50 mrad/d. The total estimated dose during the average 1-yr life span for this species would be about 9.5 rads average for the species or a maximum of 18 rads for an individual. The average exposures to the other three species were 3-18 times less than that for harvest mice.

B. Long-Term Effect of Exposure to Uranium

Nearly 75 000 kg of natural and depleted uranium used in LASL's dynamic testing program have been dispersed at E-F Site, near TA-15, which has a 33-yr use history. This location has a wide range of uranium concentrations in soils, plants, and animals. It has been studied to gain information on possible uranium chemical toxicity responses and potential food chain transmission. During the past year, studies were made at E-F Site to describe (1)uranium concentrations and distribution in soil relative to depth in the soil profile and distance from the points of dispersion. (2) redistribution of uranium by storm runoff, and (3) possible responses of soil invertebrate communities to uranium chemical toxicity.²³

Soil samples obtained on a polar coordinate sampling scheme at the site showed highest surface (0-2.5 cm) uranium concentrations, averaging 4500 µg/g, occurred within 10 m of the dispersion point. Uranium concentrations at sampling locations at 50-200 m beyond the dispersion point were generally <15% of this value. The estimated isoconcentration lines for uranium in surface soils at E-F Site are depicted in Fig. 11.

Analyses of a limited number of soil samples collected to depths of 30 cm within a radius of 50 m of the dispersion point showed that significant penetration and/or migration of uranium into the soil profile has occurred. The mean value of 100 μ g/g of uranium measured in the samples from the 20-30 cm depth, at a radius of 50 m, is about 50 times greater than the background values for this area.

Most of the uranium at E-F Site is apparently available for surface transport, mainly by storm runoff, and can move into the Potrillo Canyon drainage. Characteristics of storm runoff transport of uranium were investigated during two heavy rainfall events. A permanent sampling network was established for further sampling of alluvium in Potrillo Canyon.

The highest total uranium concentrations were observed in the standing water samples taken within the detonation crater with values ranging from 87 to 282 mg/l. Most of the uranium was dissolved, with values ranging from 83 to 99%. This indicates a much greater solubility than expected from review of the literature. The uranium concentration associated with the suspended sediments for the 1975 rainfall event was 3900 μ g/g, a value comparable to average surface soil uranium concentrations in that area.

Surface (0-2.5 cm) alluvial soil samples from the Potrillo Canyon intermittent stream bed, collected at a point 250 m from the dispersion point, contained 300 ppm, or about 10% of the values measured at the dispersion point; at 2800 m from the dispersion point the values were about twice background. Within 200 m of E-F Site, the concentrations were highly variable to depths of 15 cm; but at distances between. 350-5000 m from the site the uranium was homogeneously distributed to depths of at least 20 cm. An estimated 58 kg of uranium were located in the upper 15 cm of alluvium in the canyon below E-F Site, with 76% of it within 30 m of the source and the remainder distributed down the canyon to 9000 m. The 58-kg inventory represents <0.1% of the estimated total uranium expended at E-F Site since 1943, indicating that only minor amounts of the material have moved any appreciable distance from the point of origin.

The litter- and soil-inhabiting invertebrates in the area were studied by extracting the contents of 1-dm² soil cores by the Tullgren funnel method.²⁵ Over 9800 specimens, representing 100-110 species, were isolated from 217 samples. Species of the Order Acarina (ticks and mites) were most abundant, representing 78% of total

Fig. 11. Estimated contour lines of uranium concentrations (mg U/g) in surface soil (0-2.5 cm depth) samples obtained at E-F Site on a polar coordinate sampling scheme.

animals and occurring in 93% of the samples. All but one of the 15 families of Acarina identified are predators. In general, the soil and litter macrofauna populations and species diversities were apparently reduced at the high uranium study areas compared to their control area counterparts. C. Distribution and Transport of ¹³⁷Cs

in Los Alamos Soils

As part of the continuing ecological studies in liquid waste disposal areas, the distribution of 137Cs in and near the stream channel in Mortandad Canyon was studied. Measurements of erosion were also made to help describe actual and potential transport of nuclides attached to sediments.

A set of soil samples was collected at three locations to determine concentration gradients of 137 Cs across the canyon sites (i.e., from mesa top to mesa top). One set of 60-cm soil cores was obtained at locations of 0.02, 0.1, 0.2, 0.38, 0.5, and 10 m from the stream channel, as well as on the adjacent mesa tops. These 12 cores were frozen and cut up into 0-10, 10-20, 20-40, and 40-60 cm segments for each sampling location.

A set of soil ¹³⁷Cs data is shown in Fig. 12 for Sites I, II, and III, located 320, 1300, and 2600 m, respectively, from the effluent outfall in Mortandad Canyon. The stream channel sediments at Site I contained higher levels of ¹³⁷Cs than the stream bank soils, which generally contained elevated levels of ¹³⁷Cs horizontally as far as 0.38 m away from the stream channel and down to the 40-cm soil depth. The mesa top soil samples at Site I also contained slightly elevated levels of soil ¹³⁷Cs. The spatial distribtuion of ¹³⁷Cs in the Site II bank soils was similar to that at Site I, except for the greater horizontal distribution of ¹³⁷Cs found at 10 m from the stream channel center in the south bank topsoil. This was probably a result of 137 Cs-contaminated runoff overflowing the regular stream channel during rainstorms. Site III channel sediments contained higher

 137 Cs levels than the stream bank soils, which showed elevated 137 Cs soil concentrations to a depth of only 10 cm.

In order to further evaluate downstream transport of soil radionuclides, a soil erosion experiment was initiated in June 1975 to measure soil losses or gains for segments of the stream channel in Mortandad Canyon. Meter sticks were driven into the sediments in the center of the stream channel at 100-m intervals from 1.2 to 2.7 km from the effluent outfall, a normally dry segment of this intermittent stream. The soil level at each of these stakes was recorded at many different times from June 12, 1975, through November 4, 1976, a total of 512 days.

The data presented in Table XX show that the alluvium in the upper portions of the canyon (1.2-1.9 km from the outfall) was eroded and generally redeposited a short distance away (1.9-2.2 km from the effluent outfall). For example, an estimated 90 000 kg of sediments were lost from the 1.2-1.9km segment during 512 days, whereas about 120 000 kg of soil were deposited downstream in the 1.0-2.2-km segment. The 2.2-2.7-km segment exhibited a very small gain in soil mass during this same time frame.

The largest changes in soil movement occurred during July in both 1975 and 1976 in the upper portions of the canyon, i.e., 1.4 and 2.7 km from the effluent outfall (see Fig. 13). This seasonal effect is related to the first of the large summer rains which occur in the area, resulting in large amounts of soil being moved downstream in runoff. Although larger total amounts of rain normally occur in August, the erosion data indicate the first few summer runoff events exert more influence on the inventory of soil in the canyon than does subsequent erosion throughout the summer. Very little change in soil depths occurred at the 2.7km station at any time, suggesting that stream channel erosion-deposition patterns did not extend this far downstream.

Fig. 12. Cesium-137 in soils from stream channels and banks.

Fig. 13. Stream channel erosion.

XIII.UNPLANNED RELEASE

On the morning of July 15, 1976, approximately 2.27 g, or about 22 000 Ci, of tritium gas $({}^{3}H_{o})$ were inadvertently released to the environment from the roof vents of the Cryogenics Building (SM-34) at TA-3. The release was caused by operational error resulting in exhausting a supply tank of tritium gas while air was being evacuated from the tritium-handling system. The escaping gas was diluted and moved to the southwest by a moderately unstable 4-m/s (8 mph) northeast wind. Part of the gas was drawn into the building air intake, which increased tritium concentrations in the building to the extent that the building was evacuated. Ninety-two potentially exposed people submitted urine samples for tritium assay. Analyses showed no personnel received any detectable exposure from the release. These findings supported the expectation that the release was in the form of elemental gas $({}^{3}H_{0})$ and no significant oxidation to tritiated water (HTO) had occurred. Tritiated water vapor has a higher potential for exposure than tritium gas. Tritium gas in the atmosphere undergoes oxidation at a rate of <1% a day.

The nearest point at which a member of the public could have been exposed was 100 m downwind on Diamond Drive, an on-site, ERDA-controlled road normally open for public use. Tritium oxide (HTO) measurements were made on moisture distilled from silica gel cartridges collected from routine air net sampling stations on the afternoon of July 15. They showed no significant difference between upwind and downwind stations and indicated no overall deviation from expected values for the 2-wk integration period. Vegetation samples (grass, pine needles, weeds) collected on July 16 at seven of nine downwind vegetation sample locations indicated no significant difference in tritiated water concentrations compared to four upwind vegetation sampling locations. One of the slightly elevated

locations was near the Van de Graaff accelerator where small quantities of tritium and tritiated water vapor have been released for a number of years. Thus. activity in these samples was attributed to Van de Graaff operations. Elevated activity (36 pCi/ml vs an average of 8.4 pCi/ml at the upwind stations) at the other station (near the entrance to TA-16) is not believed to be caused by this release because the nearby air sampling station did not indicate elevated concentrations of tritium oxide. (The CG for tritium in drinking water in uncontrolled areas is 3000 pCi/ml.) Thus, there was no apparent exposure to either Laboratory personnel or the general public as a result of the release. No decontamination operations were necessary because of the gaseous nature of the release.

XIV. RADIOLOGICAL SURVEY AND DECONTAMINATION OF A FORMER TECHNICAL AREA

A major portion of the resources of the environmental surveillance program during 1976 was devoted to support of field operations at the site of the former Main Technical Area (TA-1) at Los Alamos (approximate location N95 E57, Fig. 3). Technical Area One was located on land around Ashley Pond, which is now owned partly by the County and partly by private interests. The original Laboratory facilities were constructed and used from 1943 through 1965. Work carried on in the facilities resulted in varying degrees of radioactive contamination of some buildings, the waste handling system, and land. Beginning in the 1950s, research work was gradually moved from TA-1, which was immediately adjacent to the townsite, to new areas south of Los Alamos Canyon. When vacated, the obsolete TA-1 facilities were decontaminated and demolished. Major operations to remove structures began in 1954 and continued intermittently through 1965. In 1966 the land occupied by TA-1 was turned over to Los Alamos County or sold to private interests because it was sited in a central area useful to the future development of the townsite and because it was considered that residual radioactive contamination did not present any health or safety hazards. Development of both public facilities and commercial establishments began shortly after disposal and continues to the present.

Increased concern over radioactive contamination at extremely low levels, i.e., essentially detectable levels, led the AEC (now ERDA) to request radiological surveys of various former AEC lands released to the public, including the remaining undeveloped portion of TA-1, using modern, more sensitive techniques.

Field work for the TA-1 survey was initiated in 1974 and led to extensive exploratory excavation and decontamination efforts starting late in 1975 and continuing through August 1976. Decontamination was undertaken to reduce as much as practicable any remaining question about potential safety or health implications of the residual contamination found during the survey. Surveillance program personnel were involved in many phases of the program including daily management, collection and analysis of some 8000 soil samples, and documentation of the project. Full details of the findings are presented elsewhere.²⁶ It is believed that the TA-1 area in its present condition poses no risk to human health.

XV. ACKNOWLEDGMENTS

This report was compiled by the staff of the Environmental Studies Group of the LASL Health Division. Principal contributors included A. J. Ahlquist, S. Barr, D. B. Curtis, T. C. Gunderson, T. E. Hakonson, F. R. Miera, J. W. Nyhan, W. D. Purtymun, A. K. Stoker, and A. D. Talley. Most of the sampling and data collection was performed by M. N. Maes, R. Romero, and J. G. Salazar.

Inquiries may be directed to L. J. Johnson, Leader, Environmental Studies Group, MS-490, Los Alamos Scientific Laboratory, Los Alamos, NM 87545.

APPENDIX

DEVELOPMENT OF FORMULAS USED FOR DOSE CALCULATIONS

Airborne Tritium

The dose resulting from continuous inhalation of tritiated water vapor was calculated using the following equation.

 $D(t) = 51 CI_f Et/\lambda m$

where

 $D(t) = \text{dose equivalent delivered during continuous exposure time t(days), in rem}_{51} = \frac{(1.6 \times 10^{-6} \text{erg/MeV})(8.64 \times 10^4 \text{ s/day})(3.7 \times 10^4 \text{ dis/s-}\mu\text{Ci})}{(1.6 \times 10^{-6} \text{erg/MeV})(8.64 \times 10^4 \text{ s/day})(3.7 \times 10^4 \text{ dis/s-}\mu\text{Ci})}$

- 100 erg/g-rad
- C = average airborne concentration, in μ Ci/ml
- I_a = average air intake rate
 - $= 2 \times 10^7 \text{ ml/day (Ref. 11)}$
- f_a = fraction of inhaled material reaching organ of interest
 - = 1 for tritium (oxide)(Ref. 11)
- E = effective energy deposition per disintegration, including the quality factor for dose equivalent conversion
 - = 0.010 MeV-rem/dis-rad (Refs. 4, 11, and 12)
- t = duration of exposure, in days
- λ = effective elimination rate. in day⁻¹
 - $= 0.069 \text{ day}^{-1}$ (Ref. 12)
- m = mass of organ of interest, in g
- = 4.3×10^4 g for body water (Ref. 11).

Therefore,

 $D(t) = 1.2 \times 10^6$ C for inhalation.

Because skin absorption of tritiated water vapor is approximately equal to the amount of tritiated water inhaled,¹² the total dose due to ingestion of airborne tritiated water vapor becomes

 $D(t) = 2.4 \times 10^6 C$.

Airborne Actinides

Lung dose calculations were made for potential inhalation of the actinides and were based upon the following assumptions.

1. All of the airborne plutonium and americium was highly insoluble and therefore behaved according to the model for Class Y materials, as defined by the ICRP Task Group on Lung Dynamics. 27

2. All of the airborne plutonium and americium particles were in the size range of 0.01- to 0.1- μ m dia, for which deposition in the pulmonary region is maximum.²⁸

The following equation was used to calculate lung doses resulting from inhalation of plutonium or americium. - +

$$D(t) = 51 \operatorname{CI}_{a} f_{a} f_{r} ET / \lambda m (1 - \frac{1 - e^{-\lambda t}}{\lambda t}) ,$$

where,

f_a = 0.7 (max) for the pulmonary region (Ref. 27)
f_r = fraction of pulmonary deposition undergoing long-term retention
 = 0.6 for actinides (Class Y)(Ref. 27)
E = 53 MeV-rem/dis-rad for ²³⁹Pu
 = 53 MeV-rem/dis-rad for ²³⁸Pu
 = 57 MeV-rem/dis-rad for ²⁴¹Am (Ref. 11)

 λ = mean clearance rate, in day⁻¹

= 0.0014 day⁻¹ for actinides (Class Y) from the pulmonary region (Ref. 28) m = 1000 g for the lungs (Ref. 11).

All other quantities are as defined previously for the airborne tritium calculation. Therefore,

 $D(365 \text{ days}) = 2.4 \times 10^{10} \text{ CE}$ = 1.3 × 10¹² C for ²³⁹Pu = 1.35 × 10¹² C for ²³⁸Pu = 1.4 × 10¹² C for ²⁴¹Am.

Because many of the factors involved in the above equation and the measurements of airborne concentrations are valid to only one significant figure, the dose calculations were rounded off accordingly.

Airborne Argon-41

The dose due to the noble gas, ⁴¹Ar, was calculated using a model developed by the U.S. Nuclear Regulatory Commission¹⁷ which assumes immersion in a semi-infinite cloud and is represented by the following equation.

 $D_{\infty}^{T} = 1.11 S_{f} \Sigma_{i} \chi_{i} (r, -0) DFB_{i}$,

where

- $D_{\infty}^{T}(r, \Theta) =$ the annual total body dose due to immersion in a semi-infinite cloud at the distance r in the sector at angle Θ from the discharge point in mrem/yr
 - 1.11 = average ratio of tissue to air energy absorption coefficients
 - S_{f} = the attenuation factor accounting for dose reduction due to the shielding provided by residential structures (0.7) dimensionless
- $\chi_i(r, \Theta)$ = annual ground-level concentration of nuclide i at the distance r in the sector at angle Θ from the release point in pCi/m³
 - DFB_i = total body dose factor for radionuclide i which includes the attenuation of 5 g/cm^2 of tissue in mrem-m³/pCi-yr.

In calculations for maximum dose, no allowance was made for the reduction due to shielding provided by structures, (i.e., $S_r = 1.0$). The factor $\chi_i(r,\Theta)$ is calculated from the meteorological dispersion coefficient $\chi_i(r,\Theta)(\frac{\sec}{3})$ and the source term Q (pCi/sec). $\chi_i(r,\Theta)$ is calculated from local meteorological information using the Gaussian dispersion model. Q is provided from annual effluent release monitoring. For ⁴¹Ar, DFB₁ = 8.84 x 10⁻³ mrem-m³/pCi-yr. Thus, for the single isotope ⁴¹Ar at a single location we have

$$D_{\infty}^{T}(mrem/yr) = 1.11 \times 8.84 \times 10^{-3} (\frac{mrem-m^{3}}{pCi-yr}) \times \frac{\chi}{Q} (\frac{sec}{m^{3}}) \times Q(\frac{pCi}{sec}) \times S_{f}$$

or

$$D_{\infty}^{T}(mrem/yr) = 9.8 \times 10^{-3} \times \frac{X}{O} \times Q \times S_{f}$$

Airborne Air Activation Products

Nuclear reactions with air in the target areas at LAMPF cause the air activation products 11 C, 13 N, and 15 O to be formed. These isotopes are all positron emitters and have 20.4-min, 10-min, and 122-sec half-lives, respectively. The concentrations of these isotopes at the site boundary were calculated using the meteorological dispersion coefficient $\frac{\chi}{Q}(r,\Theta)$ and the source term Q. The dose was calculated using semi-infinite cloud assumptions and was then corrected for cloud size. It has been shown²⁹ that the gamma dose rate in a semi-infinite cloud is represented by the equation

 $\gamma D^{\perp}(x,y,o,t) = 0.25 E \chi \chi(x,y,o,t),$

where

 $\gamma D^{L}(x,y,o,t) =$ gamma dose rate (rad/sec) to a person located at (x,y,o) at time t

- $\overline{E}\gamma$ = average gamma energy per decay (MeV) (positron annihilation produces two 0.511 MeV gammas, thus $\overline{E}\gamma$ = 1.02 MeV)
- $\chi(x,y,o,t) = plume \ concentration \ in \ curies/m^3 \ at \ time \ t$.

To correct dose rate for estimated plume size (if the cloud cannot be construed to be semi-infinite), values were taken from standard graphical compilations.²⁹

Because the mixture of isotopes in the cloud is not known, it was assumed there was no radioactive decay in the cloud during the transit time to the nearest border.

REFERENCES

- D. Balcomb, J. C. Hedstrom, S. W. Moore, and B. T. Rogers, "Solar Heating Handbook for Los Alamos," Los Alamos Scientific Laboratory report LA-5967-MS (May 1975).
- K. E. Apt and V. J. Lee, compilers, "Environmental Surveillance at Los Alamos During 1974," Los Alamos Scientific Laboratory report LA-5977-PR (1975).
- K. J. Schiager and K. E. Apt, compilers, "Environmental Surveillance at Los Alamos During 1973," Los Alamos Scientific Laboratory report LA-5586 (1974).
- International Commission on Radiological Protection (ICRP), "Recommendations of the International Commission on Radiological Protection," ICRP Publ. 6 (Pergamon Press, New York, 1964).
- 5. K. E. Apt and V. J. Lee, compilers, "Environmental Surveillance at Los Alamos During 1975," Los Alamos Scientific Laboratory report LA-6321-MS (1976).
- J. E. Herceg, "Environmental Monitoring in the Vicinity of the Los Alamos Scientific Laboratory, July-December 1971," Los Alamos Scientific Laboratory report LA-4970 (1972).
- H. E. Johns and J. R. Cunningham, <u>The</u> <u>Physics of Radiology</u>, 3rd ed. (C. C. <u>Thomas</u>, Springfield, Illinois, 1974).
- 8. P. R. Bevington, <u>Data Reduction and</u> <u>Error Analysis for the Physical Sci-</u> <u>ences</u> (McGraw-Hill, New York, 1969).
- 9. N. C. Barford, Experimental Measurements: Precision Error and Truth (Adddison-Wesley Publishing Co., Inc., London, 1967) p. 32.
- 10. W. R. Kennedy and W. D. Purtymun, "Plutonium and Strontium in Soil in the Los Alamos, Espanola, and Santa Fe, NM, Areas," Los Alamos Scientific Laboratory report LA-4562 (1971).

- International Commission on Radiological Protection (ICRP), "Report of Committee II on Permissible Dose for Internal Radiation, 1959," ICRP Publ. 2 (Pergamon Press, New York, 1968).
- International Commission on Radiological Protection (ICRP), "Evaluation of Radiation Doses to Body Tissues from Internal Contamination Due to Occupational Exposure," ICRP Publ. 10 (Pergamon Press, New York, 1968).
- R. V. Fultyn, private communication, LASL/H-1, 2-5-75.
- 14. D. T. Oakley, "Natural Radiation Exposure in the United States," U.S. EPA report ORP/CSD 72-1 (1972).
- 15. A. W. Klement, Jr., C. R. Miller, R. P. Minx, and B. Shleien, "Estimates of Ionizing Radiation Doses in the United States, 1960-2000," U.S. EPA report ORP/CSD 72-1 (1972).
- 16. D. E. Jones, C. L. Lindeken, and R. E. McMillian, "National Radiation Background Dose Measurements with CaF₂: Dy TLD," Lawrence Radiation Laboratory report UCRL-73432 (1971).
- 17. "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," U.S. Nuclear Regulatory Commission Regulatory Guide 1.109 (March 1976).
- "Proposed Criteria for Water Quality," Vol. I, Environmental Protection Agency (October 1973).
- 19. W. D. Purtymun, "Hydrologic Characteristics of the Los Alamos Well Field with Reference to the Occurrence of Arsenic in Well LA-6," Los Alamos Scientific Laboratory report (in preparation).
- 20. W. D. Purtymun, F. G. West, and W. J. Adams, "Preliminary Study of the Quality of Water in the Drainage Area of the Jemez River and Rio Guadalupe," Los Alamos Scientific Laboratory report LA-5595-MS (April 1976).

- 21. W. D. Purtymun, W. H. Adams, and J. W. Owens, "Water Quality in Vicinity of the Fenton Hill Site, 1974," Los Alamos Scientific Laboratory report LA-6093 (December 1975).
- 22. F. R. Miera, Jr., and T. E. Hakonson, "Radiation Exposure to Rodents inhabiting a Low-Level Liquid Radioactive Waste Receiving Area," submitted for publication in Health Physics (1976).
- 23. W. C. Hanson and F. R. Miera, Jr., "Continued Studies of Long-Term Ecological Effects of Exposure to Uranium," Los Alamos Scientific Laboratory report (in preparation).
- 24. W. C. Hanson, "Ecological Considerations of Depleted Uranium Munitions," Los Alamos Scientific Laboratory report LA-5559 (1974).
- 25. A. MacFadyn, "Notes on Methods for the Extraction of Small Soil Antrihopods," J. Animal Ecol., 22, 65-77 (1953).

- 26. Health Division Staff, "Radiological Survey and Decontamination of the Former Main Technical Area (TA-1) at Los Alamos, New Mexico," Los Alamos Scientific Laboratory report (in preparation).
- 27. ICRP Task Group on Lung Dynamics, "Deposition and Retention Models for Internal Dosimetry of the Human Respiratory Tract," Health Physics, <u>12</u>, 173 (1966).
- International Commission on Radiological Protection (ICRP), "The Metabolism of Compounds of Plutonium and Other Actinides," ICRP Publ. 19, Pergamon Press, New York (1972).
- 29. D. H. Slade, editor, <u>Meteorology and</u> <u>Atomic Energy 1968</u>, U.S. AEC document T1D-24190 (July 1968).

TABLE I

MEANS AND EXTREMES OF TEMPERATURE AND PRECIPITATION

CLIMATOLOGICAL SUMMARY 1910-1974^a

			TEMP	ERATUR	E (°C)						PRECIP	ITATIC	N TOTAL	(mm)				MEA	NO. OF	DAYS
		MEANS			EXTR	EMES	_			RAINC		_		SNOW PRECI	/FROZE	IN ION			Max ^b	Min ^b
Mo	Max	Min	Mo Mean	High	<u>Yr</u>	LOW	Yr	Mean	Daily Max	Yr	Mo Max	Yr	Mean	Daily Max	Yr	Mo Max	Yr	Precip. 22.5cm	Temp ≥26.7°C	Temp 2-9.4°C
Jan	3.9	-7.9	-2.0	17.8	1963	-27.8	1963	21.21	62.23	1916	171.45	1916	246.1	381.0	1913	989.2	1949	2	0	8
Feb	6.1	~5.8	0.1	18.9	1936	-25.6	1951	17.38	26.67	1915	61.89	1948	204.8	330.2	1915	604.2	1948	2	0	6
Mar	9.4	-3.4	3.1	21.7	1971	-19.4	1948	25.38	57.15	1916	104.4	1973	261.3	457.2	1916	938.8	1973	3	0	3
Apr	14.6	1.0	7.8	26.7	1950	-15.0	1925	24.69	36.83	1969	117.86	1916	103.9	304.8	1958	853.4	1958	3	0	0
May	19.9	6.0	12.9	31.7	1935	-4.4	1938	32.16	45,72	1929	113.54	1929	19.7	228.6	1917	431.8	1917	3	1	0
Jun	25.3	10.9	18.1	33.9	1954	-2.2	1919	34.64	34.80	1931	141.49	1913	0.0	0.0		0.0		3	· 14	0
Jul	26.9	12.9	19.9	35.0	1935	2.8	1924	86.06	70.61	1968	202.69	1919	0.0	0.0		0.0		8	19	0
Aug	25.4	12.3	18.9	33.3	1937	4.4	1947	94.53	57.40	1951	283.97	1952	0.0	0.0		0.0		8	12	0
Sep	22.4	8.9	15.7	34.4	1934	-5.0	1936	50.02	56.13	1929	147.07	1941	4.9	152.4	1913	152.4	1913	S	5	0
Oct	16.7	3.2	9.9	27.8	1930	-8.9	1970	41.31	88.39	1919	171.96	1957	36.9	228.6	1972	228.6	1959 1972	3	0	0
Nov	9.4	-3.1	3.2	20.6	1937	-20.0	1957	17.77	37.08	1931	83.82	1957	126.4	335.6	1931	876.3	1957	2	0	2
Dec	4.9	-6.8	-1.0	16.7	1933	-23.3	1924	23.01	34.29	1965	72.39	1965	266.8	457.2	1915	1049.0	1967	3	٥	6
Year	15.4	2.3	8.9	35.0	1935	-27.8	1963	468.16	88.39	1919	283.97	1952	1270.8	457.2	1915	1049.0	1967	45	51	25

CLIMATOLOGICAL SUMMARY 1976

		TEMPERAT	URE (°C)		PRECIPI	TATION	TOTAL (mm	·)			
(Da1	MEANS	ues)	EXT	LEMES	RAI	nc.	SNOW/FR PRECIPI	OZEN TATION	<u>N</u>	O. OF DAYS	
Max	Min	Mo Mean	High	Low	Total	Daily <u>Max</u>	<u>Total</u>	Daily <u>Max</u>	2 <u>.5mm</u>	<u>≥26.7°¢</u>	5-9.4°C
5.6	-9.4	1,8	13.3	-17.8	2.0	1.0	25,4	12.7	0	0	13.
10.0	-4.3	2.9	17.8	-12.8	26.9	11.7	0.0	0.0	3	0	2
10.4	-4.4	3.1	18.3	-12.2	17.5	7.4	185.0	76.0	2	ο.	5
15.0	-0.1	7.4	21.1	- 8.9	18.3	4.8	0.0	0.0	4	0	0
19.7	4.7	12.2	27.8	- 4.4	27.4	14.5	51.0	51.0	4	2	0
26.1	9.3	17.7	31.7	0.6	5.3	2.3	0.0	0.0	0	16	0
26.8	10.5	18.7	32.2	7.2	120.6	31.5	0.0	0.0	10	16	o
24.6	9.6	17.1	28.3	6.7	77.0	20.6	0.0	0.0	7	8	0
20.6	6.5	13.6	28.3	1.1	31.0	11.7	0.0	0.0	5	2	0
14.8	-1.0	6.9	22.8	-9.4	0.5	0.3	0.0	0.0	5	2	0
9.8	-6.2	1.8	18.9	-25.6	25.4	25.4	305.0	305.0	1	0	6
5.2	-9.7	-2.2	10.6	-13.3	2.3	. 1.3	30.0	20.0	0	0	17
15.7	0.5	8.4	32.2	-25.6	354.2	31.5	596.4	305.0	36	44	43
	(Dat 5.6 10.0 10.4 15.0 19.7 26.1 26.8 24.6 20.6 14.8 9.8 5.2 15.7	MEANS (Daily Val.) Max Min 5.6 -9.4 10.0 -4.3 10.4 -4.4 15.0 -0.1 19.7 4.7 26.1 9.3 26.8 10.5 24.6 9.6 20.6 6.5 14.8 -1.0 9.8 -6.2 5.2 -9.7 15.7 0.5	TEMPERATI MEANS Mo Max Min Mean 5.6 -9.4 1.8 10.0 -4.3 2.9 10.4 -4.4 3.1 15.0 -0.1 7.4 19.7 4.7 12.2 26.1 9.3 17.7 26.8 10.5 18.7 24.6 9.6 17.1 20.6 6.5 13.6 14.8 -1.0 6.9 9.8 -6.2 1.8 5.2 -9.7 -2.2 15.7 0.5 8.4	MEANS Mo EXTE Max Min Mean High 5.6 -9.4 1.8 13.3 10.0 -4.3 2.9 17.8 10.4 -4.4 3.1 18.3 15.0 -0.1 7.4 21.1 19.7 4.7 12.2 27.8 26.1 9.3 17.7 31.7 26.8 10.5 18.7 32.2 24.6 9.6 17.1 28.3 20.6 6.5 13.6 28.3 14.8 -1.0 6.9 22.8 9.8 -6.2 1.8 18.9 5.2 -9.7 -2.2 10.6 15.7 0.5 8.4 32.2	TEMPERATURE (*C) MEANS EXTREMES Mo Max Min Mean High Low 5.6 -9.4 1.8 13.3 -17.8 10.0 -4.3 2.9 17.8 -12.8 10.4 -4.4 3.1 18.3 -12.2 15.0 -0.1 7.4 21.1 - 8.9 19.7 4.7 12.2 27.8 - 4.4 26.1 9.3 17.7 31.7 0.6 26.8 10.5 18.7 32.2 7.2 24.6 9.6 17.1 28.3 6.7 20.6 6.5 13.6 28.3 1.1 14.8 -1.0 6.9 22.8 -9.4 9.8 -6.2 1.8 18.9 -25.6 5.2 -9.7 -2.2 10.6 -13.3 15.7 0.5 8.4 32.2 -25.6	TEMPERATURE (°C) PRECIPI MEANS EXTREMES RAI Mo Low Total Total 5.6 -9.4 1.8 13.3 -17.8 2.0 10.0 -4.3 2.9 17.8 -12.8 26.9 10.4 -4.4 3.1 18.3 -12.2 17.5 15.0 -0.1 7.4 21.1 - 8.9 18.3 19.7 4.7 12.2 27.8 - 4.4 27.4 26.1 9.3 17.7 31.7 0.6 5.3 26.8 10.5 18.7 32.2 7.2 120.6 24.6 9.6 17.1 28.3 6.7 77.0 20.6 6.5 13.6 28.3 1.1 31.0 14.8 -1.0 6.9 22.8 -9.4 0.5 9.8 -6.2 1.8 18.9 -25.6 25.4 5.2 -9.7 -2.2 10.6 <	MEANS EXTREMES RAIN ^C Max Min Mean High Low Total Max 5.6 -9.4 1.8 13.3 -17.8 2.0 1.0 10.0 -4.3 2.9 17.8 -12.8 26.9 11.7 10.4 -4.4 3.1 18.3 -12.2 17.5 7.4 15.0 -0.1 7.4 21.1 - 8.9 18.3 4.8 19.7 4.7 12.2 27.8 - 4.4 27.4 14.5 26.1 9.3 17.7 31.7 0.6 5.3 2.3 26.8 10.5 18.7 32.2 7.2 120.6 31.5 24.6 9.6 17.1 28.3 6.7 77.0 20.6 20.6 6.5 13.6 28.3 1.1 31.0 11.7 14.8 -1.0 6.9 22.8 -9.4 0.5 0.3 9.8 -6.2 1.8	MEANS EXTREMES PRECIPITATION TOTAL mm MEANS Mo RAINC PRECIPITATION TOTAL mm Max Min Mean High Low Total Max Total Max Total Max Total SNOW/FR 10.0 -4.3 2.9 17.8 -12.8 26.9 11.7 0.0 25.4 10.0 -4.4 3.1 18.3 -12.2 17.5 7.4 185.0 15.0 -0.1 7.4 21.1 - 8.9 18.3 4.8 0.0 19.7 4.7 12.2 27.8 - 4.4 27.4 14.5 51.0 26.1 9.3 17.7 31.7 0.6 5.3 2.3 0.0 26.8 10.5 18.7 32.2 7.2 120.6 31.5 0.0 24.6 9.6 17.1 28.3 6.7 77.0 20.6 0.0 20.6 6.5	MEANS EXTREMES PRECIPITATION TOTAL mmmodel Max Min Mean High Low Total Max PRECIPITATION TOTAL mmmodel Max Min Mean High Low Total Max Total Max 5.6 -9.4 1.8 13.3 -17.8 2.0 1.0 25.4 12.7 10.0 -4.3 2.9 17.8 -12.8 26.9 11.7 0.0 0.0 15.0 -0.1 7.4 21.1 - 8.9 18.3 4.8 0.0 0.0 19.7 4.7 12.2 27.8 - 4.4 27.4 14.5 51.0 51.0 26.1 9.3 17.7 31.7 0.6 5.3 2.3 0.0 0.0 26.8 10.5 18.7 32.2 7.2 120.6 31.5 0.0 0.0 24.6 9.6 17.1 28.3 6.7 77.0 <	TEMPERATURE (*C) PRECIPITATION TOTAL (mm) MEANS (Datity Values) EXTREMES SNOW/FROZEN Max Min Mean High Low Total Max Total Max Max 5.6 -9.4 1.8 13.3 -17.8 2.0 1.0 25.4 12.7 0 10.0 -4.3 2.9 17.8 -12.8 26.9 11.7 0.0 0.0 3 10.4 -4.4 3.1 18.3 -12.2 17.5 7.4 185.0 76.0 2 15.0 -0.1 7.4 21.1 - 8.9 18.3 4.8 0.0 0.0 4 26.1 9.3 17.7 31.7 0.6 5.3 2.3 0.0 0.0 26.8 10.5 18.7 32.2 7.2 120.6 31.5 0.0 0.0 10 24.6 9.6 17.1 28.3 6.7 77.0 20.6 0.0 0.0 5 26.6 <td< td=""><td>TEMPERATURE (*C) PRECIPITATION TOTAL (mm) MEANS (Daily Values) EXTREMES SNOW/FROZEN Max Min Mean High Low Total Max Total Max NO. OF DAYS^b Max Min Mean High Low Total Max Total Max NO. 07 DAYS^b Max Min Mean High Low Total Max Total Max No. 07 DAYS^b 10.0 -4.3 2.9 17.8 -12.8 2.0 1.0 25.4 12.7 0 0 10.4 -4.4 3.1 18.3 -12.2 17.5 7.4 185.0 76.0 2 0 15.0 -0.1 7.4 21.1 - 8.9 18.3 4.8 0.0 0.0 4 0 19.7 4.7 12.2 27.8 - 4.4 27.4 14.5 51.0 51.0 4 2 26.1 9.3 17.7 31.7 <</td></td<>	TEMPERATURE (*C) PRECIPITATION TOTAL (mm) MEANS (Daily Values) EXTREMES SNOW/FROZEN Max Min Mean High Low Total Max Total Max NO. OF DAYS ^b Max Min Mean High Low Total Max Total Max NO. 07 DAYS ^b Max Min Mean High Low Total Max Total Max No. 07 DAYS ^b 10.0 -4.3 2.9 17.8 -12.8 2.0 1.0 25.4 12.7 0 0 10.4 -4.4 3.1 18.3 -12.2 17.5 7.4 185.0 76.0 2 0 15.0 -0.1 7.4 21.1 - 8.9 18.3 4.8 0.0 0.0 4 0 19.7 4.7 12.2 27.8 - 4.4 27.4 14.5 51.0 51.0 4 2 26.1 9.3 17.7 31.7 <

"Los Alamos, New Mexico; Latitude 35" 32' North, Longitude 106" 19' West: Elevation 2260 m. $b_{26.7^{\circ}C} = 80^{\circ}F; -9.4^{\circ}C = 15^{\circ}F.$

^CIncludes liquid water equivalent of frozen precipitation.

TABLE II UNITS OF MEASUREMENT CONVERSIONS

Quantity	This Report	ERDAM 0524	Internation	al (SI)	Common	Usage
Radioactivity Concentrations						
Airborne =	= 10 ⁻¹² µCi/ml =	= 10 ⁻¹² µCi/ml	= 0.037	s ⁻¹ m ⁻³	= 1	pCi/m ³
•	= 10 ⁻¹⁵ µCi/m& =	• 10 ⁻¹⁵ µCi/ml	$= 3.7 \times 10^{-5}$	s ⁻¹ m ⁻³	= 1	fCi/m ³
•	= 10 ⁻¹⁸ µCi/ml =	= 10 ⁻¹⁸ µCi/ml	$= 3.7 \times 10^{-8}$	s-13	- 1	aCi/m ³
In Liquids	= 10 ⁻⁹ µCi/ml =	= 10 ⁻⁹ µCi/ml	= 37	s-13	= 1	pC1/2
-	= 10 ⁻¹² Ci/m =	= 10 ⁻¹² µCi/m	= 0.037	s ⁻¹ n-3	$= 10^{-3}$	pCi/l
In Solids	l pCi/g	-	= 37	s ⁻¹ kg ⁻¹	= 1	pC1/g
. · ·	l fCi/g	- ·	= 0.037	s ⁻¹ kg ⁻¹	$= 10^{-3}$	pCi/g
Chemical Properties						
Concentrations in Liquids	1 mg/1	-	$= 1 \text{ g/m}^3$		- 1	ppm
	1 μ g/ £	-	$= 1 \text{ mg/m}^3$		= 1	ррЪ
	1 ng/2	-	= $1 \mu g/m^3$		$= 10^{-3}$	ppb
Exchange Capacity	1 eq/kg	-	= 1 (equivale	nt)/kg	= 10 ² me	q/100 g
Electrical Conductance	1 mS/m	-	= 1 mS/m		= 10 µmh	o/cm
Fluid Flow Rates	1 m ³ /s	-	$= 1 m^3/s$		= 6 x 10	4 Lpm
			3		= 2120 c	fm
	1 l/s		$= 1 \mathrm{dm}^3/\mathrm{s}$		= 60 lpm	L
					= 2.12 c	fm
Meteorological Data						
Temperature	°C	-	K = C + 273.15	°F	² = 1.8(°C	;) + 32
Precipitation .	1 mm	-	= 1 mm		= 0.039	inch
Wind Speed	1 m/s	-	= 1 m/s		= 2.237	mph
Air Pressure	l kPa	-	= 1 kPa		د 9.87 =	10 ⁻³ atmos.
					= 10 mba	r
					= 0.145	psi
					= 0.295	in. Hg
Geological Data						
Water Volume	1 m ³	-	$= 1 m^{3}$		= 8.11 x	:10 ⁻⁴ ac.ft
Discharge	1	-	= 1 dm ³ /s		= 0.0353	cfs
					= 15.9 g	рш
	2				≖ 2.28 x	: 10 ⁴ gpd
	1 m ³ /s	-	$= 1 \text{ m}^3/\text{s}$		= 35.3 c	fs
					= 1.59 x	: 10 ⁴ gpm
					= 2.28 x	: 10' gpd
Absorbed Radiation	rad, rem	rem	Gy (gray)		= 100 ra	ıd
Radioactivity	Ci	-	Bq (bequere	1)	= 2.70 ×	: 10 ⁻¹¹ Ci

TABLE III

DETECTION LIMITS FOR RADIOCHEMICAL ANALYSES OF TYPICAL ENVIRONMENTAL SAMPL	DETECTION L	IMITS FOR	RADIOCHEMICAL	ANALYSES (OF	TYPICAL	ENVIRONMENTAL	SAMPL
--	-------------	-----------	---------------	------------	----	---------	---------------	-------

Parameter	Approximate Sample Volume or Weight	Count Time	Detectable Concentration
Air Sample			
238 _{Pu}	$1.2 \times 10^4 m^3$	8 x 10 ⁴ sec	$2 \times 10^{-18} \mu Ci/ml$
239 _{Pu}	$1.2 \times 10^4 \text{ m}^3$	8×10^4 sec	$3 \times 10^{-18} \mu ci/ml$
Gross-alpha	$3.8 \times 10^3 m^3$	100 min	3 x 10 ⁻¹⁶ µCi/ml
Gross-beta	$3.8 \times 10^3 \text{ m}^3$	100 min	3 x 10 ⁻¹⁶ µCi/ml
Tritium	3 m ³	100 min	1 x 10 ⁻¹² µCi/ml
Uranium	$2.5 \times 10^4 \text{ m}^3$		2 pg/m ³
Water Sample			
238 _{Pu}	0.5 l	8 x 10 ⁴ sec	4 x 10 ⁻¹¹ µCi/ml
239 _{Pu}	0.5 L	8 x 10 ⁴ sec	1 x 10 ⁻¹⁰ µCi/ml
Gross-alpha	0.9 l	100 min	1 x 10 ⁻⁹ µCi/ml
Gross-beta	0.9 l	100 min	5 x 10 ⁻⁹ µCi/ml
Tritium	0.005 l	100 min	7 x 10 ⁻⁷ µCi/ml
¹³⁷ Cs	0.500 l	$5 \ge 10^4$ sec	1 x 10 ⁻⁸ µCi/ml
Uranium	0.01 l		6 µg/l
Soil Sample			
239 _{Pu}	10 g	8 x 10 ⁴ sec	0.002 pC1/g
238 _{Pu}	10 g	8×10^4 sec	0.003 pC1/g
Gross-alpha	2 g	100 min	0.8 pCi/g
Gross-beta	2 g	100 min	4 pC1/g
Tritium	- 1 kg	100 min	0.003 pCi/g
137 _{Cs}	500 g	5 x 10 ⁴ sec	10 ⁻² pCi/g
Uranium	2 g		0.030 µg/g

TABLE IV

ERDA RADIOACTIVITY CONCENTRATION GUIDES (CGs)

_	CG for Air	CG for	Water
Nuclide	(µCi/ml)	(µCi/ml)	(nCi/l)
3 _H	2×10^{-7}	3×10^{-3}	3 000
⁸⁹ Sr	3×10^{-10}	3×10^{-6}	3
90 _{Sr} d	3×10^{-11}	3×10^{-7}	0.3
¹³¹ I	1×10^{-10}	3×10^{-7}	0.3
137 _{Cs}	5×10^{-10}	2×10^{-5}	20
²³⁸ Pu	7×10^{-14}	5×10^{-6}	5
239 _{Pu} d	6×10^{-14}	5×10^{-6}	5
241 _{Am}	2×10^{-13}	4×10^{-6}	4
U. natural ^C	$(pg/m^3)^c$	2×10^{-5}	(mg/1)
	9×10^{6}	,	60
			1.8 (ICRP ^e)

CONCENTRATION GUIDES FOR UNCONTROLLED AREAS a,b

CONCENTRATION GUIDES FOR CONTROLLED AREAS a, b

	CG for Air	CG for	r Water
Nuclide	(µCi/ml)	(µCi/ml)	(nCi/l)
3 _H	5 x 10 ⁻⁶	1×10^{-1}	1×10^{5}
⁸⁹ sr	3×10^{-8}	3×10^{-4}	300
90 _{Sr} c	1×10^{-9}	1×10^{-5}	10
131 _I	4×10^{-9}	3×10^{-5}	30
137 _{Cs}	1×10^{-8}	4×10^{-4}	400
238 _{Pu}	2×10^{-12}	1×10^{-4}	100
239 _{Pu} d	2×10^{-12}	1×10^{-4}	100
241 _{Am}	6×10^{-12}	1×10^{-4}	100
U. natural ^C	<u>(pg/m³)^c</u>	5×10^{-4}	(mg/l)
-,	2.1 x 10^8		1 500 60 (ICRP ^e)

^aThis table contains the most restrictive CGs for nuclides of major interest at LASL (ERDA Manual Chap. 0524, Annex A).

^bCGs apply to radionuclide concentrations in excess of that occurring naturally or due to fallout.

^COne curie of natural uranium is equivalent to 3000 kg of natural uranium. Hence, uranium masses may be converted to the ERDA "uranium special curie" by using the factor 3.3 x $10^{-11}\mu$ Ci/pg.

^dOf the possible alpha and beta emitting radionuclides released at LASL, ²³⁹Pu and ⁹⁰Sr, respectively, have the most restrictive CGs. The CGs for these species are used for the gross-alpha and gross-beta CGs, respectively.

^eFor purposes of this report, concentrations of total uranium in water are compared to the ICRP recommended values which consider chemical toxicity, see Sec. III.C (Ref.4).

TABLE V

WATER STANDARDS

DRINKING WATER STANDARDS FOR CHEMICALS

		Concentration Limit (mg/l)								
		PHS an	d EPA ^a	EPA ^D						
Constituent	Symbol	Mandatory	Recommended	Primary Regulations	NMWQCCC					
Alkyl benzene sulfonate	ABS	-	0.5	-	-					
Arsenic	As	0.05	0.01	0.05	0.05					
Barium	Ba	1.0	-	1.0	. 1.0					
Boron	В	-	-	-	0.75					
Cadmium	Cd	0.01	-	0.01	0.01					
Carbon chloroform extract	CCE	-	0.2	-	-					
Chloride	C1	-	250.	-	-					
Chromium hexavalent	Cr ^{+°}	0.05	-	-	-					
Total	Cr	-	_ ·	0.05	0.01					
Copper	Cu	-	1.0	-	0.05 (0.1) ^d					
Cyanide	CN	0.2	0.01	-	-					
Fluoride	F ⁻	≈1 ^e	-	2.0 ^e	-					
Iron	Fe	-	0.3	-	-					
Lead	РЪ	0.05	-	0.05	0.05					
Manganese	Mn	-	0.05	-	0.1					
Mercury	Hg	-	-	0.002	0.001					
Molybdenum	Мо	-	-	-	0.01					
Nickel	Ní	- '	-	-	0.1					
Nitrate	NO3-	-	45.	45.	-					
Phenols	U	-	0.001	· -	-					
Selenium	Se	0.01	-	0.01	0.01					
Silver	Ag	0.05	-	0.05	0.05					
Total dissolved solids	TDS	-	500.	-	-					
Zinc	Zn	-	5.0	-	0.1(0.5) ^d					

^aPHS Regulations on Drinking Water Standards, 42 CFR 72, 201-207, Fed. Reg. 27:2152, Mar. 6, 1962. Also in PHS Publ. 956 and EPA Bulletin 956.

^bEPA National Interim Primary Drinking Water Regulations, 40 CFR 141, Fed. Reg. 40: 59566-59588, Dec. 24, 1975.

^CNew Mexico Water Quality Control Commission Regulations.

^dConcentrations shown in parentheses are permitted in community sewer systems.

^eThe concentration standard for fluoride varies depending upon temperature. The values given are appropriate for Los Alamos conditions.

TABLE VI

ATMOSPHERIC RADIOACTIVE EFFLUENT TOTALS FOR 1976

.

Location	238 _{Pu} 239 _{Pu} (µC1)	235 _U 238 _U (µC1)	234 _{Th} (mC1)	MFP ^a (µC1)	131 ₁ <u>(mCi)</u>	⁴¹ Ar (C1)	32 _p (µC1)	³ H (C1)	¹¹ C, ¹³ N, ¹⁵ 0 (C1)
TA-2						339			
TA-3	39.5	363	2.5	415	0.3				
TA-9								129	
TA-15									
TA-21	12.2	870		0.6				95	
TA-33								1349	
TA-35	2.4							1657	
TA-41									
TA-43	7.7						74		
TA-46		0.3							
TA-48	5.0	112		1231					
TA-50	1.1			27					
TA-53								171	5890

.

^aMixed Fission Products.

TABLE VII

ANNUAL THERMOLUMINESCENT DOSIMETER MEASUREMENTS

				Annual Dos	e
Station Location	Coordinates		Dose mRem	2σ error mRem	20 error %
Regional Stations	(28-44 km)		UI	ncontrolled	Areas
			00.9	+16 6	(16 19)
Espanola, NM Reference NM			90.0	±14.0	(10.1%)
Santa Fe. NM			92.6	±11.6	(12.5%)
					, ,
Perimeter Stations	(0-4 km)		<u>U1</u>	ncontrolled	Areas
Barranca School	N180 E130		118.5	± 7.2	(6.1%)
Cumbres School	N150 E090		137.4	±19.5	(14.2%)
Golf Course	N160 E060		123.3	±11.9	(9.6%)
Arkansas Avenue	N170 E020		129.6	±14.9	(11.5%)
Diamond Drive	N130 E020		124.2	±14.3	(11.5%)
48th Street	N110 E000		142.9	±12.3	(8.6%)
Fuller Lodge	NITO E090		110 0	1 9.0 +16 2	(13 5%)
Acorn Street	NICO EIIO		120 5	±10.2	(13.3%)
L.A. Airport Paus Canuar S T P	NITO E100		125.3	+12 0	(10.5%)
Bandalian Lookout	S270 F200		120.2	+ 5.4	(4.57)
Pajarito Acres	S210 E200		93.8	±10.3	(11.07)
White Bock S.T.P.	S090 E430		125.0	±10.3	(8.2%)
Pajarito Ski Area	N130 W180		121.4	±15.5	(12.7%)
Gulf Station	N100 E100		111.6	±13.4	(12.0%)
		Off-Site Weighted			
		Annual Average	118.2	±27.4	(23.2%)
On-Site Stations			<u>C</u>	ontrolled 4	reas
TA-21	N090 8170		149.5	±12.2	(8.1%)
State Hwy 4	N070 E350		228.7	±35.9	(15.7%)
Well PM-1	N030 E310		158.4	±19.5	(12.3%)
TA-53	N040 E230		130.8	± 8,0	(6.1%)
TA-53	N070 E160		132.3	± 6.6	(5.0%)
TA-53	N060 E190		156.9	± 3.6	(2.3%)
TA-53	N060 E200		152.0	± 1.7	(1.1%)
TA-53	N060 E220		307.2	±16.6	(5.4%)
TA-53	N050 E230		150.4	± 7.9	(5.3%)
TA-2	N080 E100		134.9	± 8.0	(5.9%)
TA-2	NOSO ELLO		152.2	± 8.4	(3.3%)
TA-2	NUSU EIZU		126 6	111.J	(13 6%)
			176 7	+ 0 0	(13.0%)
	SUSU W080 S100 R040		127.2	+ 5.4	(4.32)
TA-49 TA-33	S250 E230		118.5	± 8.6	(7.3%)
Booster P-1	S100 E300		135.0	±16.7	(12.4%)
TA-18	S040 E190		162.8	±10.7	(6.4%)
TA-18	S030 E190		191.1	±17.0	(8.9%)
TA-18	S040 E200		362.5	±22.8	(6.3%)
TA-18	S060 E190		431.9	±34.8	(8.1%)
TA-18	S050 E170		156.0	± 9.5	(6.1%)
TA-52	N020 E170		120.3	±14.4	(12.0%)
TA-35	N040 E110		136.6	± 6.6	(4.7%)
TA-35	N030 E110		144.2	± 6.9	(4.8%)
TA-35	N030 E100		139.1	± 7.8	(5.6%)
TA-3	N040 E010		146.7	± 9.7	(0.0%)
TA-3	N060 E010		484.4	±20.2	(4.2%)
TA-3	NUSU KOZO		164.4	I /.L	(J.76) (/. 191
TA-J	N050 E040		エキエ・ブ	T J.0	(4.14)

.

.

د

TABLE VIII

			Gross	-Alpha (Concentrat	ions-fCi/m	³ (10 ⁻¹⁵ µCi	/me ^b)	Gross-	Beta Con	centrations	-fCi/m ³ (10 ⁻¹⁵ µC1/	mt ^b)
		m	Number of	No.	_			Mean	Number of	No.				Mean
Station Location	Coordinate	Volume (m ³)	Samples	<mdl<sup>C</mdl<sup>	<u>Max^d</u>	Min ^d	Mean ^d	<u>x cc</u> e	Samples	<mdl<sup>C</mdl<sup>	Maxd	<u>Min</u> d	Mean ^d	<u>x c</u> e
Regional Stations	<u>(28-44 km) - t</u>	Incontrolled A	reas											
Espanola		95059	26	0	3.4(±1.6)	0.7(±0.3)	$1.2(\pm 0.1)$	2.0	26	0	530(±140)	14(±4)	60(±7)	0.2
Poloague		83352	26	0	4,8(±2.2)	$1.0(\pm 0.4)$	1.6(±0.2)	2.7	26 ·	0	540(±140)	14(±4)	62(±6)	0,2
Santa Fe		· 99038	26	0	4.3(±2.0)	0.6(±0.8)	1.4(±0.1)	2.3	26	0	560(±140)	11(±3)	60(±7)	0.2
Off-Site (Group Summary:	277449	78	ō	4.8(±2.2)	0.6(±0.8)	1.4(±0.1)	2.3	78	ō	560(±140)	14(±4)	60(±4)	0.2
Perimeter_Stations	(0-4 km) Unco	ontrolled Area	18											
Barranca School	1 N180 E130	104408	26	0	6.8(±3.2)	0.7(±0.3)	1.5(±0.2)	2,5	26	0	750(±200)	12(±3)	68(±8)	0.2
Arkansas Avenue	e N170 E020	92829	26	0	2.7(±1.8)	0.7(±0.3)	1.2(±0.1)	2.0	26	0	790(±200)	10(±3)	64(±8)	0.2
Golf Course	N160 E060	106065	26	ĩ	3.0(±1.6)	$0.1(\pm 0.4)$	1.3(±0.2)	2.2	26	ō	710(±180)	12(±3)	64(±7)	0.2
Cumbres School	N150 E090	92525	26	ō	$3.5(\pm 2.0)$	$0.5(\pm 0.3)$	$1.3(\pm 0.2)$	2.2	26	ō	730(±180)	8(±2)	63(±8)	0.2
Diamond Drive	N130 E020	93201	26	ō	$3.7(\pm 1.2)$	$0.6(\pm 0.3)$	$1.2(\pm 0.1)$	2.0	26	õ	770(+200)	8(±2)	58(+7)	0.2
48th Street	N110 F000	01745	26	ň	2 5(+1 2)	0 6(+0 3)	1 1(+0 1)	1.8	26	ŏ	690(+180)	9(+2)	59(+7)	0.2
Fuller Lodge	N110 E000	80078	26	ň	6 2(+2 6)	0.6(+1.2)	1 2(+0 1)	2 0	26	ň	760(+200)	13(+3)	59(+7)	0.2
I A Airport	N110 E160	10/319	26	1	3 / (+2 0)	0.0(+0.8)	1 3(+0 1)	2.0	26	· .	660(+160)	2(+6)	65(+7)	0.2
Brue S T P	N110 E100	00172	26		3 5/+1 6	0 1 (+0 4)	1 1(+0.2)	1 9	26	à	630(+160)	12(+3)	60(+7)	0.2
Dayo S.I.F.	N110 E200	103606	20		3.3(+1.0)	0.1(10.4)	1.1(+0.1)	2.0	20	Š.	770(+100)	12(+3)	60(17)	0.2
Guir Station	N100 E100	103030	20	0	2.8(11.2)	0.8(20.4)	1.2(10.1)	2.0	20	0	//0(±200)	12(13)	00(10)	0.2
Acorn Street	NICO EIIO	105904	26	0	2.0(11.2)	$0.5(\pm 0.2)$	1.1(20.1)	1.0	20	U	440(1120)	8(12)	43(24)	0.2
Royal Crest	N080 E080	36476	10	1	4.2(±2.0)	$0.0(\pm 1.0)$	1.6(±0.3)	2./	10	0	720(±180)	12(±3)	143(±20)	0.5
White Rock S.T.P.	S090 E430	90889	26	D	3.4(±1.6)	0.6(±0.8)	1.3(±0.2)	2.2	26	0	590(±160)	13(±3)	61(±7)	0.2
 Pajarito Acres 	S210 E370	87112	26	0	$4.4(\pm 2.0)$	0.6(±1.2)	1.5(±0.2)	2.5	26	0	810(±200)	14(±4)	71(±8)	0.2
Bandelier	S270 E200	100207	26	0	4.2(±2.0)	0.7(±1.0)	1.4(±0.2)	2.3	26	0	670(±180)	12(±3)	71(±8)	0.2
Lookout		<u> </u>		<u> </u>					_					
Perimeter G	roup Summary:	1398526	374	4	6.8(±3.2)	0.)(±0.8)	1.3(±0.1)	2.2	374	1	810(±200)	2(±6)	65(±2)	0.2
On-Site Stations - (Controlled Are													
TA-21	N090 E170	94051	26	0	5.4(±2.8)	0.7(±0.3)	1.3(±0.2)	0.07	26	٥	650(±160)	10(±3)	63(±7)	0.00 6
TA-6	N060 W050	100634	26	Ō	3.0(+1.4)	$0.7(\pm 0.3)$	1.2(+0.2)	0.06	26	ō	650(±160)	11(+3)	61 (±7)	0.006
TA-53 (LAMPE)	N060 E190	100187	26	ň	2.8(+1.2)	0.6(+0.8)	1.2(+0.1)	0.06	26	õ	640(±160)	12(+3)	58(±7)	0.006
Well PM-1	NO30 F310	105690	26	ñ	3 1 (+1.6)	0 7(+0 4)	12(+0.1)	0.06	26	ő	740(+180)	11(+3)	66(+8)	0.007
TA_57	NO20 E170	102690	26	ň	A 7(+2 2)	0 7(+0 3)	1 6(+0 2)	0.07	26	ň	690(+180)	11(+3)	64(+8)	0 006
TA 16	5020 U080	05933	20	,	3 0/+1 4	0.7(10.3)	1 0(40 1)	0.07	24	ŏ	670(+190)	10(+3)	61 (+8)	0.006
In-10	5030 W000	73023	20	1	7.2(17.0)	0.4(10.1)	1 6/40 2	0.03	20	0	540(+1/0)	13(+3)	63(+7)	0.000
DUDSCEP P-Z	5030 E190	20210	20	1	4.J(12.2)	0.0(10.8)	1.4(10.2)	0.0/	20	0	500(2140) 600(4180)	73(73)	01(+12)	0.000
18-34	5080 E260	0/1/0	1/		3./(I2.0)	0.9(±0.4)	1.0(10.3)	0.09	1/	v A	030(1180)	13(23)	91(212)	0.009
TA-49	S100 E040	103126	20	Ļ	3.0(21.8)	0.1(10.1)	1.2(20.1)	0.06	20	U	010(2100)	1(21)	37(27)	0.000
Booster P-1	S100 E300	103833	26	1	5.3(±2,4)	$0.0(\pm 1.0)$	1.5(±0.2)	0.08	26	0	1410(±360)	12(±3)	70(±9)	0.007
TA-33	5250 E230	105928		1	3.8(±1.8)	0.1(±1.0)	1.3(±0.2)	0.07	26	<u>o</u>	//0(±200)	<u>11(±3)</u>	<u>/2(19)</u>	0.007
On-Site Gro	oup Summary:	1075400	277	5	5.4(±2.8)	0.0(±0.8)	1.3(±0.1)	0.07	277	0	1410(±360)	10(:3)	65(±2)	0.007

ANNUAL ATMOSPHERIC LONG-LIVED^a GROSS-ALPHA AND GROSS-BETA ACTIVITY CONCENTRATIONS

a. The filters are held 7-10 days before analysis to allow naturally occurring radon-thoron daughters to reach equilibrium with their long-lived parents.

b. mf at ambient conditions of ~580 mm Hg barometric pressure and ~15°C.

c. Minimum Detectable Limit = 0.3 x $10^{-15} \mu Ci/mt(\alpha)$

= 0.3 x 10^{-15} µCi/mt(β)

- d. Reported uncertainties are counting uncertainties at the 95% confidence level (±2 sample standard deviations).
- e. Of the possible radionuclides released at LASL, ²³⁹Pu and ⁹⁰Sr are the most restrictive. The CGs for these species are used for the gross-alpha and gross-beta CGs, respectively.

.

Controlled Area Radioactivity Concentration Guide = $2 \times 10^{-12} \mu Ci/m L(\alpha)$

= $1 \times 10^{-9} \mu Ci/mt(\beta)$

Uncontrolled Area Radioactivity Concentration Guide = $6 \times 10^{-14} \mu Ci/mt(\alpha)$

= 3 x $10^{-11} \mu Ci/mt(\beta)$

TABLE IX

ANNUAL ATMOSPHERIC TRITIATED WATER VAPOR CONCENTRATIONS

					Concentrations - pCi/m ³ (10 ⁻¹² µCi/ml ^a)					
Station Location	Coordinates	Total Air Volume (m ³)	Number of <u>Biweekly Samples</u>	No. Samples < <u>MDL^b</u>	Max ^C	Min ^C	Mean ^C	Mean as % CG ^d		
Regional Stations (28-	-44 km) - Uncon	trolled Areas								
Espanola		91	26	2	61(±24)	0(±4)	16(±1)	0.008		
Pojoaque		84	26	1	73(±4)	0(±3)	16(±1)	0.008		
Santa Fe		84	26	3	69(±4)	0(±4)	14(±4)	0.007		
Off-Site Group	Summary:	259	78	6	69(±4)	0(±4)	15(±2)	0.008		
Perimeter Stations (0-	4 km) - Unconti	rolled Areas								
Barranca School	N180 E130	87	26	0	32(±12)	5(±2)	$11(\pm 1)$	0.006		
Arkansas Avenue	N170 E020	86	26	0	36(±12)	$4(\pm 2)$	$13(\pm 1)$	0.007		
Golf Course	N160 E060	83	26	ī	$68(\pm 22)$	$1(\pm 3)$	$18(\pm 2)$	0.009		
Cumbres School	N150 E090	83	26	ō	77(±26)	3(+6)	20(+2)	0.010		
Diamond Drive	N130 E020	87	26	1	$38(\pm 12)$	0(+3)	21 (+2)	0.011		
48th Street	N110 E000	85	26	1	$50(\pm 16)$	0(+3)	18(+1)	0.009		
Fuller Lodge	N110 E090	84	26	1	62(+22)	0(+3)	24(+2)	0.012		
L.A. Airport	N110 E160	84	26	ō	104(+40)	13(+6)	51(+4)	0.026		
Bavo S.T.P.	N110 E260	81	26	ñ	43(+16)	5(+4)	16(+1)	0.020		
Gulf Station	N100 E100	73	23	õ	42(+16)	5(+4)	22(+2)	0.011		
Acorn Street	N100 E110	81	26	0 0	80(+26)	7(+3)	36(+3)	0.011		
Roval Crest	N080 E080	27		0	106(+38	3(+2)	31(+5)	0.016		
White Bock S.T.P.	S090 E430	83	26	0	60(+20)	2(+1)	23(+2)	0.010		
Pajarito Acres	S210 E370	80	26	0	47(+16)	$\frac{2}{5(+4)}$	$23(\pm 2)$	0.012		
Bandelier Lookout	S270 F200	78	26	0	9/(+20)	9(+10)	10(-1)	0.008		
Perimeter Group	Summary:	1182	370	$\frac{0}{4}$	$\frac{34(130)}{106(\pm 38)}$	$0(\pm 3)$	$\frac{27(12)}{23(\pm 1)}$	$\frac{0.014}{0.012}$		
On-Site Stations - Con	trolled Areas									
m4 01	N000 E130	0.2	A (
	N090 E170	83	26	0	210(±60)	10(±4)	40(±3)	0.0008		
	N060 W050	85	26	1	150(±40)	0(±3)	25(±2)	0.0005		
TA-53 (LAMPF)	N060 E190	82	26	0	102(±18)	18(±8)	49(±3)	0.0010		
Well PM-1	N030 E310	86	26	0	140(±40)	4(±3)	35(±3)	0.0007		
TA-52	NO20 E170	85	26	0	340(±120)	24(±8)	118(±8)	0.0024		
TA-16	S030 W080	84	26	1	91(±30)	0(±3)	20(±2)	0.0004		
Booster P-2	S030 E190	76	25	0	80(±14)	5(±2)	34(±2)	0.0007		
TA-54	S080 E260	50 ·	17	0	960(±300)	34(±12)	330(±32)	0.0066		
TA-49	S100 E040	86	26	1	74(±24)	0(±2)	22(±2)	0.0004		
Booster P-1	S100 E300	83	26	0	114(±20)	4(±1)	37(±3)	0.0007		
TA-33	S250 E230	81	_26	<u>0</u>	<u>214(±82)</u>	<u>10(±3)</u>	<u>59(±5)</u>	0.0012		
On-Site Group S	ummary:	881	276	3	960(±300)	0(±3)	60(±2)	0.0012		

a. ml at ambient conditions of 580 mm Hg barometric pressure and 15° C.

b. Minimum Detectable Limit = $1 \times 10^{-12} \mu \text{Ci/ml}$.

c. Reported uncertainties are counting uncertainties at the 95% confidence level (±2 sample standard deviations).

.

.

d. Controlled Area Radioactivity Concentration Guide = $5 \times 10^{-6} \mu Ci/ml$.

Uncontrolled Area Radioactivity Concentration Guide = $2 \times 10^{-7} \mu \text{Ci/ml}$.

TABLE X

ANNUAL ATMOSPHERIC ²³⁸PU AND ²³⁹PU CONCENTRATIONS

					238 _{Pu} (10	0 ⁻¹⁸ µCi/m £ ^a))				239 _{Pu}	(10	-18 uCi/mt ^a	•)	
			Number of	No.	·			Mean	Number of	No	•				Mean
		Total Air	6-8 Wk	Sampl	es		C	as	6-8 Wk	Samp	les	~		C	as
Station Location' (Coordinates	Volume (m ³)	Samples	<mdl< th=""><th><u>Max</u></th><th>Min</th><th>Mean</th><th><u>z cc</u>u</th><th>Samples</th><th><u><md< u=""></md<></u></th><th>Lu Mar</th><th><u>x</u>c</th><th>Min</th><th>Mean</th><th>Z CGª</th></mdl<>	<u>Max</u>	Min	Mean	<u>z cc</u> u	Samples	<u><md< u=""></md<></u>	Lu Mar	<u>x</u> c	Min	Mean	Z CGª
Regional Stations (28	8–44 km) – t	Incontrolled	Areas						•						·
Espanola		95059	8	8	1.4(±1.4)	$-1.7(\pm 1.3)$	-0.2(±0.6)	0.0000) 8	3	9.4(±	3.2)	0.4(±2.3)	4.1(±0.9)	0.007
Pojoaque		75744	8	7	3.8(±3.2)	-1.6(±3.6)	-0.2(±0.8)	0.0000) 8	3	7.8(±	3.2)	1.7(±2.0)	4.4(±1.0)	0.007
Santa Fe		99037	8	6	2.2(±1.4)	-1.6(±1.3)	0.4(±0.6)	0.0006	5 8	3	7.4(±	3.0)	1.0(±2.8)	3.8(±0.8)	0.006
Off-Site Grou	ip Summary:	269840	24	21	3.8(±3.2)	-1.7(±1.3)	0.0(±0.4)	0.000	24	9	9.4(±	3.2)	0.4(±2.3)	4.1(±0.5)	0.007
Perimeter Stations ()	0.4 kona) - Un	ncontrolled A	reas												
Barranca School	N180 E130	104668	8	8	1.7(±1.8)	$-0.2(\pm 1.2)$	$0.4(\pm 0.7)$	0.0006	5 8	1	9.6(±	2.8)	$0.9(\pm 1.6)$	6.0(+1.0)	0.01
Arkansas Avenue	N170 E020	92829	8	6	2.8(±2.4)	$-1.7(\pm 1.4)$	$0.4(\pm 0.7)$	0.0006	5 8	3	6.6(±	2.6)	$1.4(\pm 2.6)$	4.4(+1.0)	0.007
Golf Course	N160 E060	106065	8	7	$3.1(\pm 2.4)$	-0.7(±1.8)	0.7(±0.6)	0.001	8	1	8.3(±	3.2)	$1.5(\pm 1.6)$	$5.1(\pm 1.0)$	0.009
Cumbres School	N150 E090	92525	8	8	1.9(±2.8)	$-1.4(\pm 3.2)$	0.0(±0.7)	0.000) 8	3	6.4(±	3.2)	$0.2(\pm 1.4)$	4.0(+0.9)	0.007
Diamond Drive	N130 E020	83201	8	6	3.6(±5.9)	-2.7(±2.6)	0.8(±1.2)	0.001	8	4	7.2(±	3.2)	$1.0(\pm 1.4)$	4.3(±1.3)	0.007
48th Street	N110 E000	91745	8	7	2.7(±2.2)	-1.3(±1.6)	0.4(±0.7)	0.0006	i 8	4	4.8(±	2.6)	1.0(±1.8)	3.6(±0.9)	0.006
Fuller Lodge	N110 E090	89978	8	7	2.9(±2.6)	-0.7(±2.6)	0.2(±0.7)	0.0003	8	1	10.5(±	3.8)	2.0(±2.0)	$6.1(\pm 1.2)$	0.01
L.A. Airport	N110 E160	104319	8	8	1.9(±1.8)	-0.4(±1.4)	0.6(±0.7)	0.0009	8 (2	12.0(±4	4.4)	1.0(±2.0)	6.8(±1.1)	0.01
Bayo S.T.P.	N110 E260	99172	8	7	2.1(±1.8)	-2.2(±1.1)	-0.4(±0.5)	0.0000) 8	3	8.0(±	2.8)	1.5(±2.0)	5.1(±1.0)	0.009
Gulf Station	N100 E100	51375	4	3	2.4(±2.0)	-1.5(±1.8)	0.9(±1.0)	0.001.	4	1	13.0(±	5.0)	$1.2(\pm 3.4)$	5.5(±1.7)	0.009
Acorn Street	N100 E110	105904	8	7	2.3(±2.4)	-1.9(±1.4)	0.1(±0.6)	0.0001	. 8	3	18.7(±	5.2)	2.0(±1.8)	5.4(±1.0)	0.009
Royal Crest	N080 E080	36476	3	1	2.9(±1.6)	0.2(±1.8)	2.0(±1.2)	0.003	3	2	5.4(±	2.2)	1.5(±2.0)	3.6(±1.4)	0.006
White Rock S.T.P.	S090 E430	90889	8	8	1.8(±2.2)	-1.3(±0.9)	0.2(±0.7)	0.0003	8	2	11.9(±4	4.0)	1.3(±2.8)	5.2(±1.1)	0.009
Pajarito Acres	S210 E370	87112	8	8	1.8(±2.4)	-1.7(±3.6)	-0.2(±0.7)	0.0000) 8	2	7.8(±2	2.8)	2.0(±2.6)	5.4(±1.1)	0.009
Bandelier Lookout	5270 E200	100135	8	_6	5.3(±3.4)	-1.3(±1.8)	0.5(±0.7)	0.0007	8	1	9.2(±	3.4)	0.7(±1.6)	6.2(±1.2)	0.01
Perimeter Gro	oup Summary	1336393	111	97	5.3(±3.4)	-2.7(±2.6)	0.4(±0.2)	0.0006	111	33	18.7(±	5.2)	0.2(±1.4)	5.2(±0.3)	0.009
<u>On-Site Stations - Co</u>	ontrolled Ar	eas												• .	
TA-21	N090 E170	94049	8	5	3.9(±2.8)	-0.5(±1.1)	1.4(±0.7)	0.0000	5 8	1	9.5(±;	2.4)	1.2(±2.0)	6.2(±1.0)	0.000
TA-6	N060 W050	100634	8	8	2.0(±2.2)	-0.9(±1.8)	0.1(±0.6)	0.0000	05 8	3	7.8(±	3.4)	$0.1(\pm 1.6)$	3.8(±1.0)	0.0002
TA-53 (LAMPF)	N060 E190	100189	8	8	0.7 (±2.0)	$-1.8(\pm 1.5)$	-0.1(±0.6)	0.0000	0 8	3	8.5(±	3.0)·	-0.1(±1.8)	5.0(±1.1)	0.0003
Well PM-1	N030 E310	105700	8	6	3.3(±2.2)	-0.9(±1.3)	0.9(±0.8)	0.0000	5 8	2	8.5(±	3.0)	$0.2(\pm 1.8)$	4.6(±1.1)	0.000
TA-52	N020 E170	87919	7	6	2.1(±2.0)	$-1.4(\pm 1.4)$	-0.1(±0.6)	0.0000	0 7	1	6.2(±	3.2)	$1.8(\pm 1.8)$	4.9(±1.2)	0.000
TA-16	S030 W080	95786	8	6	3.0(±2.4)	$-1.2(\pm 1.8)$	0.6(±0.7)	0.0000	3 8	2	6.5(±	2.8)	$1.8(\pm 2.0)$	4.1(±0.9)	0.000
Booster P-2	S030 E190	96923	8	6	2.8(±2.2)	-1.4(±1.2)	0.6(±0.7)	0.0000	3 8	2	11.5(±4	4.6)	1.8(±1.8)	5.8(±1.0)	0.0003
TA-54	S080 E260	50963	4	0	6.6(±2.8)	2.3(±2.0)	4.3(±1.2)	0.0002	2 4	0	69.9(±	9.0)	4.9(±1.9)	26.8(±2.9)	0.001
TA-49	S100 E040	102763	8	8	1.8(±2.8)	-1.0(±0.9)	0.4(±0.7)	0.0000	5 8	3	7.7(±:	3.2)	0.2(±1.8)	3.9(±0.9)	0.000
Booster P-1	S100 E300	103833	8	6	25.2(±4.8)	-0.9(±0.7)	3.2(±1.0)	0.0002	. 8	1	1510(±	95)	2.3(±3.0)	171(±11)	0.009
TA-33	S250 E230	105928	8	7	2.3(±2.2)	-1.5(±1.6)	0.0(±0.6)	0.0000	0 8	ì	11.5(±	3.8)	2.5(±2.0)	5.3(±1.0)	0.000
On-Site Group	Summary	1044687	83	66	2.52(±4.8)	-1.8(±1.5)	0.9(±0.2)	0.0000	5 83	19	1510(±	96)	-0.1(±1.8)	22.5(±1.1)	0.001

a. ml at ambient conditions of ~580 mm Hg barometric pressure and ~15°C.
b. Minimum Detectable Limit = 2 x 10⁻¹⁸µCi/mi(²³⁸Pu)

=
$$3 \times 10^{-18} \mu Ci/ml (^{239} Pu)$$

c. Reported uncertainties are counting uncertainties at 95% confidence level (±2 sample standard deviations). d. Controlled Area Radioactivity Concentration Guide = $2 \times 10^{-12} \mu \text{Ci/ml} (^{238}\text{Pu})$

$$= 2 \times 10^{-12} \text{ uCi/ml} (^{239} \text{Pu})$$

Uncontrolled Area Radioactivity Concentration Guide = $7 \times 10^{-14} \mu Ci/mk (^{238}Pu)$

$$= 6 \times 10^{-14} \mu Ci/ml(^{239} Pu)$$

TABLE XI

ANNUAL ATMOSPHERIC URANIUM

Uranium - pg/m ^{3ª}									
<u>Sta</u>	tion Location	Coordinates	Total Air <u>Volume (m³)</u>	Number of 12-14 Wk Samples	No. Samples <mdl<sup>b</mdl<sup>	Max ^C	Min ^c	Mean ^C	Mean as % CG ^d
Reg	ional Stations (28	-44 km) - Unc	ontrolled Area	18					
1.	Espanola		95059	4	0	146(±18)	13(±7)	72(±7)	8000,0
2.	Pojoaque		59368	3	0	117 (±20)	22(±9)	68(±9)	0,0008
3.	Santa Fe		99037	4	1	83(±13)	2(±16)	45(±6)	0.0005
	Off-Site (Group Summary	253464	11	ī	146(±18)	2(±16)	61 (±4)	0.0007
Per	imeter Stations (0	-4 km) - Unco	ntrolled Areas	<u>.</u>					
4.	Barranca School	N180 E130	76704	3	1	$134(\pm 27)$	2(+16)	67(±12)	0.0007
5.	Arkansas Avenue	N170 E020	92829	.4	ō	$105(\pm 14)$	27(±7)	66(±8)	0.0007
6.	Golf Course	N160 E060	106065	4	õ	$64(\pm 19)$	$40(\pm 6)$	54(±6)	0.0006
7.	Cumbres School	N150 E090	67327	3	ŏ	77(±22)	4(±13)	43(±9)	0.0005
8.	Diamond Drive	N130 E020	70453	3	ŏ	$179(\pm 39)$	50(±9)	111(±13)	0.0012
9.	48th Street	N110 E000	91745	4	Ō	63(±14)	39(±17)	53(±7)	0.0006
10.	Fuller Lodge	N110 E090	89978	4	ō	$109(\pm 26)$	$64(\pm 14)$	80(±12)	0.0009
11.	L. A. Airport	N110 E160	104319	4	ō	68(±27)	40(±8)	49(±8)	0.0005
12.	Bayo S.T.P.	N110 E260	99172	4	Ō	61(±15)	37(±37)	45(±10)	0.0005
13.	Gulf Station	N110 E100	76204	3	ŏ	$102(\pm 14)$	$51(\pm 12)$	72(±7)	0.0008
14.	Acorn Street	N100 E110	105904	4	ō	$134(\pm 18)$	9(±15)	75(±8)	0.0008
15.	Roval Crest	N080 E080	36476	2	ĩ	$35(\pm 10)$	$-7(\pm 9)$	23(+8)	0.0003
16.	White Rock S.T.P.	S090 E430	90889	Ā	ō	77(+13)	47 (+8)	56(+5)	0.0006
17.	Pajarito Acres	S210 E370	87112	4	õ	56(+9)	32(+22)	45(+6)	0.0005
18.	Bandelier	S270 E200	100135	Å	õ	55(+11)	24(+12)	34(+7)	0.0004
-0.	Lookout				<u> </u>			34(21)	010004
	Perimeter Gr	oup Summary:	1295312	54	2	179(±39)	-7(±9)	59(±2)	0.0007
<u>0n-</u>	Site Stations - Co	ntrolled Area	8						
19.	TA-21	N090 E170	94049	4	0	52(±14)	30(+14)	42(+6)	0.00002
20.	та-6	N060 W050	100634	Å	õ	75(+11)	33(+9)	59(+9)	0.00003
21.	TA-53 (LAMPF)	N060 E190	100189	Å	ŏ	107(+23)	34(+16)	62(+8)	0.00003
22.	Well PM-1	N030 E310	105700	<u>í</u>	ŏ	59(±16)	23(+8)	43(+8)	0.00002
23.	TA-52	NO20 E170	102490	Å	õ	80(+13)	38(+10)	61(+5)	0 000002
24.	TA-16	S030 W080	95777	Å	õ	51(+9)	28(+13)	35(+6)	0.00003
25.	Booster P-2	S030 E190	96510	4	ň	271 (+73)	47(+7)	125(+20)	0.00002
26.	TA-54	S080 E260	50963	2	õ	189(+80)	48(+10)	112(+37)	0.00005
27.	TA-49	S100 E040	102763	Å	õ	71(+11)	26(+10)	54(+0)	0.00000
28.	Booster P-1	S100 E300	103833	Ā	õ	72(+9)	26(+15)	50(+5)	0.00002
29.	TA-33	S250 E230	105928	4	Ő	52(+8)	7(+8)	41(+4)	0.00002
	On-Site Group	Summary:	1058836	42	ŏ	271(±73)	7(±8)	60(±3)	0.00003

a. m^3 and mt at ambient conditions of ~580 mm Hg and ~15°C.

b. Minimum Detectable Limit = 2 pg/m^3

c. Reported uncertainties are counting uncertainties at 95% confidence level (±2 sample standard deviations)

d. Controlled Area Radioactivity Concentration Guide = $2.1 \times 10^8 \text{ pg/m}^3$

Uncontrolled Area Radioactivity Concentration Guide = $9 \times 10^6 \text{ pg/m}^3$

NOTE: One curie of natural uranium is equivalent to 3000 kg of natural uranium. Hence, uranium masses can be converted to the ERDA "uranium special curie" by using the factor 3.3 x 10⁻¹¹µCi/pg.

TABLE XII

	Number of Samples	Type of <u>Activity</u>	Units	Min.	Max.	Ave.	Ave as % CG
Regional Surface Water							
	12	з _н	10 ⁻⁶ µCi/ml	0.7(±0.6)	2.8(±0.8)	1.6(±0.7)	<0.1
	9	90 _{Sr}	10 ⁻⁹ µCi/ml	-1.8(±3.0)	16(±5,2)	3.9(±4.0)	1.3
	6	¹³⁷ Св	10 ⁻⁹ µCi/ml	-1(±28)	12(±32)	6(±10)	<0.1
	18	238 _{Pu}	10 ⁻¹² µCi/m£	-18(±24)	5(±20)	-8.2(±15.0)	<0.1
	17	239 _{Pu}	10 ⁻¹² µCi/ml	-13(±-16)	30(±40)	-1.6(±11)	<0.1
	18	Gross-a	10 ⁻⁹ µCi/ml	-1(±6)	9(±6)	2.9(±3.6)	<0.1
	18	Gross-ß	10 ⁻⁹ µCi/ml	3.0(±1.4)	28(±6)	9.2(±2.6)	3.1
	18	Total U	µg/l	-0.1(±4.0)	6.1(±1.2)	1.9(±2.2)	0.1
Perimeter Surface and Ground Water							
	12	³ н	10 ⁻⁶ µCi/mջ	0.8(±0.6)	2.6(±0.8)	1.6(±0.8)	<0.1
	8	90 _{Sr}	10 ⁻⁹ µCi/ml	-1.8(±3.5)	8.5(±4.9)	0.8(±4.2)	0.3
	6	¹³⁷ Св	10 ⁻⁹ µCi/ml	-50(±60)	31(±22)	-1.3(±25)	<0.1
*	18	²³⁸ Pu	10 ⁻¹² µCi/ml	-12(±-12)	10(±24)	-8.2(±9.8)	<0.1
	17	239 _{Pu}	10 ⁻¹² µCi/ml	-7(±-13)	22(±28)	-12(±12)	<0.1
	18	Gross-a	10 ⁻⁹ µCi/ml	-1.2(±1.4)	7(±4)	0.8(±1.8)	1.1
	18	Gross-ß	10 ⁻⁹ µCi/ml	-2.7(±1.0)	12(±2.8)	3.4(±1.5)	<0.1
	8	Total U	µg/l	-0.1(±4.0)	17(±2)	2.2(±2.0)	0.1
Los Alamos Water Supply		_					
	42	³ н	10 ⁻⁶ µCi/ml	0.3(±0.6)	2.4(±0.8)	0.9(±0.7)	<0.1
	23	90 _{Sr} .	10 ⁻⁹ µCi/ml	-1.7(±1.6)	5.8(±3.9)	-0.8(±2.4)	<0.1
	21	¹³⁷ Cs	10 ⁻⁹ µC1/ml	-6(±18)	20(±26)	5(±18)	<0.1
	1	²⁴¹ Am	10 ⁻¹² µCi/ml			20(±200)	<0.1
	48	238 _{Pu}	10 ⁻¹² µCi/ml	-23(±32)	20(±38)	-5.3(±9.2)	<0.1
	48	239 _{Pu}	10 ⁻¹² µCi/m£	-13(±-14)	12(±14)	-2.9(±8.8)	<0.1
	62	Gross-a '	10 ⁻⁹ µCi/m£	-3(±6)	9(±4)	0.8(±2.0)	<0.1
	62	Gross-β	10 ⁻⁹ µCi/ml	0.4(±1.8)	16(±4)	4.3(±1.6)	1.4
	48	Total U	µg∕£	-0.1(<0.1)	5.6(±1.2)	1.0(±2.1)	<0.1

RADIOACTIVITY IN OFF-SITE AND SUPPLY WATERS

•

.

-

٠

51

<u>،</u> ،

·

TABLE XIII

RADIOACTIVITY IN ON-SITE SURFACE AND GROUND WATER

(Average of a Number of Analyses)

		No and	3 ₁₁	90 ₅₇	137 _{Cs}	241 _{Am}	238 _{Pu}	239 _{Pu}	Gross-a	Gross-B	Total U
Name and Coordinate		Type	10 ⁻⁶ µCi/mL	10 ⁻⁹ µC1/m2	10 ⁻⁹ µC1/m2	10 ⁻⁹ µCi/mt	10 ⁻⁹ µCi/ml	10 ⁻⁹ µCi/mt	<u>10⁻⁹µCi/ml</u>	10 ⁻⁹ µC1/m2	µg/l
			<u></u>								
Noneffluent Areas					01 (120)		0 01/.0 02	-0 00(+0 02)	0 6(+1 2)	0 8/+1 4)	0.8(+2.0)
Test Well 3	N 80 E120	3-G	$1.1(\pm 0.7)$	-0.3(±3.1)	21(138)		$0.01(\pm 0.02)$	-0.00(±0.02)	0.0(11.2)	6 0(+1 6)	0.0(12.0)
Canada del Buey	N 10 E150	2-5	2.1(±0.6)		7(+1()		-0.01(10.02)		2.0(-2.2)	4.9(-1.0)	1.2(11.2)
Pajarito Canyon	S 60 E225	2-S	3.3(±0.8)	$1.2(\pm 2.4)$	7(214)		$-0.01(\pm 0.02)$	-0.01(±0.03)	2.9(-3.0)	14.3(~1.9)	1.2(11.2)
Water Canyon	S 90 E 85	2-5	$1.6(\pm 0.7)$	$1.4(\pm 2.4)$	8(±10)		$-0.00(\pm 0.00)$	$0.02(\pm 0.03)$	1.4(1.7)	$5.1(\pm 1.8)$	$0.3(\pm 2.0)$
Test Well DT-5A	S110 E 90	3-G	1.3(10.6)	1.0(±3.6)	11(118)		$-0.00(\pm 0.02)$	-0.00(±0.01)	0.4(-1.4)	2.4(±1.4)	$0.7(\pm 2.0)$
Test Well 8	N 40 E150	3-G	2.1(±0./)	9.4(±3.3)	2(±24)		$0.00(\pm 0.02)$	-0.01(±0.01)	U.8(±1.4)	2.3(±1.4)	0.9(11.0)
Acid-Pueblo Canvon ()	Former Rele	ease Area)									
Acid Weir	N130 E 60	3-S	2.6(±0.7)	60(±6.6)	8(±14)	0.12(±0.12)	-0.00(±0.02)	0.74(±0.07)	1.2(±3.6)	115(±24)	0.1(±0.1)
Pueblo 1	N130 E 75	3-S	1.8(±0.7	0.5(±3.0)	5(±14)	$0.02(\pm 0.14)$	0.01(±0.02)	0.01(±0.02)	1.2(±2.4)	13(±3.2)	-0.1(±0.1)
Pueblo 2	N115 E160	3-s	1.4(±0.7)	2.5(±4.4)	$0(\pm 16)$	0.30(±1.2)	-0.01(±0.01)	$0.03(\pm 0.03)$	1.4(±3.2)	21(±4.6)	0.3(±1.2)
Obs. Hole PO-3B	N110 E245	3-G	7.6(±0.9)	3.9(±4.1)	9(±14)	0.70(±0.34)	0.06(±0.03)	0.35(±0.07)	7.8(±6.0)	21(±4.8)	0.7(±0.3)
Hamilton Bend Spr.	N110 E250	3-G	2.1(±0.7)	$-0.4(\pm 3.1)$	-6(±14)	0.30(±0.40)	0.01(±0.02)	0.01(±0.02)	1.1(±3.2)	12(±3.0)	0.3(±0.4)
Pueblo 3	N 85 E315	3-S	1.4(±0.7)	-1.9(±3.1)	13(±12)	0.12(±0.14)	-0.01(±0.01)	0.01(±0.02)	0.7(±3.2)	17(±3.6)	0.1(±0.1)
Sandia Canvon											
SCS-1	N 80 F 40	3-5	3 7(±0.7)		12(±24)	$-0.28(\pm 0.32)$	0.01(+0.02)	-0.00(+0.02)	$0.9(\pm 2.0)$	17(+3.8)	$0.9(\pm 1.8)$
SCS-2	N 55 E155	3-5	5.1(±0.8)		20(±28)	$-2.3(\pm 1.4)$	-0.00(+0.02)	-0.01(+0.01)	$1.1(\pm 2.2)$	16(+3.6)	$1.0(\pm 2.0)$
SCS near SR 4	N 35 E220	2-G	2.9(±0.6)				0.00(±0.01)	0.01(±0.02)	1.6(±3.2)	20(±4.0)	1.4(±2.4)
DB Jon Manage Conven								•			
DP-LOS AIamos Canyon	N 05 5160										
	N 95 E100	3-5	445(±16)	384(±28)	71(±26)		0.30(±0.08)	0.58(±0.14)	810(±160)	1260(±254)	14(±1.8)
DF_{3-4}	N 80 E205	1-5	48(±1.8)		÷-	0.00(±0.12)	0.01(±0.02)	0.12(±0.04)	6.0(±4.0)	530(±100)	-0.1(±4.0)
Obs. Hole LAO-C	N 85 E 70	2-G	2(±0.6)				0.00(±0.00)	0.00(±0.01)	3.8(±3.4)	9.8(±2.6)	1.3(±2.6)
Obs. Hole LAO-1	N 85 E115	3-G	20(±1.2)	56(±7)	16(±16)		0.01(±0.02)	0.01(±0.02)	1.2(±4.0)	167(±34)	1.3(±1.8)
Obs. Hole LAO-2	N 80 E205	3-G	27(±1.4)	32(±7)	10(±16)		0.15(±0.04)	0.09(±0.03)	5.5(±3.0)	223(±40)	1.5(±1.8)
Obs. Hole LAU-3	N 80 2215	3-6	12(11.1)	22(±4)			0.01(±0.04)	-0.00(±0.03)	4.6(±7.0)	80(±16)	1.8(±1.8)
UDS. HOIE LAU-4.5	N 65 E2/U	3-G	11(±1.0)	-1.2(±3.4)		0.24(±0.16)	0.01(±0.02)	0.02(±0.02)	1.5(±2.2)	13(±3.0)	1.2(±1.8)
Mortandad Canyon											
Gaging Station 1	N 50 E 90	3-s	190(±11)	5.2(±3.1)	32(±16)		$12(\pm 0.72)$	1.92(+0.20)	26(+12)	186(+37)	1 6(+1 8)
Obs. Hole MCO-3	N 45 E 95	3-G	211 (±8.2)	62(±8.2)	9(±46)	7.4(±1.4)	5.8(±0.39)	0.57(+0.06)	76(+32)	320(+66)	3 2(+1 8)
Obs. Hole MCO-4	N 35 E135	3-G	2000 (±112)	84(±7.8)	23(±18)	1.3(±0.4)	20(±2.0)	3.8(+0.50)	17(+7.6)	1120(+260)	13(41 0)
Obs. Hole MCO-5	N 40 E150	3-G	1034 (±40)	2.5(±2.9)	9(±20)	-1.2(±1.2)	$0.55(\pm 0.06)$	0.09(+0.04)	11(+9.4)	41 (+8 n)	13(11.3)
Obs. Hole MCO-6	N 35 E160	2-G	1760 (± 60)			10(+60)	$0.34(\pm 0.07)$	0.04(+0.03)	20/+10	41(-0.U) /0(+p /)	H. D(14.0)
Obs. Hole MCO-7	N 30 E170	3-G	266 (± 12)	5.1(+9.0)	12(+16)	0 04 (+0 16)	0.41(+0.09)		1/(+9 0)	40(40.0) 20/+6 A)	2.1(21.3)
Obs. Hole MCO-7.5	N 30 E180	3-G	205 (±7.0)	-0.3(+2.3)	3(+16)	0.08(+0.08)	0 23(+0 06)	0.05(40.03)	14(10.0)	20(-0.0)	J.0(22.2)
Obs. Hole MCO-8	N 30 E185	1-G	25(±2,0)	19(+4.6)	8(+16)		0.15(+0.06)	0.02(+0.02)		J2(+0.0)	0.0(12.2)
	_			27 (2 410)	~~~~)		0.13(~0.00)	0.04(20.03)	0(±4.0)	10(-2.0)	3.2(11.0)

.

٠

,

NOTE: S = Surface water; G = Ground Water -

137Cs and ³H one or two analyses; ²⁴¹Am and ⁹⁰Sr one analysis.

TABLE XIV

		Number of Sample	Type of <u>Activity</u>	Units	Min.	Max.	Ave.
Regional and	l						
Perimeter	<u>Soils</u>	9 6 20 20 20 20 20 20 9	3 _H 90Sr 137 _{CS} 238Pu 239Pu Gross-α Gross-α Gross-β Total U	10 ⁻⁶ µCi/ml pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g µCi/g µg/g	$1.4(\pm 0.6)$ 0.90(±2.00) 0.11(±0.03) 0.000(±0.001) 0.002(±0.002) 1.5(±1.6 3.3(±1.0) 1.1(±0.6)	$\begin{array}{c} 6.4(\pm 0.8)\\ 13.9(\pm 6.40)\\ 1.75(\pm 0.12)\\ 0.004(\pm 0.003)\\ 0.033(\pm 0.008)\\ 18(\pm 8.0)\\ 11.6(\pm 2.4)\\ 3.9(\pm 0.8)\end{array}$	3.3(±0.6) 4.62(±2.70) 0.62(±0.06) 0.000(±0.002) 0.015(±0.004) 5.2(±2.6) 5.7(±1.3) 1.9(±0.8)
	Sediment	9 8 10 21 21 21 21 21 10	3 _H 90 _{Sr} 137 _{Cs} 238 _{Pu} 239 _{Pu} Gross-α Gross-β Total U	10 ⁻⁶ µCi/ml pCi/g pCi/g pCi/g pCi/g pCi/s pCi/s pCi/s pCi/g µg/g	0,2(±0.6) ~0.09(±0.18) 0.06(±0.02) ~0.005(< 0.007) 0.000(±0.000) 0.5(±0.8) 1.1(±0.6) 0.3(±0.6)	4.1(±0.8) 5.90(±2.60) 0.23(±0.04) 0.003(±0.002) 2.06(±1.00) 10(±4.0) 6.1(±1.4) 2.7(±1.0)	14(±0.7) 2.04(±2.30) 0.15(±0.04) 0.001(±0.001) 0.122(±0.008) 3.2(±1.6) 2.9(±0.8) 1.3(±0.8)
On-Site	<u>Soils</u>	3 3 7 7 8 8 3	3 _H 90Sr 238Pu 239Pu Gross-α Gross-β Total U	10 ⁻⁶ µCi/ml pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g µg/g	$\begin{array}{c} 3.5(\pm 0.6) \\ 0.74(\pm 1.40) \\ 0.001(\pm 0.002) \\ 0.007(\pm 0.003) \\ 2.0(\pm 1.0) \\ 1.5(\pm 0.6) \\ 2.7(\pm 1.0) \end{array}$	$11(\pm1.0) \\ 10.5(\pm5.0) \\ 0.005(\pm0.005) \\ 0.193(\pm0.022) \\ 10(\pm4.0) \\ 8.5(\pm1.8) \\ 5.3(\pm0.8) $	7.9(±0.8) 4.80(±7.50) 0.003(±0.004) 0.144(±0.018) 4.7(±2.0) 4.8(±1.2) 3.6(±0.9)
	<u>Sedimen</u>	ts 7 9 13 13 13 13 13 7	3 _H 90Sr 137Cs 238pu 239pu Gross-α Gross-β Total U	10 ⁻⁶ µCi/m2 pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g µg/g	$\begin{array}{c} 2.3(\pm 0.6) \\ 0.36(\pm 2.10) \\ 0.17(\pm 0.01) \\ 0.000(\pm 0.001) \\ 0.001(\pm 0.003) \\ 0.9(\pm 0.6) \\ 0.5(\pm 0.6) \\ 0.3(\pm 0.6) \end{array}$	$17 (\pm 3.4) \\ 8.50 (\pm 2.80) \\ 1.53 (\pm 0.10) \\ 0.115 (\pm 0.016) \\ 0.720 (\pm 0.060) \\ 10 (\pm 4.0) \\ 28 (\pm 6.0) \\ 30 (\pm 4.0) \\ \end{cases}$	$7.1(\pm 1.5) 7.90(\pm 4.00) 0.55(\pm 0.50) 0.014(\pm 0.003) 1.06(\pm 0.01) 4.4(\pm 2.2) 8.9(\pm 2.1) 6.4(\pm 1.2)$

RADIOACTIVITY IN SOIL AND SEDIMENTS

ຽວ

TABLE XV

CHEMICAL QUALITY OF REGIONAL SURFACE WATER

		Concentrations (mg/l)						
Analyses	Number of Analyses	Min	Max	Ave				
Bicarbonate	9	105	160	119(±19)				
Calcium	9	34	51	39(±5.5)				
Carbonate	9	0	0	0				
Chloride	9	5	58	16(±18)				
Fluoride	9	0.1	1.4	0.4(±0.4)				
Magnesium	9	3	14	8.7(±3.2)				
Nitrate	9	<0.4	0.8	0.4(±0.3)				
Sodium	9	13	96	32(±25)				
TDS	9	222	664	337 (±130)				
Hardness	9	113	153	136(±16)				
рН	9	7.6	8.3	7.9(±0.4)				
Conductance (mS/m)	9	2.5	85.5	39.5(±18.8)				

NOTE: Value in parentheses is standard deviation of the distribution of a number of analyses.

.

۲ (

•

.

,

TABLE XVI

-

			Average Chemical Concentrations (mg/%)											
Sampling Locat	ions	No. & Type of Sample	Ca ²⁺	Mg ²⁺	Nat	co32-	HCO3	<u>c1</u>	F	NO3	TDS	Hard	pĦ	Conductance mS/m
Los Alamos Reservoir	N105 W 75	2-S	16	3	5	0	50	3	0.2	<0.4	98	· 52	7.7	11.0
Guaje Canyon	N215 E315	2-S	8	3	7	0	46	2	0.2	0.4	127	34	7.5	9.8
Basalt Spring	N 65 E395	2-G	30	4	12	0	82	17	0.4	10	191	94	7.8	26.1
La Mesita Spring	18 km E of L.A	. 2-G	32	2	26	0	114	10	0.2	1,6	186	90	7.9	29.6
Test Well 1A	N 70 E300	2-G	20	8	57	0	114	33	0.6	24	326	81	7.8	49.8
Frijoles Canyon	S280 E190	2-5	10	4	9	0	48	2	0.2	<0.4	141	40	7.7	11.9

CHEMICAL QUALITY OF PERIMETER SURFACE AND GROUND WATERS

TABLE XVII

		Concentrations (mg/l)					
Analyses	No. of Analyses	Min.	Max.	Ave.			
Arsenic	40	0.002	0.051 ^a	0.010(±12)			
Bicarbonate .	41	50	255	98(±47)			
Calcium	41	5	27	14(±5.7)			
Carbonate	41	0	0	0(±0)			
Chloride	41	<1	15	5.0(±4.2)			
Fluoride	41	0.2	2.0	0.5(±0.6)			
Magnesium	41	1 .	12	3.0(±2.7)			
Mercury	21	0.00005	0.0002	0.00009(±0.00003)			
Nitrate	41	0.4	1.7	1.2(±0.6)			
Selenium	40	<0.001	<0.001	<0.001(±0.001)			
Silica	39	30	81	55(±18)			
Sodium	41	11	104	26(±21)			
TDS	41	46	434	190(±77)			
Hardness	41	26	110	48(±24)			
рН	41	7.4	8.4	8.0(±0.2)			
Conductance (mS/m)	41	9.0	60	20.4(±10.1)			

CHEMICAL QUALITY OF THE LOS ALAMOS WATER SUPPLY

^aWell G-2, Arsenic 0.050 to 0.051 mg/&; at distribution after dilution 0.007 to 0.013 mg/&. NOTE: Value in parentheses is deviation of the distribution of a number of analyses.

TABLE XVIII

CHEMICAL QUALITY OF ON-SITE SURFACE AND GROUND WATERS

Source Sampled No. 6 Type Ca ²⁺ Ma ² Ca ²⁺ Ma ²⁺ Ca ²⁺ 2+ Ca ²⁺ Ma				Average Chemical Concentrations (mg/1)											
Monoffluent Areas Test Well 3 N 60 E120 2-C 24 6 16 0 106 5 0.3 1.3 240 66 7.8 21.0 6 42.0 6 120 6.0 40.4 300 64 7.1 18.5 Pajertto Canyon 5 00 F85 1-5 10 5 21 0.7 100 0.2 10.4 202 13.5 15.5 0 70 10 0.8 154 65 7.9 13.0 Test Well DT-5A 5110 E 50 2-C 14 2 12 0 67 12 0.2 0.8 154 65 7.9 13.0 Acid-Pueblo Canyon (Foreer Eclease Area) X 10 72 54 0 56 42 0.6 4.8 214 54 7.6 43.0 Pueblo 1 N130 F 75 2-5 12 564 0 55 0.5 22.0 293 12.3 7.7	Source Sampled Name & Location		No. & Type of Sample ²	Ca ²⁺	Mg ²⁺	Na ⁺	<u>co3</u> 2-	BC03	<u>c1</u>	<u>r</u>	103	TDS	Bard	рЦ	Conductance <u>mS/m</u>
Test Well 3 N 80 E120 2-6 24 6 14 0 106 5 0.3 1.3 240 86 7.6 21.0 Canada del Nery N 10 E120 2-5 23 8 15 0 36 12 0.6 -0.4 300 44 7.1 18.5 Pajarito Canyon S 00 E85 1-5 10 5 21 0 66 14 20 0.2 0.4 300 44 7.1 18.5 Test Well NT-5A SID E 90 2-6 14 2 12 0 67 12 0.2 0.8 154 64 7.9 13.5 Acid Weir Ni30 E 60 2-5 17 2 54 0 95 42 0.6 4.8 214 54 7.6 43.0 Vebio 1 Ni30 E 75 2-5 18 4 67 132 44 0.6 32.0 369 58 7.4 51.0 Vebio 1 Ni30 E 75 2-5 18 4 67 0 132	Noneffluent Areas														
Canada del Buey N 10 E150 1-5 14 8 16 0 36 12 0.6 <0.4	Test Well 3	N 80 E120	2G	24	6	14	0	104	5	0.3	1.3	240	86	7.8	21.0
Paintio Campon S 60 E25 2-5 25 8 15 0 66 24 0.2 -0.4 240 95 7.6 55:5 Nater Campon S 90 E 85 1-5 10 5 21 0 67 12 0.2 0.8 154 453 7.6 13.0 Test Well DT-5A S110 E 90 2-6 14 2 12 0 67 12 0.2 0.8 154 453 7.6 13.0 Acid Veit N130 E 70 2-6 17 2 54 0 956 42 0.6 4.8 214 54 7.6 43.0 Veblo 1 N130 E 75 2-5 18 4 67 0 956 42 0.6 4.8 214 54 7.6 43.0 Pueblo 1 N130 E 75 2-5 12 5 64 0 152 0.5 200 65 300 65 20.0 66 7.4 43.2 Pueblo 3 R10 E 205 2-5 26 10 78	Canada del Buey	N 10 E150	1-S	14	8	16	0	36	12	0.6	<0.4	350	44	7.1	18.5
Water Canyon S 90 E 85 1-5 10 5 21 0 70 10 0.2 1.3 192 38 7.9 14.0 Test Well 8 N 40 El50 2-6 14 2 12 0 67 12 0.2 0.8 154 45 7.6 13.0 Acid-Fueblo Canyon (Former Release Area) Acid Veir N130 E 60 2-5 17 2 54 0 96 42 0.6 4.8 214 54 7.6 43.0 Pueblo 2 N130 E 60 2-5 12 5 64 0 912 44 0.6 32.0 369 58 7.4 51.0 Deblo 2 N130 E 70 2-6 12 56 60 132 44 0.6 32.0 369 58 7.4 51.0 Dise Note Adsper B110 E245 2-6 26 0 100 105 49 1.2 12.0 66 7.4 </td <td>Pajarito Canyon</td> <td>S 60 E225</td> <td>2–S ·</td> <td>25</td> <td>8</td> <td>15</td> <td>0</td> <td>66</td> <td>24</td> <td>0.2</td> <td><0.4</td> <td>240</td> <td>95</td> <td>7.6</td> <td>59.5</td>	Pajarito Canyon	S 60 E225	2–S ·	25	8	15	0	66	24	0.2	<0.4	240	95	7.6	59.5
Test Well DT-5A S110 E 90 2-6 14 2 12 0 67 12 0.2 0.8 154 45 7.6 13.0 Acid-Fueblo Canyon (Former kalesse Ares) Acid Veir N130 E 60 2-5 17 2 54 0 96 42 0.6 4.8 214 54 7.6 43.0 Dueblo 1 N130 E 75 2-5 18 4 67 0 96 42 0.6 4.8 214 54 7.6 43.0 Dueblo 2 N130 E 75 2-5 18 4 67 0 96 42 0.6 4.8 214 54 7.6 43.0 Dueblo 2 N10 E245 2-6 11 12 26 0 86 35 0.5 22.0 233 123 7.7 41.0 Bendice Beed Spe. N10 E245 2-6 26 10 78 0 104 47 1.0 33.0 535 107 7.5 69.5 Sc5-1 K 80 E 40 2-5	Water Canyon	° S90 E 85	1-S	10	5	21	-0	70	10	0.2	1.3	192	38	7.9	14.0
Test Well 8 N 40 EL50 2-6 14 3 12 0 71 8 0.1 0.8 186 46 7.9 13.5 Acid-Pueblo Canyon (Former Release Area) Acid-Pueblo 1 N130 E 75 2-5 17 2 54 0 96 42 0.6 4.8 214 54 7.6 43.0 Dueblo 2 N130 E 75 2-5 13 4 67 0 95 62.0 369 58 7.4 43.0 Obs. Bole PO-3B F110 E245 2-C 31 12 26 0 85 35 0.5 22.0 233 123 7.7 4.10 Metho 3 # 65 E315 2-5 14 4 72 0 95 36 0.6 44.0 32.0 535 107 7.5 69.5 SCS-1 # 80 E 40 2-8 26 10 78 0 106 47 1.0 33.0 535	Test Well DT-5A	S110 E 90	2-G	14	2	12	0	67	12	0.2	0.8	154	45	7.6	13.0
Acidi-Pueblo Canyon (Former Release Ares) Acidi Veir Pueblo 1 NI30 E 60 NI35 E F5 2-5 2-5 17 2-5 25 18 4 0 47 0 96 132 44 6 0.6 32.0 369 300 58 7.4 7.6 51.0 Dueblo 2 NI15 E F6 NI15 E F6 2-5 2-5 12 12 46 66 65 30 0.6 55.0 300 22.0 369 8.0 8.0 8.0 1.3 7.7 41.0 Dueblo 3 N 55 E 515 2-5 14 4 72 0 96 35 0.5 30 0.6 44.0 33.0 30 35 35 535 7.5 69.5 32.0 Sandia Canyon SCS-1 SC3-2 N 80 E 40 N 55 E 155 2-5 2-5 26 36 10 78 11 0 163 104 47 1.0 33.0 335 335 107 7.5 69.5 69.5 SCS-1 SC3-2 N 85 E 155 2-5 36 20 7 7 432 12 78 0 54 90 4.2 840.0 1927 102 8.7 10 8.7 8.7 272.7 7 Dbs. Jole LAO-C N 85 E 70 1-5 20 7 7 45 0 78 66 0 0.3 0.4 48 80 8.0 8.0 93.5 39.5 7.7 31.6 8.0 64 7.5 62.5 7.7 33.0 Dbs. Jole LAO-C N 85 E	Test Well 8	N 40 E150	2-G	14	3	12	0	71	8	0.1	0.8	186	46	7.9	13.5
Acid Weir BI30 E 60 2-5 17 2 54 0 96 42 0.6 4.8 214 54 7,6 43.0 Pueblo 1 NI30 E 75 2-5 18 4 67 0 322 44 0.6 4.8 214 54 7,6 43.0 Pueblo 1 NI30 E 75 2-5 12 56 0 85 30 0.6 59.0 300 50 8,0 51.5 Obs. Bole PO-38 BIL0 E250 2-6 24 8 60 0 85 30 0.5 22.0 293 123 7,7 41.0 Hamilton Band Sys. BIL0 E250 2-5 14 4 72 0 96 36 0.6 44.0 319 50 7,5 52.0 Sandia Canyon SS 2-5 36 11 131 0 163 49 1.2 12.0 621 136 8.1 94.8 DP-Los Alamos Canyon SS 2-5 36 11 131 10 163 <td< td=""><td>Acid-Pueblo Canyon (F</td><td>'ormer Release Area)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Acid-Pueblo Canyon (F	'ormer Release Area)													
Pueblo 1 NI30 E 75 2-S 18 4 67 0 132 46 0.6 32.0 369 58 7.4 51.0 Pueblo 2 KIJS EL60 2-S 12 5 64 0 85 30 0.6 59.0 300 50 6.0 51.5 Pueblo 3 R 10 E245 2-C 11 12 26 0 86 35 0.5 22.0 233 123 7.7 41.0 Hamilton Head Spr. R 10 E250 2-C 24 8 60 0 108 15 0.8 27.0 304 66 7.4 43.2 2 0 94 36 0.6 44.0 319 50 7.5 52.0 Scinic Canyon State	Acid Weir	N130 E 60	2-s	17	2	54	0	96	42	0.6	4.8	214	54	7.6	43.0
Pueblo 2 NL15 E160 2-5 12 5 64 0 85 36 0.6 55.0 300 50 8.0 51.5 Obs. Bole PO-3B B110 E245 2-6 31 12 26 0 86 35 0.5 22.0 293 123 7.7 41.0 Basilion Bend Spe. B120 E250 2-6 24 8 60 0 108 15 0.6 44.0 319 50 7.5 52.0 Sandia Canyon State Stat	Pueblo 1	N130 E 75	2-s	18	4	67 .	0	132	44	0.6	32.0	369	58	7.4	51.0
Obs. Hole PO-3B Fillo E245 2-C 31 12 26 0 36 35 0.5 22.0 23 12 37.7 41.0 Hamilton Hend Spr. Fillo E250 2-C 24 8 60 0 108 15 0.8 27.0 304 66 7.4 43.2 Preblo 3 F 85 E315 2-S 1.4 4 72 0 96 36 0.6 44.0 319 50 7.5 52.0 Sch-1 N 80 E 40 2-S 26 10 78 0 104 47 1.0 33.0 535 107 7.5 69.5 SCS-2 N 55 E155 2-S 36 11 131 0 163 49 1.2 12.0 621 136 8.7 272.7 Obs. Kole LAO-C N 85 E160 2-S 29 7 432 12 554 90 4.2 840.0 1927 102 8.7 272.7 7 Obs. Kole LAO-C N 85 E170 1-S 20 7 45	Pueblo 2	N115 E160	2-5	12	Ś	64	ō	85	30	0.6	59.0	300	50	8.0	51.5
Basel Spr. NILD E250 2-C 24 8 60 0 108 15 0.8 27.0 304 66 7.4 43.2 Paeblo 3 N 85 E315 2-S 14 4 72 0 94 36 0.6 27.0 304 66 7.4 43.2 Sandia Canyon SS SCS-1 N 80 E 40 2-S 26 10 78 0 104 47 1.0 33.0 535 107 7.5 69.5 SCS-1 N 80 E 40 2-S 26 10 78 0 104 47 1.0 33.0 535 107 7.5 69.5 SCS-1 N 85 E155 2-S 36 11 131 0 163 49 1.2 12.0 621 136 8.1 94.8 DPS-1 N 95 E160 2-S 29 7 432 12 554 90 4.2 840.0 1927 102 8.7 272.7 Obs. Bole LAO-1 N 85 E15 2-G 10 7 453	Obs. Hole PO-3B	N110 E245	2-G	31	12	26	ō.	86	35	0.5	22.0	293	123	77	41 0
Pueblo 3 N 85 E315 2-5 14 4 72 0 94 36 0.6 44.0 319 50 7.5 52.0 Sandia Canyon SCS-1 N 80 E 400 2-5 26 10 78 0 104 47 1.0 33.0 535 107 7.5 69.5 SCS-2 N 55 E155 2-5 36 11 131 0 163 49 1.2 12.0 621 136 8.1 94.8 DP-Los Alamos Canyon DP-Los Alamos Canyon DP-Los Alamos Canyon 0 1.3 0 163 49 1.2 12.0 621 136 8.1 94.8 DP-Los Alamos Canyon DPS-1 N 95 E160 2-5 29 7 432 12 554 90 4.2 840.0 1927 102 8.7 272.7 Dbs. Bole LAO-1 N 85 E115 2-6 16 7 535 0 102 46 0.3 0.4 28 8.6 39.3 39.3 39.3 39.3 39.3 39.3 3	Eamilton Hend Ser.	BL10 E250	2-G	24	8	60	ō	106	15	0.8	27.0	304	66	7 4	12.0
Sendia Canyon SCS-1 N 80 E 40 2-5 26 10 78 0 104 47 1.0 33.0 535 107 7.5 69.5 SCS-2 N 95 E155 2-6 36 11 131 0 104 47 1.0 33.0 535 107 7.5 69.5 94.8 DP-Los Alamos Canyon DP-Los Alamos Canyon N 95 E160 2-8 29 7 432 12 554 90 4.2 840.0 1927 102 8.7 272.7 DP-Los Alamos Canyon N 95 E160 2-8 29 7 432 12 554 90 4.2 840.0 1927 102 8.7 272.7 Dbs. Bole LAO-1 N 85 E115 2-6 16 7 535 0 102 46 0.7 7.9 31.4 68 7.6 34.5 62.5 33 35 33 33 33 33 3	Pueblo 3	N 85 E315	2-S	14	4	72	ō		36	0.6	44.0	319	50	7.5	52.0
SCS-1 SCS-2 N 80 E 40 N 55 E155 2-5 2-S 26 36 10 11 78 131 0 104 163 47 49 1.0 1.2 33.0 1.2 535 107 7.5 621 69.5 8.1 94.8 DP-Los Alamos Cauyon DP-Los Alamos Cauyon DP-Los Alamos Cauyon	Sandia Canyon														
SCS-2 N 55 E155 2-S 36 11 131 0 163 49 1.2 12.0 621 136 8.1 94.8 DPS-Los Alamos Cauyon DPS-1 N 95 E160 2-S 29 7 432 12 554 90 4.2 840.0 1927 102 8.7 272.7 Obs. Hole LAO-1 N 85 E 10 1-S 20 7 450 78 68 0.3 0.4 248 80 8.0 39.3 Obs. Hole LAO-1 N 85 E115 2-G 16 7 535 0 102 46 0.7 79 314 68 7.6 39.5 90 1.3 9.2 377 76 7.7 53.3 Obs. Hole LAO-3 N 80 E215 2-G 20 6 70 0 172 18 3.1 9.2 377 76 7.7 53.3 Obs. Bole LAO-4.5 N 65 E270 2-G 10 3 56 0 112 9 1.3 29.0 277 38 7.6 34.4	SCS-1	N 80 E 40	2-5	26 [·]	10	78	0	104	47	1.0	33.0	535	107	7.5	69.5
DP-log Alamos Canyon DPS-1 N 95 E160 2-S 29 7 432 12 554 90 4.2 840.0 1927 102 8.7 272.7 Obs. Kole LAO-C N 85 E 70 1-S 20 7 45 0 78 68 0.3 0.4 248 80 8.0 39.3 Obs. Kole LAO-1 N 85 E 215 2-G 16 7 535 0 102 46 0.7 7.9 314 68 7.5 62.5 Obs. Kole LAO-2 N 80 E205 2-G 38 4 88 0 190 16 4.0 58.0 458 64 7.5 62.5 Obs. Kole LAO-3 N 80 E215 2-G 20 6 70 0 172 18 3.1 9.2 377 76 7.7 53.3 Obs. Kole LAO-4.5 N 65 E270 2-G 10 3 56 0 112 9 1.3 29.0 277 38 7.6 34.4 Obs. Hole MCO-3 N 45 E 95	SCS-2	N 55 E155	2–S	36	11	131	0	163	49	1.2	12.0	621	136	8.1	94.8
DPS-1 N 95 E160 2-S 29 7 432 12 554 90 4.2 840.0 1927 102 8.7 272.7 Obs. Role LAO-C N 85 E 70 1-S 20 7 455 0 78 68 0.3 0.4 248 80 8.0 39.3 Obs. Hole LAO-1 N 85 E115 2-G 16 7 535 0 102 46 0.7 7.9 314 68 7.6 39.5 Obs. Hole LAO-2 N 80 E205 2-G 38 4 88 0 190 16 4.0 58.0 458 64 7.5 62.5 Obs. Hole LAO-3 N 80 E215 2-G 20 6 70 0 172 18 3.1 9.2 377 76 7.7 53.3 Obs. Hole LAO-4.5 N 65 E270 2-G 18 6 36 0 88 30 0.4 1.8 263 70 7.9 30.5 Sortandad Canyon 2-G 17 6 159 0 248	DP-Los Alamos Canyon														
Obs. Hole LAO-C N 85 E 70 1-S 20 7 45 0 78 68 0.3 0.4 248 80 8.0 39.3 Obs. Hole LAO-1 N 85 E115 2-G 16 7 535 0 102 46 0.7 7.9 314 68 7.6 39.5 Obs. Hole LAO-2 N 80 E205 2-G 38 4 88 0 190 16 4.0 58.0 458 64 7.5 62.5 Obs. Hole LAO-3 N 80 E215 2-G 20 6 70 0 172 18 3.1 9.2 377 76 7.7 53.3 Obs. Hole LAO-4.5 N 65 E270 2-G 18 6 36 0 88 30 0.4 1.8 263 70 7.9 30.5 Sortandad Canyon 2-G 17 6 159 0 248 21 1.2 125.0 660 65 8.0 88.8 Obs. Hole MCO-3 N 45 E 95 2-G 17 6 159 0 <t< td=""><td>DPS-1</td><td>N 95 E160</td><td>2-S</td><td>29</td><td>. 7 .</td><td>432</td><td>12</td><td>554</td><td>90</td><td>4.2</td><td>840.0</td><td>1927</td><td>102</td><td>8.7</td><td>272 7</td></t<>	DPS-1	N 95 E160	2-S	29	. 7 .	432	12	554	90	4.2	840.0	1927	102	8.7	272 7
Obs. Hole LAO-1 N 85 E115 2-G 16 7 535 0 102 46 0.7 7.9 314 68 7.6 39.5 Obs. Hole LAO-2 N 80 E205 2-G 38 4 88 0 190 16 4.0 58.0 458 64 7.5 62.5 Obs. Hole LAO-3 H 80 E215 2-G 20 6 70 0 172 18 3.1 9.2 377 76 7.7 53.3 Obs. Hole LAO-4.5 N 65 E270 2-G 18 6 36 0 88 30 0.4 1.8 263 70 7.9 30.5 Sortandad Canyon Sortandad Canyon Gaging Station 1 N 50 E 90 2-S 10 3 56 0 112 9 1.3 29.0 277 38 7.6 34.4 Obs. Hole MCO-3 N 45 E 95 2-G 17 6 159 0 248 21 1.2 125.0 660 65 8.0 88.8 Obs. Hole MCO-4	Obs. Hole LAO-C	N 85 E 70	1-5	20	7	45	0	78	68	0.3	0.4	748	80	8.0	39 3
Obs. Hole LAO-2 N 80 E205 2-G 38 4 88 0 190 16 4.0 58.0 458 64 7.5 62.5 Obs. Hole LAO-3 N 80 E215 2-G 20 6 70 0 172 18 3.1 9.2 377 76 7.7 53.3 Obs. Hole LAO-4.5 N 65 E270 2-G 18 6 36 0 88 30 0.4 1.8 263 70 7.9 30.5 Sortandad Canyon Gaging Station 1 N 50 E 90 2-S 10 3 56 0 112 9 1.3 29.0 277 38 7.6 34.4 Obs. Hole MCO-3 N 45 E 95 2-C 17 6 159 0 248 21 1.2 125.0 660 65 8.0 88.8 Obs. Hole MCO-4 N 35 E135 2-G 32 2 196 0 330 30 1.3 189.0 884 90 7.8 121.2 Obs. Hole MCO-5 N 40 E150 2-G 24	Obs. Hole LAO-1	N 85 E115	2-G	16	7	535	ŏ	102	46	0.7	7.9	314	68	7 6	30.5
Obs. Hole LAO-3 H 80 E215 2-G 20 6 70 0 172 18 3.1 9.2 377 76 7.7 53.3 Obs. Hole LAO-4.5 N 65 E270 2-G 18 6 36 0 88 30 0.4 1.8 263 70 7.9 30.5 Sortandad Canyon Gaging Station 1 N 50 E 90 2-S 10 3 56 0 112 9 1.3 29.0 277 38 7.6 34.4 Obs. Hole MCO-3 N 45 E 95 2-G 17 6 159 0 248 21 1.2 125.0 660 65 8.0 88.8 Obs. Hole MCO-4 N 35 E135 2-G 32 2 196 0 330 30 1.3 189.0 884 90 7.8 121.2 Obs. Hole MCO-5 N 35 E135 2-G 2-G 24 6 185 0 239 26 0.8 187.0 71.8 87.7 106.5 0bs.8 10.8 10.7	Obs. Hole LAO-2	N 80 E205	2-G	38	Å	88	ŏ	190	16	4.0	58.0	458	64	7.5	67 5
Obs. Hole LAO-4.5 N 65 E270 2-G 18 6 36 0 88 30 0.4 1.8 263 70 7.9 30.5 Sortandad Canyon Gaging Station 1 N 50 E 90 2-S 10 3 56 0 112 9 1.3 29.0 277 38 7.6 34.4 Obs. Hole MCO-3 N 45 E 95 2-G 17 6 159 0 248 21 1.2 125.0 660 65 8.0 88.8 Obs. Hole MCO-4 N 35 E135 2-G 32 2 196 0 330 30 1.3 189.0 884 90 7.8 121.2 Obs. Hole MCO-5 N 40 E150 2-G 24 6 185 0 239 26 0.8 187.0 712 88 7.7 106.5 Obs. Hole MCO-6 N 35 E160 1-G 24 6 173 0 310 24 1.4 175.0 712 85 8.1 106.3 Obs. Hole MCO-7 N	Obs. Hole LAO-3	N 80 E215	2G	20	6	70	ō	172	18	3.1	9.2	377	76	7 7	52.3
Sortandad Canyon Gaging Station 1 N 50 E 90 2-S 10 3 56 0 112 9 1.3 29.0 277 38 7.6 34.4 Obs. Hole MCO-3 N 45 E 95 2-G 17 6 159 0 248 21 1.2 125.0 660 65 8.0 88.8 Obs. Hole MCO-4 N 35 E135 2-G 32 2 196 0 330 30 1.3 189.0 884 90 7.8 121.2 Obs. Hole MCO-5 N 40 E150 2-G 24 6 185 0 239 26 0.8 187.0 71 88 7.7 106.5 Obs. Hole MCO-6 N 35 E160 1-G 24 6 173 0 310 24 1.4 175.0 712 85 8.1 106.3 Obs. Hole MCO-7 N 30 E170 2-G 16 4 121 0 186 16 0.7 98.0 <td>Obs. Hole LAO-4.5</td> <td>N 65 E270</td> <td>2G</td> <td>18</td> <td>6</td> <td>36</td> <td>ŏ</td> <td>88</td> <td>30</td> <td>0.4</td> <td>1.8</td> <td>263</td> <td>70</td> <td>7.9</td> <td>30.5</td>	Obs. Hole LAO-4.5	N 65 E270	2G	18	6	36	ŏ	88	30	0.4	1.8	263	70	7.9	30.5
Gaging Station 1 N 50 E 90 2-S 10 3 56 0 112 9 1.3 29.0 277 38 7.6 34.4 Obs. Hole MCO-3 N 45 E 95 2-G 17 6 159 0 248 21 1.2 125.0 660 65 8.0 88.8 Obs. Hole MCO-4 N 35 E135 2-G 32 2 196 0 330 30 1.3 189.0 884 90 7.8 121.2 Obs. Hole MCO-5 N 40 E150 2-G 24 6 185 0 239 26 0.8 187.0 721 88 7.7 106.5 Obs. Hole MCO-6 N 35 E160 1-G 24 6 173 0 310 24 1.4 175.0 712 85 8.1 106.3 Obs. Hole MCO-7 N 30 E170 2-G 16 4 121 0 186 16 0.7 98.0 548 57 8.1 72.8 Obs. Hole MCO-7.5 N 30 E180 2-G 20 8	Mortandad Canyon									•					
Obs. Hole MCO-3 N 45 E 95 2-G 17 6 159 0 248 21 1.2 125.0 660 65 8.0 88.8 Obs. Hole MCO-4 N 35 E135 2-G 32 2 196 0 330 30 1.3 189.0 884 90 7.8 121.2 Obs. Hole MCO-5 N 40 E150 2-G 24 6 185 0 239 26 0.8 187.0 721 88 7.7 106.5 Obs. Hole MCO-6 N 35 E160 1-G 24 6 173 0 310 24 1.4 175.0 712 85 8.1 106.3 Obs. Hole MCO-7 N 30 E170 2-G 16 4 121 0 186 16 0.7 98.0 548 57 8.1 72.8 Obs. Hole MCO-7.5 N 30 E180 2-G 20 8 158 0 237 20 0.4 167.9 548 57 8.1 72.8 Obs. Hole MCO-7.5 N 30 E180 2-G 20 8	Gaging Station 1	N 50 E 90	2-S	10	3	56	Ō	112	9	1.3	29.0	277	38	7.6	34 4
Obs. Hole MCO-4 N 35 E135 2-G 32 2 196 0 330 30 1.3 189.0 884 90 7.8 121.2 Obs. Bole MCO-5 N 40 E150 2-G 24 6 185 0 239 26 0.8 187.0 721 88 7.7 106.5 Obs. Hole MCO-6 N 35 E160 1-G 24 6 173 0 310 24 1.4 175.0 712 88 7.7 106.5 Obs. Hole MCO-7 N 30 E170 2-G 16 4 121 0 186 16 0.7 98.0 548 57 8.1 72.8 Obs. Hole MCO-7.5 N 30 E180 2-G 20 8 158 0 237 20 0.4 167.9 588 87 8.2 99.2	Obs. Hole MCO-3	N 45 E 95	2G	17	6	159	Ō	248	21	1.2	125.0	660	65	8 0	88.8
Obs. Hole MCO-5 N 40 E150 2-G 24 6 185 0 239 26 0.8 187.0 721 88 7.7 106.5 Obs. Hole MCO-6 N 35 E160 1-G 24 6 173 0 310 24 1.4 175.0 712 85 8.1 106.3 Obs. Hole MCO-7 N 30 E170 2-G 16 4 121 0 186 16 0.7 98.0 548 57 8.1 72.8 Obs. Hole MCO-7.5 N 30 E180 2-G 20 8 158 0 237 20 0.4 167.0 698 87 8.2 99.2	Obs. Hole MCO-4	N 35 E135	2-G	32	2	196	õ	330	30	1.3	189.0	884	00	7.8	121 2
Obs. Hole MCO-6 N 35 E160 1-G 24 6 173 0 310 24 1.4 175.0 712 85 8.1 106.3 Obs. Hole MCO-7 N 30 E170 2-G 16 4 121 0 186 16 0.7 98.0 548 57 8.1 706.3 Obs. Hole MCO-7.5 N 30 E180 2-G 20 8 158 0 237 20 0.4 167.0 598 87 8.2 99.2	Obs. Hole MCO-5	N 40 E150	2-G	24	6	185	õ	239	26	0.8	187.0	721	88	7 7	106 5
Obs. Hole MCO-7 N 30 E170 2-G 16 4 121 0 186 16 7 8.1 72.8 Obs. Hole MCO-7.5 N 30 E180 2-G 20 8 158 0 237 20 0.4 167.9 598 87 8.2 99.2	Obs. Hole MCO-6	N 35 E160	1-G	24	6	173	õ	310	24	1 4	175.0	712	95	8 1	100.3
Obs. Hole HCO-7.5 N 30 E180 2-G 20 8 158 0 237 20 0.4 167,9 698 87 8.2 99.2	Obs. Hole MCO-7	N 30 E170	2-6	16	Ă	121	ň	186	16	A.7 A 7	98.0	117	57	0.1	70 0
	Obs. Hole MCO-7.5	N 30 E180	2-0	20	Ř	158	ň	237	20	0.7	167 6	294	2/	0.1	14.0
Obs. Hole MCO-8 N 30 E185 1-G 28 7 102 0 184 19 0.4 140.0 590 104 8.0 80.0	Obs. Hole MCO-8	N 30 E185	1-G	28	7	102	õ	184	19	0.4	140.0	890 590	104	8.0	80.0

^aNumber of samples analyzed and source, G = Ground Water, S = Surface water

.

TABLE XIX

CHEMICAL QUALITY OF WATER IN THE VICINITY OF FENTON HILL

	Surface Water	Water Supply	Springs (<u>Jemez Fault</u>)	Springs (Recent Volcanics)	Misc. <u>Wells</u>	Fenton Hill (<u>Pond Fluids</u>)
Number of Stations ^a	9	4	2	4	1	3
Number of Samples	28	16	6	6	3	6
Analyses (mg/l)						
Bicarbonate	79(±59)	92(±32)	667(±267)	72(±26)	367(±15)	386(±488)
Calcium	35(±20)	21(±9.6)	128(±102)	11(±4)	28(±2)	24(±18)
Carbonate	0(±0)	0(±0)	0(±0)	0(±0)	0(±0)	56(±136)
Chloride	26(±30)	6(±3)	883(±570)	4(±1)	7(±3)	272(±168)
Fluoride	0.7(±0.4)	0.4(±0.2)	2.4(±0.6)	0.8(±0.2)	1.0(±0.2)	11(±19)
Magnesium	6(±3)	5(±3)	20(±8)	4 (±2)	8(±1)	6(±4)
Nitrates (N)	0.4(±.2)	0.1(±0.5)	0.1(±0.17)	0.2(±0.1)	0.6(±0.5)	1.6(±3.6)
Silica	40(±11)	61(±17)	44(±3)	58(±12)	63 (±6)	120(±52)
Sodium	27(±22)	19(±13)	593(±370)	20(±13)	114(±15)	358(±307)
Sulfate	53(±98)	11(±18)	30(±6)	4 (±6)	2(±1)	160(±88)
TDS	255(±154)	167(±58)	2276(±1215)	164(±64)	444(±71)	1346(±973)
Hardness	114(±59)	75(±28)	401(±278)	44 (±15)	104(±2)	85(±63)
рН	7.2(±1.4)	7.8(±0.3)	7.6(±0.4)	7.5(±0.5)	7.9(±0.0)	8.3(±0.7)
Conductance (mS/m)	38.7(±25.3)	20.7(±6.6)	390(±198)	16.8(±5.8)	70.7(±4.7)	215.7(±102.4)

5

^aSampling Locations keyed on Fig. 10 as follows

Surface Water - F, J, N, Q, R, S, T, U, V.

Water Supply (Jemez Springs - La Cueva - Fenton Hill) - JS-2, -3, -4, and -5, 4, TA-57.

Springs (Jemez Fault) - TF-1, -5.

Springs (Recent Volcanics) - RV-2, -4, and -5, 31.

Miscellaneous Well - 27

,

t

Fenton Hill (Pond Fluids) Three ponds, TA-57.

NOTE: Value in parentheses is standard deviation of the distribution of a number of analyses.

TABLE XX

SOIL EROSION STAKE DATA FOR MORTANDAD CANYON BETWEEN JUNE 12, 1975, AND NOVEMBER 4, 1976

(512 days)

Distance from effluent outfall (km)	Average stream channel width (cm)	Cumulative depth change (cm)	Cumulative change in soil weight (kg) ^a				
1.2-1.3	160	+6.6	+15,000				
1.3-1.4	89	-4.4	- 5,800				
1.4-1.5	105	+10	+15,000				
1.5-1.6	86	-5.1	-6,400				
1.6-1.7	155 ·	-13	-30,000				
1.7-1.8	355	-13	-65,000				
1.8-1.9	197	-4.8	-14,000				
1.9-2.0	198	+22	+64,000				
2.0-2.1	311	+7.1	+32,000				
2.1-2.2	100	+18	+26,000				
2.2-2.3	83	+0.20	+240				
2.3-2.4	62 -3.8		-3,500				
2.4-2.5	132	-2	-3,900				
2.5-2.7	180	+1.6	+8,500				

^aEstimated using volume of stream channel and a bulk density value of 1.47 g/cm³.

GE-Pinellas Plant

Fe, NM

Energy Research and Development Administration Division of Biomed. & Environ. Research (HQ) J. L. Liverman J. Swinebroad D. H. Slade W. S. Osburn, Jr. R. L. Watters M. E. Wrenn Division of Safety, Standards, and Compliance (HO) H. Holister L. J. Deal A. A. Schoen D. M. Ross C. G. Welty, Jr. D. Elle Albuquerque Operations Office (12) J. R. Roeder Los Alamos Area Office K. R. Braziel W. Crismon, Jr. Health and Safety Laboratory, New York J. H. Harley E. P. Hardy, Jr. Idaho Operations Office M. M. Williamson Nevada Operations Office P. B. Dunaway Oak Ridge Operations Office J. F. Wing Energy Research and Development Administration Contractors: Argonne National Laboratory J. Sedlet D. P. O'Neil Battelle, Pacific Northwest Laboratories D. A. Waite E. C. Watson Atlantic Richfield Hanford Company J. V. Panesko Brookhaven National Laboratory A. P. Hull Rockwell International - Rocky Flats Plant M. S. Werkema R. Bistline D. Bokowski

E P Forest Lawrence Livermore Laboratory W. J. Silver C. L. Lindeken V. Noshkin Mound Laboratory A. G. Barnett D. G. Carfagno W. H. Westendorf R. Robinson Oak Ridge National Laboratory J. A. Auxier Sandia Laboratories, Albuquerque L. W. Brewer Savannah River Laboratory J. L. Crandall J. E. Johnson J. A. Harper Other External: Environmental Protection Agency W. A. Mills, ORP, Washington, D.C. C. L. Weaver, ORP, Washington, D.C. F. L. Galpin, ORP, Washington, D.C. D. T. Wruble, EMSL, Las Vegas, NV A. W. Bush, Region 6, Dallas, TX. New Mexico Environmental Improvement Agency T. E. Baca J. Pierce R. Rhoades K. M. Hargis Individuals B. Calkin, Sierra Club, Santa Fe, NM W. E. Hale, US Geological Survey, Albuquerque, NM W. Schwartz, LFE, Richmond, CA J. Mueller, CEP, Santa Fe, NM New Mexico State Engineer, Santa Fe, NM Supervisor, Santa Fe National Forest, Santa