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A framework for developing a mimetic tensor artificial viscosity 
for Lagrangian hydrocodes on arbitrary polygonal and 

polyhedral meshes (U) 

1 Konstantin Lipnikov, 1 Mikhail Shashkov 
1 Los Alamos National Laboratory 

Mail Stop B284 
LANL, Los Alamos, New Mexico 

87545, USA 

We construct a new mimetic tensor artificial viscosity on general polygonal and polyhedral meshes. The 
tensor artificial viscosity is based on a mimetic discretization of coordinate invariant operators, divergence 
of a tensor and gradient of a vector. The focus of this paper is on the symmetric form, div (p,c(u)), of 
the tensor artificial viscosity where €(u) is the symmetrized gradient of u and p, is a tensor. The mimetic 
discretizations of this operator is derived for the case of a full tensor coefficient p, that may reflect a shock 
direction. We demonstrate performance of the new viscosity for the Noh implosion, Sedov explosion and 
Saltzman piston problems in both Cartesian and axisymmetric coordinate systems. 
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Introduction 
Consider a system of hydrodynamic equations in 
Lagrangian coordinates describing motion of an 
ideal compressible gas: 

1 Dp 
pDt 
Du 

P Dt 

Dc 
p Dt 

-div u, 

-\7p, 

= - pdivu, 

where p, p, u and c are the gas density, pressure, 
velocity and internal energy, respectively, and 
D / Dt denotes the material derivative. These 
equations represent fundamental conservation laws 
for the mass, momentum, and energy. The system 
of three equations has four unknowns; therefore, it 
is closed by an equation of state. 

Modeling of high-speed flows with shocks using a 
staggered discretization [3] requires introduction of 
an artificial numerical viscosity [4, 10, 9]. It 
stabilizes the simulation by spreading the shock 
across a few mesh elements. In I-D, the classical 
Von Neumann-Richtmyer viscosity [4] with a 
linear tenn due to Landshoff [9] has a clearly 
defined continuum analog. In particular, the 
modified momentum equation has the following 
form: 

(1) 

where the viscosity coefficient fJ12 depend on the 
solution: 

fJ2 au 
fJ12(U) = fJ l - - - . 

p ax 
The parameters fJ1 and fJ2 control shock thickness. 
Analysis of continuum equations for a strong 
shock with thickness of six mesh cells [12] (in the 
mass coordinates) gives fJl = C1 (--y + 1 )ps6.x and 
fJ2 = C2 (--y + 1) p2 (6.x ) 2 with positive constants C1 

and C2 close to one. Here s is the sound speed and 
6.x is the mesh size. 

In 2-D, the basic requirements for design of the 
artificial viscosity, as well as overview of existing 
methods, can be found in [5]. Here, we propose an 
artificial viscosity model that satisfies four 
requirements: it is disspative, Galilean invariant, 
and self-similar motion invariant. More precisely, 
an analog of the modified momentum equation (I) 
is 

Du 
P Dt = - \7p+div (fJ12c(U)) 

with the viscosity coefficient 

fJ1 2(U) = fJ1 - fJ2 c(u) . 
P 

Here c (u) denotes the symmetrized gradient, 
c(u ) = ~(\7u + (\7uf). 

For a staggered discretization [3] considered here, 
the discrete velocities are defined at mesh nodes, 
while the discrete pressure, density, and internal 
energy are defined on mesh elements. Unstructured 
and disturted polygonal alld polyhedral meshes are 
challenging for desining an accurate discretization 
of the artificial viscosity term. In this paper, we 
employ a novel discretization tenchnology 
developed in [1] for a scalar diffusion operator. 
This technology represents recent progress in 
development of mimetic discretization methods 
and is based on a discrete tensor calculus. Applied 
to the term 

(2) 

where fJ 12 is a full tensor, it results in a novel 
tensor artificial viscosity (TAV) method that 
extends the original TAV method [7] with a scalar 
fJ1 2. The tensorial coefficient fJ12 provides a tool 
for building various artificial viscosity models. In 
this paper we consider only second-order tensors; 
however, the mathematical structure of equations 
allows us to use full fourth-order tensors in the 
future. 

The new TAV framework can be applied to meshes 
with nonconvex and degenerate elements . Note 
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that the related TAV methods [7,8] are limited to 
meshes with convex elements. 

Method description 
Consider a partition of the computation domain 
nERd into polygonal (d = 2) or polyhedral 
(d = 3) elements E that may be non-convex or 
degenerate. Let lEI denote the volume of E. 

Consider a conventional staggered discretization, 
where the degrees of freedom for velocity u are 
defined at mesh points. Let U be the vector of all 
velocity degrees of freedom. In 3-D, the size of U 
is triple the number of mesh points. We also need 
the restriction of this vector to element E that we 
denote by U E. The size of U E is triple the number 
of vertices of E. Similarly, U E,v denotes the 
restriction of U E to vertex v of E. This is a 
three-dimensional vector. 

Multiplying both sides of (2) by a test function v, 
integrating by parts, and using proper boundary 
cond'itions, yields 

r f vis . v dV = - r (J.L12 c(u)) : c(v) dV. 
./11 ./11 

We apply accurate (will be speficied later) 
quadrature rules to both integrals. Each quadrature 
rule is written as a vector-matrix-vector 
multiplication with vectors of degrees of freedom 
and a matrix of weights: 

(Fvisf M V + O(h) = - U T A V + O(h), 

where the F vis is the global vector of point-based 
degrees of freedom of the force function f vis . The 
vector V is from the same discrete space as U. 
The O(h) terms must be small for sufficiently 
smooth functions. Omitting these terms, we obtain 
the desired viscous forces at mesh points: 

Note that the actual computations require only the 
vector M F vis . Thus, our main focus is on the 

stiffness matrix A. We assume that this matrix can 
be assembled from elemental matrices AE: 

A = L NEAENk, 
EET" 

where N E is the assembling matrix with only zero 
and one entries. 

Clearly, the elemental matrices AE must provide 
accurate quadrature rules for integrals over mesh 
elements: 

fe J.L12c(u) : c(v) dV = Uk AE V E + lEI O(h). 

(3) 
To obtain the correct error term, the quadrature rule 
must be exact iat least for linear velocity functions. 
To derive such a ru le for a general polygon or 
polyhedron E, we recan first a few facts from 
linear algebra. 

Let BE be a full rank n x n matrix, representing a 
change of the basis in a linear space. Change of the 
basis induces the following congruent 
transformation of the matrix A E : 

A _ T 
AE = BEAEBE . 

In reality, a partial information about the basis and 
the matrix AE is often available. For instance, we 
know a priori how to calculate the integral in (3) 
for linear functions u, v and constant tensor J.L12. 
Indeed, in this case, the integrand is a constant. 
Thus, a natural choice for a ba~id vector is the 
vector those components are values of a linear 
function at vertices of E. 

In a more abstract framework, let us assume that 
we (a) know m basis vectors Bi, m < n, and (b) 
can calculate somehow m vectors Ri = AEBi 
without using the matrix AE. Then, it is possible 
to complete the basis in such a way that the matrix 
AE is block-diagonal. More precisely, let us 
complete the basis by vectors B j , such that 

1 ::; i ::; m < j ::; n. (4) 
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Then, we have the following identity: 

This implies immediately that the (i , k )-entry of 

matrix A1 is the dot-product Bf R k ; therefore, 
this matrix can be calculated easily. 

Detailed analysis reveals that the accuracy 
requirement (3) alone is not sufficient to build a 
convergent approximation of the elliptic operator 
in (2). What is also needed are the orgonality 
conditions (4) . 

We define m basis vectors Hi using the degrees of 
freedom of linearly independent linear 
vector-functions 'l/Ji' In 3-D there are twelve such 
functions, which gives m = 12. In 2-D, m = 6. 
Thus, m is always less or equal to the dimension n 
of matrix AE and the equality is achived only for a 
simplex. Next, we replace the tensor J.L1 2 in (3) by 
a constant tensor /-tE. This is again the order of h 
approximation . Next , we replace u by 'l/J i and 
integrate by parts to obtain 

IEIO(h) + Bf AEV E = k J.LEc('l/Ji) : c(v) dV 

= 2:: ((J.LEc('l/Ji)) . nE) . J v dB, 
fEfJE j 

(5) 
where nE is the exterior normal vector to the 
surface of E. This formuta is the remarkable 
property: for an arbitrary v, the volume integral 
can be calculated accurately using only the surface 
information. 

For each face f, the surface integral call be 
calculated approximately using the degrees of 
freedom at its vertices v. Again, we need only an 
O(h) approximation. Recall that there exist 
positive coefficients W j,v such that the center of 
gravity xf of face f is a linear combination of 

vertices X v of f: 

Xf = L Wj ,v xv · 
vEj 

These weights give a quadrature rule exact for 
linear functions. Using them in the formula for AE 
and neglecting the O( h) terms, we obtain 

BfAEVE = L ((J.LEc('l/J i )) ·nE)·Lwj,vVE,v. 
jEoE vEj 

After simple re-arranging of the terms, the 
right-hand side can be written in a compact form as 
the dot product of two vectors: 

L ((J.LE\l 'l/J i ) . nE) . L Wj,v V E,v = Rfv E· 
f E&E vEf 

Due to arbitrariness of V E, we derive the desired 
relations AE Bi = ~ without knowledge of the 
matrix AE. Note that our arguments and presented 
derivations hold for an arbitrarily shaped element. 

No information is available to specify the matrix 
A1; thus, it remains arbitrary. For the moment, we 

use a diagonal matrix, A1 = aEIE; however, this 
freedom can be analyzed in the future. A 
reasonable choice for the scaling parameter aE is 
the mean trace of the first diagonal block, 
O;E = trace(Ak)/d. 

To complete the method derivation, we write down 
the formula for tlE in element E . For a 
one-dimensional shock, the 2-D viscousity term 
reduces to a 1-0 model. Therefore, we take the 
same parameters q and C2 to obtain 

where LE is the characteristic length (preferably in 
the direction of the shock) and E E is the negative 
spectral component of c E o The superscript E 
indicates that a mean value of the related 
quantatity. According to formula (5), calculation of 
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the mean value of the symmetrized gradient is 
reduced to calculation of a surface integral that can 
be done with the quadrature rule described above. 

Numerical experiments 
In the experiments shown below, a factor XE is 
added to the ME. Note that XE = 1 if only if 
trace(EE(U E)) < O. Otherwise, XE = O. The 
characteristic length LE is defined as IEl l / d . 

Since, our TAV does not control a hourglass 
distortion of the mesh, additional numerical 
viscosity is added to the system using the temporal 
triangular subzoI1'ing method [2]1 . We verified with 
numerical experiments that both viscosities are 
required in our simulations. 

Let us consider a 3-D Noh implosion problem, 
where the ideal gas with ,= 5/3, density p = 1, 
and pressure p = 0 is given an initial unit inwards 
radial velocity. A spherical shock wave is 
generated at the origin and moves with constant 
speed 1/3. At time t = 0.6, the shock wave has 
radial coordinate 0.2. The density behind the shock 
is 64. 

First, using symmetry of the problem, we solve it 
in the r-z geometry. The initial computational mesh 
is the 80 x 80 square mesh occupying the unit 
square. Second, the same problem is solved in 
three-dimensions. The initial mesh is the 
80 x 80 x 80 orthogonal mesh. In both runs 
Cl = 0.5 and C2 = 1.0. As shown in Fig. 1, the 
meshes at final time t = 0.6 have high-quality 
elements. The scatter plots in Fig. 2 indicate 
acceptable preservation of the spherical symmetry. 
Around the shock, we observe approximately 5% 
variation of density in the angular direction. 

The density behind the shock is smaller than the 
theoretical value of 64 in both runs. Density 
oscillations before the shock can be controlled by 
increasing the coeffcient Cl. Note that the results 
are more accurate in 3-D. 

Density 

S7.t1 

S • .9 

"".4 

<10.9 

30.4 

29.9 

24.4 

'8.9 

13.3 

7.93 

2.32 

Figure 1: Noh problem: 2-D and 3-D meshes at 
time t=0.6 colored by the density. 

In the second experiment, we consider the Sedov 
explosion problem. The problem generates a 
strong diverging shock wave [\3,14]. The initial 
density of the ideal gas with I = 1.4 is unity and 
the initial velocity is zero. At t = 0 , the total 
energy Eo is all internal and concentrated at the 
origin. The analytical solution gives the expanding 
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Figure 2: Noh problem: density distribution as 
a function of the distance from the origin in 2-D 
(top) and 3-D (bottom) runs. 

shock of radius r s with peak density of 6, 

r = .(Eot2)0.2 
s , 

fr s PO 

where fr3 = 0 .850937. The total energy Eo is 
defined such that r s = 0.9 at time t = 1. 

We consider a 80 x 80 square mesh occupying 
initially the unit square. Only one element near the 
origin (the biggest element in Fig. 3) is given a 
non-zero specific internal energy. The mesh 
elements are compressed in the radial direction and 
have large obtuse angles. Note that only small 

Otnsky 

4.SO 

4.1 

3.S5 

3.19 

2.7'1 

228 

1.82 

1.37 

O.B1 2 

0 ..... 

Figure 3: Sedov problem: 2-D and 3-D meshes 
at time t=l colored by the density. 

angles (close to 00
) may reduce (theoretically) the 

accuracy of the mimetic discretization. The 
pictures in Fig. 4 show small variation of density in 
the angular direction. 

The same problem is solved in three-dimensions. 
The initial mesh is the 80 x 80 x 80 olthogonal 
mesh. In both runs Cl = C2 = 1. The trace of the 
final mesh at t = 1 is shown in. Fig. 4. All 
hexahedra have high quality according to the mesh 
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criteria formulated in [I] for polyhedrall meshes. 
We recall that presence of large obtuse dihedral 
angles does not necessary affect the mesh quality. 
In the bottom picture in Fig. 4, we observe slight 
reduction of the pike density compared to the 
two-dimensional simulation (the top-right picture). 
On the other hand, position of the shock is more 
accurate in the three-dimensional simulation. 

4 

~ 
.~ 3 
Gl 
-c 

radius 

.. 1 
I 
1 
1 
L 

artificial viscosity is dominant in the shock wave 
propagation, the Saltzman piston problem is often 
used for testing new viscosity methods. 

A box is initially filled with the cold ideal gas 
(, = 5/3) at density I. A piston moves into the 
box with a constant speed 1.0 and generates a 
snock wave that reflects from the opposite fixed 
end of the box at time t = 0.8 and hits the piston at 
time t = 0.9. The simulation time is 0.925 when 
the shock reflected from the piston has not yet 
reached the fixed end. The final density behind the 
shock is 20 and the density ahead of the shock is 
10. 

Figure 5 compares results of simulations in the x-y 
and r-z' coordinate systems. In both runs 
Cl = C2 = 1. We observe a slightly more accurate 
results in the r-z coordinate system. The final mesh 
lines are more straight in this experiment. A 
common wall heating effect is observed on the top 
wall of the box where the symmetry boundary 
condition is applied. 

Conclusion 
We constructed a new mimetic tensor artificial 
viscosity on polygonal and polyhedral meshes. The 
tensor viscosity is designed as the mimetic 
discretization of the differential operator 
div (tlc(u)), where JI is the full second-order 
tensor coefficient. We demonstrated performance 
of the new viscosity with three test problems. 

o L-..~_,"--......,i.._""''''''~~_.l...------.L~ Acknowledgements 
0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 The simulations were done using the code [3]. We 

radius 

Figure 4: Sedov problem: density distribution 
as a function of the distance from the origin in 
2-D (top) and 3-D (bottom) runs. 

In the Saltzman problem, a one-dimensional shock 
wave propagates through a two-dimensional mesh 
[11]. This tests the ability of the method to model 
shock waves that are oblique to the mesh. As 

authors acknowledge support of the DOE Office of 
Science Advanced Scientific Computing Research 
(ASCR) Program and the Advanced Simulation & 
Computing (ASC) Program. 
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Figure 5: Saltzman problem: meshes at time 
t=0.925 colored by the density in 2-D 
simulations using x-y (top) and r-z (bottom) 
coordinatei systems. 

References 

[I] F.Brezzi, A.Buffa, K.Upnikov. Mimetic finite 
differences for elliptic problems. M2AN 
Math. Model. Numer. Anal. (2009) 43, 
277-295. 

[2] P.L Browne, K.B. Wallick. The reduction of 
mesh tangling in two-dimensional 
Lagrangian hydrodynamics codes by the use 
of viscosity, artificial viscosity, and TTS 
(temporary triangular subzoning for long, 
thin zones). Technkal Report LA-470-MS, 
Los Alamos National Laboratory, 1971. 

[3] D.Burton . Consistent finite-volume 
discretization of hydrodynamics conservation 
laws for unstructured grids. LLNL Report 
UCRL-JC-118788, 1994. 

[4] J. von Neumann, R.Richtmyer. A method for 
calculation of hydrodynamic shocks. 1. Appl. 
Phys. (1950) 21, 232-237. 

[5] E. Caramana, M.Shashkov, P'Whalen. 
Formulation of artificial viscosity for 
multi-dimensional shock wave calculations. 
1. Comput. Phys. (1998) 144, 70--97. 

[6] K.Lipnikov, M.Shashkov. A framework for 
developing a mimetic tensor artificial 
viscosity for Lagrangian hydrocodes on 
arbitrary polygonal meshes. 1. Comput. Phys. 
229 (2010), 7911 - 7941. 

[7] J.Campbell, M.Shashkov. A tensor artificial 
viscosity using a mimetic finite difference 
algorithm. 1. Comput. Phys. (2001) 172, 
739-765. 

i[8] T.Kolev, R.Rieben. A tensor artificial 
viscosity using a finite element approach. 1. 
Compul. Phys. (2009) 228:22, 8336-8366. 

[9] R. Landshoff. A numerical method for 
treating fluid flow in the presence of shocks. 

Preparedfor Proceedings of the NECDC 2010 ________________ _ 

UN CLASSIFIED 



LAUR 10-00043 UNCLASSIFIED 
Technical report LA-1930, Los Alamos 
National Laboratory, 1955. 

[10] W.D. Schulz. Tensor artificial viscosity for 
numerical hydrodynamics. 1. Math. Phys. 
(1964) 5,133-138. 

[11] J. Saltzman, P. Colella. Second order comer 
coupled upwind transport methods for 
Lagrangian hydrodynamics. Technical Report 
LA-UR-85-678, Los Alamos National 
Laboratory, 1985 

[12] A.A. Samarskii, Yu.P. Popov. Difference 
methods for gasdynamics, Nauka, Moscow, 
1992, in Russian. 

[13] L. Sedov. Similarity and Dimensional 
methods in mechanics. Academic Press, New 
York, 1959. 

[14] A. Shestakov. Time-dependent simulations of 
point explosion with heat conduction. Physics 
of Fluids (1999),11,1091-1095. 

[15] M. Wilkins. Use of artificial viscosity in 
multidimensional shock wave problems. 1. 
Comput. Phys. (1980) 36, 281-303. 

August 30, 2010 

Prepared for Proceedings of the NECDC 2010 ________ _ ________ _ 

UNCLASSIFIED 


