~ 2L )2
LA-UR- OF-OZ7/ 5
Approved for public release,
distribution is unfimited.

Title: | A MIMETIC FINITE DIFFERENCE METHOD FOR THE
STOKES PROBLEM WITH SELECTED EDGE BUBBLES

Author(s): | |, BEIRAO DA VEIGA
K. LIPNIKOV

Intended for: | MEETING:
THE MATHEMATICS OF FINITE ELEMENTS AND
APPLICATION

Los Alamos
NATIONAL LABORATORY
£5T7.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexciusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this articte as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/08)



A Mimetic Finite Difference method for the
Stokes problem with selected edge bubbles

L. Beirao da Veiga * K. Lipnikov T

Abstract

A new mimetic finite difference method for the Stokes problem is proposed and
analyzed. The unstable P — Fy discretization is stabilized by adding a small number
of bubble functions to selected mesh edges. A simple strategy for selecting such edges
is proposed and verified with numerical experiments.

1 Introduction

The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the cele-
brated inf-sup (or the LBB) stability condition [2, 12]. The stability condition implies a
balance between discrete spaces for velocity and pressure. In finite elements, this balance
is frequently achieved by adding bubble functions to the velocity space. The goal of this
article is to show that the stabilizing edge bubble functions can be added only to a small set
of immesh edges. This results in a smaller algebraic system and potentially in a faster calcula-
tions. We employ the mimetic finite difference (MFD) discretization technique that works
for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing
bubbles.

The MFD method has been successfully employed for solving problems of continuum
mechanics [29], electromagnetics [24], gas dynamics [16], and linear diffusion (see e.g. [25,
26, 14, 23, 5] and references therein). A modern convergence analysis of the MFD methods
has been developed in [13] and later in [7, 11, 5, 27]. This analysis resulted in new algebraic
methods for building elemental mass [15, 14] and stifiness [11] matrices on arbitrary-shaped
elements for a linear diffusion problem. Later these algebraic methods have been developed
for higher order MFD methods [23, 8, 5] and the Stokes problem [4, 6]. A-posteriori error
estimators have been proposed in [3, 8] for the diffusion problem.

The MED method shows strong connections with other compatible discretization meth-
ods. Connection with the mixed finite method for diffusion problems has been exploited
in [9, 10] to develop the first convergence analysis of the MFD method. More recently, the
connection between the MEFD method and the mixed and hybrid finite volume methods of
[19. 20, 22|, has been investigated in [21] and a unified formulation has been proposed. For
completeness of exposition, we also mention the new class of discrete duality finite volume
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(DDFV) methods [18] that, like the MFD methods, are based on a discrete version of the
duality relation between the divergence and gradient operators [1, 17].

Flexibility of the mimetic discretization machinery allows to develop MI'D methods
adjusted to application demands. For instance, by introducing multiple fux unknowns per
mesh faces and enforcing a special sparcity structure for elemental mass matrices allowed
us to develop and analyze MFEFD methods with a local flux stencil (27]. These methods are
certaiuly related to multi-point flux approximation (MPEFA) finite volume methods. In this
article, Qexibility of the MEFD method is used to tackle the stability problem. The starting
point is the formulation of [1]. where edge-based degrees of freedom (bubbles) are added to
every edge. Here, the bubbles are instead added to the discretization only where needed,
therefore yielding a more efficient method. In order to determine where the bubbles are
needed, we extend the macroelement methodology [30] to polygonal meshes and introduce a
macroelement partition of mesh which (1) can be applied to a very general range of meshes
and (2) for which we are able to prove stability of the discrete problem. For instauce, edge
bubbles need to be added only to every fourth edge of a square mesh, and thev are not
needed at all on a Voronoi-type mesh.

T'he paper outline is as follows. In Section 2, we formulate the Stokes problem. In Sec-
tion 3, we present briefly the MEFD method with non-uniform distribution of edge bubbles,
formulate mesh requirements and summarize error estimates. In Section 4. the general
macroelement stability analysis, developed originally for simplicial meshes, is revisited for
polygounal meshes. In Section 5, the macroelement analysis is developed for the MI'D
method and a simple algorithm for adding stabilizing bubbles is [ormulated. In Section 6,
convergence of the new MED method is verified with numerical experiments on polygonal
and quadrilateral meshes.

2 The Stokes problem
Let € be a polygonal domain in &% We consider the variational formulation of the Stokes
problem with homogeneous Dirichlet boundary conditions:

Find u € (H}(())? and p € L3(Q) such that

A(u,v) — Blv,p) = f(v) Vv € (Hy ()3,
B(u,g) =0 Vg € Li(Q),

where the bilinear forms
Alu,v) = /C’Vu - Vv dz and B(v,p) = / div(v) p dz, (2)
Q Q

and C is a syuunetric and positive definite fourth order tensor with components in L({2).

Above, HJ(L2) indicates as usual the Sobolev space of order 1 with homogeneous Dirich-
let boundary conditions and LZ(§2) the space of square Lebesgue integrable functions with
zero average. Note that everything that follows applies immediately to more general bound-
ary conditions.

Remark 2.1 The gradient operator V is chosen only for simplicity of cxposition and it
can be substituted with the symmetric gradient e(u) = $[V(u) + VT (u)]. Everything that
follows still holds up to a simple modification of the involved norms.



3 The MFD method

Our starting point is the mimetic finite difference (MFD) method introduced in [4, 5]. Let
Q be a partition of € into polygons E. We assume that this partition is conformal, i.e.
intersection of two different elements is either a few mesh points. or a few mesh edges
(two adjacent elements may share more than one edge), or empty. We allow €, to contain
non-convex and degenerate elements.

In the following, we indicate with hg the diameter of element £, with dF the set of its
edges, with |E] its area, and with n%, the outward unit normal to edge e € JE. Moreover,
we set h as the maximum of all hg, E € §,. For each edge e, we indicate with h. its
length |e| and with n, the outward unit normal fixed once and for all. Let &, be the set
of all internal edges of 2, and A be the set of all internal vertexes. Finally, we make the
following wesh regularity assumptions.

(M1) Each polygon in €4 has at most N mesh edges, where NV is independent of A.
(M2) Each polygon E in 2 is star shaped with respect to a point zg € E.

(M3) For each element E € ), we connect its verteces with zz to generate a conformal
triangular mesh in ;. We assume that all such triangles are uniformly shape regular,
iL.e. there exists p > 0 independent of A such that the radius of the largest inscribed
sphere inside each triangle is larger than p times the diameter of the triangle.

The auxiliary triangular partition is introduced only for analysis and is not needed in
practice. Note that assumptions (M1) (M3) describe a large class of polygonal meshes
that may include non-convex and degenerate (some of the angles are 180°) elements.

3.1 Discrete spaces

We now define the degrees of freedom for the discrete spaces X}, for velocities and @y for
pressures. Let £9 indicate a subset of &, defined later, and £F indicate the set of remaining
edges, £, = £} U EF.

For velocities, we take two degrees of freedom for each internal vertex of €2, representing
velocity at the point. In addition, and this is different with respect to the method of [4, 5],
we add one degree of freedom for each edge e € &7, representing a correction to the normal
velocity on the edge. Every function vy, € X, is uniquely determined by the collection of
real numbers

{vfl:’ UZ}UGA', ecEd
Contrary to the finite element methods, we do not define explicitly the function v, inside
the mesh elements, but we require that

(A1) The tangential comporuent of v, on each edge e € &£, is linear, and therefore uniquely
determined by the value of v, at two end-poiats of e.

(A2) On edge e of £F, the normal component is also linear, and the saine observation as
above holds.



(A3) On edge e of £, the normal component of v, is quadratic, and therefore uniquely
determined by the values of vy, at the end-points v and v’ of e and by identity

,(;[

/vf1 ‘nedz = ?(vz +vE) -, + Jelvs. (3
>

A
S

The identity (3) is what characterizes the underlying basis functions related to the edge
degrees of freedom. Such functions play the same role as the edge bubbles in the standard
finite element literature.

For pressures, we simply take one degree of freedom for each clement £, representing
the (constant) value of the pressure on the element. In the sequel, we indicate the real
number g,z with gg for all £ € Qp. The discrete space of pressures is isomorphic to the
space of piecewise constant functions on €2, and this equivalence will be often implicitly
used in the paper. Note that the space of discrete pressures must be corrected in order to
be in L§(Q2).

3.2 Discrete operators, bilinear forms and norms

We start introducing the mesh dependent H* local and global norms on Xj,:

vl = 3 ke

¢ccOF

ovy, ,
a—el”i”e’ Vv € X, VEEQy , (4)

where s represents the curvilinear abscissae along each edge. We then set

vall%, = > livallz - ()

EeQy

In addition, we define the mesh dependent L%-norm on (4:

lanll2, = D 1El(g2)”  Van € Qn

Eth_

and the following seminorm:

ianllh = > R2[an): VYau € Qn,

ecly

where [g,]. denotes the jump of g, across e.
The discrete divergence operator acting from X, to @ is given by

1

dth(Vh)‘_E = ? Z /Vh “ 1};; dz VV}L S Xh» E ¢ th (6)
> ccdE Y€

Note that both (4) and (6) are well defined since we know explicitly the functions of X on
the boundary of each element.
Now, we introduce the bilinear form

Ahi /\'hXXh—"]R



which mimies the continuous form A defined in (2), and is defined element-by-element:

Ap(Vi, W) = Z Ae(Vile, Wrlg) Vv, wy € Xp.
EcQp

Let C be the piecewise constant tensor given by the average of C'| g on each element E € (.
We then require the local bilinear forms Ag to satisty the following stability and consistency
conditions:

(S1) There exist two positive constauts ¢, and C, independent of A such that, for all
E e Qp and vg € Xh|Ea it holds

clvellz € Ag(ve, ve) < ClIvell3.

(S2) For all £ € Q, vg € Xp|g and all linear vector functions ! on F. it holds

Ag(q;, vg) = Z / [(CVq')  ng] -vedz,

¢cOE Y€
where the interpolant q; € X, is defined by the collection of real numbers
{an" =d'v), 67 =0}, o
and assumptions (A1) (A3).

The condition (S1) represents the coercivity and correct scaling of the bilinear form. The
condition (S2) mimicks an integration by parts. The algebraic construction of local bilinear
forms which satisfy the above assumptions is shown in [4] for the case & = £,. For the
more general case considered here, this construction remains essentially identical; we sinply
erase the degrees of freedom associated with edges e € £7. For completeness, we present
briefly the main ideas behind the construction of the local stiffness matrices.

Let Ag be a mp x mg matrix assoclated with the bilinear form Ap. Since vy is
arbitrary, the consistency condition (S2) may be written as six algebraic conditions

Ab’p’i:Si) 7::17"~)6? (7)

that correspond to six linear independent functions ¢'. We assume that the first two such
functions are constant; therefore, s; = s = 0.

We will apply a divide and conquer approach to find a matrix Ag. Namely, we will
provide a constructive way to build a special basis in R™# represented by columns of
matrix By, in which our matrix A g is block-diagonal

Ag, 0 ]

BLAgBg =
0 lpp

(8)

where the block 17\15:1 is computable and the block AE)Q can be arbitrary (for instance, the
diagonal matrix tI, where t > 0 is a free parameter) symmetric positive definite matrix.
After that, the matrix Ag is calculated as a product of three matrices.

(&)



Lemma 3.1 The columns of mutriz Bg are as follows:
b,=p;, 1<i<8, b;bl =bib; =bfs; =0, 427 j>3.

The proof that vectors b, form a basis in R™£ can be found in [4]. The proof of orthogonality
is short.
0=bls; =bl Agp;=bTArb;,, j<6<i

Thus, the problem of building a special basis is reduced to a well know linear algebra
problem of building a basis in a subspace of dimension (mg — 6). Calculation of entries of
the matrix AE,l reduces to evaluation of bilinear form Ag for six linear independent basis
functions g*. The consistency condition (S2) reduces this evaluation to edge integrals of
linear functions.

3.3 The discrete problem, stability and convergence

We are now able to formulate our discrete method:
Find u, € Xj, and py € Qr such that

J Ah("/z-,vh) = / divh(vh) Pr dr = j?(Vh) VV.h € ”\--h’
JQ
(9)
l / divp(up) gpdz =0 Yar € Q4
JQ

where the loading term f is obtained by approximating fa fdz with a elernent-wise inte-
gration rule based on the mesh nodes which is exact on constants.

Due to the coercivity condition (S1), the hA—uniform stability of the above problem
with respect to the discrete norms ||| - ||| x, and || - [|g, is guaranteed provided that (see for
example [12]) the following inf-sup condition holds.

Condition 3.1 [t exists a positive real constant 0, independent of h, such that

/ dth(Vh) aqn dz
sup 2

> lgn
Vh.:.X}.,“,{O} |||VhH|Xh

Qn  7qn € Qp. (10)

Under this condition, the linear convergence of the method in the above discrete norms
is proved in [5], provided that the solution (u,p) is in (H*(Q2))? x H*(2), and the tensor
Clp € Whee(E) for all E € Q,. Conversely, the failure of (10) implies the presence of
discrete spurious pressure modes and in general a bad behavior of the method; therefore,
Condition 3.1 is crucial.

In [5], such condition is shown to hold for the case £ = &,. The role of the edge-based
degrees of freedom is only to guarantee (10). In this paper, we show that setting £ = &,
means adding far too much useless degrees of freedom to the system. In other words, we
will show how a smaller set of edges £2 is often sufficient to guarantee Condition 3.1.



4 A general macroelement technique

In this section, we extend the finite element results of [30] proved for simplicial meshes
to the case of mimetic finite differences on polygonal meshes satisfying (M1) (M3). The
main result of this section, Theorem 4.1, will follow from a set of four Lemmas. We will
skip all the proofs which are essentially identical to the original ones of [30].

4.1 FElements and macroelements

Let us introduce the concept of macroelement and equivalence class of macroelements. We
observe that, due to conditions (M1)—(M3), for each integer number 3 < n < N there
exists a reference element E, such that the following holds. Every element F in {1, with n
edges is the image of an invertible and continuous map

Fr: En > B (11)

/1% with respect to the auxiliary

Moreover, the map Fg and its inverse are piecewise |1
triangulation of F, into n triangles defined in (M3).

The result above is easy to prove in the following way. Let us define f?n as a convex

regular polygon with n edges and build a triangulation of £, connecting all its vertexes
with the baricenter Z. Then, for each element £ € €. the mapping Fg is the only piecewise
linear function ] — F which sends ordered vertexes of £, in ordered vertexes of £ and
Z in the point zg defined in (M2). Due the shape-regularity assumption (M3), the W
regularity of Fp can be shown with standard arguments from the FE literature.

A macroelement M is a connected collection of elements. Given a mesh (2, we indicate
with M, a collection of macro-elements which covers the whole mesh, i.e. for all £ €
it holds F' € M for some macroelement M € M,,.

Given M € My, we introduce local spaces:

X ={vi€Xulu: vi=0 YveNNOIM, =0 YecE NIM},

: 12)
Qu = Qnlar - (
We introduce also the following norm and seminorm:
Ivarl = D0 Mvaellls  ¥var € X3,
EeM (13)
lqulys = Z hilaul?  Yau € Qur ‘
865,‘1‘1

where £, represents the internal edges of M.
Finally, we introduce the equivalence class of macroelements.

Definition 4.1 A macroelement 1s said to be equivalent with a reference macroelernent M
if there exists an invertible continuous mapping Fyy : M — M such that:

L [‘;\ [(jjl\) =M ,

o If M = U™ Ei and M = UR B3, then E? = Fy(E7). Moreover both E' and EJ
have the samc number of edges, n;.



B [4‘“[[;; = Fpjo F_;}l, J=12,...,m, where Fgi and Fy; are the mappings from the

reference element Enj, introduced in (11), into E¥ and Ei, respectively.

Two macroelements which are equivalent to the same reference macroelenment are said
to be equivalent.

4.2 A stability result using macroelements

The proof of the following lemma is essentially identical to that in Lemuna 1 of [30] and
therefore not shown.

Lemma 4.1 Assume that there exists a macroelement partition My such that each e €
En 1s an interior edge of at least one and not more than L macroelements, where L s
independent of h. Moreover, assume that there exists a positive constant 3; such that

/ d'IVh(V;L[) Qi dzx
sup L | > Oalgnr|ar Yaun € Qur- (14)
varex? /(o) lvarlllas
Then, there exist a positive constant I such that
[divh(Vh)Qh dz
sup > Oallanlln Van € Qn . (15)
VhE X/ {0} valllx,

‘Lommu 4.2 There exist two positive constants B, and Oy, independent of h, such that

/diVn(Vh)C]hdI
sup 22

| > Billanllo, — Ballan!in Vg, € Qp . (16)
vhEXn/{0} vallx,

Proof. The proof is an extension of that in .emma 2 of [30]. Due to the well known inf-sup
condition [12] for the continuous problen, for any p € L2(2) there exists v € (H!({2))? and
a positive constant (' independent of £, such that

/ div(v)grdz > Cillgallo,  and v =1 (17)
JQ

Let v be the Clément interpolant of v on the auxiliary triangular mesh in €, introduced
in (M3), and vy, be the element in X} defined uniquely by the collection

{vi =v(v), vi = O}UEJ\’,u,Eg'

Then, there exists a positive constant Cy such that

1/2
( > BV =Vl + Y RV — vcn?m(e))z) < Col| Vv |ipznexe.  (18)

LeQy eelp



First the definition of norm on X, and a scaling argument using the regularity of the
auxiliary triangular mesh, then a standard result for the Clément interpolant, vield the
existence of two positive constants C3 and Cs independent of h such that

Valllx, < ClIVVEllirz@pee < GVl = Cs. (19)

Due to (A1) (A3) and since v© is linear on each edge, it holds v,|. = v°|, for all edges

e in the mesh. Therefore, recalling that g, is a plecewise constant function and using the
integration by parts, we get

/ divp(ve) gndz = qg Z /vh ‘ngdr =gqg Z /vc «NE dyp= / div(v) g, dz  (20)
L ¢ E

ecor e ¢CHE

for all E in (2.
Using (20). the first inequality in (17), an elementwise integration by parts, and finally
bound (18) together with the second inequality of (17), we obtain

/ divy(vy) g dz = / div(v) g, dz + / div(v® — v) gpdz
Q i Ja

> Cillalioy + Y larle [(v*=v) - neda

ecEy (21)

1/2
qnllQn — llgrlln (Z . /fvc - vgdz)
eE&y e

Cy
> Cillgrllg, — Callas]ls-

IV

The assertion of the lemma follows immediately combining (21) with (19) and setting
,@1 = (’/11_(,73”1 and 32 = CQCP)_l. O

['he following result follows easily using Lemma 4.2, see Lemma 3 of [30] for details of
the proof.

Lemma 4.3 Let the stability estimate (15) hold. Then Condition 3.1 is valid.
The following fundamental result also holds.

Lemma 4.4 Let 32 be a class of equivalent macroelements. Suppose that for every M € %
the space

N = {qm € Qur - / divi(var) qudz =0 Vvy € X3} (22)
A

15 one dimensional consisting of functions which are constant on M. Then, there exists a
constant ', independent of h, such that

/ divp(var) qarda
sup i

var€X9,/{0} Vs llas

> B'\qar|a Vg € Qur (23)

holds for all M € 3.



Proof. The proof is an extension of that in Lemina 4 of [30]. For a particular macroelement
M, we shall write [}, to stress the fact that this constant depends on M. Since Ny,
consists of only constant functions, 7, > 0. With a proper coordinate transformation, it
is sufficient to consider a class of equivalent macroelements of diameter < 1. Definition 4.1
of macroelement classes implies that every M € ¥ and the related reference mappings are
defined uniquely by the position of a finite number of vertices {z',...,#™} and the position
of the internal points zg, E € M, defined in (M2). Let X = X (A/) represent the vector
in R#™*4™ with components given by the ordered components of {z',.... 2™, wp,, .., zp5,_}.
Let Yy indicate the set of all admissible vectors X which are associated to all admissible
macroelements A = M(X) € . Clearly ¥x is a bounded subset of R*™*t?™ due to the
above diameter property. It can be checked that, due to property (M3). the set Zx is
also closed. In fact, such property forbids the vectors in X x to be arbitrarily close to
unadmissible vectors X ¢ L, like those where two vertexes are collapsed into a single
vertex.

Thus, the equivalence class X x forms a compact set. Therefore, if we indicate with J'(X)
the inf-sup constant associated to the macroelement M defined by X, i.e. 3'(X) = .3””(}(),
all we need to show is that the function 3'(X) is continuous.

This is done by a simple change of variables argument, which is presented briefly. Given
any two macroelements M = M(X) and M' = M'(X"), we introduce the invertible mapping
G = Fyp o F;,l, where Fa; and Fjyp are the mappings introduced in Definition 4.1. Using
this mapping, we can transform all variables and integrals appearing in (23) from M to
M'. The Jacobian of (& appears in all these transformations. It is easy to check that the
Jacobian converges uniformly to the identity when X — X'. Thus, the terms

/ divp(var)audz,  |lIvarlllar,  lqariar
€

converge to their counterparts in M’ when X — X'. This clearly implies that 8(X) —
A(X’) when X — X" OJ
Combining Lemmata 4.1, 4.3 and 4.4, we get the main result of this section.

Theorem 4.1 Let My, be a macroelement partition of 2. Suppose that

1. My, is composed of a fized set of equivalence classes ¥, 1 = 1,2,....1, of macroele-
ments, 1.e. My = Uﬁzlﬂi.

2. For each M € ¥y, 1 =1,2,...,1, the space Ny in (22) 2s one-dimensional consisting
of functions that are constant on M.

3. There exists L € N such that each e € &, 1s an interior edge of at least one and no
more than [ macroelements.

Then Condition 3.1 holds.

5 A stability result for the MFD method

(Given any polygonal mesh §2, satistying (M1)-(IM3), we introduce a macroclement parti-
tion My, which verifies the hypotheses of Theorem 4.1, The results in this section provide
flexible tools for identifying the stabilizing set £} of edge bubbles.

10



We start introducing the macroelement family. Given any internal node v € A which
is common for at least three edges, we indicate with M = M, the macroelement given by
all elements in §2, which have v as a vertex. Note that all such macroelements clearly cover
(with overlaps) the whole mesh ), (see Fig. 1).

Frontiers

Figure 1: Examples of macroelements.

For each internal edge of the mesh e € &, there exists at least one macroelement with
e as an internal edge. Moreover, it is easy to check that any edge e € &, lays at most in 2
macroelements, and therefore condition 3 in Theorem 4.1 is verified.

In order to verify condition 1 in Theorem 4.1, we need to count the number of equivalence
classes 23; in My,. Two macroelements M, and M, are surely equivalent if

1. The number of polygons in M, is equal to the number of polygons in A,,. We refer
this number as k(v).

2. The number of edges in polygons E\, Fs, ..., Ex(y, ordered counter-clockwise about
vertex v, is the same as that in polygons E7, E7, ..., E,’C(U), ordered counter-clockwise
about vertex /.

3. The number of edges in 0F; NOE; ., are equal to the number of edges in OF, MOL], |
fori=1,2,...,k(v) (modulo k(v)).

For any vertex v, the shape regularity assumption (M3) implies that A(v) < K with K
independent of A. Moreover. due to (M1). each polygon has at most N edges: hence, any
set OF; M OF; has at most N — 1 edges. Therefore, since there exist at most { = (K, N)
equivalence classes in My, condition 1 is satisfied.

It remains to show condition 2, which is more involved. Given an internal node v and
the respective macroelement M,, let £, be the set of mesh edges which join at v. We also
introduce subsets £F = £, N EF and 5 = £, N EL. Let N,, NX, and NP be the number of
elements in the sets £,, £%, and £2, respectively.

Proposition 5.1 Let v be the only internal vertex in M,. Furthermore, let either (a)
NI < 3 or (b) N} = 3 and all the three angles naturally defined by the three edges in
E, N EL be less or equal than m. Then, the space Ny defined in (22) consists of constant
functions.

11



Proof. We divide the proof into three steps.

Step 1. We start with case NI = 3 (see left picture in Fig. 1). For each edge e in &,,
let 7, indicate the unit edge tangent, pointing outwards with respect to v. Moreover, let
the edge normal n, be such that

7o = (12.78) = (~nf.n),

l.e. 7. is obtained with the counter-clockwise rotation of n, by angle /2. Given any edge
e € 0F N OLE" with n, the outward normal for £. we define the jump of g, across ¢ as

lan]e = g2 — q&-

Finally, we enumerate the three edges in £ as e, eq, e3, their tangents as 7, 7., 73 and
their normals as nj, ny, nz. Without loss of generality, we assume that 7, and 74 are
linearly independent. The remaining edges in &, arc then enumerated as e, es. ..., with the
respective enumeration of their tangents and normals.

Let g, € Nj;. Since vy, is zero on the boundaries of M, the straightforward calculation

gives

= .div,,vl dz =Y Y}° /v »Mpdzs =
/M /( n) qn dz 2y L(]E(( A0

EeM ecoE

Z[[qh /vh -n,dx Vv, € X3,

ecE, o
(24)
Let w = v} for simplicity. Recalling identity (3), equation (24) becomes
1 F ” =
0= 25 lel lalew - me+ " Jel [anle g Va € X (25)

2
eef,- ecEld

By definition of jump, we clearly get
> lanle =0 26
e€5u

Proving the proposition is therefore equivalent to showing that, under conditions (26) and
(25), all the jumps [gx]., e € &,, are zero.

Step 2. Taking w = 0 and v = 1 for a particular edge in £ and v§ = 0 for the
remaining edges, we conclude that [g]. for all edges in &£°.

Let wi.wo be a basis in R%. Writing condition (25) separately for w| and wy and
adding condition (26), we obtain a linear system of equations

Sq=10, (27)

where the vector q has three components, q = ([gn]e, . [gn]ess [arles ). and the square matrix

S has the form _
lerjwy -y Jealwy -ny  es|wy - g

S=|leilwa-n; les]wa -ny |eslws-mng | . (28)
1 1 1

QOur goal is to show that the matrix S has full rank. Recalling that 7, and 75 are linearly
independent by hypothesis, we have

TN =Ty D=0, Ty My =—To-n; #0. (29)
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Taking the choice w; = 7, and wy = T3, calculating the determinant in (28) and
using (29) one easily gets the equivalent condition

lesing - (lea| T2 — |er|T1) # lerllea| (72 - ny) . (30)
By the angle hypothesis of the Proposition, it is easy to check that there must exist two
real numbers o, cvo such that

T3 = —QT] — QT3 , a; >0, ag > 0. (31)

From (31) it immediately follows that n3 = —ain; — ayn,. Substitutinf this into (30) and
using (29) we show that condition (30) is equivalent to

les|(—ayles] — anler]) T2 - ny # |eylea|T2 - ny . (32)

Since both ) and v are non-negative, the equality in (32) is surely impossible. Therefore,
the matrix S in (28) is non-singular and the proposition is proved for NI = 3.

Step 3. 1u the case NF = 2, we can follow the same argument and calculations as above.
We end up with showing that the matrix

ellwy - nyp  |ey|wy - ng
S = |€]|VV2 i 1 5] |€2|W2 g § b (33)

l 1

has full rank. Clearly, it could be rank deficient only when n; = n,, which is impossible.
The cases N¥ = 0 and N7 =1 are even simpler and therefore not shown. (]

Note that the angle condition in Proposition 5.1 is sharp in the following seuse. It
can be shown that, if N7 = 3, then for any triple 7, 75. 73 that does not satisfy the
augle condition there exists at least one triple of edges ey, €9, €3 (with the 7; as respective
tangents) such that the matrix in (28) is singular. '

A stronger result follows easily from Proposition 5.1. In the sequel we call a frontier €
any collection of at least two adjoint edges such that € = 0F NOFE', with E, ' ¢ M, (see
right picture in ['ig. 1). By our assumptions, Proposition 5.1 considers only macroelenients
with no frontiers. In a general case, all the internal boundaries among elements in M can
be divided into frontiers and regular (single) edges. The next result shows that frontiers
can be essentially ignored.

Proposition 5.2 Let N¥ indicate the number of edges of EF which connect in v and which
are not a part of a frontier. Let either (a) NZ < 3 or (b) N? = 3 and all the three angles
naturally defined by the threc respective edges be less or equal than w. Then, the space Ny
defined in (22) consists of constant functions.

Proof. Let € be a frontier in M, with ¢ = 0ENOE', E,E' € M. Let v # v be one of the
interior vertices in e and let €', ¢’ be the two edges in ¢ adjacent to /. Let v, be zero in all
interior vertices except v/, and v§ = 0 for all edges in £2. We define w = vi for simplicity.
Testing condition (22) with such vy, we easily obtain

0= / divp(ve) gn dz = [qnl: (/ vy - n’l‘f dx + / Vi 11‘,'/;’ d:c)
J M e’ e’

(34)
(?"w , nfpj + le"|w - 117) Yw e R? |

= [anle

[N
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where [¢nlc = gg — qpr represents the jump across the frontier. It is easy to check that
condition (34) implies [¢n]s = 0. i.e. that gz = gg. As a consequence, the two elements £
and I’ can be considered as a single element for the purposes of this proof, and the frontier
¢ can be completely ignored. Note also that this argument does not use the degrees of
freedom related to the node v, nor any degree of freedon related to an edge bubble. Since
this argument can be applied to all frontiers in M, they all can be ignored by considering
the respective pairs of elements as single elements. The remaining proof of this proposition
boils down to that of Proposition 5.1. ]

We have shown that, provided the set £} is such that the conditions in Proposition 5.2
are satisfied, condition 3 in Theorem 4.1 is also verified. This in turn implies the stability
and (linear) convergence of the method, as discussed in Section 3.3.

The above result covers, for example, the case of a mesh with convex elements where
all the nodes have the property of being the junction of at most 3 edges. For example, the
Voronoi meshes satisfy this property and in such a case the result shows that no bubble
degrees of freedom are needed, i.e. £ = 0 is sufficient. For a logically square mesh, we need
to add bubble degrees of freedom approximately to every fourth edge. This is sufficient to
kill spurious pressure modes.

In a more general case, it is sufficient to add bubbles where needed, as indicated in
Proposition 5.2. A few bubble degrees of freedom are therefore often sufficient for the
stability of the method: it is quite clear that in general taking & = &, as proposed in [4]
is not the optimal choice.

6 Numerical experiments

As it was shown in [28] the LBB constant [ is related to the smallest eigenvalues of a
generalized eigenvalue problem. In our experiments, we use the power method to calculate
this eigenvalue. To identify edges where the stabilizing bubbles have to be added, we employ
the following simple algorithm. For each mesh vertex, we count the number of connected
edges excluding frontiers. If the final count is greater than three, we add a bubble degree of
freedom to one (or more) the edges in the list. The following relative errors are calculated
In numerical experiments:

e = wgllx, o lipa —prllgw
W=l 2" e,

Ju — v
- () — W — Urllo _ Z SN w2
CO(”‘) ,.,‘u[HIO : ],auh|||0 ( > “hl) 3

E veE

fe

=1

and

where py € @}, 1s the interpolant of p and u; € X, is the interpolant of u.

In the first experiment, we consider a sequence of convex polygonal wmeshes that are
dual to unstructured quasi-uniform Delaunay meshes (see I'ig. 2). Each mesh vertex is
cominon to at most three edges. Therefore, no stabilizing bubbles are required and the
discrete problem with purely nodal velocity space is fully stable, This is a nice property
which is not shared by standard FEM meshes, apart for particular configurations.
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Let the exact sclution be

u(z, y) = < T,E.S)Csoisn(iayz)/a ) ; p(z, y) = x4, (35)

where 7(z) = (1 —xz)sin{a x), 7’ is its first derivative, and @ = 2.2 7. Table 1 shows that 3 is
indepeudent of the characteristic mesh size h. We observe the second-order convergence rate
for the velocity in the discrete L2-norm and the first-order in the discrete H'-norm. The
convergence rate for the pressure variable approaches the first-order. This is in agreement
with our theoretical analysis.

b & ¢ & ¢

> ¢ 6 ¢ 6 ¢ ¢ O

T 1

9 ¢ 6 ¢ 0 ¢ 9 o

EEEXEEEEEEEEEREEN,

® 9 & ¢ ¢ o lP ® ¢ ¢ & & ¢ ¢ @
® 9 60606 9 09 05 ¢ o ¢ o 9

EEEEEEEXEEN)
I EEEEEEEEE YR
EEEEEEEEENEENNNN

® 9 6 ¢ 0 ¢ o
» & % 5 6 0

Figure 2: A unstructured polygonal mesh (left) and location of bubbles on the square mesh
(right).

1/h 8 | e(u) | =(u) | elp)

3| 4.25e-2 1.24e-1 1.71e-1 1.97e-0
16 | 3.72e-2 3.21e-2 6.83e-2 5.42e-1
32 | 3.48e-2 i 7.74e-3 2.73e-2 1.79e-1
64 | 3.38e-2 1.92e-3 1.26e-2 6.79¢-2

128 3.358—2. 4.77e-4 . 6.13e-3 . 2.91e-2

T'able 1. MED discretization without bubble degrees of freedom on polygonal meshes.

In the second experiment, we consider a sequence of square meshes and the exact
solution (35). Table 2 shows results for the case when 1o bubble degrees of freedom is
added to the MFD discretizations. It is known that G = 0 in this case due to a spurious
pressure mode. This mode is known for the square mesh and has a chess-board pattern,
with +1 and —1 corresponding to white and black cells, respectively. Therefore. we present
the smallest non-zero eigenvalue that can be interpreted as the LBB constant 8+ for the
pressure space orthogonal to the null mode. The calculations are performed in the corrected
pressure space, orthogonal to the null mode. Note that 3+ is scaled as O(h?) which may
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result in potential instabilities in simulations. These instabilities are not observed in our
experiments which allows us to compare the calculated errors with the MED method with
stabilized bubble degrees of freedom (see Table 3).

1/h| B8+ | eo(u) e{u) | eo(p)
T 8| 1.78e2 | 1.62e-1 | 1.23¢-1 | 3.52e-0
16 4.65e-3 | 4.64e-2 | 3.88e-2 8.49-1
32 | 1.18e-3 1.20e-2 1.04e-2 2.10e-1
64 | 2.99e-4 | 3.04e-3 | 2.64e-3 5.23e-2
128 | 7.50e-5 | 7.62e-4 | (.63e-4 1.31e-2

Table 2: MDF discretization without bubble degrees of freedom on square meshes.

Figure 2 shows location of edges where additional degrees of freedom are added, roughly
a quarter of all edges. In this case, as indicated by the values of beta, the discrete problem
is uniformly stable and we do not need to orthogonalize the pressure space. In both cases,
the superconvergence is observed for the H'-norm of the velocity error. However, the
actual convergence rate is slightly smaller in the stabilized experiments. Similar behavior
is observed for pressure errors.

A B8 | eolu) €1(u) £0(p)

8| 1.29e-1 | 1.57e-1 = 124e-1 | 3.55e-0
16 | 1.30e-1 | 4.35e-2  44le2 | 1.20e-0
32 1.29¢-1 | 1.13e-2 | 1.46e-2 | 4.25e-1
64 | 1.32¢-1 | 2.36e-3 4.7le-3 ‘ 1.45¢-1
128 | 1.30e-1 | 7.22e-4 | 1.53e-3 | 4.96e-2

Table 3: MDF discretization with stabilizing bubble degrees of freedom on square meshes.

7 Conclusions

We presetited a Mimetic Finite Difference method which is an evolution of that of [4]. The
method in [4] used a bubble degree of freedom on every mesh edge to achieve stability.
In the new method, the bubble degrees of freedom are added instead only where needed,
resulting in a smaller algebraic system and potentially in a faster calculations.

In order to investigate where the edge bubbles are needed, we extended the macrocle-
ment methodology to polygonal meshes and introduced a new macroelement partition of
the mesh. For this partition, we where able to mark a set of edges needing an additional
degree of freedom and to prove the stability of the ensuing discrete problem. The set of
marked edges is in general significantly compared to the set of all internal mesh edges. For
instance. edge bubbles need to be added (roughly) only to every fourth edge of a square
mesh, and they are not needed at all on a Voronoi-type mesh.

Finally, we presented a set of numerical tests in complete accordance with the theoretical
Investigations.
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